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The polyhedron of non-crossing graphs on a planar
point set!

David Orden and Francisco Santos?

Abstract

Adding marks to some vertices, we introduce the
notion of marked graphs and pseudo-triangulations.
We extend to them some properties of usual pseudo-
triangulations, among them the notion of flips of in-
terior edges between pointed vertices of a pseudo-
triangulation to flips of any interior edge or mark of
a marked pseudo-triangulation.

These flips produce a graph whose vertices are
all the pseudo-triangulations of the given point set,
containing in particular all triangulations and pointed
pseudo-triangulations. The graph is regular of degree
3i-++b- 3, where i and b are the numbers of interior and
boundary points in the point set

We construct the polyhedron of marked non-
crossing graphs of a point set in the plane, defined as
a convenient perturbation of a polyhedral cone. Its 1-
skeleton is the regular graph mentioned above. The
face poset of the polyhedron is opposite to the poset
of marked non-crossing graphs, so in particular we ob-
tain a (sub)polyhedron whose face poset is the poset of
non-crossing graphs.

1 Introduction

Let P be a fixed point set of n points in the plane,
in general position. The main result of this paper
is that the poset of non-crossing graphs drawn on
P can be embedded as part of the face poset of a
simple polyhedron of dimension 3n — 3 — ny, where
np is the number of points in the boundary of the
convex hull. Observe that there is a trivial way
of embedding this poset in the face poset of the
(g)-cube, simply using one dimension for each of
the possible edges in the graph. Hence, our crucial
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point is the dimension 3n — 3 — ny, which is the
minimum possible one since it equals the number
of edges in any triangulation of the point set.

Our techniques are based on those of [4], who
construct a polyhedron of dimension 2n — 3 whose
face poset is that of “pointed” non-crossing graphs
drawn on P. Our main new ingredient is that we
consider “marked” non-crossing graphs, meaning
non-crossing graphs with a subset of their pointed
vertices marked.

Pseudo-triangulations have arisen on many
Computational Geometry applications, among
them visibility [2, 3, 5], ray shooting and kinetic
data structures [1]. Streinu [6] introduced the
minimum or pointed pseudo-triangulations, used to
prove the Carpenter’s Rule Theorem and having
applications to non-colliding motion planning of
planar robot arms. They also have very nice com-
binatorial and rigidity theoretic properties, and the
polyhedron constructed in [4] encodes their combi-
natorial structure.

We show that considering “marked pseudo-
triangulations”, we can generalize pointed pseudo-
triangulations, extending their combinatorial prop-
erties as well as the existence of such a polyhedron.

In Section 2 we give some preliminaries and
results about pseudo-triangulations and pointed
graphs, and introduce the notions of marked
pseudo-triangulation and marked graph, leading to
results which extend the former. Section 3 is de-
voted to the construction of the polyhedron of non-
crossing marked graphs.

Throughout this paper, we will consider pla-
nar point sets and will assume they are in general
position, i.e. no three points are collinear.
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2 Marked graphs on a planar
point set

Pseudo-triangulations. A pseudo-triangle is a
simple polygon with only three convex vertices
(called corners) joined by three inward con-
vex polygonal chains (called pseudo-edges of the
pseudo-triangle), see Figure 1(a).

A pseudo-triangulation of P is a partitioning,
such that every point of P is used, of the convex hull
of P into pseudo-triangles. They are then graphs
embedded on P; drawn in the plane, having vertex
set P and edges the straight-line segments. Below
we will work with other graphs embedded in the
plane.

Planar and pointed graphs. Pointed pseudo-
triangulations. Given a graph G embedded in
the plane, it is said to be a non-crossing or pla-
nar graph if its edges intersect only at their end-
points. Observe that this is the case for pseudo-
triangulations. A vertex v of the graph is called
pointed if all its incident edges are strictly con-
tained in a half-plane based on v (i.e. all contained
in an angle smaller than 7 with vertex v).

A graph is pointed if it is pointed at ev-
ery vertex. If, in addition, it is a pseudo-
triangulation, then it is called a pointed pseudo-
triangulation, which is usually abbreviated as p.p.t.
We present now some of the good combinato-
rial properties of pointed pseudo-triangulations and
pseudo-triangulations:

Proposition 1 (Streinu [6]) With the previous
definitions:

1. Every pointed and planar graph on n points has
at most 2n — 3 edges, and can be completed to
a pointed pseudo-triangulation.

2. Every pseudo-triangulation on n points, Ty
non-pointed and n. pointed, has:

2n —3+4n, =3n—3 —n, edges, and
n—2+ny = 2n — 2 —n, pseudo-triangles.

3. (Definition of Flips) In a pseudo-
triangulation, every interior edge (not on
the conver hull) between pointed vertices can
be flipped; once removed, there is a unique
way to put back another edge to obtain a
different pseudo-triangulation. |

Corollary 2 In the situation above,

1. Ewvery pointed pseudo-triangulation on n points
has ezactly 2n — 3 edges.

2. Pointed pseudo-triangulations are ezactly the
mazimal planar pointed graphs.

3. The graph of flips between pointed pseudo-
triangulations of a given point set is regqular
of degree 2n — 3 — ny, for ny the number of
vertices of the convex hull. [ |

{a)
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0

Figure 1: (a) A pseudo-triangle. (b) A
pointed pseudo-triangulation. (c) The thin edge
in (b) is flipped, giving another pointed pseudo-
triangulation.

]

A
N

{o}

Marked pseudo-triangulations. We intro-
duce here a new object, the marked pseudo-
triangulation, and explain how it extends the
previous properties of pseudo-triangulations.

Definition 3 Given a planar point set P =
{p1,...,pn}, a marked pseudo-triangulation is a
partitioning of the convex hull of P into pseudo-
triangles, along with a subset of the pointed ver-
tices in this partitioning, which we define to be the
marked vertices.

Observe that, in particular, a “pseudo-
triangulation” is a “marked pseudo-triangulation
with marked vertices the empty set”.
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Fully-marked graphs. Fully-marked pseudo-
triangulations. We define now the property of
being marked in a more general context, as was
done above for pointedness:

Definition 4 A marked graph is a graph G em-
bedded in the plane together with a subset of its
pointed vertices. We define a graph to be fully-
marked if all its pointed vertices are marked. If,
in addition, it is a pseudo-triangulation, then it is
called a fully-marked pseudo-triangulation, which
will be abbreviated as f.m.p.t.

An interpretation of what marked vertices
mean, can be the following; given a graph embed-
ded in the plane, we consider this plane contained
in a three dimensional space and a point at the
infinity. Then each mark on a pointed vertex
represents an edge joining it with the point at the
infinity.

Let us show that the analogous to the
properties stated above for “pointed pseudo-

triangulations” and “pseudo-triangulations”
hold when rewritten in terms of “fully-marked
pseudo-triangulations” and “marked pseudo-

triangulations”, respectively:
Proposition 5 With the previous definitions:

1. Every marked and planar graph on n points
has at most 3n — 3 edges plus marks, and
can be completed to a fully-marked pseudo-
triangulation.

2. Every marked pseudo-triangulation on n
points, n., non- pointed, n. pointed and N,
marked, has:

2n -3+ ny +nym = In — 3 — n, + n,, edges
plus marks, and

n—2+n, = 2n — 2 — n. pseudo-triangles.

3. (Definition of Flips) In a marked pseudo-
triangulation, every interior edge or mark (not
on the convex hull) can be flipped; once re-
moved, there is a unique way to put back an-
other edge or mark to obtain a different marked
pseudo-triangulation.

Proof: The second statement is trivial provided
Lemma 1, so let us prove the others: For the first

one, observe that every pseudo-n-gon, n > 4 has di-
agonals between non-adjacent corners. A diagonal
between two points of a pseudo-n-gon is the short-
est path contained in the pseudo-n-gon and joining
those points. Thus, the marked graph can be com-
pleted to a marked pseudo-triangulation which, in
order to be fully-marked, only needs to have marks
added, in such a case, at the non-marked vertices
of the original graph.

To prove the third property we start with the
edge case; since the edge e is not on the convex hull,
there are two pseudo-triangles 77,7% containing e
as an edge. The union 77 UT5 can only be either a
pseudo-quadrangle or another pseudo-triangle; the
first arises when both edge endpoints are pointed
in T3 U T3 and then it is enough to perform a flip
of the type defined in Lemma 1 in the pseudo-
quadrangle T7 U T2. On the other hand, when one
of the two endpoints p, is non-pointed, T3 U T3 is
another pseudo-triangle. We define the flip of this
configuration removing the edge e and marking p
(which became pointed).

It remains to define flips on an interior marked
vertex p’. In order to do that, we focus on the
two extreme adjacent edges of p’; there is a unique
pseudo-triangle 7”7 having them as part of one of
its pseudo-edges. The flip of the marked vertex p’
is defined then removing the mark and adding the
diagonal between p’ and the opposite vertex of its
pseudo-edge (so p’ becomes non-pointed). a

Figure 2: (a) A marked pseudo-triangulation. (b)
The flip between the thin edge in (a) and the new
marked vertex in (b). -

As above, from these three properties we can
easily obtain the following important facts about
fully-marked pseudo-triangulations:
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Corollary 6 In the previous situation,

1. Every fully-marked pseudo-triangulation on n
points has exactly 3n — 3 edges plus marks.

2. Fully-marked pseudo-triangulations are ezactly
the mazimal planar marked graphs.

3. The graph of flips between fully-marked
pseudo-triangulations of a given point set is
regular of degree 3n—3—2ny,, for ny the number
of vertices of the convez hull. [ |

3 The polyhedron of non-
crossing graphs.

In this section we prove our main result; we con-
struct a polyhedron of dimension 3n — 3 whose
face poset is opposite to the poset of marked non-
crossing graphs. This extends the construction
given in [4] of a polyhedron of dimension 2n — 3
whose face poset is opposite to the poset of pointed
non-crossing graphs.

Construction of the polyhedron. We consider
a (3n — 3)-dimensional space in which we first de-
fine a collection of hyperplanes passing through the
origin. The positive region of this hyperplane ar-
rangement gives a polyhedron. This is not the one
we are looking for, so we perturbe the hyperplanes
in a convenient way to obtain a new polyhedron
having the combinatorial structure we want.

Definition 7 Given a set of n points P =
{p1,-..,pn} in R® such that some of them are
marked, we consider the following (3n — 3)-
dimensional space;

{(v1,.. ., vny b1, t) ER2Y x R™ -
vi =vi=v} =0} cR3"

M=
(1)

where we define the following hyperplanes; for every
pair of points p;,p; € P,

Hij = {(’l)l,...,’l)n,tl,...,tn) €EM:
(Pi = pj,vi — v5) — |ps — pj|(t: + ;) = 0}

and for every point p;,

Hoj :=={(v,t) e M : t; = 0}

We orient these hyperplanes as

H:; = {(Ul,...
(Pi"Pj,vi

7Un7tl"'-atn)€M:

— ;) — pi —psl(ti + ¢5) >0} (2)

and

(3)

Definition 8 We define the polyhedron X, (P) to
be the positive region of the hyperplane arrangement
gwen by those of the previous definition:

HJ]- ={(v,t) e M :t; >0}

Xo(P) = "\H}
.3

Lemma 9 The polyhedron Xo(P) is a pointed
polyhedral cone of full dimension 3n — 3 in the
subspace M C R3". (Note that in this context
“pointed” means that the origin is a vertex of the
cone).

Proof: The vector v; 1= p;, t; == ming  {|{px —m|}/4
satisfies all inequalities (2),(3) strictly. Equations
(1) can be satisfied too, without changing the sta-
tus of the inequalities, by adding a suitable rigid
motion, giving a relative interior point in the sub-
space M. On the other hand, if the cone were
not pointed, it would contain two opposite vectors
(v,t) and —(v,t). From this we would conclude
that (v; — vi,p; — pi) — |p; — p;|(t: +t,) = 0 for all
t,j and t; = 0 for all j, and hence by the equations
(1), (v,t) must be (0,0). u

When permitted by the clearness of the con-
text, we will omit the point set P and denote Xj.
Some of the inequalities in (2),(3) may be satisfied
with equality by a solution (v,t); the corresponding
edges and vertices E(v,t) are said to be tight for
that solution. In the same way, given a face K of
X, we call tight edges and vertices of K and denote
E(K) the edges and vertices whose equations are
satisfied with equality over K.

Lemma 10 Consider the set E(v,t) of tight edges
and vertices for any feasible point (v,t) € Xo. If
E(v,t) contains

(i) two crossing edges,

(ii) a set of edges incident to a common vertez with
no angle larger than w (witnessing that E (v, t)
is not pointed at this vertez), or
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(iii) a conver subpolygon,

then E(v,t) must contain the complete graph be-
tween the endpoints of all involved edges. In case
(iii), this complete graph also includes all points in-
side the convez subpolygon.

Proof: The same proof given in [4] works here
noting that E(v,t) can be rewritten as E(v,t) =
E@)Nn{i: t; = 0} for E(v) the set of edges for
which (p; — p;,v; —v;) = 0. n

In order to get the wanted combinatorial
structure for our polyhedron, we have to give up
homogeneity and perturb the constraints (2),(3),
translating faces of the cone:

Definition 11 We define the following hyper-
planes; for every pair of points p;, p; € P,

Hij = {(vl,...,vn,tl,...,tn) €M :
(Pi — pj,vi = v5) — Ipi — p;1(ti + t5) = fi;}

and for every point p;,
ﬁoj = {(’U,t) EM:t; = ij}
which, as above, we orient as

B = (01, tmsts 1) € M

(Pi—pj,vi —v5) — |pi — pjl(t + t5) > fis} (4)

and

Hé; = {(U,t)EM!tj Zfoj} (5)
Definition 12 We define the polyhedron X (P) to
be the positive region of the hyperplane arrangement
given by those of the previous definition:

X'f(P) = ﬂ ﬁ;;
%]

And we define E(v,t) and E(K) for X; in the same
way we did for X,.

Corollary 13 From Lemma 9, we conclude that
X(P) is a (3n — 3)-dimensional unbounded poly-
hedron with at least one vertez, for any choice of
parameters f. n

Combinatorial structure of the polyhedron.
In this paragraph we introduce some definitions and
results leading to the main one; the construction
of a polyhedron whose face poset is (opposite to)
the poset of non-crossing and marked graphs. In
particular, this gives a polyhedron with face poset
opposite to the poset of non-crossing graphs in R2.

Definition 14 In our context, a stress on a graph
G = (P,E) embedded on P is an assignment, of
scalars w;; to edges and a; to vertices, such that
for every (v,t) € R3":

> wii((ps = pjyvi — v) —

ijeE

pi = psl(t +45)) + Y _ajt; =0 (6)
J=1

Lemma 15 Let 30—, \ip; = 0, YA = 0, be an
affine dependence on a point set P = {p1,...,pn}.
Then,

Wi 1= M A; for every i,j

and

aj = Y Nlpi — py] for every j
iijEE

defines a stress of the complete graph G on P.
Proof: Considering (6) on variables v gives
Z wij(p,- — Djs Vs — v]') ={, V(U,t) (S R3n (7)
ijEE
what is equivalent to

Vj € P, Z wi;(pi — p;) =0
ijEE

(8)

This is fulfilled by our w;;’s, using that the \;’s are
an affine dependence.
Then, from (6) and (7) we obtain

= Y wylps — pyl.
iijE€E
[ ]
In particular, four points in R? have a unique
(up to conmstants) affine dependence, what deter-

mines uniquely the w;;’s and a;'s of the previous
Lemma. The coefficients of this dependence are:

Ai = (=1)* det([py, - .., pa)\{p:}).
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(Recall that det(qi1, go,g3) is two times the signed
area of the triangle spanned by g1, g2, g3)-

Then, dividing the w;;’s and a;’s of the pre-
vious lemma by the constant

- H det(p17p21pi) H det(PjaP37P4)

i=3,4 j=1,2

we obtain next expressions for the case of four
points:
1
Wi =
Y det(ps, pj, pr) det(ps, pyy 1)
o= Y wilp; — pjl

i1ijEE

(9)

and

where k and [ are the two indices other than 7 and
7.

Lemma 16 The previous expressions give positive
wi; and a; on boundary edges and points and nega-
tive w;; and o; on interior edges and point, for both
possible cases on four points; “one point inside the
triangle formed by the other three” and “four points
in convex position”.

Proof: The part concerning w;;’s can be easily
checked. For the a;’s, we use that (8) gives a tri-
angle around j, and so a triangular inequality; for
w;j|p; — pj| with ¢ s.t. ij € E, the sum of any two
of them is greater than the other. Considering the
signs of the edges around each vertex, it is easy to
check that every a; = 3, ... p wij|p; — p;| has the
claimed sign. |

Note that fully-marked pseudo-triangulations
on four points are, in both cases, the graphs ob-
tained deleting from the complete graph any single
interior edge and marking every non-interior point.

Definition 17 We define a choice of the constants
f to be valid if for every four points {p1,p2,p3,pa}
of P and wy;’s, a;’s those of (9), they satisfy:

>

4
’w,'jfij + Z ajfoj >0 (10)
1<i<j<4 j=1

Lemma 18 The choice of constants f;; :=
det(a, p;,p;) det(b, ps, p;), foj :=0 for a and b any
two points in the plane, is valid.

Proof: Let us consider the four points p; as fixed
and regard R := Zwijfij +Z Oéz'foj = Z wijfij as

a function of @ and b.

R(aa b) = Z det(aap‘hpj)det’(bvpivpj)wij~
1<i<j<4

For fixed b, R(a,b) is clearly an affine function of
a. We claim that R(p;,b) = 1 for each of the four
points pi1,...,ps, what implies that R(a,b) is con-
stantly equal to 1.

To prove the claim; fixed one of the four points
Di, R(pi, b) is an affine function of b, so it is enough
to prove that it equals 1 for b any of the other three
points. But R(p;, p;) trivially equals 1. ||

We state now our main result; the polyhedron
of planar marked graphs:

Theorem 19 For every set P = {p1,...,pn} of
planar points in general position, any valid choice
of f produces a X ¢ stmple, of dimension 3n—3 and
with the following properties:

1. The face poset of the polyhedron equals the op-
posite of the poset of marked and non-crossing
graphs on P, by the map sending each face K
to the marked graph E(K) having as edges and
marked vertices those which are tight over K.
In particular:

(a) Vertices of the polyhedron are in 1-to-1
correspondence with fully-marked pseudo-
triangulations of P.

(b) Bounded edges correspond to flips of
interior edges or marks in fully-marked
pseudo-triangulations, i.e., to fully-
marked pseudo-triangulations with one

interior edge or mark removed.

(c) FExtreme rays correspond to fully-marked
pseudo-triangulations with one convex

hull edge or mark removed.

2. The face X;(P) obtained turning into equali-
ties those inequalities from (4),(5) which cor-
respond to convex hull edges or marks of P
is bounded (hence a polytope) and contains
all vertices. In other words, it is the unique
mazimal bounded face, and its I-skeleton is
the graph of flips among fully-marked pseudo-
triangulations.
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Proof: Next four Lemmas, whose proof will appear
in the full version, together with the existence of
valid f’s shown in Lemma 18, prove part 1.

Lemma 20 For any choice of f’s, X f(P) is a
bounded set.

Lemma 21 The following three statements are
equivalent:

(i) A choice of f’s makes X; have the combinato-
mal structure of the Theorem.

(i) The graph E(v,t) of tight edges and vertices

corresponding to any feasible point (v,t) €

X (P) is non-crossing and marked.

(iii) The graph E(v,t) of tight edges and vertices

corresponding to any verter (v,t) € X;(P) has

exactly 3n — 3 incident faces and is a fully-

marked pseudo-triangulation.

Lemma 22 A choice of f’s makes X ;(P) have the
combinatorial structure of the Theorem if, and only
if, it makes Xy ({p1, pa, ps, Da}) have that structure
for every four points of P (where f’ is f restricted

to {p1,p2,p3,psa})-

Lemma 23 A choice of constants f makes
X¢({p1,p2,p3, Pa}) have the combinatorial struc-
ture of the Theorem for every four points of P if,
and only if, it is a valid choice.

Finally, part 2 can be easily derived from part 1:
For every vertex or bounded edge of X £(P), the set
E(v,t) contains all convex hull edges and marks
of P. On the contrary, for any unbounded edge
(ray) of X;(P), the set E(v,t) misses some convex
hull edge or mark of P. Thus, turning into equali-
ties those inequalities corresponding to convex hull
edges and marks gives a face X ;(P) of X 7(P) which
contains all vertices and bounded edges of X £ (P),
but no unbounded edge. |
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