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Abstract. A hybrid approach to phenomenological reconstruction of Complex
Systems (CS), using Formal Concept Analysis (FCA) as main tool for concep-
tual data mining, is proposed. To illustrate the method, a classic CS is selected
(cellular automata), to show how FCA can assist to predict CS evolution under
different conceptual descriptions (from different observable features of the CS).

1 Introduction

The task of understanding a phenomenon amounts to find a reasonably precise and
concise approximation to this phenomenon and its behavior such that it can be grasped
by the human brain. New methods and tools have to be developed in order to assist
experimental design and interpretation for: Identifying relevant entities at a given time
and space scale, characterizing interactions between entities, and finally assessing and
formalizing the system behavior [7].

Formal epistemology can play a relevant role. An adequate selection of key features
and their dynamics specification is the first step in order to reconstruct the phenom-
ena. In multilevel CS, the selection task requires a complex analysis of the different
abstraction layers and organization levels. In classical systems as Cellular Automata
(CA), the selection is limited by geometric and topological constraints so it could be
more feasible. Human observation of CA allows to conjecture simple rules about the
local dynamics, in order to explain the system dynamics as well as to isolate key con-
cepts to forecast its evolution. Formal Concept Analysis (FCA) [8] provides tools and
methods for extracting semantic features from data. FCA is a mathematical theory for
data analysis, using formal contexts and concept lattices as key tools.

The aim of this paper is twofold. On the one hand, to show how FCA is used in the
phenomenological reconstruction of CS dynamics, of qualitative nature. On the other
hand it also aims to show how the selection of observable features influences the recon-
struction, particularly the attributes on objects and interactions. To exemplify this idea,
a well-known example, Conway’s game of life (GoL), has been selected as running
example, although the methodology is applicable to a wide class of CA.
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Fig. 1. Formal context, concept lattice, Basis and FCA-based reasoning on CS

The next section reviews the basic elements of FCA, focusing on the use of impli-
cation basis (and association rules) for reasoning with formal contexts as basic data
structure for qualitative observations. Sect. 3 succinctly presents contextual selection
reasoning. In Sect. 4 GoL is used to show how CA is modeled by means of FCA which
is also applied to a probabilistic Conway’s CA variant (Sect. 5). Sect. 6 is devoted to
conclusions of the work and related work.

2 Background: Formal Concept Analysis

According to R. Wille, FCA mathematizes the philosophical understanding of a concept
as a unit of thoughts composed of two parts: the extent and the intent. The extent covers
all objects belonging to this concept, while the intent comprises all common attributes
valid for all the objects under consideration. In this section, we succinctly present basic
FCA elements (see [8] for a detailed exposition).

A formal context M = (O,A, I) consists of two sets, O (objects) and A (attributes)
and a relation I ⊆ O×A. Finite contexts can be represented by a 1-0-table (identifying
I with a boolean function on O × A. See Fig. 1 top-left.The main goal in FCA is to
compute the concept lattice extracted from the context. Given X ⊆ O, Y ⊆ A it defines

X ′ := {a ∈ A | oIa for all o ∈ X} and Y ′ := {o ∈ O | oIa for all a ∈ Y }
A (formal) concept is a pair (X,Y ) such that X ′ = Y and Y ′ = X . For example,
concepts from formal context about living beings (Fig. 1, center) are depicted as a lat-
tice. Actually in this lattice, each node is a concept, and its intension (or extension)
can be formed by the set of attributes (or objects) included along the path to the top
(or bottom). For example the node tagged with the attribute Legs represents the con-
cept ({Legs,Mobility,NeedWater}, {Cat, Frog}) (which could be interpreted as
the concept land animal in this context).

Knowledge Bases (KB) in FCA are formed by implications between attributes. An
implication is a pair of sets of attributes, written as Y1 → Y2. It is true with respect
to M = (O,A, I) according to the following definition. A subset T ⊆ A respects
Y1 → Y2 if Y1 �⊆ T or Y2 ⊆ T . Y1 → Y2 is said to hold in M (M |= Y1 → Y2 or
Y1 → Y2 is an implication of M ) if for all o ∈ O, the set {o}′ respects Y1 → Y2.

Definition 2.1. Let L be a set of implications and L be an implication.



1. L follows from L (L |= L) if each subset of A respecting L also respects L.
2. L is complete if every implication of the context follows from L.
3. L is non-redundant if for each L ∈ L, L \ {L} �|= L.
4. L is a (implication) basis for M if L is complete and non-redundant.

A particular basis is the so called Stem Basis (SB) [9]. SB for the context of Fig. 1 is
shown (down). In this paper no specific property of the SB is used, so it can be replaced
by any other. In order to reason with implications, a production system can be used [3].

Theorem 1. Let S be a basis for M and {A1, . . . , An} ∪ Y ⊆ A. The following state-
ments are equivalent:

1. S ∪ {A1, . . . An} �p Y (�p is the entailment with the production system).
2. S |= {A1, . . . An} → Y
3. M |= {A1, . . . An} → Y .

Implication basis are designed for entailing true implications only. When working
on predictions Theorem 1 does not provide a sound method. In this case it is better to
consider association rules (with confidence) from the Luxenburger Basis [17] instead
of SB. The production system must be revised for working with confidence [4].

In FCA, association rules are also implications between sets of attributes. Confidence
and support are defined as usual in data mining. The Stem Kernel Basis (SKB) is the
subset of the SB formed by the implications with nonzero support. SKB are useful in a
number of applications (cf. [3,2]).

3 Bounded (Automated) Reasoning on Complex Systems

The general approach to FCA-based qualitative reasoning on CS is based on considering
local interaction as objects, which have several (local, observable) features (attributes)
(see Fig. 1 right). Once the observer selects the attributes to be studied on the system,
He/she can consider local interactions or nodes as objects of a formal context. This
context M (often a huge formal context) is built by means of data extraction, database
processing, expert observations, data mining, etc. The observer has to select attributes
and objects he considers relevant to determine CS dynamics, and the reasoning focuses
on the associated subcontext (contextual selection). It is expected that reasoning with
the contextual selection gives some information about the CS. In [4] this approach was
applied using argumentative reasoning on contextual selections.

Particularly interesting is the case of predicting events when M represents attributes
on past events. The inference process consists of three steps [4]:

1. A question raises on whether a new event (object) has a property (attribute). Some properties
on the new object are known (attribute values) {A1, . . . An}.

2. Selection provides a relatively small set of attributes, selected from own experience and
beliefs, which are relevant on the object (according to observer’s opinion).

3. The production system is executed on L ∪ {A1, . . . An}, where L is a basis for the context
induced by attribute selection made in step 2. The results obtained are the attributes inferred
about the new object.
If the attribute B is inferred by the production system, then B is conjectured on the object.



Fig. 2. Modeling CA with FCA (left). An oscillator with its production system (right)

Association rules are extracted from the contexts and used by the production system.
From these association rules and some initial facts, based on the event we want to
predict, the production system infers the confidence (probability) for each one of the
possible values for unknown attributes on the event. Thus attributes constitute one of
the most important and sensitive parts of the system. Lastly, attribute selection allows
isolating a piece of M where argument reasoning is based.

3.1 Describing CA Dynamics by Means of FCA

The aim of the paper is to show how this method provides a phenomenological recon-
struction of CA, a CS where information flow is closed, namely Conway’s Game of Life
(GoL). Whilst in [4] the method is applied to a CS with external information flow. Thus
It was not possible to validate the method beyond purely experimental considerations.

In classic CA the new state of a cell only depends on the neighborhood configuration
at the preceding time step (even it is also possible to consider memory capabilities [1]).
If σT

i denotes the value of cell i at time step T , the evolution is an iteration of a mapping

σ
(T+1)
i = φ({σ(T )

j : j ∈ Ni}
where φ is an arbitrary function which specifies the cellular automaton rule operating
on the cells in the neighborhoodNi of the cell i. The standard framework of CA can be
extended by implementing memory capabilities in cells: σ(T+1)

i = φ({s(T )
j : j ∈ Ni)}

with s
(T )
j being a state function of the series of states of the cell j up to time-step T ;

s
(T )
j = s(σ

(1)
j , . . . , σ

(T )
j ).

The aim is to compute φ from observable features of Ni (attributes) by means of
FCA reasoning. Let M = (O,A, I) be the formal context whose objects O are cells,
and attributes A are (computable) boolean properties (relation I between objects and
attributes) on the cells (for example, Is-Alive), considering, if it is necessary, past time
steps (see Fig. 2, left).

From this formal context, SB, SKB and association rules can be computed. These are
the Knowledge Basis (KB) containing a full or partial representation of CA dynamics, to
be used in the reasoning process (i.e. to predict the evolution of a CA when its rules are
unknown). Also the attribute selection (that is, the selection of spatio-temporal features
on cells, the observer thinks that are relevant to decide the future state) is a key step,
and the logical complexity of the description depends on this selection.



Fig. 3. Attributes for cells using N-Neighbors (left) and Geometric representation (right)

4 Modeling Game of Life by Means of FCA

In order to show how CA can be analyzed with the above described method, Conway’s
Game of Life (GoL) (popularized by M. Gardner [10]) has been selected as running
example, both the original one and an stochastic version.

Attribute Selection. The framework is similar to when an observer aims to predict the
future state of CA from the observation of its evolution after a number of transitions.
Two steps are needed: 1) Choose topological/geometrical properties which are consid-
ered relevant to describe system’s evolution. 2) Conjecture, based on these properties,
the rules governing the system. Two ways of describing current cell’s environment are
considered, which correspond to two ways of feature selection by the observer:

Attributes based on the number of alive neighbors (N-Neighbors): This modeling
is specific for GoL, as it is based on the number of alive neighbors. The attribute set
has 11 attributes (See Fig. 3 left for an example): 9 Attributes describing the neighbor-
hood: {0-Live-Neighbors, ..., 8-Live-Neighbors}, one attribute describing current cell
state: Is-Alive, and one attribute describing the cell state in the next generation: Will-
Be-Alive(Target) (which is the target attribute in the reasoning process).

Attributes based on each neighbor state (Geometric): This modeling is not specific
for GoL, but is robust enough to be used with many diverse CA. The state of each
neighbor is specified individually, considering the Moore neighborhood. This attribute
set consists on 18 attributes (see Fig. 3, right): 16 Attributes specifying (geometrically)
whether each neighbor is alive or dead: {Top-Left-Alive, Top-Left-Dead, ..., Bottom-
Right-Alive, Bottom-Right-Dead} and the attributes Is-Alive and Will-Be-Alive(Target)
as in the above representation.

FCA Based Reasoning for CA. Once M = (O,A, I) is built (as above described),
the concept lattice (see Fig. 4, top) and SB, LGoL, are computed. In the case of N-
Neighbors representation, It matches Conway’s rules. This implicational basis (LGoL)
is the aforementioned KB. In Fig. 4 the meaning of a concrete rule (from the KB ob-
tained using the N-Neighbors representation) is explained. Note that the concept cell
that survives is extracted from the formal context. In fact, the following holds,

LGoL |= 2-live-Neighbors → (Is-Alive ↔ Will-Be-Alive(Target))
which gives some insights on live persistence in GoL.

Preliminary experiments showed that both representations described suffices for pre-
dicting GoL behavior. Using just one transition as KB, from time step N − 1 to N ,
it is possible to predict CA state in the time step N + 1 . SB using the Geometric



Fig. 4. Concept lattice (N-Neighbors) showing rule 3 (top) of its SB (bottom)

representation has a considerably bigger size (more than 700 rules) than the SB using
the N-Neighbors representation (3 rules). For instance, the recognition of persistence or
oscillatory objects in GoL depends on FCA modeling and historic features of CA. For
example, to recognize that the blinker (Fig. 2, bottom right) is an oscillator with period
2, it suffices to prove the two facts shown in Fig. 2 (top right) with the production system
(Lj is the SB for the transition step j).

Soundness: The method on a bounded region of CA universe, depends on both the
attribute selection and the size of the region observed. In the case of CA in which φ
uses N-neighbors or Geometric attributes, φ induces a set of implications on attributes,
denoted by Sφ, defined as follows. For the sake of simplicity, only geometric attributes
are considered (the other case is similar). Let LN the set of configurations of the neigh-
borhood N on which φ takes the value Will-be-Alive and let DN its complement (on
which φ outputs Will-be-Dead). It is described by means of two formulas

∨

C∈LN

C → Will-be-Alive, and
∨

E∈DN

E → Will-be-Dead

where each C,E is a conjuction. Let be Sφ = {C → Will-be-Alive : C ∈ LN }
and Nφ = {E → Will-be-Dead : E ∈ DN }. Note that Sφ characterizes φ, so it
can be considered as an equivalent characterization. In this case, the attribute Will-be-
Dead should be also considered in the representation. The soundness is stated as follows
(ahistoric CA, Moore neighborhood):

Theorem 2. Let be a CA specified by a function φ. For any nontrivial initial population
density δ (that is, 0 < δ < 1 being the probability for a cell to be alive) it has

lim
M

Prob(KM |= Sφ ∪Nφ) = 1

where KM is the Stem Kernel Basis for the the first transition of the CA restricted to the
rectangle IM = (−M,M)× (−M,M) ⊂ Z

2



Table 1. Experiments. #P,#CTH and #runs are the number of intervals for P ,CTH and number
of runs resp. and SB average size for CTH = 1.0) and P = 1.0

CA modeling #P #CTH Nexec #runs SB average
N-Neighbors 100 100 50 500, 000 3.25
Geometric 50 50 7 17, 500 735.91

5 Cellular Automata with Probabilistic Features

The framework is extended to probabilistic CA’s for dealing with real world situations,
where rules are unknown and the information available comes from observations.

In the probabilistic CA, in each time step, P is the probability for each cell to behave
normally, and 1− P the probability to behave randomly. Since SB do not consider any
rule exception, in order to deal with probabilistic CA (uncertain reasoning), it is more
appropriate to choose association rules. Thus the production system used in this case is
a bit different to the one mentioned before (it works like in [4]). As the confidence of
association rules measures the truth degree of the rules within the context, a confidence
threshold (CTH ) is selected to choose a rule subset as KB in the reasoning process.

5.1 Experiments

The goal of the experiments is to test the reliability of FCA-based reasoning for simu-
lating CA dynamics. To this aim, one experiment for each of the two representations of
CA is presented, in order to test the accuracy (measuring the error rate) of the reasoning
system for different values of CTH and P .

Some parameters should be selected to set up the experimentation environment. 1)
grid size (1000 cells). 2) Initial grid density (around 30% of alive cells1 ). 3) The tran-
sition used to build the KB (GenKB. From generation 1 to 2). 4) The generation to be
predicted by the reasoning system (Genquery . Generation 3). Finally, three dimensions
were considered in order to perform different experiments and explore the results: 1)
Confidence threshold CTH for the KB, 2) Probability P for the probabilistic GoL and
3) Number of cells the system could not predict properly (error rate). For each different
value of CTH and P the system is executed Nexec times in order to obtain the average
error rate in the prediction of the next state. Each execution is as follows:

1. CA grid is randomly initialized with a fixed initial density.
2. A first transition of the CA is simulated (with probability P ) to obtain GenKB .
3. A formal context M = (O,A, I) is built with the information of GenKB .
4. Extraction of association rules set, using the threshold CTH to obtain the KB
5. For each cell an attribute set with the description of its neighborhood state in the 2nd gen-

eration is computed. The system is executed on these attributes, to infer whether the cell will
be alive or dead in the 3rd generation, according to the selected criterion.

6. The error rate is measured.

1 We have selected this initial demographic density for probabilistic experiments because the
experiments showed long non-stable behaviors for most of P values.



(a) N-Neighbors rep. (b) Geometric rep. (c) Correlation

Fig. 5. Experimental results ((a), (b)) and Correlation between CTH and P minimizing error rate
for N-Neighbors representation

5.2 Discussion/Results

Results of experiments are shown in Fig. 5 (plots a and b). As 1−P is the probability of
a random state change to occur in a cell, the error rate is expected to grow fast. When
P < 0.5, CA behavior tends to be chaotic and unpredictable.

It is interesting to observe how the uncertainty introduced by P is countered by
the confidence of association rules. The values of P and CTH are correlated in or-
der to minimize the error rate. Fig. 5 (a, b) shows how the confidence threshold CTH

decreases linearly with the probability P in order to minimize the error rate (recall
that randomness grows as P decreases). It is worth to note the case of N-Neighbors
where the points minimizing the error rate form an almost perfect line when P ≥ 0.1.
When P < 0.1 the behavior of the CA is fully random. Fig. 5 (plot c) shows for
each probability value P ≥ 0.1, the value of CTH minimizing the error rate. Also
the Pearson’s correlation coefficient for the same dataset is 0.863. This high correlation
between the probability (uncertainty) of the CA and the confidence threshold used to
select the rules set of the reasoning system shows system’s resistance against noise and
randomness.

Results show that geometric representation is less accurate (but acceptable). If we
think in the fast and frugal way [12], this will be the representation to be used with
any kind of CA based on the Moore neighborhood, as it is more robust when model-
ing any unknown problem. Finally, it is interesting to remark, that the huge difference
between both representations in the SB size (Table 1) will not suppose a big differ-
ence in computation time. The reasoning system works with logical implication be-
tween attributes, thus once the implication basis has been computed, the execution of
the reasoning system is quite light. Moreover, the Stem Basis is minimal, therefore
SB size will be similar in any experiment where the size of the considered grid is big
enough.



6 Conclusions and Related Work

The methodology for short-term prediction of CS evolution, previously used in [4], al-
lows to outline the relationship between the system’s features (attributes) choice and
the complexity of the logical description of its evolution (by means of FCA). We have
selected as running example the well-know GoL system, but the methodology can be
applied to other more complex examples. In [4] it is shown how a sound attribute selec-
tion can make this prediction method better than classic learning systems. However, in
[4], the soundness of the method is justified only in experimental terms, due to the fact
that an information flow, external to the system, already exists. In the case of this work,
the CS under study has a closed environment (without external information flow). Thus
it has been shown that not only the method works, but also it correctness, in asymptotic
terms, can be demonstrated. This method constitutes an hybrid method due to the fact
that FCA does not consider non-deterministic reasoning.

With respect to FCA-like approaches for mining dynamics of systems, in [6] a notion
of (deterministic) association rule for ordered data is proposed, proving that the result
can be formally justified by using background knowledge, and FCA is applied on or-
dered contexts. Implications can be considered as a specialized Horn-like propositional
clauses. Therefore, logical machinery designed for Horn logic reasoning can enrich the
framework presented in this paper, particularly those which work with ordered data
[5,6]. This question is the aim of a future work.

With respect to CA field, the method produces logical representations of transitions
which may be related with λ parameter [13]. It could be useful to analyze the behavior
of Stem basis in probabilistic versions of CA [22,15]. A FCA-based formalization for
CA with memory can be a descriptional system on which validate specific conditions in
future formal methods to specify emergence in CA [21]. Moreover, FCA also provides
a strong relation between implications and the context. Classifications as that of given
in [14] can be an interesting starting point to extend FCA with asymptotic studies on
formal contexts which evolve. In [16] it is also shown a method for data mining of
CA transition rules focused on geographic applications. In [20] the authors use genetic
algorithms in the learning phase whilst we could offer a logical argument of the learning
of rules.

The probability δ for the initial population of experiments is a key parameter in order
to determine the evolution of the CA, thus the above mentioned limit strongly depends
on its value. A similar (although more specific) question is studied in [11], where the
existence of CA with fixed point configurations depending on initial density are con-
sidered. From the point of view of our paper, we could say that certain implicational
description of the world has the formal context associated to the current state as fixed
point. Entropy features of formal contexts should be considered, in order to relate FCA
representation with asymptotic behavior of CA [19], as well as to extract conceptual
structure in CA with similar behavior without human engineering [18].

Classical learning process does not provide a straightforward method to discover
new geometrical concepts, as FCA can do (identifying some formal concepts as the
FCA-based definition of stable colonies or gliders, by analyzing their extents) by ex-
panding attribute set and Moore neighborhood (even by using geometric -non isotropic-
attributes) as well as attributes with bounded temporal stamps [1].
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