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A CLASSIFICATION OF TOTALLY GEODESIC AND TOTALLY
UMBILICAL LEGENDRIAN SUBMANIFOLDS OF (k,u)-SPACES

ALFONSO CARRIAZO, VERONICA MARTIN-MOLINA, AND LUC VRANCKEN

ABSTRACT. We present classifications of totally geodesic and totally umbilical Legendrian sub-
manifolds of (k, u)-spaces with Boeckx invariant I < —1. In particular, we prove that such
submanifolds must be, up to local isometries, among the examples that we explicitly construct.

1. INTRODUCTION

Although under a different name, (k, u)-spaces were introduced by D. E. Blair, T. Koufogior-
gos and B. J. Papantoniou in [2] (for technical details, we refer to the Preliminaries section).
Actually, these manifolds have proven to be really useful, because they provide non-trivial exam-
ples for some important classes of contact metric manifolds (for instance, the unit tangent sphere
bundle of any Riemannian manifold of constant sectional curvature carries such a structure).
The theory of (k, u)-spaces was soon developed, with many interesting results. In particular, we
can point out the outstanding paper [3], where E. Boeckx classified non-Sasakian (x, ut)-spaces
by using the invariant I (depending only on the values of x and u) introduced by himself. He
also provided examples for all possible (k, ).

Nevertheless, the theory of submanifolds of (k, u)-spaces has not been developed in depth
yet, even if we can find some very interesting papers about it. For example, in [4], B. Cappel-
letti Montano, L. Di Terlizzi and M. M. Tripathi proved that any invariant submanifold of a
non-Sasakian contact (k, u)-space is always totally geodesic and, conversely, that every totally
geodesic submanifold of a non-Sasakian contact (k,u)-space such that u # 0 and the charac-
teristic vector field ¢ is tangent to the submanifold is invariant. Motivated by these results, we
consider the case of submanifolds which are normal to £&. Moreover, we restrict our study to the
case of Legendrian submanifolds, i.e., those with dimension n in a (2n + 1)-dimensional ambient
space.

(From our point of view, a key step in continuing the analysis of submanifolds of (k, u)-
spaces should be to understand the behavior of the so-called h operator of the ambient space
with respect to the submanifold. Therefore, in this paper, we first establish in Section B a
decomposition of that operator in its tangent and normal parts, and find its main properties.
In Section @ we present several examples of totally geodesic and totally umbilical Legendrian
submanifolds of (k, u)-spaces with I < —1. Actually, we prove in Section [ that these examples
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constitute the complete local classification of these kinds of submanifolds, given by our main
results Theorems [5.1] and

2. PRELIMINARIES

Let M be a (2n + 1)-dimensional smooth manifold M. Then an almost contact structure is a
triplet (o,&,n), where ¢ is a (1,1)-tensor field, n a 1-form and ¢ a vector field on M satisfying
the following conditions

(2.1) e’ =-T+n®¢& nE) =1

It follows from (2.10) that o = 0, no ¢ = 0 and that rank(p) = 2n ([1]).

Any almost contact manifold (M, ¢, £, n) admits a compatible metric, i.e. a Riemannian metric

g satisfying

g(@X,0Y) =g(X,Y) =n(X)n(Y),
for all vector fields X,Y on M. It follows that n = g(-,¢) and g(-,¢-) = —g(¢-,-). The manifold
M is said to be an almost contact metric manifold with structure (¢, &, 1, g).

We can define the fundamental 2-form ® of an almost contact metric manifold by ® (X,Y) =
g(X,9Y). If & = dn, then 7 becomes a contact form, with £ its Reeb/characteristic vector
field and D = ker(n) its corresponding contact distribution, and M (p,&,n, g) is called a contact
metric manifold.

Every contact metric manifold satisfies

(2.2) VE = —p— ph,

where 2h is the Lie derivative of ¢ in the direction of &, i.e. h = %ngp. The tensor field h is
symmetric with respect to g, satisfies h¢ = 0, anticommutes with ¢ and vanishes identically if
and only if the Reeb vector field ¢ is Killing. In this last case the contact metric manifold is
said to be K-contact.

An almost contact metric manifold is said to be normal if Ny, := [p, p]+2dn®& = 0. A normal
contact metric manifold is called a Sasakian manifold. Any Sasakian manifold is K-contact and
the converse holds in dimension 3 but not in general.

A special class of contact metric manifold is that of (k, p)-spaces, first studied in [2] under the
name of contact metric manifolds with & belonging to the (k, p)-distribution. A contact metric
(K, pv)-space is one satisfying the condition

(2.3) R(X,Y)E=r(n(Y)X —n(X)Y) +p(n(Y)hX —n(X)RY),

for some constants x and . In this paper, all manifolds will be contact metric, so we will shorten
“contact metric (k, u)-space” to “(k, u)-space”.
Every (k, u)-space satisfies
(2.4) B = (k- 1),
(2.5) (Vxp)Y =g(X,Y +hY)§ —n(Y)(X + hX),
(26) (Vxh)Y =((1 - r)g(X,9Y) = g(X,0hY))§ = n(Y)((1 — k)X + phX) — un(X)phY.

Moreover, we have the following result:
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Theorem 2.1 ([2]). Let M*"*1(p,£,m,9) be a (k,u)-space. Then k < 1. If k=1, then h =0
and M?"*1 s o Sasakian manifold. If k < 1, M** 1 admits three mutually orthogonal and
integrable distributions E(0) = span(§), E(X) and E(—\) determined by the eigenspaces of h,

where A = /1 — k.

As a consequence of this theorem, it was also proved in [2] that the sectional curvature of a
plane section {X,Y } normal to ¢ is given by

214+ X)) — p, forany X, Y € E(\), n>1,
(27)  KX,)Y)=121-X) —p, forany X,Y € E(—)), n>1,
—(k + p)(9(X, ¢Y))?, for any unit vectors X € E()\),Y € E(—=)).

Given a contact metric manifold M?"*1(p,£,n,g), a Dy-homothetic deformation is a change
of structure tensors of the form

.1 ~ . .
(2.8) 9025907£=£,n=an,g=a9+a(a—1)n®n,

where a is a positive constant. It is well known that M 2"“(95,5 ,7,§) is also a contact metric
manifold.

It was also proved in [2] that the class of (k, ut)-spaces remains invariant under D,-homothetic
deformations. Indeed, applying one of these deformations to a (k, u1)-space yields a new (&, fi)-
space, where
k+a®—1 _  p+2a—2

Ro= > [

a a
Many authors studied (k, p1)-spaces later, as can be seen in [I]. We highlight here the work

of Boeckx, who gave in [3] an explicit writing of the curvature tensor of these spaces:
1
R(X.Y)Z = (1= 5) (9Y. 2)X - (X, 2)Y)
+9Y,Z2)hX — g(X,Z)hY — g(hX,2)Y + g(hY,Z)X

T 1 : é(g(hY, Z)hX — g(hX, Z)hY)
- %(Q(SOY, Z)oX — g(oX, Z)pY)
(2.9) -
+ 72 (9(phY, Z)phX — g(phX, Z)phY)
A(Xn(2) ((5 =14 5) Y+ —Dav)

() ((k=14+5) 9(X.2) + (u — Dg(hX, 2) ) €
Boeckx [3] also classified the (k,u)-spaces in terms of an invariant that he introduced: Ip; =

_ K
\}ﬁ. Indeed, he proved that if M; and My are two non-Sasakian (k;, u;)-spaces of the same

—(
—n(Y)n Z)((fi—lJrg)XJr(u—l)hX)
—n(

(

dimension, then Iy, = Iy, if and only if, up to a D,-homothetic deformation, the two spaces
are locally isometric as contact metric spaces. In particular, if both spaces are simply connected
and complete, they are globally isometric up to a D,-homothetic deformation.
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It was also stated in paper [3] that “it follows that we know all non-Sasakian (k, ut)-spaces
locally as soon as we have, for every odd dimension 2n + 1 and for every possible value for the
invariant I, one (k, u)-space M with Ip; = I.” For I > —1, we have the unit tangent sphere
bundle T1M™(c) of a space of constant curvature ¢ (¢ # 1) for the appropriate ¢ (see [2]). For
I < —1, Boeckx presented in [3] the following examples for any possible odd dimension 2n + 1
and value of I.

Ezample 2.2 ([3]). Let g be a (2n+1)-dimensional Lie algebra with basis {¢, X1,..., X, Y1,..., Y, }
and the Lie brackets given by

2
[£7X1] = _%BXQ - %Yly [YEAYYJ] = 07 Zv] 75 27
2
[0 (6%
€, Xo] = ;Xl BERED X1,V = —BX2+ 26,
2
X] = —SY. i=3 [XuY) = 0 ix2,
B2 af
[é.vyi] = 7X1 - 7y'2’ [X27Y1] = ﬁXl - O[Yé,
(2.10)
B2 af
[57 Yé] = 7X2 + TYVM [X27 Yé] = O[Yi + 257
ﬁ2
[57}/@] = 7X27 P> 37 [X27YYZ] = ﬁle P> 37
[XlaXi] = Oin, i 7é 17 [Xle] = —Oé}/;', 12> 37
[XHX]] = 07 27,7 7é 17 [X27Y2] = 07 { > 37

for real numbers « and 3. Next we define a left-invariant contact metric structure (¢, &,7,g) on
the associated Lie group G as follows:

the basis {£, X1,..., X, Y1,...,Y,} is orthogonal,

the characteristic vector field is given by &,

the one-form 7 is the metric dual of &,

the (1, 1)-tensor field ¢ is determined by & =0, pX; =Y, ¢Y; = —X;.

It can also be proved that G is a (k, )-space with

(,82 o a2)2 a2 + 52
" 6 M T
Moreover, supposing 5% > a2 gives us that A = 62;20‘2 # 0 and thus the (k, p)-space is not

Sasakian. The orthonormal basis also satisfies that hX; = AX; and hY; = —\Y;.
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Finally, Ig = —nggz < —1, so for the appropriate choice of § > o > 0, I attains any real

value smaller than or equal to —1.

Lastly, we will recall some formulas from submanifolds theory in order to fix our notation. Let
N be an n-dimensional submanifold isometrically immersed in an m-dimensional Riemannian
manifold (M, g). Then, the Gauss and Weingarten formulas hold:

(2.11) VxY =VxY +0(X,Y),
(2.12) VxV =—AvX + V%V,
for any tangent vector fields X,Y and any normal vector field V. Here o denotes the second

fundamental form, A the shape operator and V+ the normal connection. It is well known that
the second fundamental form and the shape operator are related the following way:

(2.13) g(o(X,Y), V) =g(AyX,Y).

We denote by R and R the curvature tensors of M and N, respectively. They are related by
Gauss and Codazzi’s equations

(2.14) R(X,Y,Z,W) = R(X,Y, Z,W) — g(o(X,W),0(Y, 2)) + g(o(X, Z), 0 (Y, W),

(2.15) (R(X,Y)Z)* = (Vxo)(Y,Z) — (Vyo)(X, Z),
respectively, where R(X,Y)Z* denotes the normal component of R(X,Y)Z and
(2.16) (Vxo)Y,Z) =Vx(o(Y,2)) —o(VxY,Z) —o(Y,VxZ).

The submanifold N is said to be totally geodesic if the second fundamental form o vanishes
identically. It is said that it is totally umbilical if there exists a normal vector field V' such
that o(X,Y) = g(X,Y)V, for any tangent vector fields X,Y. In fact, it can be proved that, in
such a case, V has to be the mean curvature H = % Sy o(es, e;), where {ei,...,e,} is a local
orthonormal frame. It is clear that every totally geodesic submanifold is also totally umbilical
but the converse is not true in general.

3. DECOMPOSITION OF THE h OPERATOR

Let N be a Legendrian submanifold of a (2n + 1)-dimensional (k, u)-space M, that is, an
n-dimensional submanifold such that £ is normal to N. Therefore, n(X) = 0 for any tangent
vector field X and so it follows from (2.I)) that p?X = —X. Moreover, it was proved in [6] that
N is an anti-invariant submanifold, i.e., ¢ X is normal for any tangent vector field X. Moreover,
under our assumptions about the dimensions of M and NV, it holds that every normal vector
field V' can be written as ¢ X, for a certain tangent vector field X.

Therefore, we can decompose the h operator in the following way:

(3.1) hX = hX + pho X,

for any tangent vector field X, where h1 X (respectively phoX) denotes the tangent (resp.
normal) component of hX.
We can prove the following properties:
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Proposition 3.1. Let N be a Legendrian submanifold of a (k,p)-space M. Then, hy and ho
are symmetric operators that satisfy hi& = ho& = 0 and equations

(3.2) h3 4+ h3 = (1—k)I,
(3.3) hihg = hohy.

Proof. The symmetry of h; and hy can be directly obtained from that of A and the compatibility
of the metric g. Similarly, h{ = 0 implies h1§ = ho = 0.

Furthermore, given a tangent vector field X, it follows from (2.I]), (31 and the anticommu-
tativity of h and ¢ that

(3.4) heX = —phX = —ph1 X + ho X.

Using (2.4), we have that h?X = (1 — k)X. On the other hand, by virtue of (3.1]) and ([3.4)), we
obtain

h?X = h(hi X + phe X) = h3X 4+ phoh1 X — @hiho X + h3 X.
Joining both expressions for A% and identifying the tangent and normal parts give us equations

B2) and B.3). O

Proposition 3.2. Let N be a Legendrian submanifold of a (k,u)-space M. Then, hy and hy
satisfy

(3.5) (Vxhi)
(3.6) (Vxha)
for any tangent vector fields X,Y .
Proof. Tt follows from Gauss and Weingarten formulas (Z.11)) and ([2.12]) that
(Vx@)Y = VxpY¥ —pVxY = —Apy X + Vx oY — oVxY — po(X,Y),

for any tangent vector fields X,Y. Therefore, by using (2.5]) and identifying the tangent and
normal components, we obtain:

(3.7) Apy X = —po(X,Y),
(3.8) VoY = oVxY + g(X,Y + b Y)E.
On the other hand, using (2.6]) and (B.]), we have
Vx (MY +phY) — h(VxY) = g(X, haY)E,
from where, by virtue of Gauss and Weingarten formulas ([2I1)) and ([2.12), we deduce
(3.9)  VxmY +0(X,mY) — Apny X + VxphoY — hVxY — ho(X,Y) = g(X, haY)E.

We can put hVxY = hVxY + ohoVxY by @BI). Now, by using (21, we can write
o(X,Y) = —p?0(X,Y) + n(c(X,Y)), and hence ho(X,Y) = —hp?0(X,Y) = phpo(X,Y).
Again, equation [B.1)) gives us ho(X,Y) = ph1po(X,Y) — howo(X,Y). Therefore, if we substi-
tute these two expressions, together with (87) and (.8), in (3.9), we obtain:

$Xh1Y + O'(X, h1Y) + (,DO'(X, th) + QOVXhQY + g(X, hoY + hthY)f
~hVxY — phaVxY — ph1pa(X,Y) + howo(X,Y) = g(X, ha Y ).
By identifying the tangent and normal parts of ([3.10]), equations ([B.5) and (3.6]) hold. O

= —po(X,heY) — hopo(X,Y),

Y
Y= wo(X,hY)+ hipo(X,Y),

(3.10)
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It is clear that, if we multiply (3.10) by &, then we obtain
9(o(X, 1Y), &) + g(X, h1haY) = 0,

for any tangent vector fields X,Y. In fact, we can prove a more general result, which will be
very useful in the proof of our main theorems:
Lemma 3.3. Let N be a Legendrian submanifold of a (k,p)-space M. Then,
(3.11) 9(0(X,Y), &) + g(X, haY) =0,
for any tangent vector fields X,Y .
Proof. 1t follows from Weingarten equation (2.12)) and from (2.13]) that

9(X,Vx§) +g(o(X,Y),£) =0,

for any tangent vector fields X,Y. Then, it is enough to use [21)), 22) and [B.1) to obtain
B.110). O

4. EXAMPLES

We will present in this section some examples of totally geodesic and totally umbilical Legen-
drian submanifolds of the (k, u)-spaces of Example Let us begin with the totally geodesic
ones.

Ezample 4.1. Let M be a (k, p)-space from Example with invariant Ip; < —1. Then, the
distribution D spanned by {Xj,..., X, } is involutive and any integral submanifold N of it is a
totally geodesic submanifold of M. Indeed, the involutive condition can be easily checked from
(21I0). In order to prove the totally geodesic one, it is enough to show that Vx, X; € D, for any
i,7 =1,...,n, where V denotes the Levi-Civita connection on M. In fact, in can be directly
computed that:

Vx, X1 =Vx, X0 =0, Vx,Xi=-aXs, Vx,Xo=aXj,
(4.1) Vx, Xi=Vx,X; =0, forany i =3,...,n,

Vx,X1=—-aX;, Vx,Xo=0, Vx,X;=70;0X;, foranyi,j=3,...,n.
Moreover, since hX; = AX; for any i = 1,...,n, then TN = E()\).

Ezample 4.2. Let M be a (k, p)-space from Example with invariant Ip; < —1. Then, the
distribution D spanned by {Y7,...,Y,,} is also involutive and any integral submanifold N of it
is a totally geodesic submanifold of M. Indeed, both conditions can be checked the same way
as in Example [4.1], by taking now into account that:

Vn Y1 =BYs, VyYs=-0Y1, VyY =VyY: =0,
(4.2) Vy,Yi=VyY, =0, forany i =3,...,n,

Vy,Y1 =0, VyYs=-38Y;, VyY;=0;;8Ys, foranyi,j=3,...,n
In this case, since hY; = =AY for any i = 1,...,n, then TN = E(—\).
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Ezample 4.3. Let M be a (k, pu)-space from Example with invariant Ij; < —1. Then, the
distribution D spanned by {X1,Y3, Z3, ..., Z,}, where Z; is either X; or Y}, for any i = 3,...,n,
is also involutive and any integral submanifold N of it is a totally geodesic submanifold of M.
Indeed, both conditions can be checked the same way as in Examples 4.1l and 2] by using now
(1), (A2) and the following formulas:

Vx,Yi=0foranyi=2,...,n,

Vy,X; =0forany i=1,3,...,n,

Vx,Yo=Vy X; =0forany i =3,...,n,

Vx,Y; = Vy,X; =0 for any 4,j = 3,...,n, such that ¢ # j.

Finally, TN = E(A\)® E(—X\), with dim E(\) = k (respectively dim E(—\) = n—k), where k—1
(resp. n — k — 1) is the number of Z; such that Z; = X; (resp. Z; = Y;). Therefore, we can
obtain an example for any value of k from 1 to n — 1.

(4.3)

We now present the family of totally umbilical examples:

Ezample 4.4. Let M be a (k, pu)-space from Example with invariant Ij; < —1. Then, the
distribution D spanned by {c¢X;+dY7,...,cX,,+dY,}, with ¢, d non-zero constants, is involutive
and any integral submanifold N of it is a totally umbilical submanifold of M. Indeed, the
involutive condition can be easily checked from (2.I0). In order to prove the totally umbilical
one, we will first show that o(cX; + dY;,cX; + dY;) = 20;;¢d\§ by checking that the Levi-
Civita connection on M satisfies Vi x,tqv,(cX; + dY;) = Z + 26;;¢d\, with Z € D, for any
1,7 =1,...,n. In fact, it can be directly computed that:

Vexydv (€ X1 +dY1) = Bd(cXa + dYs) +2cd\,  Vex,tay; (cXo 4 dYs) = —Bd(cXy + dY7),

Vexotdys (€ X1 +dY1) = —ac(cXo +dY3), Vex,qdv,(cXo +dY2) = ac(cXy + dY1) + 2cd),

VC)(vl—i-le (CX] + dY]) VCXQ“FdYQ (CXJ + d}[_ﬂ) = 07 for any j = 37 sy Ny

Vex,+dy; (cXy + le) —ac(cX; + dY;),

Vexitdy; (X2 + dYs) = —fd(cX; + dY;), for any i =3,...,n,

Vex,tay, (cX; + dY;) = §;j(ac(c Xy + dY1) + Bd(c X2 + dY2) + 2¢dXE), for any i,j =3,...,n.

Therefore, we can write o(cX; + dY;,cX; + dY;) = g(cX; + dY;, cX; + de)C%CJr—d;‘Qﬁ and, since
C%idgzg # 0, the submanifold is totally umbilical but not totally geodesic.

Finally, we observe that ¢X; +dY;, i = 1,...,n, is not an eigenvector of h.

5. MAIN RESULTS

Theorem 5.1. Let N be a Legendrian submanifold of a (2n + 1)-dimensional (k, p)-space M,
with k < 1 and Iyy < —1. If N is totally geodesic, then, up to local isometries, it must be one

of the submanifolds given in Examples[{.1], [[.3 or[.3

Proof. Since the submanifold N is totally geodesic, if follows directly from (B.I1]) that he = 0
and so h = hy and h? = (1 — k) (see B1) and (B:2))). By using the decomposition given by
Theorem 211 we can write

(5.1) TN =E\) & E(-)\),

where dim(E (X)) = k and dim(E(—\)) = n — k, for a certain k € {0,...,n}.
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Moreover, we deduce from (B.5) that Vh; = 0. Therefore, it is straightforward to check that,
if Y\ € E(\), then VxY) € E()), for every tangent vector field X. Similarly, if Y_y € E(—=\),
then VxY_, € E(—\). Thus, E()\) and E(—\) are parallel and hence involutive. By virtue of
Theorem 5.4 of [5], N can be locally decomposed as M; x My, where M; and M, are leaves
of the distributions E(A) and E(—M\), respectively. Furthermore, it follows from (2.7)) that, if
dim My > 2 (resp. dim My > 2), then M; (resp. Ms) has constant curvature 2(1 + \) —
2A(Ipr +1) <0 (resp. 2(1 —X) —p =21y — 1) <0).

Recall that we have examples of submanifolds with decomposition (5.1) for every value of
k. Indeed, see Example [41] for & = n, Example for k = 0 and Example [4.3] for any value
of k from 1 to n — 1. Now, we will prove that any example must be one of these, up to local
isometries.

Let us denote by F' : N® — M?"*1(xk, 1) the immersion of N into M. Since x < 1 and
Inr < —1, we can suppose that, locally, M?"*!(k, 1) is one of the Lie groups from Example
Thus, it is homogeneous and we can fix a point pg € N such that F(py) = e, where e is the
neutral element of the group.

We will give the explicit details when 2 < k < n — 2. The other cases can be done in
a similar way. We have that N = M;(2A(Ip + 1)) x Ma(2A(Ipr — 1)) and we also identify
N with its image as the (totally geodesic) integral submanifold through e of the distribution
spanned by X1, X3, ..., Xg+1,Y2, Yiio,... Yy, We denote by G the latter immersion of N and
we pick an orthonormal basis {el, ..,en} at the point py of N, with G(py) = e, such that

Epy(A) = {e1(po); - - -, ex(po))s Epy(— ) (er+1(po); - -, en(po)) and

dG(e1(po)) = ( )s
dG(ej(po)) = Xjr1(e), j=2,...,k,
dG(er+1(po)) = Yz(e)

dG(ej(po)) =Yj(e), j=k+2,...,n
Note that by construction both

Xi(e), Xs(e),..., Xpr1(e), pYa(e), pYria(e), ..., oYn(e)
and

dF(e1(po)), - - - dF (ex(po)), pdF (er+1(po)); - - - » pdF (en(po))

are basis of E.()\). So, in view of Theorem 3 of [3], there exists an isometry H of M?"*(k, 1)
preserving the structure such that H(e) = e and H maps one basis of F.()\) into the other one.
As a consequence, we have that H o F(e) = G(e) and d(H o F)(e;) = dG(e;).

We now take a geodesic v in IV through the point pg. Since N is totally geodesic, both with
respect to the immersions H o F' and G, the curves H o F(y) and G(v) are both geodesics in
M?*1 (g, 1) through e. Since d(H o F)(e;) = dG(e;), they are also determined by the same
initial conditions. Therefore, both curves need to coincide, so H o F(y(s)) = G(y(s)) for all s
and thus F' and G are congruent. O

Theorem 5.2. Let N be a Legendrian submanifold of a (2n + 1)-dimensional (k, p)-space M,
withn >3, k <1 and Iny < —1. If N is totally umbilical (but not totally geodesic), then, up to
local isometries, it must be one of the submanifolds given in Example[].])
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Proof. Since N is totally umbilical (but not totally geodesic), then there exists a normal vec-
tor field V' # 0 such that o(X,Y) = g(X,Y)V. It follows from (B.II) that g(X,Y )n(V) +
g9(X,hoY) = 0, for any tangent vector fields X, Y, and thus

(5.2) hyY = ay,

with a = —n(V).

We will now prove that a # 0. Indeed, if we suppose that a = 0, then hy = 0 and, as in the
proof of Theorem 5.1, we have that h = hq, h% = (1—k&)I and Vh; = 0. Moreover, since hy = 0,
it is clear that Vhy = 0 and we obtain from (3.6 that po(X,h1Y) + h1po(X,Y) = 0, which,
by using that N is totally umbilical, becomes

(5.3) 9(X, mY)eV +g(X,Y)higV =0,

for any tangent vector fields X,Y. Let us now choose unit vector fields X € EF(\) and X_) €
E(—\). Then, taking X =Y = X, in (5.3) implies h1oV = —A¢V and taking X =Y = X_,
in (B.3]) implies h1V = ApV. Since V # 0, this yields a contradiction.

Therefore, we can suppose from now on that (5.2]) holds for a # 0. We deduce from equation

B8 that
X(@)Y = po(X, 1Y) + hipo(X,Y) = g(X, 1Y)V + g(X,Y )1V,

for every X, Y tangent vector fields.

Since dim N > 3, we can take Y linearly independent from ¢V and hipV. Then we deduce
from the previous equation that X(a) = 0, for every X, thus a is a constant. Moreover,
9(X, Y )V 4+ g(X, Y )hipV = 0, for every X,Y tangent vector fields. Taking unit X =Y, we
obtain that hipV = —g(X, h1 X)pV, which is only possible if hy = 0 or ¢V = 0. If h; = 0, then
substituting (5.2]) in (3.6) gives that 2ag(X,Y)pV = 0, so again ¢V = 0.

In both cases, we have obtained that ¢V = 0, so V is parallel to £ and it follows from
a = -n(V) that V = —af and o(X,Y) = —ag(X,Y )¢ holds, for every X,Y tangent, where
a # 0 is a constant.

Let us now recall Codazzi’s equation (Z.15)):

(R(X,Y)Z)" = (Vx0)(Y,Z) - (Vyo)(X, Z).

The first term is the normal component of R(X,Y)Z, so by equation (Z9) and the fact that
hoX = h1 X + apX, we can write

(R(X,Y)Z)" = a(g(Y, Z)pX — g(X,Z)pY)

_ K

+ag—=2(9(mY, 2)pX — g(m X, Z)¢Y)
_ K

—a7—2(9(Y, 2)ph X = g(X, Z)phY).

On the other hand,
(Vxo)(Y,Z) = Vx(o(Y,2)) —o(VxY,Z) = a(Y,VxZ) =
= Vi (—ag(¥, 2)¢) + ag(VxY, Z)¢ + ag(Vx Z, X )¢ =
= —ag(Y, Z)Vx€ = ag(Y, Z)(gX + ph1 X).
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Therefore, the second term of Codazzi’s equation is
(Vxo)(Y,Z) = (Vyo)(X, Z) = ag(Y, Z)(¢X + ¢h1 X) — ag(X, Z)(pY + oh1Y)

=a(g(Y, Z2)pX — g(X, 2)9Y) + alg(Y, Z)ph1 X — g(X, Z)ph1Y).
Joining both terms, and bearing in mind that a # 0, we obtain

LS (Y. Z)eX — gl X, 2)pY) =

1—

=

1_H

Since we are supposing that Ip; = \/—Tn

1
the previous equation gives us that

g(MY,2)X — g(m X, 2)Y = g(Y,Z)l X — g(X, Z)h1 Y,

for every X,Y, Z tangent vector fields.
Since dim(N) > 3, we can choose Y = Z unit and orthogonal to X, h; X, and we obtain that

(5.4) X =g(mY,Y)X,

and thus A1 X = bX for some function b.

From (3.2)), we have that a® +b? = 1 —k = A? # 0, and in particular that b must be constant.
We can also write that a = Acos(#) and b = Asin(6) for some constant 6 € [—m, 7]. Since a # 0,
then 6 # +3.

By Gauss equation (2.I4]) and the fact that ho X = aX, then

R(X,)Y,Z,W)=R(X,Y,Z, W) — g(a(X,W),0(Y,2)) + g(0(X, Z),0(Y,W)) =
= R(Xv Y, Z, W) - a2(g(X7 W)g(Y7 Z) + g(X7 Z)g(Y7 W)),

for every X, Y, Z, W tangent vector fields.
On the other hand, we know from equation (2.9]) and the fact that hX = bX + apX, that

b L
RECY.Z0) = (1= 524 12 4 @52 ) (X, W)g(Y,2) — (X, Z)g(Y. W)
Joining the last two equations, we obtain
- H 21_% 2 (=5
123
- (1 - B @ )T ) (X W)g(Y.2) (X, Z)g(Y. W)
=2(1 -5 +0)(9(X,W)g(Y,2) — g(X, Z)g(Y,W)).

This means that the submanifold is a space form with constant curvature 2(1— 4 +-b). Moreover,
. 14
since Ipy = 2

= < —land b= Asin(f) # A, then 1 -5 +b < 1—-4+X <0 and the submanifold
is a hyperbolic space N = H(2(1 — § + Asin(6))).
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Summing up, there exists € [—7, 7], § # £3, such that

N =H(2(1 - g + Asin(8))),
hi1X = Asin(6)X,
heX = Acos(0)X,
o(X,Y) = —MAcos(0)g(X,Y)¢E.

(5.5)

We have examples of submanifolds with these properties for every value of #. Indeed, Examples
A4 with ¢ = cos(m/4 — 0/2), d = —sin(n /4 — 0/2) satisfy

o(cX; + dYs, cXj + dYj) = 20;;¢dNE = —20;; sin (% - g) cos (z - €> A =

— 6 sin (g _ 9) AE = — 6\ cos(0)¢ =
= —Xcos(0)g(cX; + dY;, cX; + dY;)E,

and the rest of conditions also hold.

Now, we will prove that any totally umbilical submanifold N must be one of these, up to
local isometries. Let us denote by F : N® — M?"!(k, 1) the immersion of N into M (k, p).
Since k < 1 and Iy < —1, we can suppose that, locally, M (k, ) is one of the Lie groups from
Example Thus, it is homogeneous and we can fix a point pg € N such that F(py) = e,
where e is the neutral element of the group.

We have that N = H(2(1 — § + Asin(f))) and we can identify N with its image as the (totally

umbilical) integral submanifold through e of the distribution spanned by {cos (§ — g) Xi(e) —
sin (§ — g) Yi(e),i=1,...,n}. We denote by G this immersion of N and we take an orthonormal

basis {e1,...,e,} at the point pg of N such that

T 0 (T 0 .
dG(e;) = cos <Z — 5) Xi(e) —sin <Z - 5) Yile), i=1,...,n.

On the other hand, we have that

(5.6) h(dF(e;)) = dF (Asin()e;) + @dF (A cos(0)e;) = Asin(0)dF (e;) + Acos(0)pdF(e;),
ho(dF (e;)) = —ph(dF(e;)) = Acos(0)dF (e;) — Asin(0)pdF (e;).
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Therefore, using (5.6]) and (5.7)), we can construct eigenvectors of h associated with the eigenvalue
A the following way:

h <cos <% - g) dF(e;) + sin <% - g) sD(dF(ei))> =
0 ™ 0

forany i =1,...,n.
Note that, by construction, both

T 0 T

cos (Z _ 5) dF(e;) + sin (Z - g) SldF(es)), i=1,....n

and
Xi(e),..., Xn(e)

are basis of E.()\). So, in view of Theorem 3 of [3], there exists an isometry H of M?"*(k, 1)
preserving the structure such that H(e) = e and H maps one basis of F.()\) into the other one.
As a consequence, we have that H o F(e) = G(e) and d(H o F)(e;) = dG(e;).

We now take a geodesic v in IV through the point pg. Since IV is totally umbilical with respect
to both HoF and G, then 7 = HoF(v) and 72 = G(7) are curves in M (k, ) passing through e
that satisfy V.,v1 = V75 = —Asin(0)¢. Since d(H o F')(e;) = dG(e;), they are also determined
by the same initial conditions. Therefore, both curves need to coincide, so Ho F'(y(s)) = G(~(s))
for all s and thus F' and G are congruent. O
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