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Abstract

La cota superior de Moore n(A,2) para el or-
den de los grafos con grado maximo A y didmetro 2
es n(A,2) < A® + 1. La tunica cota inferior general
conocida para grafos vértice simétricos es n(A,2) >
| 242 ][242]. Recientemente una construccién de gra-
fos vertlce transitivos de didmetro 2, basada en grafos
de voltaje, con orden (A + 1)? fue obtenida en [11]
para A = (3¢ —1)/2 y ¢q una potencia de un primo con-
gruente con 1 mod 4. En este trabajo damos una cons-
truccién geométrica alternativa con la que obtenemos
grafos con los mismos pardmetros y, cuando g es la po-
tencia de un primo que no es congruente con 1 modulo
4, obtenemos grafos de diametro 2 y orden %(A +1)%

1 Introduction

The well-known (A, D)-problem asks for the lar-
gest possible number n(A, D) of vertices in a graph
with given maximum degree A and diameter D.

The Moore boundn(A,d) < é(_é\_A_I)_ can only be
reached when either A = 2 (the cycle Cap41), or

= 1 (the complete graph Ka41) or when D = 2
and A =1,2,3,7 and perhaps 57 [9]. A survey of
the current best know constructions of graphs with
large order for given maximum degree and diame-
ter can be found in [12]. For D = 2, the general
lower bound n(A,2) > A% — ¢ A7/6%¢ where € > 0
and ¢, is a constant, can be obtained from incidence
graphs of projective planes, see [11] and the refe-
rences therein. When the graphs are required to
be vertex transitive, the only general lower bound
available seems to be

na(a,2)2 (2321252

attained by the Cayley graphs Cay(Z, x Zs,S),
where a = |[832], b = [2f2] and § = (Z, x
{0}) U ({0} x Zp) \ {(0,0)}. Recently McKay, Mi-
ller and Siran {11] gave an infinite family of vertex

transitive graphs of diameter 2 and order $(A+1)?
when ¢ = (2A + 1)/3 is a prime power congruent
to 1 modulo 4. In view of the(unattainable) Moore
bound n(A,2) < A% +1 this is a remarkable result.
Their construction is based on the covering graph
technique. The purpose of this note is to provide a
geometric construction of vertex symmetric graphs
with the same parameters. The construction also
provides the following lower bound for vertex sym-
metric graphs of diameter 2:

(A, 2) > %(A" +1),

when ¢ = (A + 1)/2 is a prime power.

2 The construction

Let ¢ # 2 be a prime power and denote by F, the
Galois field of order ¢q. Let Ly, L;,...,Lq be the
parallel classes of lines in the affine plane A(2,¢q).
Assume that the plane is coordinatised in such a
way that Ly consists of the lines with equation z =
c for each ¢ € F,. Consider the incidence graph B,
of the points in A(2,q) and the set L\ Ly of all
lines in A(2, q) except the ones in the parallel class
Lg. We denote the line of equation y = mz + b
in L\ Lo by [m,b]. The graph B, is bipartite, g¢-
regular, has 2¢® vertices and it is vertex transitive.
Indeed, the set of translations of A(2,q) is a group
of automorphisms of the graph which acts regularly
on the set of points of A(2,¢), and the map ¢ which
exchanges the point (a,b) with the line {a, —b] with
equation y = az —b is an automorphim of B, which
exchanges stable sets. Every two points not in a line
of Ly determine a unique line in L \ Lo and thus
they are at distance 2 in By. Similarly, two lines
not in the same parallel class of L \ Ly intersect
in a unique point and so they are at distance 2
in the graph. The construction is completed by
inserting apropriate copies of graphs of diameter 2
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in the set of points of each line of Ly, and in the
set of lines in each parallel class of lines except L.
Since we require our graphs to be vertex transitive,
additional care must be taken in the way to insert
these graphs.

Let 51,52 be subsets of F, satisfying the fo-
llowing three conditions:

(i) There is a € F, such that aS; = S, and
a5'2 = S]

(ii) $1 U S cover all non zero elements of F,.

(ii) S; = —S;, 1 =1,2.

Let G; be the Ca.yley graph on the additive
group of F, with generating set S;, i = 1,2. Then,
by condition (i), the two graphs are isomorphic.
Actually, if we denote still by o the map a(z) =
az, then a(Gy) = G3. Moreover, by (ii), we have
|S1| = |S2| > (¢—1)/2. Then both G, and G4 have
diameter at most 2. Consider the graph B, (G}, G3)
constructed from B, by adding copies of G; and G,
as follows.

a) For each line in Ly, we embed a copy of G; in
its set of points. More precisely, if S; is the ge-
nerating set of the Cayley graph G, for each
line in Ly with equation z = ¢ the neighbor-
hood of vertex (c,y) in the inserted copy of G;
is the set of points (c,y) + ({0} x Sy).

b) Similarly, to each parallel class L;, i # 0, we
embed a copy of G, in such a way that the
neighborhood of the line [a, 8] is the set of lines
[a,b] + ({0} x S;) in the same parallel class.

Proposition 1 The graph B,(G1,G2) is vertex
transitive and has diameter 2.

Proof. Let us first show that B,(G,,Gs) is ver-
tex transitive. Note that the translations in the
affine plane A(2,q) still act as automorphisms of
B,(G1,Gz2). Indeed, a transllation sends each line
[m, ] to a parallel one of the form [m,b + z,,]
for some z,, € F,, so that it acts as a translla-
tion of the induced graph G in the parallel class,
i.e. an automorphism of G,. Similarly, a trans-
llation sends the set of points of a line in Ly to
the points of another line in Ly and thus an in-
duced copy of G; to another one. Let us denote
by o the bijection on the vertex set of B,(G;,G5)
defined as o/(z,y) = (z,ay) in the set of points
and o'[z,y] = [az,ay] on the set of lines, where
a € F, satisfies aS) = S, (and aS; = ;). Clearly

o preserves the incidence relations in A(2,¢) and
it is therefore an automorphism of the graph B,.
Moreover, o’ exchanges the copies of G; with the
copies of G;. Hence, &’¢ is an automorphism
of By(G1,G2) which exchanges points with lines.
Therefore, the group of automorphims generated
by the transllations and o'¢ acts transitively on
the set of vertices of the graph.

Finally, let us show that (0,0) has eccentri-
city 2. All points not in the line of Ly incident to
(0,0) are at distance 2 from (0,0) in the subgraph
By, and the points in this line are also at distance
at most 2 in the copy of G; embedded in it. On
the other hand, (0,0) has the lines [m, 0], m € F,
at distance 1 and the lines [m,u],u € S, and
[m,v], v € Sy at distance 2. Since S; U S, = F,,
all lines are at distance at most 2 from (0, 0). The—
refore, B,(G1, G2) has diameter 2. m

The above construction provides instances of
large graphs with diameter 2 by appropriate choices
of sets 51,8, satisfying conditions (i)-(iii) above.
Part (ii) of the following theorem is proved in [11]
using a different construction.

Theorem 1 Let q be a prime power, g # 2. Then
a) nue(D,2) > 2(A+1)2 for A =2q—1.

b) m8,2) > §(A + 7 for & =
¢g=1 (mod 4).

(3¢—1)/2 and

c) nye(6,2) > 32.

Proof. A trivial choice for the sets S1, S, involved
in the construction of By(G1,Gq) is S = S, =
F;. Then, both G; and G are complete graphs
and B (Gl,G’z) has degree A = 2¢ — 1 and order
(A +1)2. This proves (i). When g is a prime
power congruent to 1 mod 4 then a better choice for
Sy and S with cardinality (¢—1)/2 (the minimum
possible) can be found. Let 7 be a primitive root of
Fg, S1 = {n,n%...,n(¢"V/2} and S, = 5$;. Since
(g —1)/2 is even, we have S; = —S;. Moreover,
7S =5 and S1US; = F;. The resulting graph
B (G],Gz) has degree A = (3¢ — 1)/2 and order .
8(A + 1)2. This proves (ii).

Fmally, for ¢ = 4, we may choose S; = {1,7}
and Sy = {1,7%} which results in a graph of degree
6 and order 32. This proves (iii). a

Note that, if we omit condition (i) in the choice
of sets 51 and S, then we still obtain a graph of
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maximum degree ¢ + max{|S1|,|S2|} and diameter
2 which may be not vertex transitive. Again, the
best possible choice of S; and S; provides graphs
with the same parameters as the ones obtained in
[11).

When ¢ = 0 (mod 4) we may choose 51 =
{1,n7...,nq/2—1} and S, = {1’77‘1/2’...7774“1}_
We have S; = —S;, i = 1,2, and $; U S, = F.

The resulting graph By(G:,Gz) have dia-
meter 2 and order n = SAZ% When
g = —1 (mod4), a possible choice is S; =

{1,n,---,n@=3/4} U n@-1/2{1 q,... nla=3)/4}
and S = {1777(4-%1)/4,...,n(q—3)/2} U
nla=1)/2{1, plath/4 ... ,ne=3)/2} " which gives
rise to a graph with diameter 2 and degree
n=$§(A? -1/2).
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