Large vertex transitive graphs of diameter 2

G. Araujo, M. Noy, O. Serra Universitat Politècnica de Catalunya

Abstract

La cota superior de Moore $n(\Delta,2)$ para el orden de los grafos con grado máximo Δ y diámetro 2 es $n(\Delta,2) \leq \Delta^2 + 1$. La única cota inferior general conocida para grafos vértice simétricos es $n(\Delta,2) \geq \lfloor \frac{\Delta+2}{2} \rfloor \lceil \frac{\Delta+2}{2} \rceil$. Recientemente una construcción de grafos vértice transitivos de diámetro 2, basada en grafos de voltaje, con orden $\frac{8}{9}(\Delta+\frac{1}{2})^2$ fue obtenida en [11] para $\Delta=(3q-1)/2$ y q una potencia de un primo congruente con $1 \mod 4$. En este trabajo damos una construcción geométrica alternativa con la que obtenemos grafos con los mismos parámetros y, cuando q es la potencia de un primo que no es congruente con $1 \mod 4$, obtenemos grafos de diametro 2 y orden $\frac{1}{2}(\Delta+1)^2$.

1 Introduction

The well-known (Δ, D) -problem asks for the largest possible number $n(\Delta, D)$ of vertices in a graph with given maximum degree Δ and diameter D. The Moore boundn $(\Delta, d) \leq \frac{\Delta(\Delta-1)^D-2}{\Delta-2}$ can only be reached when either $\Delta=2$ (the cycle C_{2D+1}), or D=1 (the complete graph $K_{\Delta+1}$) or when D=2 and $\Delta=1,2,3,7$ and perhaps 57 [9]. A survey of the current best know constructions of graphs with large order for given maximum degree and diameter can be found in [12]. For D=2, the general lower bound $n(\Delta,2) \geq \Delta^2 - c_\epsilon \Delta^{7/6+\epsilon}$, where $\epsilon>0$ and c_ϵ is a constant, can be obtained from incidence graphs of projective planes, see [11] and the references therein. When the graphs are required to be vertex transitive, the only general lower bound available seems to be

$$n_{vt}(\Delta, 2) \ge \lfloor \frac{\Delta+2}{2} \rfloor \lceil \frac{\Delta+2}{2} \rceil,$$

attained by the Cayley graphs $Cay(\mathbb{Z}_a \times \mathbb{Z}_b, S)$, where $a = \lfloor \frac{\Delta+2}{2} \rfloor$, $b = \lceil \frac{\Delta+2}{2} \rceil$ and $S = (\mathbb{Z}_a \times \{0\}) \cup (\{0\} \times \mathbb{Z}_b) \setminus \{(0,0)\}$. Recently McKay, Miller and Siran [11] gave an infinite family of vertex

transitive graphs of diameter 2 and order $\frac{8}{9}(\Delta + \frac{1}{2})^2$ when $q = (2\Delta + 1)/3$ is a prime power congruent to 1 modulo 4. In view of the(unattainable) Moore bound $n(\Delta, 2) \leq \Delta^2 + 1$ this is a remarkable result. Their construction is based on the covering graph technique. The purpose of this note is to provide a geometric construction of vertex symmetric graphs with the same parameters. The construction also provides the following lower bound for vertex symmetric graphs of diameter 2:

$$n_{vt}(\Delta,2) \geq \frac{1}{2}(\Delta^2+1),$$

when $q = (\Delta + 1)/2$ is a prime power.

2 The construction

Let $q \neq 2$ be a prime power and denote by \mathbb{F}_q the Galois field of order q. Let L_0, L_1, \ldots, L_q be the parallel classes of lines in the affine plane A(2,q). Assume that the plane is coordinatised in such a way that L_0 consists of the lines with equation x =c for each $c \in \mathbb{F}_q$. Consider the incidence graph B_q of the points in A(2,q) and the set $L \setminus L_0$ of all lines in A(2,q) except the ones in the parallel class L_0 . We denote the line of equation y = mx + bin $L \setminus L_0$ by [m,b]. The graph B_q is bipartite, qregular, has $2q^2$ vertices and it is vertex transitive. Indeed, the set of translations of A(2,q) is a group of automorphisms of the graph which acts regularly on the set of points of A(2,q), and the map ϕ which exchanges the point (a, b) with the line [a, -b] with equation y = ax - b is an automorphim of B_a which exchanges stable sets. Every two points not in a line of L_0 determine a unique line in $L \setminus L_0$ and thus they are at distance 2 in B_q . Similarly, two lines not in the same parallel class of $L \setminus L_0$ intersect in a unique point and so they are at distance 2 in the graph. The construction is completed by inserting appropriate copies of graphs of diameter 2 in the set of points of each line of L_0 , and in the set of lines in each parallel class of lines except L_0 . Since we require our graphs to be vertex transitive, additional care must be taken in the way to insert these graphs.

Let S_1, S_2 be subsets of \mathbb{F}_q satisfying the following three conditions:

- (i) There is $\alpha \in \mathbb{F}_q$ such that $\alpha S_1 = S_2$ and $\alpha S_2 = S_1$.
 - (ii) $S_1 \cup S_2$ cover all non zero elements of \mathbb{F}_q .
 - (iii) $S_i = -S_i$, i = 1, 2.

Let G_i be the Cayley graph on the additive group of \mathbb{F}_q with generating set S_i , i=1,2. Then, by condition (i), the two graphs are isomorphic. Actually, if we denote still by α the map $\alpha(x)=\alpha x$, then $\alpha(G_1)=G_2$. Moreover, by (ii), we have $|S_1|=|S_2|\geq (q-1)/2$. Then both G_1 and G_2 have diameter at most 2. Consider the graph $B_q(G_1,G_2)$ constructed from B_q by adding copies of G_1 and G_2 as follows.

- a) For each line in L_0 , we embed a copy of G_1 in its set of points. More precisely, if S_1 is the generating set of the Cayley graph G_1 , for each line in L_0 with equation x=c the neighborhood of vertex (c,y) in the inserted copy of G_1 is the set of points $(c,y) + (\{0\} \times S_1)$.
- b) Similarly, to each parallel class L_i , $i \neq 0$, we embed a copy of G_2 in such a way that the neighborhood of the line [a, b] is the set of lines $[a, b] + (\{0\} \times S_2)$ in the same parallel class.

Proposition 1 The graph $B_q(G_1, G_2)$ is vertex transitive and has diameter 2.

Proof. Let us first show that $B_q(G_1, G_2)$ is vertex transitive. Note that the translations in the affine plane A(2,q) still act as automorphisms of $B_q(G_1,G_2)$. Indeed, a transllation sends each line [m,b] to a parallel one of the form $[m,b+x_m]$ for some $x_m \in \mathbb{F}_q$, so that it acts as a transllation of the induced graph G_2 in the parallel class, i.e. an automorphism of G_2 . Similarly, a transllation sends the set of points of a line in L_0 to the points of another line in L_0 and thus an induced copy of G_1 to another one. Let us denote by α' the bijection on the vertex set of $B_q(G_1, G_2)$ defined as $\alpha'(x,y) = (x,\alpha y)$ in the set of points and $\alpha'[x,y] = [\alpha x, \alpha y]$ on the set of lines, where $\alpha \in \mathbb{F}_q$ satisfies $\alpha S_1 = S_2$ (and $\alpha S_2 = S_1$). Clearly

 α' preserves the incidence relations in A(2,q) and it is therefore an automorphism of the graph B_q . Moreover, α' exchanges the copies of G_1 with the copies of G_2 . Hence, $\alpha'\phi$ is an automorphism of $B_q(G_1, G_2)$ which exchanges points with lines. Therefore, the group of automorphims generated by the transllations and $\alpha'\phi$ acts transitively on the set of vertices of the graph.

Finally, let us show that (0,0) has eccentricity 2. All points not in the line of L_0 incident to (0,0) are at distance 2 from (0,0) in the subgraph B_q , and the points in this line are also at distance at most 2 in the copy of G_1 embedded in it. On the other hand, (0,0) has the lines [m,0], $m \in \mathbb{F}_q$ at distance 1 and the lines $[m,u], u \in S_2$ and $[m,v], v \in S_1$ at distance 2. Since $S_1 \cup S_2 = \mathbb{F}_q^*$, all lines are at distance at most 2 from (0,0). Therefore, $B_q(G_1,G_2)$ has diameter 2.

The above construction provides instances of large graphs with diameter 2 by appropriate choices of sets S_1, S_2 satisfying conditions (i)-(iii) above. Part (ii) of the following theorem is proved in [11] using a different construction.

Theorem 1 Let q be a prime power, $q \neq 2$. Then

- a) $n_{vt}(\Delta, 2) \ge \frac{1}{2}(\Delta + 1)^2$ for $\Delta = 2q 1$.
- b) $n_{vt}(\Delta, 2) \ge \frac{8}{9}(\Delta + \frac{1}{2})^2$ for $\Delta = (3q 1)/2$ and $q \equiv 1 \pmod{4}$.
- c) $n_{vt}(6,2) \geq 32$.

Proof. A trivial choice for the sets S_1, S_2 involved in the construction of $B_q(G_1, G_2)$ is $S_1 = S_2 = \mathbb{F}_q^*$. Then, both G_1 and G_2 are complete graphs and $B_q(G_1, G_2)$ has degree $\Delta = 2q - 1$ and order $n = \frac{1}{2}(\Delta + 1)^2$. This proves (i). When q is a prime power congruent to 1 mod 4 then a better choice for S_1 and S_2 with cardinality (q-1)/2 (the minimum possible) can be found. Let η be a primitive root of \mathbb{F}_q , $S_1 = \{\eta, \eta^3, \ldots, \eta^{(q-1)/2}\}$ and $S_2 = \eta S_1$. Since (q-1)/2 is even, we have $S_1 = -S_1$. Moreover, $\eta S_2 = S_1$ and $S_1 \cup S_2 = \mathbb{F}_q^*$. The resulting graph $B_q(G_1, G_2)$ has degree $\Delta = (3q-1)/2$ and order $n = \frac{8}{0}(\Delta + \frac{1}{2})^2$. This proves (ii).

Finally, for q = 4, we may choose $S_1 = \{1, \eta\}$ and $S_2 = \{1, \eta^2\}$ which results in a graph of degree 6 and order 32. This proves (iii).

and $\alpha'[x,y] = [\alpha x, \alpha y]$ on the set of lines, where $\alpha \in \mathbb{F}_q$ satisfies $\alpha S_1 = S_2$ (and $\alpha S_2 = S_1$). Clearly of sets S_1 and S_2 then we still obtain a graph of

maximum degree $q + \max\{|S_1|, |S_2|\}$ and diameter 2 which may be not vertex transitive. Again, the best possible choice of S_1 and S_2 provides graphs with the same parameters as the ones obtained in [11].

When $q \equiv 0 \pmod{4}$ we may choose $S_1 = \{1, \eta, \cdots, \eta^{q/2-1}\}$ and $S_2 = \{1, \eta^{q/2}, \cdots, \eta^{q-1}\}$. We have $S_i = -S_i, \ i = 1, 2, \ \text{and} \ S_1 \cup S_2 = \mathbb{F}_q^*$. The resulting graph $B_q(G_1, G_2)$ have diameter 2 and order $n = \frac{8}{9}\Delta^2$. When $q \equiv -1 \pmod{4}$, a possible choice is $S_1 = \{1, \eta, \cdots, \eta^{(q-3)/4}\} \cup \eta^{(q-1)/2}\{1, \eta, \cdots, \eta^{(q-3)/4}\}$ and $S_2 = \{1, \eta^{(q+1)/4}, \cdots, \eta^{(q-3)/2}\} \cup \eta^{(q-1)/2}\{1, \eta^{(q+1)/4}, \cdots, \eta^{(q-3)/2}\}$, which gives rise to a graph with diameter 2 and degree $n = \frac{8}{9}(\Delta^2 - 1/2)$.

References

- J. C. Bermond, C. Delorme, G. Farhi Large graphs with given degree and diameter II Large graphs with given degree and diameter II. J. Combin Theory (B) vol.36 pp.32-48. 1984.
- [2] W. G. Brown On graphs that do not contain a Thompsen graph. Canad. Math Bull. vol.9. pp.281-285. 1966.
- [3] C. Delorme Large bipartite graphs with given degree and diameter Graph Theory vol.8. pp.325-334. 1985.
- [4] C. Delorme Examples of products giving large graphs with given degree and diameter Discrete Applied Math vol.37-38. pp.157-162. 1992.
- [5] C. Delorme Grands Graphs de degrè et diamètre donnés European J. Combin. vol.6. pp.291-302. 1985.
- [6] M.J. Dineen, P.R. Hafner New results for the degree/diameter problem Networks vol.24. pp.359-367. 1994.
- [7] P. Erdös, S. Fajtlowicz, A.J. Hoffman Maximum degree in graphs of diameter 2 Networks vol.10. pp.87-90. 1980.
- [8] P.R. Hafner Large Cayley graphs and digraphs with small degree and diameter Computational Algebra and Number Theory (W. Bosma

- and van der Poorten, Eds) Kluwer, Amsterdam. pp.291-302. 1995.
- [9] A. J. Hoffman, R. R. Singelton On Moore graphs with diameter 2 and 3 IBM J.Res Develop. vol.4. pp.497-504. 1960.
- [10] M. N. Huxley. On the difference between consecutive primes Invent. Math. vol.15. pp.164-170. 1972.
- [11] B. D. McKay, M. Miller A note on large graphs of diameter two and given maximum degree J. Combin. Theory (B) vol.74. pp.110-118. 1998.
- [12] The (Degree, Diameter) Problem for Graphs A
 World Combinatorics Exchange resource at
 http://www-mat.upc.es/grup/_de/_grafs/
 _taula/_delta/_d.html