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Abstract: The application of automated reasoning
systems to data cleaning in the Semantic Web raises
many challenges on the foundational basis of cleaning
agent design. The authors discuss some of them. They
finally argue that logic trust in the Semantic Web can
only be achieved if it is based on certified reasoning.

Nowadays data management in the WWW needs
tools to ensure secure and trustworthy performance.
The utopian future shows a Semantic Web (SW) pro-
viding frameworks where some actual problems about
data are solved by the logical trust that SW estab-
lishes. Though for the present time there are some
problems to solve. Realistic inmediate future raises se-
veral challenges, some of them dealing with fundational
issues of Semantic Web, the abstract (ontological) def-
inition of data, and the work with incomplete or pro-
visional ontologies through the evolution from actual
WWW to SW (as well as the evolution of the ontolo-
gies itself). In any case, the pair data-ontology will be
an indissoluble marriage and represents the knowledge
bases (or Knowledge DataBase, KDB), aim of study in
the SW framework. We want to analyse the role that
an Automated Reasoning System (ARS) may play as
assistant for cleaning KDB'’s.

The reader is warned that the challenges (rather
questions that imply challenges) on which we are in-
terested are intentionally oriented to problems about
logical reasoning and its robustness for data cleaning
and preprocessing, focusing them on qualitative KDB.
Of course, there are other fields where looking for an-
swers. Moreover, we emphasize the problems found in
the first phase of data cleaning, namely data analysis.

Some of the ideas we discuss are suggested by ex-
periments about data cleaning with the assistance of
an automated theorem prover (ATP) [1] (see figure 1)
that serve us to show the problems as well as to suggest
solutions. The experiments carried out on a KDB in
a paradigmatic field, where ontology design is a chal-
lenge itself: the Qualitative Spatial Reasoning (QSR).

In these experiments, we use the First Order Logic
(FOL) as language, focusing in this way in founda-
tional problems, and forgetting representational issues
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for a second stage. A powerfull ATP based on resolu-
tion, OTTER! was used as assistant.

The long term goal for data cleaning in SW might
be the design of general purpose cleaning agents: in-
telligent agents capable to find and repair anomalies in
KDB, both in the ontology and in the data. To achieve
this goal, we need to analyze first the challenges that
it raises. For the present, the ARS only plays the role
of an assistant in an ARS-aided methodology to clean
anomalies in a KDB [2], as a first step towards the de-
sign of cleaning agents. The overall question that it
adresses is whether it is possible to design trustworthy
data cleaning systems to certify both the KDB and the
self reasoning on it, as SW promises. This challenge
emphasizes the current needing of an explanation of
the reasoning behind cleaning programs [17].

What is the logical complexity of
the problem?

Cleaning a KDB in a dynamic environment as SW is a
quite hard task. Some of the reasons are the following:

e We can not suppose that the KDB is finished (be-
cause the user would add new facts in the future).
Thus, even if we have a good KDB, the dificul-
ties will begin again with the future introduction
of data, persisting in this way the existence of
anomalies.

e Usually the intensional theory of the KDB (i.e.
the ontology) is nonclausal. Thus, it is highly pos-
sible that classical axiomatization of database the-
ory becomes inconsistent. Nevertheless, the self
database represents a real model.

e The KDB does not contain facts about all the re-
lations in the language. It is usual that only an
almost complete information about primary rela-
tions and concepts appears, those that one could
consider as the primary ones. Other complex no-
tions have to be deduced.

lhttp://www-unix.mcs.anl.gov/AR/otter/
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Figure 1: Ideal scenario for a specific-pourpose cleaning agent

This list of reasons must be accomplished by a neces-
sary revision of the verification and validation of Know-
ledge Based Systems problem [4].

On the other hand, the anomalies we can find come
from several sources. A first classification is the fol-
lowing:

e The set of data may be inconsistent with the on-
tology, due to formal inconsistencies produced by
wrong data, or the absence of some knowledge.

The database does not give us complete informa-
tion about primary predicates (the user could in-
troduce more data later). For example, the the-
orem prover may deduce, from the database, the
existence of objects without name.

Unexpected disjunctive answers to standard

queries (a logical deficiency).
e Inconsistency in the Ontology.

Also, it is necessary bear in mind, when we work
with many information sources, that for focusing query
plans on selected sources we need to estimate the qual-
ity of the answer, task that can become a critical issue
[38].

A characteristic of the problem is that it forces
us to keep the balance between real-time processing
and complex reasoning. This dilemma is, in essence,
the same as reactivity versus proactivity attitudes in
agents. Complex logical features could need more au-
tonomy from ARS assistant to work with. So it is not
advisable to tightly bound ARS’s work time. Neverthe-
less, it is not clear how much autonomy degree must it

have. The reason is that an ATP can produce an over-
spill of new knowledge, not all of it interesting for the
problem. Thus it needs a strict referee layer to man-
age the workflow. This is not a new idea in automated
deduction (see [12]). These are the main drawbacks
for the integration of an ARS in agent’s architecture.
However, the loss of real-time requirements might not
be important: the system could work as a night clean-
ing service, debugging metadata implemented by the
users during the idle-time of the computer.

Another interesting aspect is that some languages to
specify ontologies as KIF? allow us to design sintactly
complex theories. In this case the formal paradigm
can be hard to manage. Intuitively complex axioms in
ontology description often come from an incomplete or
inconsistent set of concepts and relationships, or a defi-
cient set of explicit relationships. A paradigmatic case
is the following: in a company several programmers
are concurrently developing the ontology and associ-
ated tools (inducing them from its self practical experi-
ence), and others concurrently introduce the data. The
cooperative work may produce inconsistencies (due,
for example, to programmer’s wrong interpretations of
some concepts in the ontology) or complex axioms that
makes the ontology messy (a designer does not know
any concepts which can simplify definitions). Other
example is data warehouses. Finally, in some cases
there exists a lack of mechanisms to soundly evaluate
the ontology engineering task. This is an obstacle to
the use in companies [18].

On the other hand, providing metadata is a dificult
task that the users tend to avoid: to save costs, the

2http://logic.stanford.edu/kif/kif.html



initial ontology may have been built by an ontology
learning system, but then we have to debug it. Even
it is necessary an ontological analysis of the intended
meaning of the elements of the ontology (as [21]). In
any case, it is necesary to know how to work with poor
(or provisional) ontologies.

How to work with poor ontolo-
gies?

The problem is almost -but not wholly- one of logical
reasoning with weak theories. We assume that the con-
tent on SW is (explicitily or implicitily) in the form of
logical formulas. From this viewpoint, we think that
the use of ontologies in data management implies a
logical reasoning deeper than the one that so far we
believe as advisable. An ontology is not only a logical
theory, but something with aditional features as back-
ward compatibility [22]. However, one must accept
that logical trust provides a first security criterion.

In a logical setting, data are ground terms con-
strained by the ontology language, and, more impor-
tant, whose behaviour is specified by the ontology. For
example, a partially built ontology, constraint us to
reason with a poor language or a deficient set of ax-
ioms.

The reasons to the persistance of unstable ontologies
are several. Most of what the research do is related to
the development of ontology representation paradigms
and it has not a similar counterpart in other features
associated with the evolution as persistence, transac-
tions or scalability [30]. As widely constated, the effort
to build a robust ontology, including the large body of
information of a company in the universe of metadata,
is expensive. So the investment must be promoted in
early stages, impeding significant changes later.

In ATP-aided cleaning tasks, an interesting type of
reason for bottom-up change gemeration in ontologies
[30], is in this framework the Skolem noise, due to the
analysis of track interaction among KDB, the auto-
mated theorem prover and the user (figure 2), when
we work with provisional ontologies.

Can we wait until the ontology becomes stable? The
answer is no. Not at least it is clear the meaning of
stable, or better, robust.

When is robust an ontology?

The ontologies are presumably designed to protect us
from wrong management of information. But can we
be sure of the current ontology? Is it possible to predict
that only minor changes will be applied? Ontologies
need to be maintained just like other parts of a sys-
tem (for example, by refinement [3] or versioning [27])
The definition of robustness for ontologies has several
perspectives, all of them necessary but none sufficent.
From SW perspective, the desiderata for a robust-
ness notion come from some of the requirements to
exploit SW ontologies, mainly in two of them [22]:

o SW ontology should be able to extend other ontolo-
gies with new terms and definitions.

e The revision of an ontology should not change the
well-foundness of resources that commit to an ear-
lier version of the ontology.

Nevertheless, even being able to be extended, it is
evident that the core of the ontology should be stable.
By core we understand a portion of the source of the
ontology that we consider as the sound representation
of a theory with well known properties, accepted as the
best for the concepts contained in the ontology. Usu-
ally, it is advisable that the top of the ontology (general
concepts) is included in the core, preferably choosing
a standard proposal for it, as could be SUMO3.

From a logical point of view, robust ontology should
mean complete logical theory, and this definition might
be applied in the context of OWL? full language, or in
any case, it may be useful to some coherent parts of
an ontology. However, this is not a local notion: mi-
nor changes commit logical completeness in a dramatic
way. Other logical notions, as categoricity, crash with
natural logical principles for reasoning in databases as
Closed World Assumption or Unique Names Principles.

Therefore, robustness should be a combination of
both perspectives, jointly with a notion of clear onto-
logy, as opposite to messy ontology. A messy onto-
logy may be, in the future, aim of a cleaning process,
suggested by the diary management. A definition of
robustness may be the following:

An ontology is robust if its core is clear, stable (ex-
cept for extensions), every model of its core exhibit
similar properties w.r.t. the core language, and it
is capable to admit (minor) changes made out of
the core without commiting core consistency.

By similar properties we understand a serie of meta-
logical properties that bring us to the conclusion that
all these models are, in essence, the same: they can
not be distinguished by means of amenable properties.

But the robustness can not be understood without
considering dynamic aspects. Mostly, we think the ro-
bustness as a measure: ontology evolution extends the
core to a big portion of the ontology leaving out almost
only data. This evolution schema allows us to locate
the possible inconsistencies in the data, approximat-
ing in this way the problem to the classical integrity
constraint checking.

In the example of figure 2, Skolem noise phenomenon
suggest us to add to the ontology (even to the core the-
ory used in [1], which is the Region Connection Cal-
culus, RCC) a geometrical interpretation of $f1 as the
intersection of regions (when they intersect).

The dynamic of ontology evolution brings us to
adapt other ontologies to extend ours, or generally, to
design systems for the management of multiple and
distributed ontologies (as [31]). This question leads
another one: how to design sound ontology mappings
for automated reasoning?

Shttp://ontology.teknowledge.com/
4http://www.w3.org/TR/owl-features/
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Ontology mapping means inter-
pretation among logical theories?

Semantic heterogeneity of ontologies is a major bar-
rier to cleaning data. Ontology mapping will become
a key tool in heterogeneous and competitive scenar-
ios as e-commerce and the knowledge management in
large organisations. This technique will play -in the
SW- a key role in the usual Extraction-Tranformation-
Loading (ETL) process (see [39]) for data cleaning.
However, it is not clear which are the logical and cogni-
tive consequences that an ontology mapping has for au-
tomated reasoning. Logical perspective gives us again
a rigid concept, the interpretation among theories, that
is the most suitable for logical automated reasoning,
but this approach has limited applications. In practice,
a solution can be the use of contexts (or microtheories),
as in CyC® ontology. There also exist proposals that
may be useful to control the expansion of anomalies to
the complete ontology, as the conteztual OWL [8] (see
also [32]).

There exists a limit for ontology mapping. Intelli-
gent KDB analysis aided by ATP will need in some
moment a logical interpretation of basic data as inte-
gers (by example, when we accept that number of parts
is a positive integer). It is not easy to build an ontology
on numeric data and their properties. Even if we have

Shttp://www.cyc.com/

the system OTTER, reasoning with a poor ontology

such one, the ontology mapping can be understood as
a logical interpretation of an arithmetic theory (recall
that, in OWL, mappings are not part of the language).
Since interpretation means, up to a point, to incorpo-
rate a logical theory about such data to the target on-
tology, logical incompleteness is not only assumed, but
unavoidable (recall also that, though OWL integrates
data types, there is nothin about integer arithmetic,
for example). This phenomenon can be tamed by syn-
tactical restriction of queries, but the solution will be
hard in any case: extensions of OWL (thinkig it as
a logical theory) will add features for numerical data
representation and reasoning. Moreover, undecidabil-
ity will be intrinsic to any language for rules with pow-
erful features, so this also happens for more complex
tools. This is a definitive barrier to ontology language
design. We have to find a way to escape of that in
practice.

Model Theory for Semantic Web?

At the top of the SW cake proposed by Tim Berns-Lee,
Logic and Proof appear as the bases of Web trust. Log-
ical trust, in a broad sense, is based in logical seman-
tics, and logical semantics deals with models and the
definition of truth. In the ontology design task, model
theoretic analysis is often forgotten, because ontology
designer has in mind a particular model (the real or



intended model). A well known principle in Know-
ledge Representation states that no language nor KB
exists to represent faithfully the intended world where
we want to work; that is, unintended models exist (see
figure 3). In QSR, this principle turns into the poverty
conjecture: there is no purely qualitative, general pur-
pose kinematics. Therefore no categorical ontology ex-
ists for this field.

One of the goals of logical Model Theory is to study
all the models of a theory, including nonintended mod-
els. Model Theory is not only a semantic basis for good
specification [15]. It has impact on practical proving:
the existence of unintended models is consequence of
incompleteness and vice-versa. For example, in the
figure 3 the existence of a model where A = S implies
that the theory RCC +{O(A, S)} does not entail that
the region affected by the anticyclone and Spain are
different.

Again, Model Theory may be combined with other
features, especially of linguistic nature. In this way the
designer may specify non-logical information. However
the amount of linguistic and lexicographic problems
that this option supposes warn us to explore carefully
the combination of logic with (mathematical) linguis-
tic. On the other hand, it is not strange to face up
with inconsistent information in a KDB in the Web,
and in this case classical model theory has nothing to
do: there is no models.

How to reason with inconsistent
information?

As larger is a KDB, smaller will be the possibility of
it being consistent. We may say that logical inconsis-
tency, one of the main sources of untrust, is frequent
whenever the KDB has big amount of hand-made in-
formation (and whenever it is a relatively interesting
part of WWW). Big KDB escapes for any model search
(consistency checking) system. Thus, consistency anal-
ysis will be weakly solved by a semidecision proce-
dure: if a refutation is founded, KDB will be inconsis-
tent, and thus inconsistency turns out to be the main
anomaly (see the figure 4).

If we accept to work with inconsistency, the goal is
to design logical formalisms that limit those that can
be inferred from inconsistent KDB. An approach to
the acquisition of trustworthy information consists in
to argue the information extracted from data. Argu-
mentation is a succesfully strategy in this scenario.

An argument according to a KDB is simply a pair
< T, fact > where I is a subset of the KDB that proves
fact. An argument with unacceptable conclusion may
be considered as a report about an anomaly, and the
cleaner must find the reason of it. Any anomaly warns
us of a mistake, but the expert decides which type of
arguments have to be analysed. However, the ARS of-
fers more arguments than human s analysis can study.
Though a referee layer for ARS’s output could par-
tially solve the overspill of arguments produced by the

system, we have to design very efficent criteria to dis-
card arguments. For the spatial example, the absence
of Skolem noise in an argument makes it consistent [1],
thus a quick look at the content of the argument reveals
its consistency. But it is not easy for other anomalies.
There is an interesting hierarchy of arguments that es-
timates -at least theoretically- their robustness [14].
This hierarchy is based on FOL notions as consistency
and entailment among others.

Is FOL the universal provider for
formal semantics?

For tasks as verification of KDB, FOL provides a for-
mal framework where some anomalies in specifications
can be defined. Ontology languages as DAML+OIL ©
are actually verified and revised by translating spec-
ifications into FOL and then applying an ATP [16].
Reasoning services for such class of ontology languages,
based on its relationship with Description logic (a sub-
set of FOL) are also investigated [24]. FOL is se-
lected as translation target because in this way we have
strong reasoning methods for several sublogics expand-
ing the ontology language, as well as we have an ideal
framework where we can expand the expressivity of
the language itself. Extensions of classical predicate
logic have been proposed, as F-logic [41] that natu-
rally solves problems as reification, a feature of RDF
language.

Modal logics for beliefs lift the reasonning to mental
attitudes. Mental attitudes does not seem adequate to
be add to ontology reasoning, but there exist other in-
tensional operators as Provable from Ontology O, used
in logic programming for meta-reasoning, which may
be interesting to be considered. But how? For the
present, it is often to think in the ontologies as often
thought as static theories, that is, a set of axioms, sep-
arated in this way of reasonning (or the set of rules).

This option reduces the problem to investigate which
rule language is the best for each propose [23]. But it
does not seem adequate for verification of KDB. It is
advisable this limitation is solved for KDB cleaning
tasks, and not only by action of external reasoners:
an ontology should ontologically define its reasoning
framework, or better, the ontology should be a poten-
tial reasoner itself. We will return later to the question
to succinctly explore this solution.

Is there an ontology for untrust-
worthly or fraudulent informa-
tion?

We have commented that the existence of an argument
allows us to locate and repair an anomaly -if it is the

witness of such one- by means of expert analysis of its
content. A deep analysis of the arguments reported by

Shttp://www.w3.org/TR/daml+oil-reference
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an ARS classifies them according to its trustworthy-
ness. So, an argument hierarchy is a first step towards
an ontology of trustness. But we also need to clarify
operational features of the ARS assistant. The au-
tonomous behaviour that we expect of the automated
argument searcher can be slanted. Much work about
this topic could be accomplished the background from
automated reasoning field.

More arduous will be the task of recognizing fraudu-
lent information; it represents a significantly different
problem. If the ontology represents a fraudulent world
(a unintented model of the user’s knowledge particu-
larly dangerous for his/her pourposes) the arguments
reporting fraudulent information do not show anoma-
lies. To make matters worse, fraudulent ontologies may
use linguistic features to hide information. This leads
the question out of our interest: fraudulent, by defini-
tion, can not have logical legitimacy. A solution may
be the combination of user’s trustworthiness on others
users (see [40]). One can believe, too, that the prob-
lem can defeated with a fine analysis of the problem
which deal with mental attitudes as beliefs, desires or
intentions to specify the phenomenom for logical data-
mining agents.

Is it advisable to add mental atti-
tudes in data mining/cleaning?

In an scenario with inconsistent information and/or se-
veral cleaning agents working, it is necessary to add an
intentional level to the logical representation? We have
already commented that it not advisable to add men-
tal attitudes to the ontology, but in a multiagent sys-
tem setting, the specification of knowledge extracted

by agents from inconsistent information is unavoidable.
In fact, standards for agent communication languages
as FIPA-ACL” use mental attitudes in the specifica-
tions. A multiagent data-mining system should man-
age this kind of information.

A way to avoid the adoption of mental attitudes
when one works with simple information items (as
structured news reports) might be the implementation
of a set of fusion rules to solve agent’s disappoinments
based on the nature of information (see the survey [6]).
This option may need to preprocess data from hetero-
geneous databases. In other case, data need to be ex-
tracted and translated (by ontology mapping) during
cleaning runtime, making difficult to achieve accept-
able time responses, as occurs in classical data clean-
ing. But the preprocessing in KDB cleaning has other
need: it is possible that the system fires some rules
to add new data, to transform the data source of the
KDB in a consistent instance of the KDB target.

Is it possible to preprocess data
with respect to an ontology?

An interesting aspect of cleaning proccess appears
when the KDB programmers decide which are the main
roles and concepts of the ontology when they focus the
cleaning (spatial abstraction step in figure 1). Does
Skolem noise mean that we do not know the ontology
implicitly or unconsciously used by KDB builder? Not,
in general. It only might suggest the need to preprocess
the knowledge, sometimes applying simple rules asso-
ciated with the ontology. An option to preprocess full

"http://www.fipa.org/specs/fipa00037/SC00037J.pdf



The Main Logical Anomaly: Inconsistency

The main drawback of many of the methods for inconsistency handling is the computational complexity. On the
other hand, the relevant role of ontologies in KDBs design for the Semantic Web needs of a revision both clasical
semantics for databases (which are oriented to identify correct answers and logical consequences) and the self
definition of consistency (basically focused on integrity constraint checking). Some of the recent proposals to

inconsistency handling are the following:

Paraconsistent logics:

Paraconsistent logics attempts to control the undesirable
(logical) consequences from an inconsistent database, tam-
ing the logical calculus. See [25] for a general introduction,
and [19].

Non-repairing methods:

The idea behind these methods is to preserve the source
information and decide the trueness by a general analysis
of the retrieved knowledge. Some recent examples are:

e To establish Pre-orders on information sets (see e.g.
[9], or [33], where the inference is bounded to se-
lect belief subbasis of the KDB, in the paraconsistent
pradigm).

o Argumentative hierarchies, that classify the argu-
ments according to robustness with respect to other
subsets of the KDB (see e.g. [14]) or their relation-
ships with other arguments (for example, the argu-
mentative framework based in the defeating relation-
ship among them [13]). See [37] for an application to
databases.

e A classic idea in Artificial Intelligence, contezrtualiza-
tion, can be used in the new framework (contextual-
izing ontologies [8] and data [32]).

Merging-oriented techniques:

e To establish rules that allow to consistently fuse
jointly inconsistent information (see [6]).

e Solutions provided by the theory of merging
databases [11].

Measuring anomalies:
A good option is to provide tools to estimate the anomaly,
for example:

e Evaluating by means of a paraconsistent logic [26].

e Measuring inconsistent information by means of mea-
sures for semantic information. These measures esti-
mate the information that the KDB contains on the
model which it represents. There exist measures for
working with inconsistencies [28].

Repairing techniques:

Mainly, there exist two drawbacks for KDB repairing: the
complexity of the revision of the full KDB and the pos-
sible discarding of inconsistent data which are potentially
useful. So, it seems advisable the repairing is focused on
relatively small datasets. The revision of ontologies is an
essentially different task, because it represents a key orga-
nization of the knowledge of the owner and, as every log-
ical theory, minor changes may produce unexpected and
dangerous anomalies. Some options are:

e Correcting records: the Fellegi-Holt method, used in
the past in many government stadistic bureaux, can
be reviwed as a safe logical method [7]. The method
is based in the searching of all deducible requirements
to decide which fields must be changed to correct an
incorrect record.

e Once the notion of database repairing is defined in
a logical form, the entailment component of the def-
inition can be simulated by calculus; for example by
tableaux method [5].

e Consistent querying to repair databases: Te self an-
swer drives the reparation. For example, splitting the
integrity constraints according to the character of the
negation which involves each constraint, it is possi-
ble to produce consistent answers and to repair the
database [20].

e Consistent enforcement of the database. The aim
is to systematically modify the database to satisfy
concrete integrity constraints. A promising method
consists in using greatest consistent specializations,
adapting the general method (which may be unde-
cidable) [29].

Consistent answering without repairing:

e A good option may be the transformation of the self
query to obtain consistent answers [10].

e Using paraconsistent inference (see e.g. [33]).

Preserving consistency:

The idea is to update the KDB preserving the consistency.
The classical notion of consistency (satisfaction of integrity
constraints) must be expanded due to the relevant role of
the ontologies. It is also necessary to prove the consistency
of the method, and some sort of completeness (see e.g.
(36]).

Figure 4: A brief overview about inconsistency handling




databases is to extend them with new data produced
by means of the application of simple rules, designed
from the ontology [1]. For example, in the context
of figure 2, it might add to a RCC-database the fact
O(A, B) to the database if an exploration found two
facts P(C,A) and P(C,B), for any regions A, B.

A proposal: towards ROWL lan-
guage

We do not want to finish without suggesting a solution
to solve, in the future, some of the above challenges.
We think that the best way might be the design of a
language that could be called ROWL (a Reasonable
Ontology Web Language). The idea borns from the
need of attaching (specialised) certified logical infer-
ence to the ontology; that is, ontological information
about how to reason with the information. To make
this, we should add new features to OWL for speci-
fying what type of reasoning and which ARS are ad-
visable to reasoning with the OWL ontology (thinking
also that the ontology is optimized to reasoning with
them). We do not describe here a formal language,
we can give an impression of how that language might
look like in early releases of its development, and how
it could satisfy some of the challenges.

A closer look to the design of ROWL

The idea is suggested by the building of Certified
Generic Frameworks (CGF) where the design of a cer-
tified ad hoc reasoner is simplified to provide some key
features of the ATP , that ontology must supply [34].
An ontology that accepts a reasoner that fits in this
framework only has to specify simple elements: com-
putation rules (to drive the deduction), representation
rules (to normalize formulas), measure function on for-
mulas (to deduce the halting of deduction methods)
and model functions (to supply models in some ba-
sic cases). The framework has been programmed in
ACL28, which is is both a programming language in
which you can model computer systems and a tool to
help you proving properties of those models. In this
way the ATP obtained is sound and complete, and for-
mally verified by ACL2. A detailed presentation of the
CGF will appear in [35], where the formal verification
of the framework is described. In this way the ATP ob-
tained is sound and complete, and formally verified by
ACL2. In the case of [35], the framework -which runs,
because it produces a COMMON LISP program- has
been designed to synthesize the most important com-
ponent in many Al systems based in automated rea-
soning, the SAT provers.

In fact, ROWL language should only have features
to show links where those elements explicitly appear,
allowing the refinement (or even the change) of the
deduction method by changing slightly the KDB. In
this way,

Shttp://www.cs.utexas.edu/users/moore/acl2/

ROWL = CGF + OWL

A generalization of this framework to others ARS
will be an interesting task. Of course, previous to de-
cide what are the key features of ROWL, it is neces-
sary to design an ontology about automated reasoning.
There exist some projects to build such an ontology, for
example, within MathBroker? and MONET'? projects.
At the moment, the performance of the synthesized
SAT provers is far from the results that can be ob-
tained using any sate-of-art SAT-provers. But it is a
next aim to obtain better provers using more efficent
data structures.

What advantages would have ROWL?

The definitive advantage of a language as ROWL con-
sists in that it allows to design general-purpose clean-
ing agents, as opposed to specific purpose cleaning
agents based on wrapper technology. Such agent only
would adopt, as thinking component, the ATP syn-
thetised from the information of the ROWL ontology
(across the links), and the behaviour scheme of the
agent (see figure 5), where modules to repair anoma-
lies can be implemented (for example, the translation
into logic of methods to correct anomalies as Fellegi-
Holt’s one [7]). This proposal is only the first step, a
lot of research remains to be done. The first at all, a
complete analysis of the relationships between ACL2
logic (the logic of the theorem prover used to build
the CGF; a computational logic closer to a quantifier
free FOL accepting some amount of induction) and De-
scription Logics. But with this sketch, how does this
proposal solve some of the challenges above? Basically,
giving standards to represent aditional information not
explicit in data associated with the ontology:

e If we assume that we are working with a poor onto-
logy (second challenge), other explicit features can
be desired (specified in the language ROWL) with
links to explicit information about some kinds of
anomalies that the ARS would find, the noninter-
esting ones to instantly discard.

e Ontology mapping (fourth challenge) can be cer-
tified up to a point by the ARS associated with
the ontology target: the trust in the mapping is
augmented if the ARS certifies the translation of
essencials relationships and properties on concepts
of ontology source. On the other hand, in the con-
crete example of ACL2, it is extremately inter-
esting to exploit the certified arithmetic reasoning
embedded in the self system ACL2. In this way
we could add arithmetic reasoning about data to
OWL (by means logical interpretation in ACL2
logic).

e A witness of the existence of nondesired unin-
tended models (fifth challenge) may be the un-
probability with the recommended ARS of basic
theorems on concepts of the ontology.

http://www.risc.uni-linz.ac.at/projects/basic/mathbroker/

Ohttp://monet .nag.co.uk/cocoon/monet/index . html



e If Ontology designer thinks that it is highly prob-
able that inconsistencies appear, she/he can asso-
ciate, in the earlier stages of ontology evolution,
a reasoning model based in argumentation. After
that, a standard ARS could be associated, chang-
ing only the corresponding links in the ROWL on-
tology. In this way, the ontology will benefit from
the use of state-of-art certified reasoning models.

It is important to notice the importance of that the
framework will be certified. This way, the ATP em-
bedded in the cleaning agent will be correct and thus
it will not have an anomalous behaviour.

Conclusions

The challenges that we have shown, about the appli-
cation of ARS for KDB cleaning, represent a partial
view. Nevertheless. they affect to every phase in usual
data cleaning [39]: data analysis, definition of map-
ping rules, verification, transformation and backflow
of cleaning data. From these fundational issues, many
problems arrive to real-life cleaning scenarios.

One might think that some of the aspects of the chal-
lenges does not have importance: we cannot wait SW
replaces to the current WWW in such way that, really,
KDB cleaning becomes a computational logic enter-
prise. Therefore, the marriage data/ontology may not
be celebrated in many cases, and some kind of classi-
cal data cleaning, combined with automated reasoning
engineering, will remain as the sole option. To sum up,
cleaning agents for SW raises a serie of challenges that
overcomes logic-based agents and classical dataclean-
ing techniques if they are not combined.
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ROWL Ontology

<rdf : RDF

xni ns: Regi ons="http://ww...."
xml ns: owl ="http:// ww:. w3. or g/ 2002/ 07/ owl #"
xni ns: row ="http:/ww....."

<row : Reasonner rdf: | D="#SATSOLVER" >
<row : conputationRule rdf:resource="http://ww.cs.us.es/.."/>
<row :representationFunction rdf:resource="http://ww.cs.us.."
<row : measur eFunction rdf:resource="http://ww.cs.us.es.."/>
<row : nodel Function rdf:resource="http://ww.cs.us.es/."/>

</ row : Reasonner/ >

<ow : Ont ol ogy>

</ ow : Ont ol ogy>

<rdf s: comment > Ont ol ogy plus instances
</rdfs: coment >

<owl : Class rdf:"...

Cleaning agent
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Step2: The agent read (and translates if neccesary)
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it in the Behaviour Schema (rational and proactive)
Step 4: Cleaning proccess

Figure 5: The dream of a general purpose logic-based cleaning agent
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Appendix

We have remarked that the CGF only synthesize, at
the moment, SAT provers. Let us see how would to
run a cleaning session of a ROWL ontology. Consider
us the little inconsistent ROWL ontology:

<rowl:Reasoner rdf:ID=’’#Davis-Puntnam-SATSOLVER’’>
<rowl:ComputationRule

rdf :resource="’#DP-comp-rule’’/>
<rowl:RepresentationFunction

rdf :resource=’’#DP-repr’’/>
<rowl:MeasureFunction

rdf :resource=’’#DP-measure’’/>
<rowl:ModelFunction

rdf :resource=’’#DP-models’’/>
</rowl:Reasoner>

<rowl:Asummption

rdf :resource=’’#Uniques-names-principle’’/>
<rowl:Asummption

rdf :resource=""’#Domain-closure-principle’’/>

<owl:Class rdf:ID="Herbivore">
<rdfs:Comment> herbivores are exactly those
animals that eat some plant</rdfs:Comment>
<owl:intersection0f rdf:parsetype="Collection">
<owl:Class rdf:about="animal">
<owl:Restriction>
<owl:onProperty rdf:resource=#eats"/>
<owl:someValuesFrom rdf:resource=#plant"/>
</owl:Restriction>
</owlintersection0f>
</owl:Class>

<owl:Class rdf:ID="Carnivore">
<rdfs:Comment> carnivores are animals
are not herbivores and
they eat also animals</rdfs:Comment>
<owl:disjointWith rdf:resource="#Herbivore">
<owl:intersectionOf rdf:parsetype="Collection">
<owl:Class rdf:about="animal">
<owl:Restriction>
<owl:onProperty rdf:resource=t#eats"/>
<owl:someValuesFrom rdf:resource="#animals">
</owl:Restriction>
</owl:intersection0f>
</owl:Class>

which

<Carnivore rdf:ID="Tarzan">

<eats rdf:resource="Pumbaa">
<eats rdf:resource="potato">
</Carnivore>

<Animal rdf:ID="Pumbaa">
<eats rdf:resource="potato">
</Animal>

<Plant rdf:ID="potato">

The first block shows the four ingredients to syn-
thesize the SAT solver (in this it describes the Davis-
Putnam procedure). The second block claims two clas-
sic assumptions on databases (unique names principle
and domain closure ariom) that allows to transform
the ontology into a propositional set of formulas. For
the above example, the set is:

(<-> CARNIVORE-POTATO
(& (& (- HERBIVORE-POTATO) ANIMAL-POTATO)
(/ (& EATS-POTATO-POTATO ANIMAL-POTATO)
(/ (& EATS-POTATO-PUMBAA ANIMAL-PUMBAA)
(& EATS-POTATO-TARZAN ANIMAL-TARZAN)))))

(<-> CARNIVORE-PUMBAA
(& (& (- HERBIVORE-PUMBAA) ANIMAL-PUMBAA)
(/ (& EATS-PUMBAA-POTATO ANIMAL-POTATO)
(/ (& EATS-PUMBAA-PUMBAA ANIMAL-PUMBAA)
(& EATS-PUMBAA-TARZAN ANIMAL-TARZAN)))))

(<-> CARNIVORE-TARZAN
(& (& (- HERBIVORE-TARZAN) ANIMAL-TARZAN)
(/ (& EATS-TARZAN-POTATO ANIMAL-POTATO)
(/ (& EATS-TARZAN-PUMBAA ANIMAL-PUMBAA)
(& EATS-TARZAN-TARZAN ANIMAL-TARZAN)))))

(<-> HERBIVORE-POTATO
(& ANIMAL-POTATO
(/ (& EATS-POTATO-POTATO PLANT-POTATO)
(/ (& EATS-POTATO-PUMBAA PLANT-PUMBAA)
(& EATS-POTATO-TARZAN PLANT-TARZAN)))))

(<-> HERBIVORE-PUMBAA
(& ANIMAL-PUMBAA
(/ (& EATS-PUMBAA-POTATO PLANT-POTATO)
(/ (& EATS-PUMBAA-PUMBAA PLANT-PUMBAA)
(& EATS-PUMBAA-TARZAN PLANT-TARZAN)))))

(<-> HERBIVORE-TARZAN
(& ANIMAL-TARZAN
(/ (& EATS-TARZAN-POTATO PLANT-POTATO)
(/ (& EATS-TARZAN-PUMBAA PLANT-PUMBAA)
(& EATS-TARZAN-TARZAN PLANT-TARZAN)))))

PLANT-POTATO
EATS-PUMBAA-POTATO
EATS-TARZAN-PUMBAA
EATS-TARZAN-POTATO
HERBIVORE-PUMBAA
CARNIVORE-TARZAN

With respect to the algorithm synthesis and verifi-
cation of the SAT solver by the CGF, the input of the
ACL2 program essentially takes the elements defined
in the first block;



(definstance-*generic-satx*
((gen-object-p DP-object-p)
(gen-object-list-p DP-object-list-p)
(gen-repr DP-repr)
(gen-dist-val DP-dist-val)
(gen-dist-val-1st DP-dist-val-1lst)
(gen-comp-rule DP-comp-rule)
(gen-select DP-select)
(gen-measure DP-measure)
(gen-model DP-models))
"-davisputnam")

The running time of the CGF for the synthesis and
verification of the SAT solver is 0.28 seconds;

Summary
Form: (ENCAPSULATE NIL

(DEFUN GEN-MEASURE-LST-DAVISPUTNAM ..)..

Rules: NIL
Warnings: None

Time: 0.28 seconds (prove: 0.11,
print: 0.00,
other: 0.17)
T

Finally, the cleaning agent only must to check the
satisfiability of this knowledge base;

(generic-sat-davisputnam
(build-rowl-examplel
’(potato pumbaa tarzan)))

; real time : 0.020 secs
; run time : 0.020 secs
; NIL
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