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satisfiability-checking of ALC -concepts. Secondly, we define and formally verify a 
tableau-based algorithm in which the order of rule application and branch selection 
can be flexibly specified, using a methodology of refinements to transfer the main 
properties from the ALC abstract formalization. Finally, we obtain verified and 
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Partially supported by TIN2009-09492 Project of Ministerio de Ciencia e Innovación
and Excellence Project TIC-06064 of Junta de Andalucía, co-financed with FEDER founds.

M. J. Hidalgo-Doblado (B) · J. A. Alonso-Jiménez · J. Borrego-Díaz ·
F. J. Martín-Mateos · J. L. Ruiz-Reina
Computational Logic Group, Department of Computer Science and Artificial Intelligence,
University of Seville, E.T.S. Ingeniería Informática, Avda. Reina Mercedes s.n.,
41012 Sevilla, Spain
e-mail: mjoseh@us.es

J. A. Alonso-Jiménez
e-mail: jalonso@us.es

J. Borrego-Díaz
e-mail: jborrego@us.es

F. J. Martín-Mateos
e-mail: fjesus@us.es

J. L. Ruiz-Reina
e-mail: jruiz@us.es



Keywords Semantic web ·Description logics ·Verification ·Formal methods

1 Introduction

Description Logics [6] are a family of logics used to represent conceptual and
terminological knowledge. Recently, Description Logics have gained importance,
since they are the logical basis for web ontology languages (OWL DL, OWL Full,. . . ),
used in the Semantic Web. Description Logics reasoners such as RACER, Pellet and
FaCT++ [13, 29, 31] are being used to process knowledge in the Semantic Web.
The logic ALC is a basic one, which can be extended to more expressive description
logics, such as SHOIN , that are used for reasoning in web ontology languages.

The formal verification of reasoning systems for the Semantic Web would increase
the reliability of the Semantic Web itself, and thus is an interesting area for the appli-
cation of formal methods. In this regard, our main goal in the long term is the formal
verification of reasoning systems for Description Logics. We plan to tackle this task
incrementally, approaching to the description logic SHOIN from the logic ALC . As
a first step, in this paper we show how to construct formally verified tableau-based
reasoners for the description logic ALC . The formalization follows the first chapters
of [30].

To formally verify reasoning systems for Description Logics, several possible
approaches were considered. One approach could be to concentrate on a specific
reasoner and prove its correctness. In this case, we would have to formally develop
the full logical theory necessary for its specification and verification. However, this
theory will essentially be determined by the reasoner and it might not be suitable
for other reasoners. An alternative approach, which we have taken, is to start from
an abstract formalization of the logic ALC and gradually refine the specification for
different formally verified reasoners. In every refinement step, some generic features
are set, preserving the main properties already verified.

Our formalizations are carried out in the PVS system [22]. This system combines
an expressive specification language with an interactive theorem prover. Although
the PVS specification language has been designed to be expressive rather than exe-
cutable, a wide fragment of PVS is executable by generating Common Lisp code from
PVS that can be evaluated through the PVSio environment [20].

Before presenting the details of the developed formalization, we are going to
explain the methodology we have followed, illustrated in Fig. 1.

1. Abstract formalization of ALC tableaux (in the figure, the square in the root
of the tree). We first formalize an abstract specification in PVS to check
satisfiability of ALC -concepts, based on a set of transformation rules (also called
completion rules). This transforms the satisfiability problem to an equivalent
one, and we prove its properties of termination, soundness and completeness.
For this reason, we use abstract, not evaluable, PVS types. The features of this
specification make it feasible to obtain proofs close to the corresponding ones
usually found in the literature of Description Logics. Termination turned out to
be the most difficult property to prove.

2. Generic tableaux (in the figure, octagons). Then we implement a generic
tableaux-based satisfiability checking algorithm in PVS corresponding to the ab-
stract specification, in such a way that the correctness properties of this algorithm



Fig. 1 The roadmap

are based on the same properties already proved for the abstract formalization.
For this purpose, we use the methodology of refinements [2, 12]. The tableaux
algorithm is based on the application of a set of transformation rules and it is
generic in the sense that we leave some strategies of application of these rules
unspecified. The correctness of this algorithm has been proved, assuming some
generic hypotheses about the functions that implement the strategies of rule
application.

3. Concrete tableaux (in the figure, ellipses). Finally, we develop concrete exe-
cutable tableaux algorithms for the logic ALC in PVS, which are considered as
instances of the generic tableaux algorithm. In order to do this, it its sufficient
to instantiate the rule application strategies by concrete heuristic functions. We
emphasize that in order to prove the correctness of these reasoners, we only have
to provide instances with the assumed hypotheses, for each concrete heuristic
function.

During the development of this work, two issues emerged, each one important
in itself. The first one was addressed when we tackled the termination proof. It is
known that the multiset ordering well-foundedness is an useful result needed for
many termination proofs, as was proved by Dershowitz and Manna in [11]. Thus,
we have extended the multiset library of PVS to include the well-foundedness of the
multiset order. We use this property and a measure function, as it is described in [21],
to prove the termination of the satisfiability algorithm developed for the logic ALC.
The second issue is the use of a methodology of refinements, motivated by the choice
to move from an abstract formalization to specific reasoners, preserving the main
properties.

The paper is structured as follows: Section 2 is devoted to presenting an overview
of the PVS system. Section 3 shows a PVS formalization of an abstract tableau-based
satisfiability checking of ALC -concepts, with a description of proofs of termination,
soundness and completeness. In Section 4, we present a sketch of the type refinement
and operator refinement techniques developed in PVS. Section 5 is devoted to de-
scribing the construction of a generic algorithm corresponding to the specification of
the ALC abstract formalization, presented in Section 3. In Section 5, a particular rea-
soner is constructed by choosing an application strategy of transformation rules and
by instantiating the non-interpreted types used in the former specification. Finally,
in the last section we draw some conclusions and suggest some lines of future work.



This paper is an extended and revised version of the work previously reported in
[3, 15], presented in a unified way. Compared to these papers, the way in which we
introduce the rule application strategy is extended, not only permitting us to define
the next completion rule to be applied, but also the order in which to explore the
disjunctive branches.

The entire formalization consists of a large collection of PVS definitions and
theorems. We encourage the interested reader to consult all the PVS theories that
have been developed, available at http://www.glc.us.es/theories/alc.

2 Overview of PVS

In this section, we present a brief description of the PVS language and prover,
introducing some of the notions used in this paper.

The Prototype Verif ication System PVS is a general-purpose environment for
developing specifications and proofs. The PVS specification language is based on a
classical typed higher-order logic with predefined types including booleans, integers,
reals,. . . . New types can be obtained by means of the function type constructor [D
-> R], the product type constructor [A, B] or record types [#...#].

The type system is also augmented with subtypes, dependent types and abstract
data types, among others. In particular, a predicate subtype {x:T | p(x)} consists
of all the elements of type T verifying the predicate p. If x is already declared to be
a variable of type T , this subtype is also denoted as (p(x)). Predicate subtypes are
used to constrain domains and ranges of functions in a specification and, therefore to
define partial functions.

In general, type-checking with predicate subtypes is undecidable. Therefore, the
type-checker generates proof obligations, called type correctness conditions (TCCs).
Those TCCs are either discharged by specialized proof strategies or have to be
proved by the user before the theory can be considered type checked. In particular, to
define a recursive function, it must be ensured that the function terminates. For this
purpose, the user has to provide a measure function in the definition of a recursive
function. This generates a TCC stating that the measure function, applied to the
arguments decreases in every recursive call with respect to a well-founded ordering
(i.e. an ordering with no infinitely descending chain).

PVS specifications are packaged as theories that can be parametrized with respect
to types and constants. The definitions and theorems of a theory can then be used by
another theory by importing them. A built-in prelude and loadable libraries provide
standard specifications and proved facts for a large number of theories.

In the following sections, we will explain some more features of PVS, as we
describe the formalization. For complete information on PVS we refer the reader
to [22] and to the documentation available at http://www.pvs.csl.sri.com.

3 Abstract Formalization of Tableau-Based Satisfiability Checking
of ALC -Concepts

In this section we present an abstract formalization in PVS of satisfiability checking
of ALC -concepts, into which different tableau-based algorithms may fit. These

http://www.glc.us.es/theories/alc
http://www.pvs.csl.sri.com


algorithms are usually defined by a set of transformation rules that are applied to
sets of assertional axioms, until some “simple form” is reached. Since one of our
goals in the development of this abstract formalization is to achieve a high degree
of generality, we have specified the transformations in a declarative way. Thus, we
do not specify how a rule is applied, but rather the relation between the sets of
assertional axioms before and after the application of a rule. This relation holds
independently of any concrete and evaluable subsequent rule specifications. Another
goal of our development is to obtain PVS proofs that closely resemble the proofs
found in the literature, in such a way that the complexity of a PVS proof stems from
the proof itself and not from the additional complexity introduced by the use of some
specific data structure. Since sets allow more abstract reasoning than lists, we have
mainly used the type of finite sets. Thus, the proof development is done over sets and
it is not determined by the datatype used to represent finite sets.

We now describe the basic components of the logic ALC , and how we have
formalized satisfiability checking for this logic. We present the logic ALC along with
its formalization in PVS, as well as the proofs of its termination, soundness and
completeness.

3.1 Syntax and Semantics of the ALC Logic

Let NC be a non-empty set of concept names and NR be a set of role names. The set
of ALC -concepts is built inductively from these names as described by the following
grammar (where A ∈ NC and R ∈ NR):

C ::= A | ¬C | C1 � C2 | C1 � C2 | ∀R.C | ∃R.C

For example, if Animal, Mammal and Female are concept names, then the
expression ¬Mammal � (Mammal � Female) represents those individuals that are
non-mammals or female mammals. If haveBaby is a role name then Animal �
∀haveBaby.Mammal denotes those animals all of whose babies are mammals.

The set of ALC -concepts can be represented in PVS as a recursive datatype, using
the mechanism for defining abstract datatypes [23], and specifying the constructors,
the accessors and the recognizers:

alc_concept[NC: TYPE+, NR: TYPE]: DATATYPE
BEGIN
alc_a(name: NC) : alc_atomic?
alc_not(conc: alc_concept) : alc_not?
alc_and(conc1, conc2: alc_concept) : alc_and?
alc_or(conc1, conc2: alc_concept) : alc_or?
alc_all(role: NR, conc: alc_concept) : alc_all?
alc_some(role: NR, conc: alc_concept) : alc_some?

END alc_concept

When a datatype is typechecked in PVS, a new theory is created providing
axioms and induction principles for this datatype. In particular, this theory contains
the built-in relation subterm (specifying the notion of subconcept) and the well-
founded relation <<, that will be useful to make recursive definitions on concepts.

Description Logics systems organize knowledge in two categories: terminolog-
ical knowledge, which establishes relationships between concepts, and assertional



knowledge, which establishes the relationship between individuals, roles and con-
cepts. A knowledge base consists of a finite set of terminological axioms (called
TBox) and a finite set of assertional axioms (called ABox).

Terminological axioms have the forms C � D, C ≡ D, where C and D are
concepts. Axioms of the first kind are called inclusions, while axioms of the second
kind are called equations. In PVS, we specify terminological axioms and TBoxes as
follows:

alc_gtax: DATATYPE
BEGIN

gci(antecedent, consequent: alc_concept) : gci?
concept_eq(antecedent, consequent: alc_concept) : concept_eq?

END alc_gtax

TBox: TYPE = finite_set[alc_gtax]

Let us now introduce assertional knowledge. Let NI be a set of individual names.
Given individual names x, y ∈ NI, a concept C and a role name R, the expressions
x:C and (x, y): R are called assertional axioms. The first kind of assertional axiom is
intended to represent that x is in C (or that x is an instance of C); and the second kind
is intended to represent that x and y are related by R. In PVS:

assertional_ax: DATATYPE
BEGIN

instanceof(left:NI, right:alc_concept) : instanceof?
related(left:NI, role:NR, right:NI) : related?

END assertional_ax

ABox: TYPE = finite_set[assertional_ax]

The semantics of Description Logics is defined in terms of interpretations. An
ALC -interpretation I is a pair I = (�I, ·I), where �I is a non-empty set called
the domain, and ·I is an interpretation function that maps every concept name A
to a subset AI of �I , every role name R to a binary relation RI over �I and
every individual x to an element of �I . We represent in PVS an interpretation
I as a structure that contains the domain of I and the functions that define the
interpretation of concept names, role names, and the individuals. Specifically, we
use a record type of PVS (record types have the form [#a1 : t1, ..., an : tn#], where the
ai are the accessors and the ti are their types).

interpretation: NONEMPTY_TYPE =
[# int_domain: (nonempty?[U]),

int_names_concept: [NC -> (powerset(int_domain))],
int_names_roles: [NR -> PRED[[(int_domain),(int_domain)]]],
int_names_ind: [NI -> (int_domain)] #]

Note that we consider a non-empty type U and we require the domain
of an interpretation to be a non empty set of elements in U. In general,
PRED[T] represents the type of predicates defined on T, so in this case
PRED[[(int_domain),(int_domain)]] represents the type of binary relations on
(int_domain). Note also that some of the type components can depend on previous
components: this is possible in PVS due to its ability to deal with dependent types.



The interpretation function is extended to non-atomic concepts as follows

(¬D)I = �I \ DI

(C1 � C2)
I = CI

1 ∩ CI
2

(C1 � C2)
I = CI

1 ∪ CI
2

(∀R.D)I = {a ∈ �I : (∀b ∈ �I)[(a, b) ∈ RI → b ∈ DI ]}
(∃R.D)I = {a ∈ �I : (∃b ∈ �I)[(a, b) ∈ RI ∧ b ∈ DI]}

We have specified CI in PVS, as usual by recursion on C, using a well-founded
relation <<. This PVS specification is close to the definition of interpretation above,
due mainly to the fact that we have chosen sets for our abstract specifications.

int_concept(C, I): RECURSIVE set[U] =
CASES C OF

alc_a(B): int_names_concept(I)(B),
alc_not(D): difference(int_domain(I), int_concept(D, I)),
alc_and(C1, C2): intersection(int_concept(C1, I), int_concept(C2, I)),
alc_or(C1, C2): union(int_concept(C1, I), int_concept(C2, I)),
alc_all(R, D): {a:(int_domain(I)) |

FORALL (b:(int_domain(I))):
int_names_roles(I)(R)(a, b) IMPLIES
int_concept(D, I)(b)},

alc_some(R, D): {a:(int_domain(I)) |
EXISTS (b:(int_domain(I))):

int_names_roles(I)(R)(a, b) AND
int_concept(D, I)(b)}

ENDCASES
MEASURE C BY <<

Note that int_names_concept(I) is the function that assigns to every concept
name the corresponding subset of the domain of I, according to the interpretation I.
Similarly for int_names_roles(I) and role names.

Regarding the terminological knowledge, we say that an interpretation I satisf ies
C � D if CI ⊆ DI , and it satisf ies C ≡ D if CI = DI . We say that I satisf ies a TBox
T (or it is a model of T ) if it satisfies every axiom of T . As for the assertional axioms,
I satisf ies x:C if xI ∈ CI and it satisfies (x, y): R if (xI, yI) ∈ RI . Analogously, an
interpretation satisf ies the ABox A (or is a model of A) if it satisfies every axiom in
A. In that case, we say that A is called satisf iable.

The previous notions naturally bring up some standard inference problems for
Description Logics systems. For example, interesting problems include subsumption
checking or satisfiability checking: given a TBox T and two concepts C and D, we
say that C is subsumed by D with respect to T (denoted as C �T D), if for every
model I of T , CI ⊆ DI ; we say that C is satisf iable with respect to T if there exists
a model I of T such that CI is nonempty (in that case, we also say that I is a model
of C with respect to T ). If T is the empty box, we simply say that C is satisf iable.

Several results regarding how some inference problems can be reduced to other
ones can be proved [5, 30], and we have done it in PVS. For example, we have the
following results:

– Reducing unsatisfiability to subsumption: a concept C is unsatisfiable with
respect to a TBox T iff C �T ⊥ (where ⊥ is the bottom concept).



– Reducing subsumption to unsatisfiability: C �T D iff C � ¬D is unsatisfiable
with respect to TBox T .

Normally, reasoning tasks are reduced to checking satisfiability with respect to a
TBox. Moreover, it can be proved that, under certain conditions, this can be reduced
to an equivalent satisfiability problem where the TBox is empty [5, 30]. Thus, it is
possible to reduce some reasoning tasks to check satisfiability of a concept with
respect to the empty TBox. This is our PVS specification of the notion of concept
satisfiability:

is_model_concept(I,C): bool = nonempty?(int_concept(C,I))
concept_satisfiable?(C): bool = EXISTS I: is_model_concept(I,C)

3.2 Deciding Concept Satisfiability for ALC

A tableau algorithm for ALC attempts to prove the satisfiability of a concept C by
attempting to explicitly construct a model of C. This is done considering an individual
name x0 and manipulating the initial ABox {x0:C}, applying a set of completion rules.
In this process, we only consider concepts in negation normal form (NNF), a form
in which negations appear only in front of concept names. This does not imply a
restriction, since it is easy to specify a PVS function computing for eachALC -concept
an equivalent one (i.e., with the same models) in NNF.

An ABox A contains a clash if, for some individual name x ∈ NI and concept’s
names A ∈ NC, {x: A, x:¬A} ⊆ A. Otherwise, A is called clash-free. To test the
satisfiability of an ALC -concept C in NNF, the main idea is to start from the initial
ABox {x0:C} and iteratively apply the following completion rules:

→�: if x:C � D ∈ A and {x:C, x:D} �⊆ A
then A →� A ∪ {x:C, x:D}

→�: if x:C � D ∈ A and {x:C, x:D} ∩A = ∅
then A →� A ∪ {x:E} for some E ∈ {C, D}

→∃: if x:∃R.D ∈ A and there is no y with {(x, y): R, y:D} ⊆ A
then A →∃ A ∪ {(x, y): R, y:D} for a fresh individual y

→∀: if x:∀R.D ∈ A and there is a y with (x, y): R ∈ A and y:D �∈ A
then A →∀ A ∪ {y:D}

We say that an ABox is complete when none of the above rules can be applied
to it. Rule application stops when reaching a complete ABox or when a clash has
been generated. Note that the rules preserve satisfiability and that it is easy to derive
a model from a complete and clash-free ABox. Thus the algorithm answers “C is
satisfiable” if such an ABox has been generated. Otherwise, if no complete and clash-
free ABox can be obtained by applying the rules, then it answers “C is unsatisfiable”.

These completion rules can be seen as a production system. Nevertheless, we
have not formalized them in a functional way, but by following a more declarative
style, defining the completion rules in PVS as binary relations between ABoxes. This
declarative style allows us to clearly separate logic from control. We can concentrate
first on the properties that only depend on the relation between boxes, and later
deal with specific strategies for rules application. As we will see, this will benefit our
refinement approach.



For example, A1 →� A2 if there exists an assertional axiom x:C � D in A1 such
that {x:C, x:D} �⊆ A1 and A2 = A1 ∪ {x:C, x:D}
and_step(AB1, AB2): bool =
EXISTS Aa: member(Aa,AB1) AND

instanceof?(Aa) AND
alc_and?(right(Aa)) AND
LET x = left(Aa), C = conc1(right(Aa)), D = conc2(right(Aa))
IN (NOT member(instanceof(x, C), AB1) OR

NOT member(instanceof(x, D), AB1)) AND
AB2 = add(instanceof(x, C),

add(instanceof(x, D), AB1))

Once all the rules have been specified in this way, we define the successor
relation on the ABoxes type: A1 → A2 if A1 does not contain a clash (defined by
contains_clash) and A2 is obtained from A1 by the application of a completion
rule:

contains_clash(AB): bool =
EXISTS x, A: member(instanceof(x, alc_a(A)), AB) AND

member(instanceof(x, alc_not(alc_a(A))), AB)

successor(AB2,AB1): bool =
(NOT contains_clash(AB1)) AND
(and_step(AB1,AB2) OR or_step_1(AB1,AB2) OR or_step_2(AB1,AB2)
OR some_step(AB1,AB2) OR all_step(AB1,AB2))

Note that we have specified the non-deterministic rule →� by two binary relations
(or_step_1 and or_step_2), one for each component.

Taking into account that the completion process can be seen as a closure process,
we say the ABox A2 is an expansion of the ABox A1 if A1

∗→ A2, where
∗→ is the

reflexive and transitive closure of →. In PVS, the reflexive and transitive closure of
a relation < can be specified by an inductive definition:

rtr_cl(<)(x,y): INDUCTIVE bool =
x = y OR EXISTS z: rtr_cl(<)(x,z) AND z < y

Due to this inductive definition, PVS automatically creates two induction schemes
(weak and strong [24]) for rtr_cl that will be used in subsequent proofs. Further-
more, if we fix an ABox A1, the relation expansion can be currified

is_expansion(AB1)(AB2): bool = rtr_cl(successor)(AB2, AB1)

To illustrate the completion process, the following example shows the application
of some completion rules to an initial ABox {x0:C} until a complete and clash-free
ABox is reached.

Example 1 Let C be the concept ∀R.D � (∃R.(D � E) � ∃R.(D � F)). Then,

A0 := {x0:∀R.D � (∃R.(D � E) � ∃R.(D � F))
∗→ A1 := A0 ∪ {x0:∀R.D, x0:∃R.(D � E), x0:∃R.(D � F)}
→ A2 := A1 ∪ {(x0, x1): R, x1:D � E}
→ A3 := A2 ∪ {x1:D}
→ A4 := A3 ∪ {(x0, x2): R, x2:D � F}
→ A5 := A4 ∪ {x2:D}



Once the expansion relation is defined, we use it to specify the notion of con-
sistency: an ABox A is consistent if it has a complete and clash-free expansion.
Similarly, a concept C is consistent if the initial ABox {x0:C} is consistent. This is
the corresponding PVS specification:

complete(AB):bool = FORALL AB1: NOT successor(AB1,AB)

complete_clash_free(AB):bool = complete(AB) AND NOT contains_clash(AB)

is_consistent_abox(AB):bool =
EXISTS AB1: is_expansion(AB)(AB1) AND complete_clash_free(AB1)

is_consistent_concept(C): bool =
is_consistent_abox(singleton(instanceof(x_0,C)))

This definition provides the PVS specification for an abstract tableau-based algo-
rithm for deciding the satisfiability of ALC -concepts. The two kinds of non–deter-
minism in it may be pointed out: the way in which the rule →� is applied (“don’t
know” non-determinism); and the choice of which rule to apply in each step and
to which axiom (“don’t care” non-determinism). To prove that such an algorithm
would be correct, we have to establish termination, soundness and completeness of
this specification. In the following subsections we describe the corresponding PVS
proofs.

We end this subsection with a comment on a technical question regarding individ-
ual names. First, note that to specify the existential rule, a fresh individual has to be
available each time. In PVS we declare NI as a non-empty type, but we have to ensure
that this type has all individuals we will need. Thus, we include in the assuming part
of the theory the following assumption:

ax1: ASSUMPTION FORALL (S:finite_set[NI]): EXISTS (x:NI): NOT member(x,S)

When we import this theory, the type-checker will generate the corresponding
type correctness condition. In our development, there are some theories in which the
type NI is an uninterpreted type. Thus, the TCC generated still cannot be proved.
When we will make theories in which we will have evaluable procedures, we will
instantiate NI by nat and the assumption will be proved.

Second, as we stated in the last subsection, we check satisfiability of a concept
C by checking that {x0:C} is satisfiable, where x0 is an individual that we fix in the
parameters of the PVS theory. Again, this individual will only be instantiated in the
theory in which we will specify the evaluable procedure. Then, NI will be instantiated
by nat and x0 by 0.

3.3 Soundness

The soundness of the completion process means proving that if C is consistent (i.e.,
{x0:C} has a complete and clash-free expansion), then C is satisfiable (i.e., C has a
model):

alc_soundness: THEOREM
is_consistent_concept(C) IMPLIES concept_satisfiable?(C)



The PVS proof is based on the following steps:

1. If A is a complete and clash-free expansion of an initial ABox A0, then A is
satisfiable. We have proved this by specifying in PVS the canonical interpretation
IA associated with A. That is, IA is defined as follows:

– The domain of the interpretation consists of the individuals that are in A
together with x0:

�IA = {x ∈ NI | x occurs in A} ∪ {x0}
– Interpretation of concept names:

AIA = {x | x : A ∈ A}
– Interpretation of role names:

RIA = {(x, y) | (x, y): R ∈ A}
– Interpretation of individuals: the individuals that occur in A are interpreted

as themselves, and the other ones are interpreted as x0.

Then, we prove that IA is a model of A.
2. If A1 → A2 and A2 is satisfiable, then A1 is satisfiable as well (see the PVS

lemma abox_satisfiable_successor in the source code).
3. Now, if C is consistent, by definition the ABox {x0:C} is consistent and therefore

it has a complete and clash-free expansion A; by definition of expansion, this
means that {x0:C} ∗→ A. We prove by induction that this implies that {x0:C} is
satisfiable. Steps 1 and 2 imply, respectively, the base case and the inductive case
in this proof by induction.
The following is the PVS proof of this last result, where rtr_cl_weak_
induction is the weak induction scheme generated by the inductive definition
of the reflexive and transitive closure rtr_cl:

1 (""
2 (expand "is_expansion")
3 (skolem 1 ("_" "AB2"))
4 (rewrite "rtr_cl_weak_induction")
5 (hide 2)
6 (skosimp)
7 (ground)
8 (skosimp)
9 (forward-chain "abox_satisfiable_successor"))

3.4 Termination

Given a concept C in negation normal form, we define E(C) as the set of the
expansions of the initial ABox {x0:C}, function expansion_abox_concept in PVS:

expansion_abox_concept(C:(is_nnf?)): TYPE =
(is_expansion(singleton(instanceof(x_0, C))))



In order to verify the termination of an ALC -algorithm that applies the comple-
tion rules above, it suffices to prove that the successor relation, defined on the set
E(C) is well-founded:1

well_founded_successor: THEOREM
well_founded?[expansion_abox_concept(C)](successor)

Our PVS proof of the well-foundedness of the successor relation is based on
the following embedding lemma (see [3] for a PVS proof): if f : (S,<′) → (T,<)

is monotone and (T,<) is well-founded, then (S,<′) is well-founded. Thus, for our
purposes it suffices to show the existence of a type T , a well-founded relation < on
T, and a measure function μC : E(C) → T such that:

(∀A1,A2)[A1 → A2 ⇒ μC(A2) < μC(A1)] (1)

The formalization of this proof in PVS has been carried out in two stages. In
the first one, we have assumed the existence of a measure function μC (called
measure_concept), with T, < and μC above as parameters of the PVS theory, and
property (1) above as an assumption in its body:

th[..., C: (is_nnf?),
T: TYPE+, <: (well_founded?[T]),
measure_concept: [expansion_abox_concept(C) -> T]]: THEORY

measure_concept_decrease_successor: ASSUMPTION
FORALL (AB1,AB2:expansion_abox_concept(C)):
successor(AB2,AB1) IMPLIES measure_concept(AB2) < measure_concept(AB1)

From this and the embedding lemma, we have proved that the successor relation is
well-founded on E(C).

In the second stage, we proved the existence of a measure function, following a
definition given in [21]. The main idea is to take T as the type of the finite multisets of
pairs of natural numbers M(N × N), and the well-founded order < as the extension2

of the lexicographic order on N × N, that we will denote by <mult, to M(N × N).
In order to formalize that construction in PVS, we needed to carry out two main
subtasks:

1. First, we extended the PVS multiset library, proving the following well-known
theorem by Dershowitz and Manna [11]: if < is a transitive and well-founded
relation on T, then <mult is a well-founded relation on M(T) (see [3]). This
means that in order to prove the well-foundedness of the extension to M(N × N)

of the lexicographic order on N × N it suffices to instantiate, in the previous

1In PVS, p[T](R) means that the relation R, restricted to type T, verifies the predicate p. In this case,
the above theorem states that the relation successor, restricted to E(C), verifies well_founded?
2In general, given a set A, we denote M(A) the set of finite multisets (or bags) of elements of A; if
< is an ordering on A, we denote as <mult its multiset extension on M(A), defined as M <mult N iff
there exists X and Y such that ∅ �= X ⊆ M, N = (M \ X) � Y and ∀y ∈ Y∃x ∈ X such that x > y.



theorem, T by N × N and < by the lexicographic ordering on N × N (which we
also proved in PVS to be well-founded).

2. Second, we have defined a function μC mapping each expansion A ∈ E(C) to a
multiset of pairs, such that μC(A2) <mult μC(A1) when A1 → A2. For the sake of
clarity, we devote Section 3.6 to a detailed explanation of this result.

3.5 Completeness

Completeness means to prove that if a concept C is satisfiable, then C is consistent
(i.e. {x0:C} has a complete and clash-free expansion):

alc_completeness: THEOREM
concept_satisfiable?(C) IMPLIES is_consistent_concept(C)

The PVS proof is achieved by means of three main results:

1. If A is a satisfiable ABox, then A is clash-free.

abox_satisfiable_implies_clash_free: LEMMA
abox_satisfiable(AB) IMPLIES NOT contains_clash(AB)

2. If A1 is a satisfiable and not complete ABox, then there exists a satisfiable ABox
A2, which is a successor of A1.

abox_satisfiable_successor_vice: LEMMA
abox_satisfiable(AB1) AND NOT complete(AB1)
IMPLIES EXISTS AB2: successor(AB2, AB1) AND abox_satisfiable(AB2)

This result is proved by showing that for every satisfiable and not complete ABox
A, for every rule r, and for every axiom of A to which r can be applied, there
exists an axiom such that adding that axiom to A, we obtain a satisfiable ABox.

3. If C is satisfiable, then the ABox {x0:C} is satisfiable. So the completeness theo-
rem will be a corollary of the following main lemma: if A ∈ E(C) is satisfiable,
then it has a complete and clash-free expansion.

alc_completeness_L3: LEMMA
FORALL (AB:expansion_abox_concept(C)):

abox_satisfiable(AB) IMPLIES
EXISTS (AB2:expansion_abox_concept(C)):

is_expansion(AB)(AB2) AND complete_clash_free(AB2)

This is proved by well-founded induction on the successor relation. Note that
in the PVS prelude, the following induction scheme is proved for every well-
founded relation < on a type T:

wf_induction: LEMMA
(FORALL (p:pred[T]):

(FORALL (x:T):
(FORALL (y:T): y<x IMPLIES p(y)) IMPLIES p(x))

IMPLIES (FORALL (x:T): p(x)))



That is, in our case it suffices to prove that for every satisfiable A such that all its
successors have a complete and clash-free expansion, then A has also a complete
and clash-free expansion. This can be proved by distinguishing two cases: if A
is complete, then by 1 above A is itself its complete and clash-free expansion.
Otherwise, by 2, there is a satisfiable ABox A′, which is a successor of A; by
induction hypothesis, A′ has a complete and clash-free expansion, which is also
an expansion of A. A fragment of the PVS proof of this main lemma in which
the main interactions with the prover can be observed is:

1 (""
2 (induct "AB" :name
3 "wf_induction[expansion_abox_concept(C), successor]")
4 (("1"
5 (skosimp*)
6 (case "complete(x!1)")
7 (("1"
8 (forward-chain "abox_satisfiable_implies_clash_free")
9 ...

10 ("2"
11 (forward-chain "abox_satisfiable_successor_vice")
12 ...
13 ("2" (rewrite "well_founded_succesor")))

3.6 Measure on ALC-Expansions of a Concept

As we said in Section 3.4, we now explain in detail the definition of the measure
function μC on the set of expansions of C, and the proof of its monotonicity with
respect to the successor relation and <mult (property (1) of Section 3.4). Following
[21], the main idea is that given A ∈ E(C) we construct a multiset of pairs of natural
numbers; each of these pairs is a measure of a possible activation (i.e. a representation
of a possible application of a completion rule to A).

Let us present an intuitive idea of the measure. First, note that the existential
rule is the only rule that introduces new individuals in the ABox. These individuals
constitute a tree, considering that y is a successor of x in the tree when (x, y): R ∈ A
for some role R. Thus, for each individual y in an expansion of an initial ABox, there
exists a path from x0 to y. This allows us to define the notion of level (or depth) of y
in the tree. Furthermore, we define the size of a concept D (denoted as |D|) as the
number of symbols that it needs to be constructed (it is easily defined by recursion on
the structure of a concept). Notice that if y:D ∈ A (A being an expansion of {x0 : C}),
then, level(y) + |D| ≤ |C|. Therefore, we can define the colevel of y as |y|A = |C| −
level(y). Moreover, if z is a successor of y in the ABox A then |z|A = |y|A − 1.

We assign a multiset of pairs of natural numbers to an expansion A ∈ E(C) as
follows:

– for every axiom y:D in A, such that D has the form �,� or ∃ and if the corres-
ponding rule is applicable, we put the pair (|y|A, |D|) into the multiset.

– for every axiom y:∀R.D in A and each z such that (y, z): R ∈ A and A does not
contain z:D, we put the pair (|z|A, |∀R.D|) into the multiset.



Example 2 The following table shows the measures associated with each of the
expansions in Example 1, where C = ∀R.D � (∃R.(D � E) � ∃R.(D � F)):

A measure(A)

A0 := {x0:∀R.D � (∃R.(D � E) � ∃R.(D � F))} {̇(15, 15)}̇
∗→ A1 := A0 ∪ {x0:∀R.D, x0:∃R.(D � E), x0:∃R.(D � F)} {̇(15, 5), (15, 5)}̇
→∃ A2 := A1 ∪ {(x0, x1): R, x1:D � E} {̇(14, 3), (14, 3), (15, 5)}̇
→∀ A3 := A2 ∪ {x1:D} {̇(15, 5)}̇
→∃ A4 := A3 ∪ {(x0, x2): R, x2:D � F} {̇(14, 3), (14, 3)}̇
→�1 A5 := A4 ∪ {x2:D} {̇}̇

Let us explain the first three rule applications in this example. In the initial
ABox A0 := {x0:C}, only the rule →� can be applied to A0. So, since |C| = 15
and level(x0) = 0, the associated pair is (15, 15) and the measure of A0 is the
multiset {̇(15, 15)}̇. When the rule � is applied twice, the following instance axioms
{x0:∀R.D, x0:∃R.(D � E), x0:∃R.(D � F)} are added to the ABox, obtaining A1.

Then, the →� rule is no longer applicable but the →∃ rule is applicable to two
axioms.3 Therefore, the pair (15, 15) is replaced by the pairs (15, 5) and (15, 5) in
the multiset. If we apply the →∃ rule to the axiom x0:∃R.(D � E), obtaining A2, a
new individual x1 is introduced, a successor of x0 in the associated tree. Thus, the
colevel of x1 in A2 is 14. Now, there are three applicable rules, corresponding to the
axioms x0:∃R.(D � F), x1 ∈ D � E and x0:∀R.D (using x1 as witness), and thus the
associated multiset is {̇(14, 3), (14, 3), (15, 5)}̇.

Applying the →� rule, we obtain A3, adding x1 ∈ D. This means that now the →�
rule and even the →∀ rule are no longer applicable and thus the associated multiset
is {̇(15, 5)}̇ (note how sometimes the application of a rule not only disables its own
applicability but also that of other rules).

Let us explain now how we define the measure in PVS. First we define the notions
of level and colevel. In order to do this, we used the PVS library of graphs [8],
in which a graph is specified as a record type with two components: the vertices
and the edges. These are represented by sets with two different elements (type
doubleton[T]):

pregraph:TYPE = [# vert:finite_set[T], edges:finite_set[doubleton[T]] #]

graph:TYPE = {g:pregraph | (FORALL (e:doubleton[T]): edges(g)(e) IMPLIES
(FORALL (x:T): e(x) IMPLIES vert(g)(x)))}

3Note that the →∀ rule cannot still be applied to {x0:∀R.D}, since there are no individuals related by
R to x0.



We define the graph associated to an ABox A, G(A), as the graph whose vertices
are the individuals that occur in A, and whose edges are the sets {x, y}, such that
(x, y): R ∈ A for some role R, being x and y different individuals:

graph_assoc_abox(AB: ABox): graph[NI] =
(# vert:= occur_ni(AB), edges:= dbl_assoc_abox(AB) #)

Here occur_ni specifies the set of individuals appearing in an ABox and
dbl_assoc_abox the doubletons of individuals related in it. The notation (# .. #)
in PVS is for defining specific instances of a record type (in this case, the pregraph
type).

From this definition, we prove the well-known result stating that if A ∈ E(C), then
G(A) is a tree with root x0. This fact allows us to define the level of x inA as the length
of the path from x0 to x (minus 1), and its colevel |x|A as the difference between the
size of the concept C and the level of x in A:

level(AB)(x:(occur_ni(AB))): nat = l(path_from_root(AB)(x)) - 1
colevel(AB)(x:(occur_ni(AB))): nat = size(C) - level(AB)(x)

In addition, we prove that the colevel of an individual in A remains invariant after
the application of completion rules:

successor_preserve_colevel: LEMMA
occur_ni(AB1)(y) AND successor(AB2,AB1) IMPLIES
colevel(AB2)(y) = colevel(AB1)(y)

and that if y is a successor of x with respect to R in A (i.e., (x, y): R ∈ A), then |y|A =
|x|A − 1:

successor_related(AB)(y,x):bool = EXISTS R: member(related(x,R,y),AB)

colevel_successor_related: LEMMA
successor_related(AB)(y,x) IMPLIES colevel(AB)(y) = colevel(AB)(x) - 1

Both properties are essential for proving the monotonicity of μC.
As we have already mentioned, the elements of the multiset associated to an

expansion A should measure all rules applicable to A. Note that the applicability
of a rule is completely characterized by the axiom of A to which it is applied, except
in the case of the →∀ rule, in which in addition we have to specify the individual used
as well. Thus, in order to capture the notion of applicability of a rule, we introduce
the type activation (activ), whose elements are structures consisting of an instance
axiom and an individual, called the witness (actually, this individual will only make
sense for →∀ rules). We also specify when an activation is applicable to an ABox A
and we define the agenda of A, agenda(A), as the set of activations applicable to A.

activ: TYPE = [# ax: (instanceof?), witness: NI #]

applicable_activ(Ac,AB): bool =
LET Aa = ax(Ac),y = witness(Ac),x = left(Aa),D = right(Aa) IN
member(Aa,AB) AND
CASES D OF
alc_a(A) : false,
alc_not(D1) : false,
alc_and(C1,C2) : x = y AND (NOT member(instanceof(x,C1),AB) OR

NOT member(instanceof(x,C2),AB)),
alc_or(C1,C2) : x = y AND NOT member(instanceof(x,C1),AB) AND



NOT member(instanceof(x,C2),AB),
alc_all(R,D1) : x /= y AND member(related(x,R,y),AB) AND

NOT member(instanceof(y,D1),AB),
alc_some(R,D1) : x = y AND NOT (EXISTS y:

member(related(x,R,y),AB) AND
member(instanceof(y,D1),AB))

ENDCASES

agenda(AB): finite_set[activ] = {Ac | applicable_activ(Ac, AB)}

The measure of the expansion A, μC(A) (function expansion_measure), is
constructed by recursion on the agenda of A, adding the pair (|y|A, |D|) (defined
by bag_assoc_activ), for each applicable activation [x:D, y].
bag_assoc_activ(Ac, AB): finite_bag[[nat, nat]] =

IF NOT applicable_activ(Ac, AB) THEN emptybag
ELSE LET Aa = ax(Ac), y = witness(Ac), D = right(Aa) IN

singleton_bag((colevel(AB)(y), size(D)))
ENDIF

expansion_measure_aux(AB,(AB1: finite_set[activ])):
RECURSIVE finite_bag[[nat, nat]] =

IF empty?(AB1) THEN emptybag
ELSE plus(bag_assoc_activ(choose(AB1), AB),

expansion_measure_aux(AB, rest(AB1)))
ENDIF

MEASURE card(AB1)

expansion_measure(AB): finite_bag[[nat, nat]] =
expansion_measure_aux(AB, agenda(AB))

Example 3 We illustrate the evolution of agendas (and their associated measures) in
Example 1.

A agenda(A) measure(A)

A0 {[x0:∀R.D � (∃R.(D � E) � ∃R.(D � F)), x0]} {̇(15, 15)}̇
A1 {[x0:∃R.(D � E), x0], [x0:∃R.(D � F), x0]} {̇(15, 5), (15, 5)}̇
A2 {[x0:∃R.(D � F), x0], [x0:∀R.D, x1], [x1:D � E, x1]} {̇(14, 3), (14, 3), (15, 5)}̇
A3 {[x0:∃R.(D � F), x0]} {̇(15, 5)}̇
A4 {[x0:∀R.D, x2], [x2:D � F, x2]} {̇(14, 3), (14, 3)}̇
A5 {} {̇}̇

Finally, we prove the theorem that states the monotonicity of μC:

Theorem 1 Let A1,A2 ∈ E(C). If A1 → A2 then μC(A2) <mult μC(A1)

expansion_measure_decrease_successor: THEOREM
successor(AB2, AB1) IMPLIES
less_mult(expansion_measure(AB2), expansion_measure(AB1))

where less_mult defines <mult, the extension to M(N × N) of the lexicographic
order on N × N.



The formalization of the proof of this theorem in PVS follows the hand proof
in [21].4 First, note that if we have A1 → A2, then there exists an activation
Ac1 = [x:D, y] ∈ agenda(A1), corresponding to the applied rule. In addition, Ac1 �∈
agenda(A2) and, for each activation Ac2 introduced in agenda(A2) as a result of the
rule application, its associated pair is smaller (lexicographically) than (|y|A, |D|). In
fact, one of the following cases may occur:

1. Ac2 = [x:E, z], where z is successor of y (with respect to a relation) in A2. Then,
|z|A2 < |y|A2 = |y|A1 . So, (|z|A2 , |E|) < (|y|A1 , |D|).

2. Ac2 = [x:E, y], being E a subconcept of D. In this case, |y|A2 = |y|A1 and |E| <

|D|. So, (|y|A2 , |E|) < (|y|A1 , |D|).
Second, as we saw in Example 2, the application of a rule may disable some

activations of the agenda and, therefore it may eliminate its associated pairs
from the multiset. Taking this into account and denoting as μaux the function
expansion_measure_aux above, we define in PVS the multiset K1 = μaux(A1,

agenda(A1) \ agenda(A2)), whose elements are the pairs associated to disabled ac-
tivations. Also, the multiset K2 = μaux(A2, agenda(A2) \ agenda(A1)) contains the
pairs associated to new enabled activations. Finally, M0 = μaux(A1, agenda(A1) ∩
agenda(A2)) is the multiset whose elements are the pairs associated with the activa-
tions that remain enabled after the application of the rule. We proved the following
properties:

1. K1 �= ∅
2. μC(A2) = M0 � K2

3. μC(A1) = M0 � K1

4. (∀a ∈ K2)(∃b ∈ K1)[a < b ]
Thus, from the definition of the multiset extension, it is clear that μC(A2) <mult

μC(A1).
Once the measure function has been constructed, the parameters T and <,

and the signature measure-concept(C) of Section 3.4 are instantiated by the
appropriate mechanism of PVS, substituting T by M(N × N), < by <mult and
measure_concept(C) by the expansion_measure function. Note that the function
expansion_measure is also parametrized by the concept C but, in this case, this
parameter is not visible since it is one of the parameters of the PVS theory.

4 Methodology of Refinements

Our purpose is to be able to define and prove properties of concrete tableau-
based satisfiability checking algorithms, using the properties proved for the abstract
formalization shown in the previous sections. The main idea is that we will ref ine
it, specifying the data structures used and the search control, while preserving the
essential properties already proved.

In this section we present a sketch of the type and operator refinement techniques
we developed in PVS in order to relate different specifications of the same notion.

4Although it has some slight differences, because we had to fix some details.



The development is general and it could be applied in any context. In our case,
we have applied it to prove the properties of concrete tableau-based satisfiability
checking of ALC -concepts, as we will see in the next section.

Based on the idea of refinements of data types [12, 17] we have built in PVS a
theory establishing the general notions of refinements and their main properties (see
[2]). Given types T and R, we say that a data ref inement of the type T by the type R
is a surjective application f : R → T

f: VAR [R->T]
is_ refinement?(f): bool = FORALL (t:T): EXISTS (r:R): f(r) = t

Intuitively, this function provides the relationship between abstract values (T) and
their representations (R). It is clear that there is at least one representation, not
necessarily unique, for any abstract value. Also, we can see that a type can be refined
stepwise by sequential composition of refinements. In that sense, we prove in PVS
that, if f : R → T is a data refinement of T by R and g : Q → R is a data refinement
of R by Q, then f ◦ g : Q → T is a data refinement of T by Q.

To illustrate this idea, we show how we formalized a refinement of finite sets by
lists. Let us consider a data refinement f : R → T . From this, we specify the data
refinement of the type “finite sets with elements in T” by the type “lists with elements
in R” (induced by f ), defining the function c(f):list[R] → finite_set[T] as
follows:

c(f)(l: list[R]): RECURSIVE finite_set[T] =
CASES l OF

null: emptyset,
cons(x, l1): add(f(x), c(f)(l1))

ENDCASES
MEASURE length(l)

In a similar way as data types are refined, we can also refine operators or functions.
Let us consider an operator op : T1 → T2 and let us suppose that we have the data
refinements given by the functions f1 : R1 → T1 and f2 : R2 → T2. We say that the
operator opref : R1 → R2 is a ref inement of op if the following diagram commutes:

T1
op−→ T2

↑ ↑
f1| f2|| |
R1

opref−→ R2

op: VAR [T1 -> T2] op_ref: VAR [R1 -> R2]
is_refinement_op?(op,op_ref): bool = FORALL r1: op(f1(r1))=f2(op_ref(r1))

For instance, to build refinements corresponding to the operations over finite sets,
we use operations over lists “simulating” the behaviour of analogous operations on
finite sets. In particular, the built-in list operations null?, cons and append are
refinements of empty?, add and union, respectively. As for the membership relation,
it can be observed that if the refinement used for the inner types is injective, then the
predicate member for lists is also a refinement of the predicate member for finite sets.

In general, for an operator opref to be a refinement, we require it to have the
same behaviour as op. The most important feature of operator refinements is that
they make it possible to transfer the properties of one operator op to its refined



version opref. For example, an important property in our formalization, that can be
transferred through refinements, is the well-foundedness of a relation:

refinement_preserve_wf: LEMMA
is_refinement_op?(rel,rel_ref) AND well_founded?(rel) IMPLIES
well_founded?(rel_ref)

In general, let us suppose that we have established a correctness theorem for op,
in terms of pre and post conditions. That is, a theorem like

(∀y ∈ T1)[φ(y) ⇒ ρ(y, op(y))]
where φ is the precondition and ρ is the postcondition. Then, if opref, φref and ρref are
refinements of op, φ and ρ, respectively, we have proved that

(∀x ∈ R1)[φref(x) ⇒ ρref(x, opref(x))]
which is just the correctness theorem corresponding to opref. Therefore, once we have
proved a correctness theorem for op, the correctness of opref is already proved. Note
that it has been proved in a general way without any specific assumptions about φ, ρ

and op. Thus, we can use this theory to transfer properties from op to opref.
Finally, regarding the construction of a refinement on a specification, we take into

account that a specification of an algorithm is normally built combining some other
specifications of operators. Hence, to construct a refinement of a specification of an
algorithm it suffices to construct a refinement of each operator used in it, and to
replace it. In that sense, we prove that if op1ref and op2ref are refinements of op1 and
op2, respectively, then op2ref ◦ op1ref is also a refinement of op2 ◦ op1.

T1
op1−→ T2

op2−→ T3

↑ ↑ ↑
f1| f2| f3|| | |
R1

op1ref−→ R2
op2ref−→ R3

5 Generic Tableau Algorithms for Checking Satisfiability of ALC -Concepts

This section is devoted to presenting the construction of a generic tableau-based
ALC satisfiability checking algorithm corresponding to the specification of the
ALC abstract formalization that we have described in Section 3. Our purpose is to
do it in such a way that its termination, soundness and completeness can be deduced
from the corresponding properties of the abstract formalization. In order to do this,
we will use the methodology of refinements explained in Section 4.

The algorithm presented in this section is generic in the sense that we will leave
unspecified the strategy used to select the rule to apply and the order in which
the two branches corresponding to the →� rule are explored. The main idea is
that by defining concrete strategies, we will obtain executable and formally verified
algorithms for ALC satisfiability, as we will describe in the next section. In order to
obtain executable code, the ground evaluator is able to extract Common Lisp code
from functional PVS specifications, that can be evaluated on ground expressions.
Moreover, we will use the PVSio package [20], that extends the PVS ground
evaluator with a predefined library of imperative programming language features.



Note that the specification of the ALC abstract formalization cannot be directly
transformed into an algorithm by composition of refined operators for each of the
operators composing this specification, as sketched at the end of the previous section.
The main reason is that, in the abstract formalization, the search process that the
algorithm has to carry out in the space E(C) is not specified. To define an algorithm
we have to concretize how to carry out the search. Then, we have to consider the
following:

1. It is necessary to use data types whose elements can be evaluated by the PVS
evaluator. To do this, we have to refine, among others, the type used to represent
ABoxes (finite sets) by an executable type (in this case, lists).

2. It is necessary to define specifications of the predicates used for recognizing if an
ABox is complete and clash-free, which have to be executable.

3. Since we will construct a recursive algorithm, it is necessary to have a well-
founded relation over E(C), providing a measure function for proving its
termination.

4. Finally, due to the non-determinism of the abstract formalization, it is necessary
to introduce both a function that selects the completion rule applied in each step,
and another function determining the order in which the branches produced by
the union rule are explored. We will also need a function that applies completion
rules in a functional way.

In the following subsections, we describe the most significant features of each one
of these issues.

5.1 Refinements of Data Types

First, let us note that in the PVS specification of the abstract formalization we have
used the same name (for example, left) to denote different accessor functions of the
data types used to represent concepts and assertional axioms. However, although
the overloading of names does not present any problem for reasoning about the
specifications, this fact is problematic for the PVS evaluator, since they cannot be
distinguished by their type. That is, PVSio does not waive PVS type checking.

This problem has been easily solved by specifying new types that refine the
previous ones, with different names for each function. For example, the type used
to refine the datatype assertional_ax is the following

assertional_ax_ref: DATATYPE
BEGIN
r_instanceof(left_i: nat, right_i: r_alc_concept): r_instanceof?
r_related(left_r: nat, role: NR, right_r: nat) : r_related?

END assertional_ax_ref

We refine the types ABox and is_expansion as we show in the following table:

Notion Type Refined type Refinement function
ALC -concept alc_concept r_alc_concept alc_f
Assertional ax. assertional_ax assertional_ax_ref alc_f_aax
ABox ABox LABox c(alc_f_aax)
Expansion is_expansion is_expansion_l c(alc_f_aax)

where LABox: TYPE = list[assertional_ax_ref]



For our purposes, it is not necessary to refine the specification used to represent
the notion of interpretation, since it is not used directly by the decision procedure.
In the same way, it is not necessary for the notions of satisfiability to be executable;
they only have to be equivalent to those defined in the abstract formalization. Thus,
in this case we define the semantic notions for the refined types through the types
refinements:

r_concept_satisfiable?(C): bool = concept_satisfiable?(alc_f(C))
r_abox_satisfiable(L: LABox): bool = abox_satisfiable(c(alc_f_aax)(L))

5.2 Executable Refined Predicates

In order to define an executable refinement of the predicate contains_clash in the
ALC abstract formalization (see Section 3.2), note that the range of the existential
quantifier is the ABox A itself. Therefore, we can construct a refinement of this
predicate using the executable PVS predicate some, that checks if some element of a
list verifies a property:

be_clash(Aa,L): bool =
r_instanceof?(Aa) AND r_alc_atomic?(right_i(Aa)) AND member(Aa,L)
AND member(r_instanceof(left_i(Aa), r_alc_not(right_i(Aa))), L)

contains_clash_l(L): bool = some(lambda(Aa): be_clash(Aa,L))(L)

The predicate complete defined in the abstract formalization (Section 3.2) is
quantified over all the ABoxes. This means that it cannot be executable, even when
the successor relation was executable. Let us see how we have constructed a
refinement of this predicate. First, we define predicates by recognizing when an
assertional axiom is expandable in an ABox, according to each of the completion
rules. For example, x:C � D ∈ L is expandable in L if x:C �∈ L and x:D �∈ L.

is_or_expandable(Aa,L): bool =
member(Aa,L) AND r_instanceof?(Aa) AND r_alc_or?(right_i(Aa)) AND
NOT member(r_instanceof(left_i(Aa), conc1_or(right_i(Aa))), L) AND
NOT member(r_instanceof(left_i(Aa), conc2_or(right_i(Aa))), L)

This makes possible to specify the notions of expandable axiom with respect to an
ABox L, and the specification of the predicate complete_l:

is_expandable(Aa,L): bool =
is_and_expandable(Aa,L) OR is_or_expandable(Aa,L) OR
is_some_expandable(Aa,L) OR is_all_expandable(Aa,L)

complete_l(L): bool = NOT some(lambda(Aa): is_expandable(Aa,L))(L)

The predicate complete_l it is not, strictly speaking, a refinement of the pre-
dicate complete; nevertheless it can be seen as a refinement in conjunction with the
negation of contains_clash_l:

complete_iff_complete_l: THEOREM
complete_l(L) AND NOT contains_clash_l(L) IFF
complete(c(alc_f_aax)(L)) AND NOT contains_clash(c(alc_f_aax)(L))



5.3 Measure Function

Note that the role of the successor relation is the same, both in the specification of
the abstract formalization and in the algorithm: it is a well-founded relation necessary
to ensure the termination of both specifications. Thus, it is not essential for the
refined specification of the successor relation to be executable. Then, we could
consider a definition of the successor relation in the same way as we have defined
the notions of satisfiability. That is, it could be:

successor_l(L2,L1): bool = successor(c(alc_f_aax)(L2),c(alc_f_aax)(L1))

With this, it would be straightforward that successor_l is a refinement of
successor and then, we would prove that successor_l is a well-founded relation,
by applying properties of refinements.

However, due to its necessary relationship with the predicate complete_l, we
decided to refine each one of the relations representing a completion rule. For
example, L2 is a �1-expansion of L1 if there exists an assertion x:C1 � C2 expandable
in L1, and L2 is obtained adding x:C1 to L1

r_or_step_1(L1,L2): bool =
EXISTS Aa: is_or_expandable(Aa,L1) AND
FORALL Aa1: member(Aa1,L2) IFF

(member(Aa1,L1) OR
Aa1=r_instanceof(left_i(Aa),conc1_or(right_i(Aa))))

From these definitions we define the relation successor_l and we prove that it
is a refinement of successor:

successor_l(L2,L1): bool =
not_contains_clash_l(L1) AND
(r_and_step(L1,L2) OR r_or_step_1(L1,L2) OR r_or_step_2(L1,L2)
OR r_some_step(L1,L2) OR r_all_step(L1,L2))

successor_l_is_refinement: THEOREM
is_refinement_op?(successor,successor_l)

The hardest part of the ALC abstract formalization was proving that the
successor relation is a well-founded relation on the set E(C) of the expansions
of a concept C in NNF. Now, this property can be transferred to the relation
successor_l because of the well-foundedness of a relation is preserved through
refinements:

successor_l_is_wf: THEOREM
well_founded?[expansion_abox_concept_l(C)](successor_l)

This theorem is straightforwardly proved in PVS, as shown by the following proof:

1 (skosimp)
2 (lemma "successor_wf")
3 (typepred "C!1")
4 (inst - "alc_f(C!1)")
5 (("1"
6 (lemma
7 "refinement_preserve_wf[expansion_abox_concept(alc_f(C!1)),
8 expansion_abox_concept_l(C!1),
9 c(alc_f_aax)]")



10 (("1"
11 (use "successor_l_is_refinement")
12 ....

5.4 Application of Completion Rules

In order to construct the satisfiability algorithm we first specify some functions that,
given an instance axiom Aa and an ABox L, compute the ABox corresponding to the
application to L of some rule associated to Aa. For example, the result of applying
the rule →�1 to Aa and L is the ABox obtained by adding x:C1 to L, if Aa = x:
C1 � C2 is or-expandable in L; otherwise, we return simply L:

or_step_1_ax(Aa,L): LABox =
IF is_or_expandable(Aa,L)
THEN cons (r_instanceof(left_i(Aa), conc1_or(right_i(Aa))), L)
ELSE L ENDIF

Secondly, take into account that the applicability of a rule does not only depend
on an instance axiom of an ABox L. In order to capture the notion of applicability
of a rule, the type activation (activ) was introduced in the abstract formalization.
Recall from Section 3.6 that an activation is a structure consisting of an instance
axiom Aa and a witness x, which made it applicable. Now, we refine in a natural way
the type activ, and we specify a function computing a list of the ABoxes obtained
by application to L of the rules corresponding to an activation Ac5

apply_activ(Ac: r_activ, L:LABox): list[LABox] =
IF NOT r_applicable_activ(Ac,L)
THEN null
ELSE LET Aa = r_ax(Ac), D = right_i(Aa) IN

CASES D OF
r_alc_and(C1,C2): (: and_step_ax(Aa,L) :),
r_alc_or(C1,C2) : (: or_step_1_ax(Aa,L), or_step_2_ax(Aa,L) :),
r_alc_all(R,D1) : (: all_step_ax(Aa,L) :),
r_alc_some(R,D1): (: some_step_ax(Aa,L) :)

ENDCASES
ENDIF

For example, let L be (: x0:∀R.D, (x0, x1): R, x0:D � E :). Then,
apply_activ([x0:∀R.D, x0], L) = (: :)
apply_activ([x0:∀R.D, x1], L) = (: (: x1:D, x0:∀R.D, (x0, x1): R, x0:D � E :) :)
apply_activ([x0:D � E, x0], L) = (: (: x0:D, x0:∀R.D, (x0, x1): R, x0:D � E :),

(: x0:E, x0:∀R.D, (x0, x1): R, x0:D � E :) :)
The final step to complete the specification of the generic algorithm is to introduce

the strategies to decide which rule to apply in every step, and the order in which
the two alternatives corresponding to the →� rule will be explored. As we have
previously mentioned, in this subsection these strategies will be introduced in a
generic way, only assuming certain properties about them; in the next section, they
will be instantiated by concrete strategies, obtaining executable algorithms.

5The PVS notation (: ... :) is an abbreviation for lists.



We have introduced those generic functions in the parameters of the theory just
like also the initial concept C0. We also import the theory of the ALC abstract
formalization, in which the type of individuals NI has been instantiated by nat and
x0 has been instantiated by 0.

IMPORTING alc_completeness[NC,NR,nat,nat,0]

As for the strategy to select the completion rule to apply in each step (dealing with
the don’t-care nondeterminism), we declare the following function f , whose role is
to select the rule to apply in each step:

f: [LABox -> list[r_activ[NC,NR]]]

The idea is that f (L) selects an activation applicable to an ABox L. With this
activation the algorithm will carry out the next step of the completion process. Due
to typing reasons, given an ABox L, f (L) provides a list of activations. Thus, if there
is not any activation applicable to L, f (L) is the empty list; otherwise, it returns a
singleton list with the selected activation.

In order to ensure the correctness of the algorithm, the function f has to verify
some properties, which we introduce as PVS assumptions. First, let us observe that
if L is not complete, then there are some rules applicable to L and therefore there
are some applicable activations. In that case, we require f to select at least one of
those activations. Also, we require that f only selects activations applicable to an
expansion L of the initial concept C0:

f_ax_1: ASSUMPTION NOT complete_l(L) IMPLIES cons?(f(L))

f_ax_2: ASSUMPTION
FORALL (Ac:r_activ):member(Ac,f(L)) IMPLIES r_applicable_activ(Ac,L)

As for the order to consider the two alternatives corresponding to the →� rule
(the don’t-know nondeterminism), note that if the order suggested by the function
apply_activ were chosen, the left branch will always be considered first. However,
our intention is to specify a generic algorithm with the possibility to use different
heuristics to decide which branch to explore first. Thus, we declare the function

g: [[r_activ[NC,NR],LABox] -> list[LABox]]

verifying the following property:

g_ax_1: ASSUMPTION
FORALL (Ac:r_activ,L:LABox):permutation?(g(Ac,L),apply_activ(Ac,L))

Finally, the generic algorithm we specify below is a tableau-based algorithm, that
carries out a depth first search on the set of expansions of C, using the function f
to select the rule to apply in every step and the function g to order the disjunction
alternatives. It finishes when it finds a complete and clash-free ABox (from which a
model of the initial input concept can be constructed), or when all its branches are
closed (thus proving the unsatisfiability of the concept).

sat_alc_alg_g_aux_i(L: expansion_abox_concept_l(C_0)): RECURSIVE bool =
IF complete_l(L) AND not_contains_clash_l(L)
THEN TRUE
ELSIF NOT not_contains_clash_l(L)
THEN FALSE
ELSE LET Ac = car(f(L)), S = g(Ac,L) IN



IF null?(cdr (S))
THEN sat_alc_alg_g_aux_i(car(S))
ELSE LET L1 = car(S), L2 = car(cdr(S)) IN

sat_alc_alg_g_aux_i(L1) OR sat_alc_alg_g_aux_i(L2)
ENDIF

ENDIF
MEASURE L BY successor_l

sat_alc_alg_g: bool = sat_alc_alg_g_aux_i((: r_instanceof(0,C_0) :))

Note that the input of the algorithm is not explicit, because it is one of the parameters
of the theory.

The termination of this algorithm is ensured by the well-foundedness of the
successor_l relation. The soundness and completeness are easily proved in PVS
by well-founded induction in the successor_l relation, using the same properties
already proved for the specification of the ALC abstract formalization and the
properties required to f and g.

sat_alc_alg_i_soundness: THEOREM
sat_alc_alg_i IMPLIES r_concept_satisfiable?(C_0)

sat_alc_alg_i_completeness: THEOREM
r_concept_satisfiable?(C_0) IMPLIES sat_alc_alg_i

6 Concrete Tableaux for Checking Satisfiability of ALC -Concepts

A particular tableau algorithm can be obtained by defining a rule selection function
f and a heuristic function g, both verifying the assumptions above. We also have to
instantiate the non-interpreted types used to represent the set of concept names, the
set of role names and the set of individuals.

For instance, an usual application strategy of completion rules in functional
algorithms for deciding satisfiability of ALC -concepts is the following (see [5]):

1. Whenever the →� rule can be applied, apply the →� rule;
2. Else, whenever the →� rule can be applied, apply the →� rule;
3. Otherwise, if a →∃ rule can be applied, apply the →∃ rule and all the →∀ rules

derived from it.

This is defined in PVS by the following function fi:

fi(L: LABox): list[r_activ] =
IF cons?(list_first_r_activ_all(L))
THEN (: car(list_first_r_activ_all(L)) :)

ELSIF cons?(list_first_r_activ_and(L))
THEN (: car(list_first_r_activ_and(L)) :)
ELSIF cons?(list_first_r_activ_or(L))
THEN (: car(list_first_r_activ_or(L)) :)
ELSIF cons?(list_first_r_activ_some(L))
THEN (: car(list_first_r_activ_some(L)) :)
ELSE null[r_activ]

ENDIF



where list_first_r_activ_*(L) is a unitary list with one of the activations corres-
ponding to the →∗-rule applicable to L, if there are such activations; or otherwise the
empty list.

As for the strategy for exploring the alternatives corresponding to a disjunction
C1 � C2, for example we can define the following:

1. If ¬C1 is in the Abox, first try the branch corresponding to C2, and vice-versa.
2. Otherwise, first explore the branch corresponding to the disjunct of lesser size.

The following PVS function gi defines this strategy:

gi(Ac:r_activ,L:LABox): list[LABox] =
IF NOT r_applicable_activ(Ac,L)
THEN null
ELSE LET Aa = r_ax(Ac), x = left_i(Aa), D = right_i(Aa)

IN CASES D OF
r_alc_and(C1,C2): (: and_step_ax(Aa,L) :),
r_alc_or(C1,C2) : IF member(r_instanceof(x,r_alc_not(C1)),L)

THEN (: or_step_2_ax(Aa,L), or_step_1_ax(Aa,L) :)
ELSIF member(r_instanceof(x,r_alc_not(C2)),L)
THEN (: or_step_1_ax(Aa,L), or_step_2_ax(Aa,L) :)
ELSIF size_r (C1) < size_r(C2)
THEN (: or_step_1_ax(Aa,L), or_step_2_ax(Aa,L) :)
ELSE (: or_step_2_ax(Aa,L), or_step_1_ax(Aa,L) :)

ENDIF,
r_alc_all(R,D1) : (: all_step_ax(Aa,L) :),
r_alc_some(R,D1) : (: some_step_ax(Aa,L) :)

ENDCASES
ENDIF

Thus, the concrete decision procedure is

sat_alc_alg_i(C): bool = sat_alc_alg_g[string,string,C,fi,gi]

Note that the parameters of the PVS theory in which the generic tableau is speci-
fied are the type of concept names, the type of role names, the initial concept, the
selection function and the ordering function. In this case, we instantiate with the
parameters string, string, fi, gi and the concept C. It is worth noting the different
positions of C in the previous definition.

Finally, to obtain the correctness of this executable algorithm it suffices to prove
that fi and gi verify the assumptions required in Section 5.4 for f and g, respectively.
These proof obligations are automatically generated by the PVS system when the
functions are instantiated and have to be proved by the user. Once proved, the
theorems stating the correctness of this reasoner are proved:

sat_soundness: THEOREM sat_alc_i(C) IMPLIES r_concept_satisfiable?(C)
sat_completeness: THEOREM r_concept_satisfiable?(C) IMPLIES sat_alc_i(C)

In the source code, we include this concrete tableau algorithm, as well as addi-
tional instantiations of the generic algorithm with different versions for f and g, with
some statistics of the performance obtained by executing these different versions.



7 Conclusions and Future Work

We have presented an abstract formalization for checking satisfiability of ALC -
concepts in PVS, which is based on a set of transformation rules, proving its
termination, soundness and completeness. From this, we have constructed a generic
tableau-based algorithm using the methodology of refinements to transfer its main
properties. Finally, we have obtained some concrete reasoners by instantiation of
non-interpreted types and of the functions coding the strategies for rule applications.

It should be pointed out that the choice of PVS as our verification system has
turned out to be beneficial for our formalization, since PVS allows for definitions
of abstract datatypes, inductive sets and dependent types as well as parametrized
theories of sets, multisets and graphs.

In Fig. 2 we present a graphical representation of the theories used and developed
in our formalization of the ALC logic, along with their dependencies. It is worth
pointing out that we reused some existing libraries of PVS (ovals in the figure). In
particular, we used the PVS library of graphs for the definition of the tree associated
with the completion process, the PVS library of structures for the formalization of
the well-foundedness of multiset relations and PVSio for the evaluation of examples.
As for our formalization, it is structured in the following libraries:

– wf, a characterization of the well-foundedness of an ordering, based on [1]
– bags-wf, for the well-foundedness of multiset relations
– refinement, the library with all the general theory of refinements
– lists-aux and sets-aux extend the theory of lists and sets of PVS with

additional properties
– Finally, the ALC library contains the main body of the formalization.

To give and idea of the proof effort, we give in Fig. 2 the numbers of theorems
proved in each of the libraries we have developed.

It is worth pointing out that the way in which we have approached the task makes
the formal verification of the properties of the reasoners easier: once the correctness
properties of the generic algorithm are proved, everything is reduced to proving the
hypotheses assumed in the generic functions that code the rule application strategies.
In general, we think that this example shows that this approach, where the logic of the
algorithm is clearly separated from concrete control strategies, could benefit other
formalizations where the final goal is the verification of algorithms.

As a byproduct, we have developed a number of PVS formalized theories that
could be used in other formalization work. For example, the multiset ordering, used

Fig. 2 Libraries used and developed



for proving termination of our tableau algorithm, could be used in other non-trivial
termination proofs.

As for related work, formalizations of logical systems and related algorithms have
been carried out in many of the main computer aided reasoning system, most of
them dealing with propositional and first-order logic. For example [7, pp. 56–86] and
[27] in Nqthm, [9] in Nuprl, [14] in HOL, [19] in ACL2, [26] in Isabelle or [10] in
Mizar. More recently special attention has been devoted to the formal verification of
efficient SAT algorithms for propositional logic: [18] in Isabelle, [4] in Coq and [28] in
PVS. To the best of our knowledge, there are no previously reported formalizations
of description logics.

We think that the work presented here is a good starting point for further formal-
izations related to the verification of reasoning algorithms for description logics. We
plan to continue this work by following several lines. First, extending the reasoners
for the ALC logic to other description logics, incrementally bringing us closer to the
description logic SHOIN , which is the description logic corresponding to OWL-
DL. Second, the book [25] introduces Sequent Calculi and Natural Deduction for
some Description Logics (ALC , ALCQ ); since both are similar to a tableau calculus,
we think that the formalization of these logical calculi could be easily carried out
from our ALC abstract framework. Third, note that efficiency has not been our main
concern in this work; so we plan to define more efficient algorithms than the one
presented here. For example, semantic branching, boolean constraint propagation
and more efficient heuristics for the application of rules [16] could also be defined
in a generic way as well, and also as a refinement of the abstract framework
following the same methodology. Finally, regarding proof development, it would be
desirable to design specific strategies for the most common proofs carried out in the
formalization, thus reducing user interaction.
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