

Combi-BP: Automating the Data-Oriented

Optimization in Business Processes.
From declarative to executable models.

Maŕıa Luisa Parody Núñez, 28.817.015-Q

lparody@us.es

Supervised by
Prof. Dr. Maŕıa Teresa Gómez López

Prof. Dr. Rafael Mart́ınez Gasca

Thesis Dissertation submitted to the Department of Computer Languages
and Systems of the University of Seville in partial fulfilment

of the requirements for the degree of Ph.D. in Computer Science.

(Thesis Dissertation)

lparody@us.es

Abstract

One of the main objectives of a business expert is to model the business goals of an
enterprise process. Several languages have been created to describe the necessary activities
to achieve the objective, especially in the business process context. These languages can
be divided into imperative and declarative ones. Declarative languages tend to be used
when the specific model is unknown, being possible to describe what has to be done
instead of how. Otherwise, imperative languages permit to describe how the things have
to be done and then, the imperative models can be executed in any Business Process
Management System (BPMS). The declarative descriptions are more flexible, since they
permit to describe the model in a more relaxed way, which means that various process
executions can follow the same declarative description. However, both paradigms are
focused on the activities order description, but unfortunately, the data perspective is
missed. Furthermore, the optimization of a business goal which depends on the exchanged
data during the execution of the business process has not been included in previous
proposals. There are no solutions that allow the business experts to describe nor execute a
declarative description where the executed model depends on the exchanged data between
the involved activities in each instance.

In this thesis dissertation, an approach to support this data-oriented optimization in
business process is presented. A data-oriented optimization problem is a process whose
main purpose is to obtain the best business product. In order to obtain this business
product, the process must combine several activities by taking into account the existing
data-structure and data-value dependencies. Both kind of dependencies are established
by a set of constraints that relate the data (consumed and provided by the activities)
and the data given by the customer. Therefore, the BPs under the scope of our research
are those which are centred on developing sound data in business processes, analysing
how data-structure and data-value dependencies can affect the correct business process
execution. However, if the data provided at runtime for the activities that conform the
model have not got enough level of quality, then business process will not be successfully
executed.

The base of the proposal is focused on the combination of the advantages of both
paradigms: the flexibility of the declaratives, and the automatic execution in a BPMS of
the imperatives. On the one hand, we want to describe a flexible model using a declarative
description where the exchanged data and an optimization objective are included. In
the other hand, this declarative model must be executed in a generic business process
management system with the aim of support any instance of the process. Therefore,
how the declarative description can be transformed into an imperative business process is

i

ii

developed. The transformation methodology that we propose is based on Model-Driven
Architecture. Firstly, the declarative is transformed into an imperative which takes into
account the data-structure dependencies. The flexibility of the declarative specification
is kept thanks to the use of Constraint Programming. On the other hand, the resulting
imperative model is enriched with new intelligent techniques, also based on Constraint
Programming, in order to solve the data-value dependencies. Finally, a methodology
and an implementation are developed in order to make the business process aware of the
data-quality aspects.

Contents

Contents iii

List of Figures vii

List of Tables ix

I Preface 1

1 Introduction . 3
1.1 Context and Motivation . 3
1.2 Problem Statements . 6
1.3 Contributions . 8
1.4 Thesis Context and Published Results . 11
1.5 Roadmap: Structure of the Thesis . 14

II Foundations 17

2 Foundations . 19
2.1 Business Process Management . 19

2.1.1 Concepts . 19
2.1.2 Business Process Management Life-cycle 20
2.1.3 Business Process Perspectives . 21
2.1.4 Process-Aware Information System 22

2.2 BP Imperative Description . 23
2.2.1 Analysis of Imperative Languages 24
2.2.2 Business Process Model and Notation (BPMN) 27

2.3 BP Declarative Description . 29
2.3.1 Characteristics . 29
2.3.2 Analysis of Declarative languages 32
2.3.3 Comparative . 34

2.4 Constraint Programming Paradigm . 35
2.4.1 Constraint Programming Concepts 35

2.4.1.1 CSP Consistency . 36

iii

iv CONTENTS

2.4.1.2 CSP Search Algorithms 36
2.4.2 Constraint Optimization Problems 37

2.4.2.1 COP Search Algorithms 38
2.4.3 Distributed Constraint Satisfaction Problem 38

2.4.3.1 Algorithms for solving DisCSP 39
2.5 Data Quality Management in Business Process 40

2.5.1 Data Quality Management Concepts 40
2.5.2 High-level and Low-Level DQM Activities 42
2.5.3 Data Quality Dimensions . 43

2.6 Case Study: Trip Planner . 44

III Contribution I: Combi-BP Specification 47

3 Specifying Data-Oriented Optimization in Business Processes 49
3.1 Context and Motivation . 49
3.2 Formalization of Data-Oriented Optimization in BPs 50

3.2.1 Formalization Applied to the Trip Planner 53
3.3 Data-Oriented Optimization Declarative LanguagE (DOODLE) 55

3.3.1 DOODLE Applied to the Trip Planner 55
3.4 BPMN Extension for Data-Oriented Optimization processes 57

3.4.1 Metamodel for the declarative sub-process 59
3.4.2 CombA Sub-Process Definition as Declarative Component 60
3.4.3 CombA Sub-Process Operational Semantics 62
3.4.4 CombA Sub-Process Handling Events 62
3.4.5 CombA Sub-Process Execution Semantics 63
3.4.6 BPMN Editor including CombA Sub-Process 64
3.4.7 BPMN Extension Applied to the Trip Planner 65

3.5 Related work . 67
3.6 Summary and Discussion . 68

IV Contribution II: Combi-BP Transformation 71

4 Configuration of an Imperative Business Process to minimize the ex-
ecution time according to Data Dependencies 73
4.1 Context and Motivation . 73
4.2 Configuration System Description . 76

4.2.1 Relation between Data Dependencies and Imperative Models 77
4.3 Automatic Configuration from Declarative to Imperative Model 78

4.3.1 Creating a COP from the declarative model 79
4.3.2 Transformation of the COP results into a BP Imperative Model . . 81

4.4 Configuration applied to the Trip Planner 87
4.5 Related work . 88
4.6 Summary and Discussion . 89

CONTENTS v

5 Creating an Imperative Model to Optimize the Business Process Out-
come . 91
5.1 Context and Motivation . 91
5.2 The White-Box Approach . 93

5.2.1 How to transform a White-Box Specification into an Executable
Business Process . 93

5.2.2 White-Box Model Transformation applied to the Trip Planner . . . 94
5.2.3 Empirical Evaluation . 96

5.2.3.1 Experimental Design . 96
5.2.3.2 Experimental Result . 97

5.3 The Black-Box Approach . 97
5.3.1 Coordinator Algorithm . 99
5.3.2 Experimental Results . 100

5.4 Related work . 102
5.5 Summary and Discussion . 103

V Contributions III: PAIS-DQ 105

6 PAIS-DQ . 107
6.1 Context and Motivation . 107
6.2 Detailing a Case Study . 108
6.3 PAIS-DQ Description . 110

6.3.1 PAIS-DQ Architecture . 110
6.3.2 Data Quality Management Activities 112

6.3.2.1 How High-Level DQ Management can affect the BP Model 112
6.3.2.2 How Low-Level DQ Management Activities can affect the

BP Model . 112
6.3.3 Data Quality Layer Functionalities 113

6.4 PAIS-DQ-HOW: Methodology to use PAIS-DQ 114
6.4.1 Business Process Design . 115
6.4.2 Data Quality Layer and System Configuration 115

6.4.2.1 Configuration of High-Level DQ Management Activities . 116
6.4.2.2 Configuration of Low-Level DQ Management Activities . . 116
6.4.2.3 Changes to the BP to make it DQ aware 117

6.4.3 Business Process Execution . 117
6.5 PAIS-DQ Applied to the Case Study . 117

6.5.1 BP Design: Flight Search Process 119
6.5.2 DQ Layer and System Configuration 119

6.5.2.1 Configuration to Control Data Quality Levels 119
6.5.2.2 Data Quality Items . 119
6.5.2.3 Low-Level DQ Activities to Control DQ Configuration . . 120
6.5.2.4 Low-Level DQ Activities to DQ Control Implementation . 121
6.5.2.5 Flight Search Process Changes 122

6.5.3 BP Execution . 123

vi CONTENTS

6.6 Related work . 123
6.7 Summary and Discussion . 124

VI Conclusions and Future Work 125

7 Final Remarks . 127

8 Directions of Future Work . 131

VII Appendices 135

A Abbreviations . 137

List of Figures

1.1 Investment Decision Process Example. 5
1.2 Combi-BP Framework. 9
1.3 The Structure of the Thesis. 15

2.1 BPM Life-cycle. 21
2.2 PAIS Framework Architecture. 23
2.3 Graphical solution of a CSP system . 36
2.4 Trip Planner Example (OMG, 2011a). 44

3.1 External and Internal Components of the Data-Oriented Optimization Pro-
cess . 51

3.2 Example of the trip planner described using DOODLE 58
3.3 Data-oriented optimization process included in the Trip Planner Process. . 58
3.4 Extension of BPMN 2.0 Sub-Process Metamodel. 59
3.5 Collapsed and Expanded representation of CombA Sub-Process. 61
3.6 A collapsed and expanded CombA Sub-Process with Timer Event. 63
3.7 Vocabulary in CombiS-BP Editor. 65
3.8 CombiS-BP Editor. 66
3.9 Expanded Search Travel CombA Sub-Process. 66
3.10 DOODLE Graphical Components. 69

4.1 Imperative BP Representation for Data-Oriented Optimization BP. 74
4.2 Imperative BP Representation for Data-Oriented Optimization BP. 75
4.3 Imperative BP Representation for Data-Oriented Optimization BP. 75
4.4 Configuration System Architecture. 76
4.5 “Flight Search” and “Car Rental 1 Search” Model Possibilities 77
4.6 Configuration from Declarative BP Model to Imperative BP Model 78
4.7 Flexibility of the BP in terms of the execution time of the Activities . . . 80
4.8 Trace example of the Algorithm 2 to create a BPMN − Graph using the

COP results . 83
4.9 Parallel Relationship . 84
4.10 Exclusive Relationship . 84
4.11 Inclusive Relationship . 86
4.12 From graph to BPMN Model Example . 86
4.13 Trip Planner Model Result . 88

5.1 White box transformation. 93

vii

viii LIST OF FIGURES

5.2 Choco Script Task Configuration in Bonita Open SolutionTM 95
5.3 Number of possible combinations for each test case. 96
5.4 Memory used for the tests of the example. 97
5.5 Time used for the tests of the example. 98
5.6 Black box approach schema. 98
5.7 Backtracking Tree Structure. 100
5.8 Branch and Bound Tree Structure. 101
5.9 Number of calls to Calculate Objective() by Algorithm 1(Backtracking) and

by Algorithm 2 (Branch-and-Bound). 102

6.1 Illustrative Example: Flight Search process. 109
6.2 Framework for Data Quality Management. 111
6.3 Data Quality Control by including new decision rules in a gateway. 113
6.4 Data Quality Assurance by inclusion of new branches. 114
6.5 Data Quality Action Performance in an external service. 115
6.6 Data Quality Layer services. 115
6.7 Add a Data Quality Connector to an activity with Bonita Open SolutionTM .120
6.8 Data Quality Connector configuration for the activity Request Flight From

Provider 1. 121
6.9 Fragment corresponding to the completeness dimension given by I8K Ar-

chitecture. 121
6.10 Connectors in Bonita Open SolutionTM for the activity Request Flight From

Provider 1. 122

8.1 Smart cities requirements. 133

List of Tables

2.1 Main BPMN Elements used in this thesis dissertation 28
2.2 Declarative Languages Comparative . 35
2.3 Actions depending on DQ Requirements 43

3.1 Internal Components associated to the activities of the declarative model . 56
3.2 External Components of the declarative model 57
3.3 CombA Sub-Process model attributes . 61
3.4 CombA Task model attributes . 62
3.5 Declarative Languages Comparative including DOODLE 68

4.1 Declarative model and COP elements relationship 80
4.2 Type of gateway decision . 86

5.1 Constraint Optimization Problem for outcome data optimization 95

6.1 DQ Layer in PAIS-DQ . 111
6.2 PAIS-DQ-HOW Methodology . 118
6.3 Data Quality Requirements for Request Flight from Provider 1 activity

output . 119

A.1 Abbreviations . 138

ix

Part I

Preface

1

Chapter 1

Introduction

It is only possible to move forward when you look away.
We can only make progress thinking big.

José Ortega y Gasset

1.1 Context and Motivation

A business process consists of a set of activities that are performed in coordination within
an organizational and technical environment. These activities jointly perform a business
goal (Weske, 2007). In business process management theory of the last years, a process-
oriented perspective has been considered the shell on organizational (re)structuring.
Nowadays, organizations still experience difficulties in applying this process-oriented per-
spective to the design and maintenance of their information systems. Many of the pro-
blems deal with the imperative representation of business processes, since they contain
unsuitable information for computer systems to provide flexible and automated business
process support.

Typically, business processes are specified in an imperative manner, (e.g., by indica-
ting that activities A and B are executed sequentially or in parallel). This imperative
specification allows business experts to describe relationships between activities and to
transform the process into an executable model supported by a commercial Business Pro-
cess Management System (BPMS). Imperative descriptions define exactly how things have
to be performed. But sometimes, a business process may be exposed to different envi-
ronments and subjected to many conditions in which not always a sequence of activities
can be described at design time. This is the reason why several authors have proposed
languages to define business process as declarative models (Pesic and van der Aalst, 2006;
Rychkova et al., 2008a,b; Sadiq et al., 2005). A declarative representation takes into ac-
count the business concerns that govern the business process, describing the policies of
the organization. These declarative languages tend to be used to describe the possible
execution order of the activities, allowed or prohibited, instead of the exact order of the
activities. Related to the capacity to execute a declarative business process, although

3

4 CHAPTER 1. INTRODUCTION

there are available solutions to execute declarative descriptions, they only provide guide-
lines or recommendations on how a concrete instance of a declarative language must be
executed, not existing commercial BPMSs that support the declarative models.

Accordingly, the main duties of a business expert are the design and modelling phases
of the Business Process Management life-cycle (Weske, 2007). Business experts have to
define a model which represents the business goals of an enterprise process, to be carried
out during the execution phase. Depending on the type of problem, either imperative
or declarative description is more appropriate. When the order of activities is clear and
known, an imperative model is more appropriate, since it is more understanding and can
be automatically deployed and executed using a BPMS. But when the order of activities
is not exactly known at design time, or it is difficult to determine, a declarative model
is better, since it enables a more flexible and adaptable solution. Therefore, the ideal
scenario is the combination of declarative and imperative descriptions in order to attain
the best of both worlds. This first entails the flexibility of the declarative definition, and
secondly, the easy transformation of a model into an executable process deployed in a
BPMS with workflow support.

However, not only is the order of the activities crucial in the successful execution
of a business process, but the data exchanged between the activities to and the data
dependencies between the activities could be significant too. The existing proposals, both
declarative and imperative, are specially focused on the order of the activities, not paying
enough attention to process data. For these proposals, data can be used to establish the
order of execution through its association with conditions in the form of decision data or
business rules, whose evaluation could determine whether an activity should be executed
or not. Nevertheless, they are neither concerned with the data exchanged during the
process instantiation, and how the data dependencies can affect the activity order. It
would establish and limit the execution order of the activities, and thus would lead to the
successful and optimal execution of the process.

Generally, there are different types of goals in the business processes: (i) to obtain
the best product to satisfy the customer requirements, (ii) to reduce the time and/or cost
of the process execution, or (iii) to simply perform a task, such as the management of
documentation, or provide products. The latest group does not need any optimization,
just the modelled of the process. Typically, the declarative and imperative models have
been used to obtain the best order of the activities to reduce the time or the execution
cost of each instance. However, a great problem is presented when the aim of the pro-
cess focuses on a combination of activities in order to obtain the best business product
(outcome data), by means of the best combination of data belonged to the data-flow.

An example where the exchanged data during the instance is important to optimize the
business product, is when a customer has to decide how much and where invest a quantity
of money (see Figure 1.1). If the customer wants to invest an amount of money in funds for
a certain period of time, and can choose between different entities and/or assets in order
to maximize the profit, (s)he needs to search by hand the specific amount of money to
invest in each entity and/or asset. The entities and/or assets are represented by activities
in the business process. Each activity offers a diversified selection of funds with different
risks and profits, and depending on the specific amount of money, these characteristics

1.1. CONTEXT AND MOTIVATION 5

varies. This variation involves a continuous consult by the customers to the entities, in
order to know the profit returned given the different amounts of money. In addition,
it is necessary to consider, that the amount of money that is invested in an entity, will
influence the amount that is spent in another entity, and thus, the total profits obtained.
In other words, this example illustrates the importance of the decision related to which
combination of input data (amount of money) would return the best business product
(highest profit). In this case, the model could be known, being possible to execute the
activities in a parallel manner, but the specific input data for each activity are unknown.
The problem here is to decide in design time, how to model a business process to find the
best combination of values for the data input of the activities, takes into account the data
dependencies, and also achieves the customer requirements at runtime. It is important
to highlight that, although the BP requirements are known and can be easily specified,
neither imperative nor declarative representations can be used to describe this problem.

Stock Market

Investment

(SMI)

Investment in

Research

(IR)

INPUT SMI +

INPUT IR= INPUT

OUTPUT

SMI

OUTPUT

IR

Max(OUTPUT SMI

+ OUTPUT IR)
INPUT

INPUT

SMI

INPUT

IR

OUTPUT

Figure 1.1 – Investment Decision Process Example.

We focus on these type of data-oriented optimization processes, whose main purpose
is to find a set of data that need the activities of the process to optimize an objective
function. On the one hand, there is a data-structure dependency, since the constraints
establish a possible order between the activities by means of their data relationships. This
order is not easily to establish at design time without any help. On the other hand, there
is also a data-value dependency, which establish the data requirements necessary to obtain
the optimal outcome in each instance. Therefore, the aim of this thesis dissertation is to
help business experts to design and implement a data-oriented optimization process. The
business experts know the description of the problem in a declarative way, but they do
not know how to transform it into an imperative model. The complete proposal shields
the business experts to unnecessary implementation details, and helps them to describe
the model in a more flexible and adaptable way. The modelling of the business process
and the deployment in a Business Process Management System is going to be faster and
will save personal and time in companies, since it helps to face problems of optimization
in an easy, automatic and flexible way.

As was commented, the main part of the scope of our research is the data that generate
and compose the final product in business processes. We consider them critical, and

6 CHAPTER 1. INTRODUCTION

essential for the business process which are centred on developing sound data products
rather than the sound execution of the processes. Furthermore, the management of data
with the adequate level of quality also constitutes a key value for the successful execution
of these processes. In order to make organizations aware of the importance of data quality,
a data quality management plan should be implemented that covers the main data and
data-quality requirements in the business process. Following with the investment example,
a set of quality requirements can be demanded with the aim of making a right decision. For
example, a percentage of the profits from an investment are taxes for the Government, we
could establish that as soon as this information is given by the entities (whether the profits
include these taxes or not), the information will be complete. In this thesis dissertation,
we propose some mechanisms to enrich the business processes in order to control and/or
assure the data quality requirements, such as the completeness used in the example.

In the next sections, we detail the problem statements, and how they are addressed
in this thesis dissertation.

1.2 Problem Statements

This thesis seeks the enhancement of data-oriented optimization problems in business
processes by proving automatic transformation from a declarative model, focused on data,
into a flexible imperative model. This challenge can be addressed by considering how the
data-oriented model can be described in a declarative way; how an imperative model can
be equivalent to a declarative description; and how data quality requirements can affect
the business process model.

How the data-oriented model is described in a declarative way?

Business process modelling constitutes an essential and crucial task in the Business Pro-
cess Management life-cycle. Business process models gather a large amount of information
and structures (van der Aalst, 2012) (e.g. activities, control-flow, data objects, and time
constraints), since it greatly influences the remaining phases of the cycle.

There are a significant number of researches that detect the necessity to include
the data description into the business process model. Although certain imperative lan-
guages have included description capacities in an imperative way for the exchanged data
(OMG, 2011b), new extensions have still been proposing, such as in (Gómez-López and
Mart́ınez Gasca, 2010a; Maŕıa Teresa Gómez-López and Gasca, 2014; Meyer et al., 2011,
2013). This concern in the imperative languages remains much less relevant in declarative
scenarios, which are more centred on the order of activities. The role of data in declarative
languages has not been very relevant, mostly limited to describe the execution or not of
an activity, depending on the value of a variable of the data-flow.

There is a significant number of declarative languages to describe business processes.
They tend to be used when business processes need to be flexible and adaptable, being
not possible to use an imperative description. The declarative languages define what
has to be done instead of how, since the specific order between the activities cannot be
known at design time in an imperative manner. A declarative representation takes into

1.2. PROBLEM STATEMENTS 7

account the business concerns that govern the business process, described by means of
declarative policies of the organization, specifying the possible execution order of the
activities, allowed or prohibited.

After the analysis of the literature, we have concluded that how the data can affect
the business processes has not been resolved. While the declarative languages cover
the flexible description of the activity order, and the imperative languages study how to
describe the data, neither of them deal with how data can be included in declarative model.
Depending on the data instantiated, the creation of one model or another could be better,
since, for example, the model will influence the selection of the best data input of the
activities to satisfy the process requirements, as the example of the investment presented
above. In that case, although the business process requirements are known at design time,
the imperative representation is extremely difficult to determine since it must be flexible
enough to support any instance. Unfortunately, none of the existing declarative and
imperative languages are worried about how to represent neither to support the exchange
of data with the aim of optimize the business product, which influences the business
process model.

How an imperative model can support a declarative description?

Some of the benefits of the declarative models are the flexibility and the ease of writing
(Fahland et al., 2009). However, the most important disadvantage is that, it is not possible
to deployed it in a commercial BPMS. On the other hand, the imperative models are more
rigid, although closer to executable models.

A significant number of tools have been developed to transform imperative models
into executable model in an easy way. As soon as a model can be executed, more usable
and applicable is for organizations. In order to support the deployment and execution of
a business process model, a Business Process Management System is necessary (Weske,
2007). There are several Business Process Management System on the market that ena-
ble the analysis, definition, execution, monitoring, and control of processes. Generally,
the four critical components of a Business Process Management System are: process en-
gine, business analysis, content management, and collaboration tools. Furthermore, these
four components are also focused on building a bridge between business experts and IT
since traditional Business Process Management engines are focused on non-technical peo-
ple only. Thus, these Business Process Management Systems offer process management
features in a way that both business and IT users could use.

While the imperative languages are easily transformed into executable, it does not
happen the same with the declarative languages. Although some tools are available to ex-
ecute declarative descriptions, none provide anything more than guidelines or recommen-
dations about which activity should be executed at specific moments of an instance, since
it remains impossible to execute or deploy them in a Business Process Management Sys-
tem environment. Which means that the declarative descriptions, and the systems that
support them, are not enough to be used in the daily work of a company.

Focused on data-oriented optimization processes, an executable model will be desirable
as well, not only to determine which activity to execute at any moment, but also to

8 CHAPTER 1. INTRODUCTION

integrate the business process data requirements in the executable model, by means of
solving the data-structure dependencies. The executable model needs to ascertain the
specific values for each instance that optimize the outcome data of the process by means
of solving the data-value dependencies.

Since declarative and executable models are conceptually too separated, we propose
the creation of an intermediate imperative model combined to Constraint Programming.
Thanks to the use of Constraint Programming paradigm, data-structure and data-value
dependencies can be taken into account, while maintaining the flexibility of the declarative
models.

How data quality requirements are included in business process?

The data that generate and compose the final product are considered critical, and is
essential for the business process (Wang, 1998). Among other factors, it can be said
that the success of an instance of the processes is grounded in the quality of the data
used. In order to gain advantages from data quality, organizations need to introduce
mechanisms aimed at checking whether data satisfy certain data-quality requirements at
runtime. Although certain data-quality related studies could be used at the design phase,
such as (Cappiello et al., 2013; Pipino et al., 2002; Rodŕıguez et al., 2012), there is a lack
of proposals for their system configuration and process enactment phases. The scope of
data-quality requirements should already has been dealt with by business experts. On
the other hand, IT people should be able to implement the corresponding mechanism to
satisfy the stated data-quality requirements at runtime. However, most of the existing
problems in applying a data-quality management program lies on the modification of the
business process model itself with data-quality aspects, besmirching and complicating the
understanding, functionality and operability of the model.

1.3 Contributions

In order to face the challenges of this thesis, a framework for the Combination of Data in
Business Process (hereinafter Combi-BP) has been developed in order to fill the gap of
data-oriented optimization problems in BP. Combi-BP aims to aid and support business
and IT experts towards the design and implementation of data-oriented optimization
problems in an automatic way. The base of data-oriented optimization problems is the
specification of (i) the data handle by the process and by each activity; (ii) the constraints
that relate these data; and (iii) the objective function to be optimized.

The process modelled in Figure 1.2 shows the relation between the contributions of
this thesis dissertation, and the necessary steps to transform a data-oriented optimization
process into an imperative model. The different steps are represented as tasks within the
process, and the input and output of each contribution are represented as data objects.

Firstly, the business process requirements are specify in a declarative model. This
declarative model is focused on data optimization and represents the set of data, activities,
constraints that relate the activities, and the objective function to be optimized. The
language to model a data-oriented declarative models is the base of the first contribution.

1.3. CONTRIBUTIONS 9

Specify

Declarative

Components

Establish

Activity

Order according

to Data-Structure

Dependencies

Carry out Transformation

Define White- Box

Approach according

to Data-Value

Dependencies

Define Black-Box

Approach according

to Data-Value

Dependencies

Include Data

Quality

Management

Is functionality

predictable?

Contribution I:

Combi-BP Specification

Contribution II:

Combi-BP Transformation

Contribution III:

PAIS-DQ

BP

Requirements

Data-oriented

optimization

Model

Imperative

Model

Imperative

Model + DQM

Figure 1.2 – Combi-BP Framework.

Secondly, how to carry out the transformation into a flexible imperative model is divided
into various activities. In the first place, the establishment of an order between the
activities by analysing the data-dependencies is necessary. The order must assure that
the optimization is achieved and all the constraints are considered since these constraints
establish the data-structure dependencies. However, in order to keep the flexibility of the
declarative model, certain algorithms and data treatment must be included to solve the
data-value dependencies. Whether the functionality of the activities could be predictable
or not, two different transformations are possible. On the one hand, if the information
provided in the business process requirements permits to ascertain the functionality of the
activities without execute them, then a white box approach is applied. On the other hand,
whether the information are insufficient to ascertain the functionality of the activities, and
their execution are required, a black box approach is then applied. Even so, both models
finish the transformation creating an imperative, flexible and closer to executable model.
Finally, this imperative model is enriched with data-quality aspects in order to increment
the trustworthiness of the data involved in and returned to the customer in the process.

The following subsections introduce each contribution with mode details.

Contribution I Combi-BP Specification: Data-Oriented Opti-
mization Specification

As stated earlier, the existing declarative and imperative proposals fail to take into account
how the exchanged data between the activities can affect the successful execution of the
process. Our proposal provides a formalization of a business process data requirements to
represent the outcome data optimization. The first contribution of this thesis dissertation
focuses on the representation of this data-oriented optimization processes (cf. Chapter
3).

To this end, a Data-Oriented Optimization LanguagE, called DOODLE, represents
graphically a declarative model which includes the business process requirements referring
to data description. A new point of view of declarative languages focused on data is
presented, since priority is given to the significance of the information that flows through
the process and between the activities to reach optimal outcome data in accordance to

10 CHAPTER 1. INTRODUCTION

customer requirements.
In order to combine the business process requirements, represented by this declarative

language, with an imperative representation, we also propose an extension of BPMN 2.0
(OMG, 2011b) where a new type of sub-process and its associated marker is proposed.
The aim of this new sub-process is to incorporate the declarative components of a data-
oriented optimization process into an imperative model, and to find the best business
product.

Contribution II Combi-BP Transformation: Business Processes
Configuration and Outcome Optimization Enactment for Flexible
Models

One of the main features of the optimization of data-oriented optimization processes is
that the business process and the data requirements are known at design time. There
are two main problems: (1) the business experts know what they want but not how
to model it, since the imperative representation is extremely difficult due to the data
dependencies and the objective function to be optimized; and (2) declarative models are
good in the sense that they are flexible, but fail in their capacity to be executable, in
opposite imperative models.

Consequently, the second contribution aims to provide the necessary support to con-
figure and execute the declarative specification by means of transform it into a flexible
imperative model (cf. Part IV).

Using the model of the first contribution, the data-structure dependencies are anal-
ysed, by means of the relationships between the activities. This analysis enables to find,
in an optimal way, an equivalent imperative model, in accordance to the data dependen-
cies between the activities. This equivalence, by means of imperative representation, is
obtained thanks to the use of Constraint Programming paradigm and a set of developed
algorithms. Since the declarative specifications can lead to several imperative models, we
demand, to establish the best imperative model as the one that minimize the execution
time of the instances. However, this imperative representation is not enough to maintain
the declarative flexibility, since the data-value dependency and the optimal function to
achieve the best outcome need to be obtained.

In order to solve this data-value dependencies, two different approaches are also de-
veloped in this second contribution. On the one hand, the called White-Box approach
is applied whether the declarative model includes the necessary information to ascertain
the output of the activities without execute them. This information enables to obtain the
optimal values in a local manner by using constraint programming. On the other hand, a
set of algorithms are developed to apply the called Black-Box approach. In that case, the
activities must be executed several time in order to ascertain the optimal outcome data.
The algorithms have to check every possible combination of data, and must guarantee
that the optimal is achieved.

We have decided to use Constraint Programming since between its advantages are:
It is a very mature area that has been applied to very different problems related to
optimization, and with high level of complexity; it uses propagation techniques to reduce

1.4. THESIS CONTEXT AND PUBLISHED RESULTS 11

in an efficient way the search space; there are a lot of tools and algorithms to model
and solve problems; it permits a more easy definition of the data dependencies using a
wide types of constraints, such as: implication constraints, disjunctive constraints, refied
constraints, global constraints, and channeling constraints.

Contribution III: Data Quality Management in Business Process

One of the challenges in business processes is focused on identifying problems in order
to improve the process. A well designed business process model cannot work correctly
with incorrect data. A good way to avoid problems, related to the data managed, is by
controlling and ensuring the quality of the data that flow through the process. To this
end, the specification of data-quality requirements, and the implementation of certain
activities focused on data-quality, must be introduced. Not only do we propose a theoret-
ical solution, but we also define the steps to obtain an executable quality-aware business
process (cf. Chapter 6).

These mechanisms, aimed at checking whether data satisfy certain data-quality re-
quirements, attain the implementation of high-level data-quality management activities,
such as control and assurance. In turn, these activities require the implementation of
low-level data-quality management activities, such as measurement, assessment, and en-
hancement. This contribution proposes: (i) a methodology to guide developers in their
task, which prevents organizations and customers from being exposed to unnecessary de-
tails on how the data-quality is managed; and (ii) a framework to suitably address the
execution of specific high level data quality management activities.

1.4 Thesis Context and Published Results

This thesis dissertation has been developed in the context of the Quivir Research Group
of the University of Seville under the scope of the following research projects:

• OPBUS: Improving business process quality by means of optimized and fault-
tolerance technologies (P08-TIC-04095) funded by the Department of Innovation,
Science and Enterprise of the Regional Government of Andalusia.

• TDiaCO-BPMS: Techniques for diagnosis, reliability and optimization in busi-
ness process management systems (TIN2009-13714) funded by Spanish Ministry
of Science and Technology.

The following papers have been published as either intermediate or directly results of
the research findings presented in this thesis:

• Luisa Parody, Maŕıa Teresa Gómez-López, and Rafael M. Gasca. Data-Oriented
Declarative Language for Optimizing Business Processes. 22nd Interna-
tional Conference on Information System Development (ISD 2013). Sevilla (Spain),
2013. Full paper (In press). (CORE A)

12 CHAPTER 1. INTRODUCTION

• Ismael Caballero, Isabel Bermejo, Luisa Parody, Maŕıa Teresa Gómez-López, Rafael
M. Gasca, and Mario Piattini. I8K: An Implementation of ISO 8000-1X0.
The 18th Internationl Conference on Information Quality (ICIQ 2013). Little Rock
(Arkansas, EEUU), 2013. Pp. 356 - 370. ISBN: 978-84-695-8310-4.

• Isabel Bermejo, Luisa Parody, Ismael Caballero, and Mario Piattini. CONFIA
Registration-2013. CONFIA COmpliaNt Framework ISO 8000 (eight
thousAnd). Exp: CR-193-2013. This publication refers to the registration of
our tool in the Intellectual Property Record of Ciudad Real (Spain).

• Luisa Parody, Maŕıa Teresa Gómez-López, and Rafael M. Gasca. Decision-
Making Sub-Process to Obtain the Optimal Combination of Input Data
in Business Processes. IX Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS
2013). Madrid (Spain), 2013. Pp. 17-31. ISBN: 978-84-695-8351-7.

• Isabel Bermejo, Luisa Parody, Ismael Caballero, Maŕıa Teresa Gómez-López, and
Rafael M. Gasca. Gestión de Calidad de Datos en la Combinación de Ac-
tividades dentro del Marco de los Procesos de Negocio. XVIII Jornadas de
Ingeniera del Software y Bases de Datos (JISBD 2013). Madrid (Spain), 2013. Pp.
195 - 208. ISBN: 978-84-695-8310-4.

• Luisa Parody, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Angel Jesus Varela-
Vaca. CombiS-BP Editor Registration-2013. This publication refers to the
registration of our editor in the Intellectual Property Record of Andalusia (Spain).

• Luisa Parody, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Angel Jesus Varela-
Vaca. CombiS-BP Editor: Combining Declarative and Imperative Lan-
guages in BP Modelling. 7th IEEE International Conference on Research Cha-
llenges in Information Science (RCIS 2013). Paris (France), 2013. Pp. 663-664.
ISBN 978-1-4673-2914-9. (CORE B)

• Luisa Parody, Maŕıa Teresa Gómez-López and Rafael M. Gasca. Extending
BPMN 2.0 for Modelling the Combination of Activities That Involves
Data Constraints. 4th International Workshop on the Business Process Model
and Notation (BPMN 2012). Viena (Austria), 2012. Pp. 68-82. ISBN 978-3-642-
33154-1.

• Luisa Parody, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Angel Jesus Varela-
Vaca, Improvement of Optimization Agreements in Business Processes
Involving Web Services, Communications of the IBIMA, Volume 2012 (2012),
Article ID 959796, 15 pages DOI: 10.5171/2012.959796.

• Maŕıa Teresa Gómez-López, Rafael M. Gasca, Luisa Parody, and Diana Borrego.
Constraint-Driven Approach to Support Input Data Decision-Making in
Business Process Management Systems. International Conference on Infor-
mation System Development (ISD 2011). Edimbug (Scotland), 2011. Pp. 457 - 469.
ISBN 978-1-4614-4950-8. DOI: 10.1007/978-1-4614-4951-5 37. (CORE A)

1.4. THESIS CONTEXT AND PUBLISHED RESULTS 13

• Luisa Parody, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Angel Jesus Varela-
Vaca. An Approach for Optimization Agreements in Business Processes
based on Web Services. 17th International Business Information Management
Association Conference (IBIMA Conference). Milan (Italy), 2011. Pp. 183 - 194.
ISBN 978-0-9821489-6-6. (CORE B)

• Luisa Parody, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Diana Borrego.
Using Distributed CSPs to Model Business Process Agreement in Soft-
ware Multiprocess. 3rd International Conference on Agents and Artificial Intelli-
gence (ICAART1́1). Roma (Italy), 2011. Vol. 2, Pp. 434-438 ISBN: 978-989-8425-
41-6. (CORE C)

• Luisa Parody, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Diana Borrego.
Resolución de Acuerdos en Procesos de Negocio para Multiprocesos Soft-
ware usando Programación con Restricciones Distribuidas. Workshop de
Apoyo a la Decisión en Ingenieŕıa del Software (ADIS’10). Valencia (Spain), 2010.
Vol. 4, No. 1, Pp. 53-64.

The following paper has been submitted to a relevant journal as direct results of the
research findings presented in this thesis:

• Luisa Parody, Maŕıa Teresa Gómez-López and Rafael M. Gasca. Optimization of
Outcome Data of Business Processes. From Declarative to Imperative
Process Models, submitted to Information and Software Technology Journal, Ed.
Elsevier. (JCR-2013 1.522).

• Luisa Parody, Maŕıa Teresa Gómez-López, Isabel Bermejo, Ismael Caballero, Rafael
M. Gasca, and Mario Piattini. PAIS-DQ: Extending Process-Aware Infor-
mation Systems to support Data Quality in PAIS life-cycle, submitted to
European Journal of Information Systems, Palgrave Macmillan. (JCR-2013 1.558).

• Luisa Parody, Maŕıa Teresa Gómez-López and Rafael M. Gasca. Configuration of
an Imperative Business Process according to Data Dependency Aspects,
submitted to Software & System Modeling Journal, Springer. (JCR-2013 1.250).

• Isabel Bermejo, Ismael Caballero, Luisa Parody, Maŕıa Teresa Gómez-López, Mario
Piattini, and Rafael M. Gasca. Managing data quality in master data ex-
changed by means of ISO 8000-1x0, submitted to IEEE Transactions on Knowl-
edge and Data Engineering, IEEE Computer Society. (JCR-2013 1.676).

The author has also participated actively in other relevant contributions during the
development of this thesis:

• Diana Borrego, Rafael M. Gasca, Maŕıa Teresa Gómez-López, and Luisa Parody.
Contract-based Diagnosis for Business Process Instances using Busi-
ness Compliance Rules. 21st International Workshop in Principles of Diagnosis
(DX’10). Portland, Oregon, USA, 2010. ISBN: 978-1-936263-02-8.

14 CHAPTER 1. INTRODUCTION

• Angel Jesus Varela-Vaca, Rafael M. Gasca, and Luisa Parody. OPBUS: Au-
tomating Structural Fault Diagnosis for Graphical Models in the Design
of Business Processes. 21st International Workshop in Principles of Diagnosis
(DX’10). Portland, Oregon, USA, 2010. ISBN: 978-1-936263-02-8.

• Diana Borrego, Maŕıa Teresa Gómez-López, Rafael M. Gasca, and Luisa Parody.
Diagnosis de Errores en la Gestión de Procesos Software con Progra-
mación con Restricciones. Workshop de Apoyo a la Decisión en Ingenieŕıa del
Software (ADIS’10). Valencia (Spain), 2010. Vol. 4, No. 1, Pp. 23-34.

The author has also made the following stays during the development of this thesis:

• Research stay in Ciudad Real, Spain, from 15 May 2013 until 15 August 2013 under
Mario Piattini’s supervision, and collaborating with Dr. Ismael Caballero. Mario
Piattini is the head of Alarcos Research Group at the University of Castilla-La
Mancha.

• Research stay in Trento, Italy, from 7 May 2012 until 5 August 2012 under Marco
Pistore’s supervision, and collaborating with Dr. Annapaola Marconi. Marco Pis-
tore is the head of Service Oriented Applications Research Unit of the Foundazione
Bruno Kessler (FBK).

In addition, the author has lead the following final degree projects related to this
thesis:

• Final project entitled l8K: Arquitectura de Servicios para la Gestión de la
Calidad de los Datos: Una implementación de ISO 8000:2009-100, realized
by D. Isabel Bermejo Manzaneque, and also supervised by Dr. Ismael Caballero
Muñoz-Reja. The project is related to the Engineering in Computer Science degree
at the Computer Science School in Ciudad Real, University of Castilla-La Mancha,
Spain. It was defended the 14th June 2013, achieving a score of honours (10).

• Final project entitled Aplicación Web para la Especificación Declarativa de
Procesos de Negocio, realized by D. Juan Francisco Fernández Narváez. The
project is related to the Technical Engineering in Computer Management degree at
the Computer Science School in Seville, University of Seville, Spain. It was defended
the 3th July 2013, achieving and score of outstanding B (8.5).

1.5 Roadmap: Structure of the Thesis

The structure of this thesis is illustrated as a business process diagram such as drawn in
Figure 1.3. The thesis dissertation encompasses four main parts:

Part I: Preface. In this part, the research context, motivation, problem statements and
research findings of the thesis are introduced. To conclude this part, a list of the most
relevant contributions attained during the development of the thesis are presented.

1.5. ROADMAP: STRUCTURE OF THE THESIS 15

P
a
rt

 I
:

P
re

fa
ce

P
a
rt

 I
I:

F
o
u

n
d

a
ti

o
n

s

P
a
rt

s
II

I,

IV
,
a
n

d
 V

:

C
o
n

tr
ib

u
ti

o
n

s

P
a
rt

 I
V

:

C
o
n

cl
u

si
o
n

s
a
n

d

F
u

tu
re

 W
o
rk

T
h

es
is

 D
is

se
rt

a
ti

o
n

Chapter 7: Final

Remarks
Chapter 8:

Future Work

Chapters 4 and 5:

Combi-BP Transformation

Chapter 3:

Combi-BP Specification

Chapter 2:

Foundations

Chapter 1:

Introduction

Chapter 6:

PAIS-DQ

Figure 1.3 – The Structure of the Thesis.

Part II: Foundations. In this part, we introduce to the reader to the most relevant
concepts in the different areas in which the thesis has been developed. Section
2.1 introduces the main concepts of Business Process Management and focus on the
presentation of aspects referring to the modelling of processes. Section 2.2 introduces
the main concepts and definitions related to imperative modelling. Section 2.3 gives
an introduction of the most important declarative languages characteristics and the
study of the most relevant languages. Section 2.4 presents the main concepts and
definitions regarding to Constraint Programming. Section 2.5 gives an introduction
to the main concepts related to data-quality management. Section 2.6, the case
study used to illustrate the solutions proposed in this thesis dissertation is presented.

Part III, IV, and V: Contributions. These parts are the core of the thesis which is
comprised of four chapters. The chapters are structured in the following sections: a
introduction to the context and motivation for the contribution; a body where the
proposal solutions are presented; the results obtained by the application to examples
and case of studies; a related work section where a literature review and comparisons
with other approaches are given; and to conclude, a summary with a discussion of
the results. Specifically, in Chapter 3, a contribution for the specification of the
data-oriented optimization problems in business process is presented. Chapters 4
and 5 detail and develop the necessary transformations to make the declarative
specification transformed it into an imperative model. In Chapter 6, a contribution
for the inclusion of data-quality requirements in the business process models is given.

Part VI: Conclusions and Future Work. This part concludes the thesis over two
chapters: Chapter 7, which presents a global summary of the main conclusions
that were obtained during the thesis; and Chapter 8, which outlines research lines
and topics for future work that may be addressed.

Part VII: Appendices. This part presents the annexes generated as a complement of
the information given in the various chapters of the thesis.

16 CHAPTER 1. INTRODUCTION

Part II

Foundations

17

Chapter 2

Foundations

Information is knowledge.
Albert Einstein.

The current thesis dissertation aims to improve the existing business processes spec-
ifications in order to provide the necessary mechanisms to support data-oriented opti-
mization problems. Therefore, this chapter provides the basis and background regarding
business process management, imperative descriptions, and declarative descriptions. Most
of the solutions proposed to solve data-oriented optimization problems in business pro-
cesses are built on the basis of Constraint Programming foundations. Accordingly, the
main concepts of Constraint Programming are also detailed. On the other hand, as soon
as the data handle in a business process fits a set of data-quality requirements, the op-
timized product obtained will better fit customers’ requirements. To this end, certain
concepts related to quality and data-quality management are studied. Finally, the cases
study used during this thesis dissertation is also introduced.

2.1 Business Process Management

2.1.1 Concepts

In general, a process can be defined as a set of activities where various organization
collaborate to achieve a particular goal. Within the business scope, a process can be
defined as a set of activities to help this organization to achieve a goal which provides
a value for the company. A business process (cf. Definition 2.1.1) is a special type of
process that describes the activities of an organization. One of the main objectives of
business processes is to coordinate in a model the activities that conform the performance
of a company, providing a single point of access.

Definition 2.1.1. A Business Process (BP) consists of a set of activities that are per-
formed in coordination in an organizational and technical environment. These activities
jointly realize a business goal (Weske, 2007).

19

20 CHAPTER 2. FOUNDATIONS

In order to use and manage business processes, business experts need to specify the
BPs through BP models (cf. Definition 2.1.2) by using a modelling language. The selec-
tion of an adequate graphical method has become an important issue for both academic
researchers and business professionals, since each individual process modelling method
has its own characteristics. As a consequence, there are many research efforts dedicated
to improve the modelling methods. In (Huang et al., 2008), a comparison of these major
graphical process modelling methods is presented.

Typically, processes are specified in an imperative way (cf. Section 2.2), i.e., explicitly
specifying all possible sequences of activities in a process. However, declarative process
models (cf. Section 2.3) have been increasingly used, i.e., implicitly specifying the allowed
behaviour of the process with rules that must be followed during execution. Although
declarative descriptions are more flexible, since they enable specification of what has to
be done instead of specification of how it has to be done, imperative model are easier to
understand (Weber et al., 2009).

Definition 2.1.2. A business process model consists of capturing which activities, events
and states constitute the underlying business process (Weske, 2007). Specifically, the set
of activities and the execution constraints between them.

The modelling of the processes plays an important role in the overall management
of BPs. In recent years, Business Process Management (BPM) (cf. Definition 2.1.3)
has evolved as keystone of in the IT industry. BPM has emerged as an evolution of
the traditional Workflow Management (WfM) (van der Aalst, 2004). Moreover, BPM is
continuously evolving in order to improve the quality and efficiency of BPs.

Definition 2.1.3. Business Process Management (BPM) is an approach that includes
concepts, methods, and techniques to support the design, administration, configuration,
enactment, and analysis of business processes (van der Aalst et al., 2003; Weske, 2007).

Traditionally, BPs were carried out manually based on the staff knowledge, company
regulations and the resources that were already available in the company. Currently, com-
panies can get added benefits if they used software systems to coordinate the activities
involved in the BPs. BPM allows organizations to ensure that BPs are executed effi-
ciently, and generate information that can then be used to improve them. It is through
the information that is obtained from the daily execution of processes, where potential
inefficiencies can be identify, and then, act to optimize them. To this end, it is necessary
to have the software (cf. Definition 2.1.4) that provides the necessary support to BPM.

Definition 2.1.4. A Business Process Management System (BPMS) is a generic software
system that is driven by explicit process representations to coordinate the enactment of
business processes (Weske, 2007).

2.1.2 Business Process Management Life-cycle

BPM is orchestrated through a life-cycle such as shown in Figure 2.1. The life-cycle of
BPM to support BPs has four phases:

2.1. BUSINESS PROCESS 21

Design and

Analysis

System

Configuration

Diagnosis

Enactment

Figure 2.1 – BPM Life-cycle.

(1) The requirements analysis is established, the business processes are identified, re-
viewed, validated and presented as process models in the process design and analysis
phase.

(2) The designs are developed and configured in a software system in the system con-
figuration phase.

(3) During the process enactment phase, the process is executed by using the system
configuration in the way prescribed by the process model. More specifically, an
instance of a BP represents a specific case in the operational business execution of
an organization.

(4) Finally, in the diagnosis phase, the operational process is analysed to identify pro-
blems in order to improve the process, and can even make a diagnosis with the aim
of proposing a solution to these problems.

BPM life-cycle is focused on the design of BP models, and next diagnosis of errors
in the execution of these BPs. The creation of complete business process models is a
fundamental prerequisite for organizations to complete successfully the life-cycle and to
engage the model in BPMS.

2.1.3 Business Process Perspectives

According to Weske, (Weske, 2007), there are two main perspectives in the development of
business process in BPM: (1) Operational business process, which defines the activities and
their relationships, but implementation aspects of the business process are overlooked; and
(2) Implemented business process, which retains information of the execution of activities,
technical, and organizational environment in which they will be executed.

Operational business processes are specified by business process models (cf. Definition
2.1.2). In general, business process models must also permit the incorporation of various

22 CHAPTER 2. FOUNDATIONS

perspectives giving place to various diagrams. The diagrams must show the rules, goals,
objectives of the business and not only relationships, but also interactions (Castela et al.,
2001). A great part of the success of the modelling is the capacity to express the various
needs of the business, as well as to have a notation in which these needs can be described.
Furthermore, the inclusion of several perspectives in BP models enables to make a more
complete and successful execution of BPs. In contrast, the BP models increase the payload
work and the complexity of reading comprehension whether the perspective are not clearly
separates.

However, although it could not be an easy task, the business process, the environment
features, and the intended use of the model must be taken into account to make a su-
ccessful choice of an approach and/or notation (Bider, 2005). Both, Weske (Weske, 2007)
and Van der Aalst (van der Aalst, 2012), differentiate some of the most used perspectives
in operational business processes:

• Functional Perspective: is the description of the set of activities to be performed in
a BP.

• Control-flow Perspective: refers to the order in which the activities are performed
within a BP. Along with the functional perspective are the base of BP models. This
perspective represent the base, which will be enriched with the rest of perspectives.

• Data-flow Perspective: includes the set of data used and consumed by the activities
during the execution of a BP (Sun et al., 2006).

• Time Perspective: refers to the set of temporal constraints to consider during the
execution of a BP, e.g. duration of the business process activities, and deadlines
constraints (Saoussen Cheikhrouhou and Jmaiel, 2013).

• Resource Perspective: focuses on the people, roles, organisational units and any
other entities of the organisational model of a company that are involved in a BP
(Barba, 2012).

2.1.4 Process-Aware Information System

In order to facilitate the specification and enactment of BPs, Dumas et al. introduced a
Process-Aware Information System, henceforth referred to as PAIS (Dumas et al., 2005).
PAIS is defined as “a software system that manages and executes operational processes
involving people, applications, and/or information sources on the basis of process models”.
In this way, the PAIS framework and BPs are strongly linked.

As a fundamental characteristic, and opposed to data-centric or function-centric in-
formation systems, a PAIS separates process logic from application code (Weber et al.,
2009). In addition, Weber et al. provided a PAIS architecture in order to better unders-
tand and discuss on the different perspectives of PAIS. PAIS architecture can be viewed
as a 4-tier system, as was shown in Figure 2.2, following introduced:

• Persistence layer enables the necessary support for a database management system
to keep the data persistence.

2.2. BP IMPERATIVE DESCRIPTION 23

Application Layer

Presentation Layer

Process Layer

Persistence LayerDB

Figure 2.2 – PAIS Framework Architecture.

• Application Layer is responsible for storing the application codes and implementa-
tions of the different functionalities of the activities. These implementations can be
owned by different organizations.

• Process Layer runs the process logic. In particular, the schema and complete spe-
cification of the process model which is used for the process execution.

• Presentation Layer provides different build- and run-time tools to customers, e.g., a
process template editor, or an application program interface that enables to monitor
the different components.

The different layers are per se four parallel and independent systems, which can be
hosted in several machines, running by different and independent applications, and at the
same time. This independence is broken from the point of view of the data exchanged,
since the different layers are in constant communication exchanging data for providing a
given functionality. In addition, the different layers enable that a change, for example in
an application service which provides a particular functionality to a process step, will no
trigger any other changes in the Process Layer, even it would be possible to state that the
interfaces will remain stable (Weber et al., 2009). Currently, the change of the execution
order of activities, or the addition of new activities in the Process Layer, can be performed
without modifying the implementation of any other application services.

2.2 BP Imperative Description

There are many languages that enable the description of BP in an imperative way. Ge-
nerally, the common idea of imperative business process modelling is to define a precise
activity sequence which establishes how a given set of activities has to be performed.
Most commonly imperative languages used for business process modelling and notation
techniques are described below. In addition, the standard Business Process Model and
Notation, used in this thesis dissertation, is also in-depth described.

24 CHAPTER 2. FOUNDATIONS

2.2.1 Analysis of Imperative Languages

In general, the base of all the imperative languages is the explicit representation of the
activities order to be performed, and the relation between them. The main differences
are in the way in which they are represented, and the information that can be included in
the model. One of the most important assets of imperative languages is the needed effort
to transform it into an executable model, the execution engine therefore determines the
completeness of an imperative language. Some of the most relevant imperative languages
are:

• Petri Nets (Petri, 1962) are one of the most known and used techniques to specify
business processes in a formal and abstract way. In addition, Petri Nets establish an
important basis for the languages of processes (Weske, 2007). They have a formal
and abstract description. Formal since the semantics of the instances of the process
is well defined and is not ambiguous, and abstract since it is independent of the
business process execution environment, so that all aspects that are not functional
and related to the processes, are not covered (Salimifard and Wright, 2001; van der
Aalst and Stahl, 2011). A Petri net is a mathematical representation of a discrete
distributed system. They are a generalization of the automata theory that allows
expressing concurrent events. A Petri net consists of a finite set of places (P), a
finite set of transitions (T), and a set of directed arcs (A). Petri net complies with
the characteristics of the bipartite graph: the arcs connect a place to a transition
or a transition to a place, but cannot be arcs between two places or two transitions.
The transitions have input and output places, representing the input and output
source of a transition.

The dynamics of systems represented by Petri Nets are modelled with tokens. These
tokens are located in various places, which can contain any number of tokens. When
the structure of Petri Nets is fixed, the tokens should change their positions accord-
ing to the fixed rules. The distribution of the tokens between the places determines
the Petri network status, and the system modelled by it. As the transitions can
change the status of the Petri network, they can be considered as active components
representing events, operations, transformations and transport. A place is a pas-
sive component, such as a buffer, a state, or a condition. The tokens, on the other
hand, represent the information or physical objects. In the context of business pro-
cesses, the transitions represent the activities, and the places containing the tokens
represent instances of the process states.

Petri Nets present some limitations for modelling complex BPs, in these cases Work-
flow nets are used (Salimifard and Wright, 2001). Specifically, Petri Nets require
expert knowledge to be used. De Backer et al. in (De Backer and Snoeck, 2005)
introduce the application of Petri Net language theory for business process speci-
fication. Petri Net languages (Bosilj-Vuksic and Hlupic, 2001) are an extension to
the Petri Net theory (Petri, 1962), providing a set of techniques to describe complex
business processes more efficiently.

• Activity Diagram. In the Unified Modelling Language (UML), an activity dia-

2.2. IMPERATIVE DESCRIPTION 25

gram represents workflow step of business and operational components in a system
(Castela et al., 2001). In UML 1.x, an activity diagram is a variation of the diagram
of States UML where the states represent operations, and the transitions represent
the activities that occur when the operation is completed. Activities in UML 2.0
diagram, is similar in appearance to the activities UML 1.x diagram, but they have
a semantic based on Petri Nets (List and Korherr, 2005). In UML 2.0, the general
diagram of interaction is based on the activity diagram which is focused on the flow
of the activities involved in a single process by showing the general control flow of a
system, with its activities and actions. Specifically, the OMG specification defines
an activity as (OMG, 2005) diagram: “a variation of a state machine, where the
states represent the performance of actions or sub-activities, and the transitions are
provoked by the realization of the actions or sub-activities”. Therefore, the purpose
of the activity diagram is the modelling of a process and its operations.

In (Russell et al., 2006), the authors examine the suitability of UML 2.0 Activity
diagrams for BP modelling. The pattern evaluation shows that UML 2.0 Activity
Diagrams is not suitable for representing all aspects of this type of modelling. It
offers support for control-flow and data perspective allowing most of the constructs
to be directly captured. However, it is extremely limited in modelling resource-
related or organizational aspects of business process. These limitations are shared
with most of the other imperative languages, showing the emphasis that has been
placed on the control-flow and data perspectives in these notations. Despite its
limitations, several authors are still been using UML 2.0 Activity Diagram to model
their BP. For example, Rodŕıguez et al. in (Rodŕıguez et al., 2006) extends UML
2.0 in order to include many security requirements in the BP models. On the other
hand, there are many works that compare the readability, and boundaries of using
UML 2.0 Activity Diagrams with regard to other BP modelling languages, such as
the most used standard BPMN (Peixoto et al., 2008; Venera Geambasu, 2012).

• Event-driven Process Chain (EPC) is a type of flowchart for the modelling of
business processes (Tsai et al., 2006). Its main objective is to represent the concepts
of domain and processes rather than their formal aspects or technical. EPC is used
to configure the implementation of an enterprise resource planning and business
process improvement. An EPC is an ordered graph of events and functions (Tsai
et al., 2006), so it provides several connectors that allow alternative and parallel
execution of processes. Moreover, it is specified by the use of logical operators such
as AND, OR and XOR. One of the features that confirms to EPC is an accept-
able technique to represent business processes, since its notation is simple and easy
to understand. The EPCs are represented by means of directed graphs where a
specific order between the nodes is provided. They resemble UML diagrams, since
their structures provide trivial structures, by means of introducing restrictions or
parallelism in their execution semantics. As counterpart, although it is simple, EPC
may be a bit ambiguous since nor its semantics and syntax are completely and well
defined. This ambiguity suppose a high level of difficulty to check the consistency
and completeness of the models. All these problems are serious since EPC is used

26 CHAPTER 2. FOUNDATIONS

as specification of BP so that they can be processed by systems that support and
enable BP. The absence of the formal semantics also impedes the exchange of mod-
els between tools from different vendors and avoids the use of powerful analytical
techniques.

These problems are discussed in (Van der Aalst, 1999), under an approach based on
Petri Nets, explained below. The building blocks used in an EPC (events, functions
and connectors) are close to the building blocks used in a network of Petri (places
and transitions). In fact, EPC corresponds to a subclass of Petri Nets. Shows that
it is possible to assign an EPC in a Petri net. In this way the formalism of Petri Nets
can be used to give formal semantics to the EPC. In addition, advanced techniques
of Petri Nets can be used to analyze the EPC.

• Integration DEFinition diagram is a family of modelling languages in the field
of systems and software engineering. They cover a wide range of applications, from
functional modelling, simulation, analysis, object-oriented design and acquisition
of knowledge. These languages were developed with funding from the U.S. air
force, but currently they are in the public domain. From IDEF family, the most
widely recognized and used is IDEF0. IDEF0 is a functional modelling language
developed in SADT (Structured Analysis and Design Technique). However, the
most interesting is the IDEF3 diagram (Bosilj-Vuksic and Hlupic, 2001). The IDEF3
models the process flows, which describes how activities work together to form a
process. The IDEF3 diagram identifies the behaviour of the system by describing
the structured of what the system really does and how the activities work together
to form a process. There are two types of description: Flowchart of the process,
and the state network of the object transitions.

• Process Specification Language (PSL), (NIST, 2004), is a standard language
for process specification that serves as an interlingua to integrate multiple process-
related applications throughout the manufacturing life cycle. The main goal of
PSL is to create a process representation that is common to all manufacturing
applications: generic enough to be decoupled from any given application, and robust
enough to represent the necessary process information for any given application.

• Business Process Model and Notation (BPMN) is the standard proposed
by OMG (OMG, 2011b). BPMN is the most used language in the market for the
business process modelling. BPMN is a graphical notation with which enables the
creation of various diagrams within the three types of sub-models (private, public
and collaborative). BPMN diagrams is formed by a set of elements detailed in the
following subsection 2.2.2.

• Another important imperative BP specification language is XML Process Defi-
nition Language (XPDL) (WfMC, 2004). In this case, XPDL provides an XML
file format that can be used to interchange process models between tools. This
language is designed to exchange the process definition, through both the graphics
and the semantics of the workflow in a business process. Nevertheless, it has been

2.2. IMPERATIVE DESCRIPTION 27

designed specifically to store all aspects of a Business Process Model and Notation
(BPMN) diagram (OMG, 2011b). Business Process Model and Notation provides
graphical notation to facilitate human communication between business users and
technical users, of complex business processes. Thus, XPDL and BPMN specifica-
tions address the same modelling problem from different perspectives. As occurs
with BPMN, the remaining imperative languages describe a BP graphically and
formally.

In (Huang et al., 2008; List and Korherr, 2006), a comparison of these major graphical
process modelling languages is presented. Extensive literature research, regarding another
type of business process compliance, has been also presented in (Namiri and Stojanovic,
2007; Sadiq et al., 2007). Although it is possible to find tools that execute the model
represented by the various languages explained, commercial tools are focused especially
to support the execution of BPMN. Although, several BPMN engines develop their own
executable platform with proprietary code, one of the most widely used standard execu-
table languages is the Business Process Execution Language (BPEL) (OASIS, 2007). The
BPEL enables actions within a BP to be specified with web services. A BPEL specifica-
tion, once written, can be compiled into executable code that implements the described
BP. In addition, BPMN specification also provides a mapping between its notation and
BPEL notation.

The use of imperative models in the software industry has been prevailing, since there
exist an import number of commercial tools to support them, such as IntalioTM (Com-
munity, 2012b), ActivitiTM (Team, 2012), and Bonita Open SolutionTM (Community,
2012a). Unfortunately, they lack in flexibility, expressiveness and adaptability, being
necessary more declarative languages.

2.2.2 Business Process Model and Notation (BPMN)

For the performing of the current Thesis Dissertation, BPMN 2.0 (OMG, 2011b) has
been chosen to introduce our proposal. BPMN is an international standard for process
modelling accepted by the community, which is independent of any process modelling
methodology. It is specifically designed to coordinate the sequence of the processes and
the messages flowing between participants in the different activities. BPMN provides a
common language to enable the communication between processes in a clear, complete,
and efficient way.

Business process models specify the activities, with their relationships, that are per-
formed within a single organization, or between activities of different processes participat-
ing in a business-to-business collaboration. The interaction between activities in different
processes is just through sending and receiving messages. However, within each single
business process, the decisions and branching of flows are modelled using gateways, also
called control flow patterns.

BPMN is a graphical notation which enables the creation of various diagrams within
the three types of sub-models (private, public and collaborative). BPMN diagrams is
formed by a set of elements (OMG, 2011b) that can be grouped in:

28 CHAPTER 2. FOUNDATIONS

1. Sequence Elements are the fundamental building block for workflow processes.
It represents a series of activities which are executed in turn one after the other.

2. Connectors connect objects in the flow, pools or artefacts.

3. Pools and Lanes represent the organization aspects of business process diagrams.

4. Pools and Lanes represent the organization aspects of business process diagrams

5. Artefacts show additional information about the business processes that are not
sufficiently relevant to be included in the sequence flow or the message of the process

Although the specification and details of every elements can be found in the document
associated to the standard (OMG, 2011b), Table 2.1 describes the main elements used in
this thesis dissertation. There are different variants of these elements, but which are not
described, since they are not going to be used in this work.

Table 2.1 – Main BPMN Elements used in this thesis dissertation

Type Description

Sequence Elements

Events
Something that happens during the course of a BP. They
can be of three types: beginning, intermediate and end.

Activity
The generic term to describe any work performed by the
company. They may be atomic or compound.

Gateway
To control the flow, it can be a traditional decision, a
join, a merge, or a fork.

Connector Elements
Sequence Flow Defines the execution order of activities.

Message Flow
Symbolizes information flow across organizational
boundaries.

Pool Element
Pool It enables to indicate the participants in the process.

Lane
A participant of the POOL. It represents responsibilities
of activities in the pools.

Artefacts Element

Data Object
Enables to show the data that are produced or required
by the activities

Data Input External input for the entire process
Data Output Variable available as result of the entire process

Although BPMN 2.0 solves the majority of the modelling problems related to the
combination of activities, by means of conversations and choreographies, it remains as yet
insufficiently powerful to represent the combination of activities oriented to the optimiza-
tion of the outcome data. For this reason, one of the proposals presented in Chapter 3 is
the extension of the expressiveness of BPMN 2.0 with a new type of sub-process.

2.3. BP DECLARATIVE DESCRIPTION 29

2.3 BP Declarative Description

As was commented in previous chapters, imperative models lack in expressiveness, flexi-
bility and adaptability. One of the reason is that sometimes is easier to describe what the
process does, rather than how the process achieves it. In order to solve this lack, there
are many languages that enable the description of BP in a declarative way. Generally,
the common idea of declarative business process modelling is to model a process as a
trajectory in a state space. Moreover, declarative constraints are used to define the valid
movements in that state space (Bider et al., 2000). The differences between declarative
process languages can, in part, be understood as a different perception of the meaning of
’state’.

One of the main aspects to consider in a data-oriented optimization process is the
simplicity to be described in a declarative way, since the set of activities, the constraints
that relate their data, and the objective function are the main BP requirements. How-
ever, an imperative specification is not so simple with this information since the model
possibilities are too long to deal with. Therefore, we have found some characteristics that
we consider interesting to be analysed in the existing declarative languages in order to
know if they enables to describe and support data-oriented optimization problems in BPs.
The characteristics are studied in Subsection 2.3.1, the existing proposals are analysed in
Subsection 2.3.2 and then compared in Subsection 2.3.3.

2.3.1 Characteristics

The characteristics presented in this section are oriented towards the subsequent analysis
of the different proposals related to declarative languages. The characteristics serve as
a base to determine whether the languages address the data management, have the nec-
essary mechanisms for reasoning about the components declared, and/or include the BP
requirements necessary to specify a data-oriented optimization process.

• Formalism for reasoning: the proposals use different formalism for reasoning.
Sometimes, although we show the most relevant in each case, they can combine
more than one, and/or be improved by means of made-to-measure algorithms. In
order to centre the attention, only the most relevant have been included.

– Linear Temporal Logic (LTL). LTL is a modal temporal logic that allows
the expression of temporal constraints on infinite paths within a state space. As
demonstrated by Chomicki (Chomicki, 1995), Bacchus and Kabanza (Bacchus
and Kabanza, 2000), and Pesic and van der Aalst (Pesic and van der Aalst,
2006), LTL expressions can be used to represent desirable or undesirable pat-
terns within a history of events. LTL formula can be evaluated by obtaining the
Büchi automaton (Büchi, 1990) that is equivalent to the formula, and checks
whether a path corresponds to the automaton. LTL was spatially used to ver-
ify or monitor running programs based on the analysis of events, but in BPM
fields, LTL has also be used to represent graphically the declarative models
(Maggi et al., 2011a). Unfortunately most LTL checking algorithms assume

30 CHAPTER 2. FOUNDATIONS

infinite paths and construct non-deterministic automata (Pesic and van der
Aalst, 2006). Another disadvantage is that LTL does not allow the expression
of the effect that results from a particular transition in a state space. For
these reasons, it is not evident to express a goal state in LTL nor to construct
automata for planning an execution scenario to obtain a goal state (Bacchus
and Kabanza, 2000) as is needed in an optimization function.

– The Event Calculus. In first-order logic, there is a formalism that elegantly
captures the time-varying nature of facts, the events that have taken place at
given time points, and the effect of these events reflecting on the state of the
system. This formalism is called the Event Calculus. The Event Calculus,
introduced by Kowalski and Sergot (Kowalski and Sergot, 1986), is a logic
programming formalism to represent and reason about the effect of events on
the state of a system. In addition, the Event Calculus not only has the ability
to deductively reasoning about the effects of the occurrence of events (leading
to the coming into existence of fluency or the ceasing to hold), most important
is that it has also the ability to reason abductively. Abductive reasoning over
the event calculus has been demonstrated to be equivalent to planning. In
particular, abductive reasoning produces a sequence of transitions (denoted
by events) that must happen for a particular instance to hold in the future
(Eshghi, 1988), (Nuffelen and Kakas, 2001) and (Shanahan, 1997).

– Coloured Petri Nets (CPNs) (Bosilj-Vuksic and Hlupic, 2001; van der Aalst
and Stahl, 2011) is a backward compatible extension of Petri Net (cf. Section
2.2.1). CPNs preserve useful properties of Petri Nets and at the same time
extend initial formalism to allow the distinction between tokens. Specifically,
CPN is a graphical language for constructing models of concurrent systems and
analysing their properties, thereby including the capabilities of a high-level
programming language. Petri Nets provide the foundation of the graphical
notation and the basic primitives for modelling concurrency, communication,
and synchronisation, for many complex applications, a more natural and com-
pact description is possible if tokens carry information, being necessary to use
CPNs.

– Graph theory. The business process can be modelled as a directed labelled
graph, for this reason sometimes authors have based their business processes
representation and the evaluation of them in the use of graph theory, and
including some made-to-measure algorithms (Becker et al., 2013; Fan and We-
instein, 1999).

– Pattern Matching. Generally, a pattern is a plan, diagram or structure used
as a guide in making something. Applied to business process, patterns are
mainly applied in the modelling stage. Similar to design patterns in software
development, a business process pattern describes a design solution to an opera-
tional business problem. The patterns can be used to model the BP (Gschwind
et al., 2008), suggest additional actions for a process model (Smirnov et al.,
2009), or the monitoring of BP compliance (Ly et al., 2011). Therefore, the

2.3. DECLARATIVE DESCRIPTION 31

base of pattern matching consists of finding the similarities of the model wanted
and/or structure found to some existing pattern in order to reuse and recognise
known pre-design models and situations.

– Constraint Programming (CP). Constraint Programming (Rossi et al.,
2006) is a paradigm that permits the declarative description of a model by
means of constraints and variables. These constraints and variables enables to
represent the relation between the components of a model, both the time order
execution and data values that flow between activities. As this is the proposal
that we use in the thesis, we describe it in-depth way in Section 2.4.1.

• Imperative and Declarative: the capacity of a language to describe imperative
and declarative aspects in the same model. Sometimes, a part of the process is
completely unknown, which could be described declaratively, and other parts are
totally known, which could be described imperatively. There exists proposals that
can combine both types of description in the same model.

• Use of the model: the existing proposals that we have analysed are focused
on different objectives: Validation of the model at runtime for a trace of events,
Construction of automatons to generate a possible sequence of activities to simulate
possible traces, or Assistance to the customer to decide which is the best activity
to execute at runtime to compliance the model.

• Data perspective: some of the languages give the possibility to include the val-
ues of the data-flow variables in the rules that describe the declarative model, not
restricting the description to the activities order.

• Pre and Post-condition: derived from the declarative description of the model,
sometimes is interesting to describe how is the system before and after the process
is executed. It can be done by means of pre and post-conditions. This is a relevant
aspect, especially in data-aware processes, since it allows the modeller to describe
the data before and after the process execution. This avoids the inclusion of details
about how to obtain the post in function of the pre-condition, since these details
belong to the internal description of the process.

• Optimization Function: the declarative models are usually used when several
possible sequence of activities can be executed, being not possible to determine a
explicit combination. Frequently, to select one of the correct possibilities can be
better or worse depending on the spent time, or resources and data used during
the execution. Some proposals permit to include an objectives to minimize or ma-
ximize in order to opt for an instance from another. The possibility to include an
optimization function in the declarative description is an important characteristic
to take into account.

32 CHAPTER 2. FOUNDATIONS

2.3.2 Analysis of Declarative languages

Several declarative languages can be found in the literature, some of the most important
have been included in this section.

• Pocket of flexibility. This solution is based on constraint specification of the busi-
ness process workflow. The constraint specification framework (Sadiq et al., 2005)
represents the workflow as a directed graph where there are two types of nodes:
activity nodes and coordinator nodes. In the framework, it is possible to combine
activities whose relation is known with activities whose relation is unknown (called
pocket of flexibility). The framework includes a set of constraints for concretiz-
ing the pocket with a valid composition of workflow fragments. It also includes
different types of order constraints (Serial, Order, Fork, Inclusion, Exclusion, and
Parallel). The constraints also describe the number of times that each activity can
be executed, and whether the execution of each activity is mandatory. The proposal
defines a set of algorithms to find possible discrepancies between the constrains that
describe the process and an instance at runtime. The implementation is based on
a made-to-measure algorithm that uses the graph to represent the constraints. The
implementation has been included in the prototype called Chameleon. The data
aspect nor the optimization objective have not been included in this proposal.

• DeCo. Irina Rychkova et al. in (Rychkova and Nurcan, 2011; Rychkova et al.,
2008a,b) presented a declarative BP specification language that enables designers
to describe the actions that a business process needs to contain, but not where their
specific sequence can be postponed to the instance time. They improve the align-
ment of the BP with the business strategy of an organization by giving a synthesis
of a set of business processes (abstracting the control flow), while maintaining a
rigorous relationship with the detailed process. These specifications complement
the traditional (imperative) business process model by specifying the process inde-
pendently from a particular environment where the process can be executed. This
proposal includes checking the conformance of the imperative and the declarative
specifications, using the case handling paradigm (van der Aalst et al., 2005). For
every action of the working object, they define a pre-condition and a post-condition.
A precondition specifies a set of states where the action can be executed, and post-
condition specifies the possible set of states after the execution of the action. The
pre and postcondition represent how the different actions can modify the state of
the objects transformed during the process execution, they do not define the order
of the actions. Therefore, different imperative description for the same declarative
descriptions are possible. Thereby this proposal focuses on the problem from the
working object point of view, and data values is one of the analysis.

• Compliance Rule Graphs. The Compliance Rule Graphs (CRGs) (Knuplesch
et al., 2010; Ly et al., 2008, 2011) focus their challenge on finding an appropriate
balance between expressiveness, formal foundation, and efficient analysis. For these
reasons, the authors propose a language based on a graph representation where the
order of the activities and the occurrence or absence of activities can be included as

2.3. DECLARATIVE DESCRIPTION 33

well. The proposal verifies the correctness of the process analysing the compliance
rules and the events monitored. The description of the order of activities can be
enriched including conditions to the rules, that will be satisfied or not depending
on the data value for each instance. The analysis is done using pattern matching
mechanisms, and is included in a prototype called SeaFlow (Ly et al., 2010).

• Em-Bra2Ce. The Enterprise Modeling using Business Rules, Agents, Activities,
Concepts and Events (Em-Bra2Ce) Framework (Goedertier and Vanthienen, 2007;
Roover et al., 2011) presents a declarative language based on the standard SBVR
(Semantics Of Business Vocabulary And Business Rules) (OMG, 2008) to describe
the vocabulary of the process, and an execution model to represent the control flow
perspective based on Colored Petri Nets. The use of SBVR allows the description
of data aspects in the business process that can be included in the Event Condition
Action rules, used as a pattern to write the rules.

• Penelope. The language Penelope (Process ENtailment from the ELicitation of
Obligations and PErmissions) (Goedertier and Vanthienen, 2006) expresses tem-
poral rules about the obligations and permissions in a business interaction using
Deontic logic. This language is supported by an algorithm to generate compliant
sequence-flow-based process models that can be used in business process design.
This language uses the Event Calculus to model the effects of performing activities
with respect to the coming into existence of temporal deontic assignments. The
only type of data that is included in the definition is related to the execution time
of the activities, but the data managed during each instance is not an object of the
proposal.

• ConDec. The ConDec (Pesic and van der Aalst, 2006) language was designed for
modelling and enacting dynamic business processes. The language defines the in-
volved activities in the process and the order relations between them. This order
relation is expressed using LTL to represent desirable or undesirable patterns within
a history of events. However, LTL formulas are difficult to read due to the com-
plexity of expressions. Therefore, the authors have defined a graphical syntax for
some typical constraints that can be encountered in workflows. ConDec initially
defined three groups of templates to make the definition of activity relations eas-
ier: (1) existence, (2) relation and (3) negation templates. An automaton can be
built in accordance with the ConDec model, where the automaton can be used to
validate a sequence of events. Declare tool (Maggi et al., 2014) is a prototype of
a workflow management, that supports the ConDec language. This tool has been
used for frameworks such as Mobucon (Maggi et al., 2011a,b) for runtime valida-
tion. This framework allows the continuous verification of compliance with respect
to a predefined constraint model. ConDec has been enlarged to include the resource
perspective (ConDec-R) and the data-aware constraints in Declare, both analysed
in the following items.

• ConDec-R. This is an extension of the ConDec language to include a description
of the resources necessary during process execution. The implementation extension,

34 CHAPTER 2. FOUNDATIONS

called ConDec-R (Barba et al., 2013), assists the customer by means of recommenda-
tions to achieve an optimized plan for one or multiple objectives (Jiménez Ramı́rez
et al., 2013). In order to obtain the plan, a CP paradigm is used, combined with a
set of algorithms to minimize evaluation time. Although this proposal incorporates
the resource perspective which is a type of data, this type of information is not
oriented to activity input and output data.

• Data-aware Constraints in Declare. This is an extension of the Declare frame-
work (Montali et al., 2013) that permits the representation of the input, internal
and output data of the activities in a declarative representation of the order of the
activity. Event calculus has been used to formalize the language and to validate
if the traces of events are in accordance with the declarative model. Although the
data aspect is included, only input and output data relations between activities can
be described.

2.3.3 Comparative

Although all these declarative languages include some information about data, none of
them include the data input and output of the activities with the aim to optimize the
object obtained from the business process. As shown in Table 2.2, none of the declarative
language include all these characteristics in their models, allowing only some of them.
Each declarative language used a different formalism of reasoning, since each one enables
to obtain a control-flow sequence based on the declarative components specified in the
model. Half of the proposals enable to specified imperative and declarative components
in their models. This characteristic use to be desirable whether not always a sequence
of activities is clearly known at design time, being easily to describe its requirements
through declarative components. On the other hand, most of them use the declarative
models to validate if a sequence of activities, for a given instance is correct or not based
on the BP requirements. But not take advantages to build a generic process capable of
support every instance or assist the customers at runtime. Related to the data perspective,
although most of them include some information about, none of them include the data
input and output of the activities with the aim to optimize the object obtained from the
BP. However, it does not occur for the specification of the pre- and post-conditions of the
process, including only by DeCo. Although the objective function is only considered by
ConDec-R, it is focused on the optimization of time and resources, not on the outcome
data of the BP to be offered to customers.

Furthermore, it is necessary to highlight that these declarative languages are not
worried to support the execution of any instance at runtime as occurs in the imperative
languages. They only provides tools to guide and recommend how a concrete instance
must be executed.

2.4. CONSTRAINT PROGRAMMING PARADIGM 35

Table 2.2 – Declarative Languages Comparative

Language Formalism
Imper.
and
Decl.

Use of
model

Data
persp.

Pre
and
Post

Opt.
Funct.

Pocket of Flex. Graph theory + algorithm X Val.

DeCo First Order Logic X Val. X X
CRGs Pattern matching Val. X
Em-Bra2Ce Color Petri Net X Val. X
Penelope Event calculus X Constr.

ConDec Linear Temporal Logic Val.

ConDec-R Constraint Programming Assist. X X
Data-aware Event Calculus Val. X

2.4 Constraint Programming Paradigm

The transformation of the declarative model into an imperative model entails the analysis
of every possibilities to find the optimal one. In order to realize this process, we have
decided to use Constraint Programming paradigm since it is a declarative model that
permit to find a solution that compliance with this analysis. The basic concepts and
search algorithms used in Constraint Programming paradigm are explain in following
subsections.

2.4.1 Constraint Programming Concepts

Constraint Programming is based on the resolution of Constraint Satisfaction Problems
(CSPs), which are problems where an assignment of values to variables must be found in
order to satisfy a number of constraints. A large number of problems in Artificial Intelli-
gence and other areas of Computer Science can be seen as special cases of CSPs. Examples
include scheduling, temporal reasoning, graph problems, configuration problems, etc.

In general, a CSP (cf. Definition 2.4.1) is composed of a set of variables, a domain
for each variable, and a set of constraints. Each constraint is defined over some subset
of the original set of variables and limits the combinations of values that the variables in
this subset can take. The goal is to find one assignment to the variables such that the
assignment satisfies all the constraints. In some kind of problems, the goal is to find all
such assignments (Kumar, 1992).

Definition 2.4.1. A Constraint Satisfaction Problem (CSP) consists of the triple
(V,D,C), where V is a set of n variables v1, v2, · · · , vn whose values are taken from finite,
discrete domains Dv1 , Dv2 , · · · , Dvn respectively, and C is a set of constraints on their
values. The constraint ck(xk1 , · · · , xkn) is a predicate that is defined on the Cartesian
product Dk1×· · ·×Dkn . This predicate is true iff the value assignment of these variables
satisfies the constraint ck.

The search of solutions for a CSP is based on the instantiation concept. An assign-
ment of a variable, or instantiation, is a pair variable-value (x, a) which represents the

36 CHAPTER 2. FOUNDATIONS

R1: y > x – n1 R2: y < x - n2

R4: y < n2

R3: y > n1

y

x

solutions

Figure 2.3 – Graphical solution of a CSP system

assignment of the value a to the variable x. An instantiation of a set of variables is a
tuple of ordered pairs, where each sorted pair (x, a) assigns the value a to the variable
x. A tuple ((x1, a1), . . . , (xi, ai)) is consistent if it satisfies all the constraints formed by
variables of the tuple.

A solution to a CSP is an assignment of values to all the variables that all constraints
must be satisfied. Hence a solution is a consistent tuple which contains all the variables of
the problem. A partial solution is a consistent tuple which contains some of the variables
of the problem. A problem is consistent if it exists, at least, a solution, i.e., a consistent
tuple. In Figure 2.3, there is a graphic which represents the space of solutions of a CSP
that must satisfy four constraints (R1, R2, R3, and R4) therefore the space of solutions
is restricted to the grey-highlighted rectangle.

2.4.1.1 CSP Consistency

One of the main difficulties in CSP resolution is the appearance of local inconsistencies.
Local inconsistencies are values of the variables that cannot take part of the solution be-
cause they do not satisfy any consistency property. Therefore if any consistency property
is forced, we can remove all the values which are inconsistent in regard to the property.
But it can be possible that some values which are consistent in regard to a property are
inconsistent in regard to another property at the same time. Global consistency implies
that all values which cannot take part in a solution can be removed. The constraints
of a CSP generate local inconsistencies because they are combined. If the search algo-
rithm does not store these inconsistencies, it will waste time and effort trying to carry
out instantiations which have already been tested.

2.4.1.2 CSP Search Algorithms

Various approaches to solve CSPs have been developed, a number of them which use con-
straint propagation to simplify the original problem. Others use backtracking to directly

2.4. CSP PARADIGM 37

search for possible solutions. Several are a combination of these two techniques.
The techniques used in constraint satisfaction depend on the kind of constraints being

considered. Constraints are often used on a finite domain, to the point that CSPs are
typically identified with problems based on constraints on a finite domain. Such problems
are usually solved via techniques that combines propagation and searches, in a particular
form of backtracking and local searcher. Constraint propagation is another method used
on such problems; the majority of them are incomplete. In general, they may solve the
problem or prove it unsatisfiable, but not always. Constraint propagation methods are
also used in conjunction with searches to make a given problem simpler to solve. Other
considered kinds of constraints are on real or rational numbers; solving problems on
these constraints is done via variable elimination or the simplex algorithm (Marriott and
Stuckey, 1998).

The search techniques to find solutions to a CSP are based normally on search al-
gorithms such as backtracking or exhaustive. They try to find a solution through the
space of possible assignments of values to the variables, if it exists, or to prove that the
problem has not a solution. Because of this, they are known as complete algorithm. The
incomplete algorithms such as local searches do not guarantee to find a solution, but they
are very used in optimization problems since their mayor efficiency and the high cost that
a complete search requires. A lot of complete search algorithms have been developed.

When solving a CSP, it is necessary to assign values to variables satisfying a set of
constraints. In real applications it often happens that problems are over-constrained
and do not have any solution. In order to solve these problems, several extensions of the
model have been proposed, where it is allowed to contain weak constraints (which indicate
preferences, not obligation) with different semantics, such as priorities, preferences, costs,
or probabilities.

2.4.2 Constraint Optimization Problems

Sometimes, the problems are not only interested in the satisfiability of a set of constraints
but also want to find the “best” solution to the constraint. There are often a lot of
solutions to a CSP, which means that a user is interested only in some of them, or only
in a specific one. In general these solutions reduce the space of solutions to a sub-set of
the solutions. Finding a “best” solution to a constraints is called an optimization problem
(Marriott and Stuckey, 1998). This requires some way of specifying which solutions are
better than others. The usual way of doing this is by giving an objective function that
has to be optimized.

Definition 2.4.2. A Constraint Optimization Problem (COP) consists of the tuple
(V,D,C, O), where an objective function O is included in a CSP defined by the tuple
V,D,C. The objective function implies maximizing or minimizing a variable that can rep-
resent a numerical combination of others by means of a function.

Optimization problems do not necessarily have a single optimal solution. For example,
consider the constraint X + Y ≤ 4 together with the objective function X + Y . Any
solution of the constraint X + Y = 4 is an optimal solution to this optimization problem.

38 CHAPTER 2. FOUNDATIONS

2.4.2.1 COP Search Algorithms

As occurs with CSP search algorithms, the methods used to solve optimization problems
depend on specific problem types. Optimization problems can be categorized according
to several criteria. Depending on the type of functions involved there are linear and
nonlinear (polynomial, algebraic, transcendental, ...) optimization problems. We could
use a solver to find any solution to the CSP, and then add a constraint to the problem
which excludes solutions that are not better than this solution. The new CSP is solved
recursively, giving rise to a solution which is closer to the optimum. This process can be
repeated until the augmented CSP is unsatisfied, in which case the optimal solution is
the last solution found.

One of the algorithms most widely used in practice is Dantzig’s simplex algorithm
(Marriott and Stuckey, 1998). However, constraint optimization can be solved by branch
and bound algorithms, which are better known and whose use is more common. These are
backtracking algorithms storing the best solution found during execution and use it for
avoiding part of the search. More precisely, whenever the algorithm encounters a partial
solution that cannot be extended to form a best solution than the stored, the algorithm
backtracks, instead of trying to extend this solution. The efficiency of these algorithms
depends on how the best solution that can be obtained from extending a partial solution
is evaluated. Indeed, if the algorithm can backtrack from a partial solution, part of the
search is skipped.

2.4.3 Distributed Constraint Satisfaction Problem

In (Yokoo et al., 1998), Yokoo et al. presented a Distributed Constraint Satisfaction Prob-
lem (DisCSP) as a general formalism for dealing with problems in multi-agent systems.
A DisCSP can be considered as a CSP in which variables and constraints are distributed
among multiple agents and the agents are required to satisfy all constraints by commu-
nicating with each other. In other words, a DisCSP is a CSP where the set of variables
and constraints of the problem are distributed between a set of agents who are in charge
to solve their own sub-problem and must coordinate themselves with the rest of agents
to reach a solution to the global problem (Abril López et al., 2007).

In (Hirayama and Yokoo, 1997), the authors define DisCSP as:

• A set of agents, 1, 2, . . ., m.

• A set of n variables V = x1, x2, ...xn where the values of the variables are taken from
finite, discrete domains D1, D2, ..., Dn, respectively

• For each variable xj, an agent i is defined such that xj belongs to i. We mean xj

belongs to i by belongs (xj, i)

• A constraint Cl is known by an agent i. The predicate known (Cl, i) is used to
express that.

Only the agent who is assigned a variable has control of its value and knowledge of its
domain. The goal for the agents is to choose values for variables such that a given global
objective function.

2.4. CSP PARADIGM 39

We assume, in general, that an agent knows only those constraints relevant to the
variables that belong to it. Note that some constraints known by an agent may include
other agents’ variables, not just its own variables. We refer to such a constraint as an
inter-agent constraint.

A distributed CSP is solved when the following conditions are satisfied for all agents.
For each agent i,

• A variable xj has a value dj as its assignment for ∀xj belongs (xj, i).

• A constraint Cl is true under the above assignments for ∀Cl known (Cl, i).

In addition, the combination of web services can also implied to obtain the best solution
or one of the best. It provokes to build and solve a Distributed Constraint Optimization
Problem (DisCOP) (Silaghi and Yokoo, 2009).

2.4.3.1 Algorithms for solving DisCSP

The algorithms for distributed CSPs must find a solution as quickly as possible. An agent
in a distributed CSP has only limited knowledge of the entire problem, and thus important
things for the algorithms include how agents communicate with each other and what
information is transferred. There are several proposals focused on solve DisCSPs. The
majority of these studies aim at defining distributed backtracking-based search algorithms,
therefore some of them are studied in the following.

• Centralized Backtracking selects a leader agent among all agents who gather all
the information about variables, their domains, and their constraints (Yokoo and
Hirayama, 2000). If the knowledge about the problem can be gathered into a single
agent, this agent can solve the problem alone by means of the utilization of normal
centralized constraint satisfaction algorithms.

• Synchronous Backtracking assumes that the agents agree on an instantiation
order of their variables (such as agent x1 goes first, then the agent x2, and so
on). Each agent, receiving a partial solution (the instantiations of the preceding
variables) from the previous agent, instantiates its variable based on the constraints
that it knows about. If it finds a value, it will append this value to a partial solution
and will pass it on to the next agent. If no instantiation of its variable can be satisfy
the constraints, then it sends a backtracking message to the previous agent (Yokoo
et al., 1998).

• Asynchronous algorithms (ABT) are characterized by the fact that all agents
are active in parallel and only coordinate as needed to ensure consistency if their
variables are involved in the constraints.

In Asynchronous Backtracking the priority order of agents is determined, and each
agent communicates its tentative value assignment to its neighboring agent via ’ok?’
messages. Each agent maintains the current value assignment of other agents from
its viewpoint. An agent changes its assignment if its current value assignment is not

40 CHAPTER 2. FOUNDATIONS

consistent with the assignment of higher priority agents. If there exists no value that
is consistent with the higher priority agents, the agent generates a new constraint
(called a nogood), and communicates the nogood to a higher priority agent, thus
the higher priority agent changes its value making backtracking.

In (Yokoo and Hirayama, 2000) the soundness, completeness and termination of
ABT algorithm is proved.

On the other hand, in order to improve the time to find the best solution, the pa-
per of Redouane Ezzahir et al. (Ezzahir et al., 2008) proposes an algorithm for solving
Distributed Constraint Optimization Problems. The algorithm is based on branch and
bound search with dynamic ordering of agents. This algorithm can be adapted to find the
nogood values in a cooperative space, helps pruning dynamically unfeasible sub-problems
and speeds up the search.

2.5 Data Quality Management in Business Process

The manage of data in business process also implies to be worried about the level of
quality of the data handle, since a business process cannot work correctly with low-level
quality of the data. For this reason, in this section the principal aspect of data quality
management and how they can affect to a business process are analysed.

2.5.1 Data Quality Management Concepts

In spite of the widest usage of the classic definition of data quality (DQ) as fitness for
use (Wang, 1998), in this thesis dissertation we rather prefer the definition of meeting
requirements (Crosby, 1979) because it brings certain advantages from the point of view
of implementing the various mechanisms of the DQ Layer. In addition, this definition also
involves the barely used concept of internal data quality vs external data quality as a way
in which a set of data satisfies the stated requirements. This concept forces differences to
be highlighted between: (i) what defines the data (as a product); and (ii) what factors
are specific to the assessment of the quality. The reason for such distinction is to better
identify and separate certain aspects of the quality of “data product”, aspects that may or
not fit with what defines the data. The data is defined by means of certain features and
sub-feature (cf. Definition 2.5.1 and Definition 2.5.2) that are set up through the design
process in accordance with the data requirements. Therefore, in the case when data fails
to satisfy the requirements, this will be due to the fact that corresponding features are
not properly designed or used.

Definition 2.5.1. Feature: any of the components of the piece of data: name, attribute,
value, data type.

Definition 2.5.2. Sub-feature: any of the sub-components of a feature: e.g. data type
could be decomposed into the specific data type (numeric, character,...) and size.

2.5. DQM 41

When the assessment of the level of quality of a piece of data is required, the speci-
fication of a number of DQ requirements against which DQ is to be judged become
necessary. These DQ requirements can be of two types: High-Level Data-Quality Re-
quirement, such as control and assurance; and Low-Level Data-Quality Require-
ments, such as measurement, assessment and decision-taking (Cappiello et al., 2013).
For the definition of high-level DQ requirements, some criteria, commonly known as DQ
requirements (Pipino et al., 2002), which represent generic concepts, should be identified
in accordance with what customers need to know: for example, customers could state that
their data should be accurate, or complete, or on time. On the other hand, low-level DQ
requirements address the degree of accuracy required, or the required level of completion,
or how long it could be delayed and still remain usable. To this end, the DQ characteristics
that are observable on data (e.g. those appearing in ISO 25012 (ISO-25012, 2008)) must
be specified. Commonly, DQ characteristics (what it should be observed in the data) can
be mapped 1:1 to DQ dimensions (i.e. that customers need to measure). To effectively
measure a DQ dimension on an item of data, for each of the DQ characteristics involved,
certain measurable attributes have to be identified (cf. Definition 2.5.3).

Definition 2.5.3. Measurable attribute: a distinctive attribute of a group of one or
various features related to a data quality characteristic that are involved in the measure-
ment of data quality dimension.

Given that the definition of a quality requirement being met is related to the idea of
zero defects, a customer must specify whether a data is defective or not by expressing some
acceptance criteria that should be part of the low-level DQ requirement. For example,
customers can decide that their data is defective with regard to completeness, when the
ratio of incomplete records is lower than 90%. Thus, in order to assess the level of
quality of a piece of data or of a dataset, the DQ experts should define explicit and
customized measurement procedures for each DQ dimension that take into account the
corresponding measurable attributes. These measures will later be used against the low-
level DQ requirement to decide whether the data is defective or not.

Definition 2.5.4. Data Quality Management: is the set of activities aimed at ensur-
ing that the data can really meet the requirements.

In the case when data could be considered defective, then some enhancement according
to the DQ policies defined by the organization is required. This process first involves the
identification of: the cause of the systematic production of defective data; the root causes
(e.g. the collection process is failing, or the database was not appropriately designed);
the specific feature of data which contributes towards the defect; and how the defect
could be fixed. As a consequence, existing data requirements must be revised or even
new requirements should be generated which specifically address the reparation of errors.
This could be covered by the DQ management function of the organization.

Related to data quality management applied to business process, organizations need
data to feed their business processes. As it is recognized, the successful of the instance of
the process is grounded, among other factors, in the quality of the used data. Therefore,
it is necessary to include data quality aspects in the description of the BP model in order

42 CHAPTER 2. FOUNDATIONS

to systematically manage the level of quality of the data that flow through the process.
Although certain data-quality related studies applied data quality management to BP,
such as (Cappiello et al., 2013; Pipino et al., 2002; Rodŕıguez et al., 2012), they are only
focused on the design of quality-aware BPs. This implies that there is a lack of proposals
to give the necessary support for the system configuration and process enactment phases
of the BP life-cycle.

2.5.2 High-level and Low-Level DQM Activities

As explained earlier, the high-level DQ management activities (control and/or assurance)
are to use some low-level DQ management activities (measurement, assessment, decision-
taking, enhancement). Further details are provided:

• DQ Measurement: the quantification of the level of data quality, following the
principles of meeting requirements, needs the set of data requirements that data
must meet. These data requirements are related with a set of DQ metrics that are
relevant for the business. Both, the business expert and the DQ expert must reach
an agreement on how to define the corresponding measurement methods for these
metrics, and how to implement them. The implementation has to be parameterized
in order to enable multiple measurements for various items of data of the BP.

A good way to increment the trustworthiness of data involve adding some extra infor-
mation about the results of the measurement by an authoritative party. Specifically,
and when the BP has to interchange data with an external entity (e.g. a provider),
the certification could be carried out by an external, independent and authoritative
entity in charge of guaranteeing a level of DQ, following the requirements described
by ISO 8000-100 ((ISO, 2011a)).

• DQ Assessment: certain decisions concerning the convenience of using the data
should be taken. The decision is to be made on the basis of the results obtained
from DQ Measurement being compared to an objective threshold, stated by those
business people who really know the processes, and the conditions in which the BP
can run smoothly and seamlessly. These conditions commonly represent the context
for the assessment of the data.

• DQ Enhancement: the data requirements necessary to transform, adapt, and/or
change the data in order to better meet a specific level of DQ must be defined and
communicated to the DQ Layer in order to let functionalities make the correspond-
ing changes to the pieces of data so that requirements can be met. An example of
enhancement can be the transformation of the format of some data, e.g. the date as
“31/02/1985” (DD/MM/YYYY) instead of “02/31/1985” (MM/DD/YYYY). Fur-
ther examples include: the identification of spelling mistakes in the names cities and
countries or in dates, e.g. when the customer types “Lndon” instead of “London”.
The improvements must be carried out based on the specific DQ dimensions un-
der study, and on some patterns or sources that make these improvements, such as
Wordnet (Princeton University, 2014), which is a lexical database of English that

2.5. DQM 43

can syntactically improve a word. Therefore, the set of requirements or patterns
that this data must meet have to be defined.

Table 2.3 shows the relationship between these activities. How these high-level DQ
management activities and low-level DQ management activities can be included in BP
are analysed in Part V.

Table 2.3 – Actions depending on DQ Requirements

PPPPPPPPPPPPPP

High-Level
Activity

Low-Level
Activity

Measure. Assess.
Decision-
Taking

Enhance.

Control X X X ×
Assurance X X X X

2.5.3 Data Quality Dimensions

In general, if somebody needs to control and/or assure the level of quality of a dataset,
then some criteria, commonly named data quality dimensions, have to be chosen, and
measurement methods have to be adapted for the specific context of the use of data and
for each one of the chosen data quality dimensions as well as a method to aggregate
all of the obtained values. Finally, an acceptance range must be defined for this last
aggregation of the measures of the data quality dimensions. If the obtained value is inside
of the acceptance range, then it is possible to state that the data set fits for the intended
use.

Examples of data quality dimensions along with the definition have been proposed
through the specialized literature, and it can be found in (English, 2001; Loshin, 2001;
Pipino et al., 2002; Redman, 1998). Some of these data quality dimensions can be objec-
tively measured, like completeness or accuracy, whereas other like believability or value-
added require the subjective opinion of the user.

One of the most challenging tasks is the definition and adaptation of the measurement
method for each data quality dimensions. Although some measurement methods have
been already developed, the need for automating the process of measurement in a gener-
alized way that can be adapted to different contexts of usage of data still lacks of a serious
proposal. However, the measurement method would be more easily generalizable for those
data quality dimensions which are objectively measurable (without the subjective opinion
of the users of the data). In this case, the literature reinforces the idea of measuring the
dimensions of completeness and accuracy against some data requirements (Benson and
Hildebrand, 2012a). Designing a method accepting definition of data requirements and
the data set, it will be possible to compute measures for completeness and for accuracy.
Even more, this method could be externalized and executed by a third authoritative part,
which, in addition, could even certify the level of quality of a data set. This would be
really useful to increase the trustworthiness on the data being used for the task.

44 CHAPTER 2. FOUNDATIONS

2.6 Case Study: Trip Planner

In order to understand the weakness of the imperative and declarative proposals, we
introduce a case study where the objective of a BP is to obtain the data corresponding
to the best product (outcome data of the process) in terms of the customer requirements.
The difficulty is that each customer can have different requirements, and the same BP
model needs to satisfy the necessities of each of these customers.

We can find in the literature several examples where data management in BP is crucial
for the successful execution of a process, such as the on-line Book Store, which is based
on a sale and delivery process (Goedertier and Vanthienen, 2006; Knuplesch et al., 2010;
Rychkova et al., 2008a; Sadiq et al., 2007). However, the main scenario used in this thesis
dissertation is the Travel Booking Example presented in (OMG, 2011a). This example
highlights the lack of graphic representation and support for the combination of activities
to search the concrete values for the data handling that achieve a common objective.

If we look through the Travel Booking Diagram (Chapter 9, page 28 in (OMG, 2011a)),
the customer wants to book a flight and a hotel room. The process starts with (i) the
travel reservation request; follows with (ii) the searching of flights, and hotel rooms, that
compose the trip package that fits customer preferences; (iii) the trip package is offered
to the customer; and finally, (iv) the customer, depending on his/her preferences, either
formalizes the proposed trip package or cancels it (see Figure 2.4). The problem in this
model lies in part (ii), where the search for each component of the trip is performed. This
search is in accordance with the customer requirements: the place to visit, the possible
dates, and the price, and it remains impossible to represent in an imperative way at design
time.

Receive Customer

Flight and Hotel

Room Reservation

Request

Package

Flights and

Hotel Rooms

for Customer

Review

Present Flights

and Hotel Rooms

Alternatives to

Customer

Search Flights

based on

Customer

Request

Search Hotel

Rooms based

on Customer

Request

Evaluate

Flights within

Customer

Criteria

Evaluate Hotel

Rooms within

Customer

Criteria

24hours

Cancel Request

Customer make

Selection

Notify

Customer to

Start Again

Update

Customer

Record

(Request

Cancelled) Request

Cancelled

Request Credit

Card Information

from Customer

24 hours

...

...

(i) (ii) (iii) (iv)

Figure 2.4 – Trip Planner Example (OMG, 2011a).

A parallel search is only possible when the customer request is formed by a concrete
data input, in other words, when each data input has only one possible value (atomic
value) and there is no relation between the customer criteria and the final result of both
activities. It means that there are no relations between the activities, so they can be
executed in a parallel way. For example, the customer wants to organize a trip, where
(s)he wants to depart on “2014-09-15” and return on “2014-09-30”, with a flight from
Seville to London, and wants to book a hotel room in London during these days. The
dates and the locations given by the customer are the data input. These data input have

2.6. TRIP PLANNER 45

atomic values for the flight and hotel room searches, hence both searches can be performed
in an independent way, by means of parallel way. However, if the customer is looking for
a transoceanic flight, then the flight arrives the next day of departure. This implies that
the check-in date in the hotel varies, depending on the output data of the flight (arrival
date) in this case.

Generally, the customer searches by hand on the Internet for the cheapest combination
of flight and hotel, for specific dates and cities. In addition, if the results obtained
remain unsatisfactory, then other dates are sought until a convenient combination is found.
Moreover, if necessary and also cheaper, a car can be rented in order to drive to another
city to take a flight from another airport, thereby expanding the range of cities of departure
and arrival.Taking a direct flight without renting a car does not necessarily mean that the
trip is the cheapest option. For example, to go directly from Seville to London, a flight
costs 250 euros, while a flight from Malaga to London costs 75 euros, and renting a car
from Seville to Malaga costs 35 euros. As a result, the best option is to rent a car from
Seville to Malaga and to take the flight from Malaga to London.

In order to obviate the search for several combinations of cities and dates, it is possible
to combine the activities that represent the search of the trip package into a single BP,
which we called the Trip Planner. The question becomes how to determine that the
best trip is found (the business product obtained as data output), and which BP model
obtain this optimization. Unfortunately, this cannot easily be solved in current business
process models, since: (i) the input values of the data of the activities are inter-related,
(ii) the output of every activity participates in the objective function to be minimized; and
(iii) the optimization cannot be developed separately, since the decision of one activity
influences the execution of the others.

46 CHAPTER 2. FOUNDATIONS

Part III

Contribution I: Combi-BP
Specification

47

Chapter 3

Specifying Data-Oriented
Optimization in Business Processes

First, solve the problem.
Then, write the code.

John Johnson.

3.1 Context and Motivation

The cornerstone of BPM is the explicit representation of business processes with their
activities, and the execution constraints between them. Generally, the explicit represen-
tation is described by imperative specifications, which described exactly how activities
have to be performed. However, this explicit representation is not always possible to be
described neither defined in an easy way at design time. The BP may be exposed to
different environments and subjected to many conditions in which the execution order of
activities cannot be described at design time in an explicit way. The importance of the BP
models design resides in their influence over the remainder phases of BPM life-cycle, since
the models are the bases of their later deployment and execution in a BPMS. Declarative
specification appears as the best alternative for flexible specification when this execution
order of activities cannot be described at design time. This flexibility comes from the
specification of what has to be done instead of how has to be done.

This thesis dissertation is focused on environments where the BP model depends on
the data handle in each instance. It means that the order of the activities and how
they are executed depends on the data that the activities share, by means of inputs and
outputs data. This dependency comes from the necessity to combine a set of activities
and data, that flows through the process, in order to obtain a common goal. This goal
can be the optimization of an objective function related to the outcome data, which
enables to obtain the best business product. The main problem of represent this type
of processes is that most current proposals of imperative and declarative languages fail

49

50 CHAPTER 3. COMBI-BP SPECIFICATION

in two aspects: (1) they are only oriented towards the execution order of the activities,
and remains unconcerned about how the data exchanged between the activities can affect
the successful execution of the process; and (2) the optimization is oriented towards the
minimization of the execution time or the resources of the business process, but not
towards the optimization of the outcome data (business product) of each instance.

In order to solve the aforementioned limitations, we firstly establish a formalization
to define the scope of our proposal, by means of the scope of data-oriented optimiza-
tion problems in BP. Based on this formalization, two proposals are presented: (1) a
declarative language with the aim of represents graphically the model which includes the
process requirements referring to data description; and (2) an extension of the imperative
language Business Process Model and Notation (BPMN). The aim of this extension is
to enlarge the capacity of the standard in order to include the declarative specification
of data-oriented optimization problems, into the imperative models described with the
standard. The proposed language covers the user requirements (external information)
with the activities and dependencies that business experts define in the declarative pro-
cess (internal components). How the internal components can be configured to satisfy the
external requirement is the Contribution II.

The chapter is organized as follows: Section 3.2 formalizes the data-oriented optimiza-
tion problems dealt in this thesis dissertation. Section 3.3 introduces a proposed declar-
ative language with data aspects. Section 3.4 defines the BPMN extension to permit the
inclusion the declarative model formalized in the first section about data optimization
in an imperative model. In order to illustrate the utilization of the various approaches,
the case study related to a Trip Planner is formalized, graphically represented with DOO-
DLE, and included in a BPMN model through CombA Sub-process in each corresponding
section. Section 3.5 includes certain relevant related work. Finally, conclusions are drawn
in Section 3.6.

3.2 Formalization of Data-Oriented Optimization in

BPs

A formal definition is essential for clarification of the proposal, since it enables the iden-
tification, description, and definition of the type of problems to be studied. The main
purpose of data-oriented optimization in BP is to obtain the combination of data to
optimize the business product of an instance. As commented, there are models where
the input data, output data, and the activities to be achieved for an objective are all
known, but not how they should be combined to attain this objective. In order to intro-
duce the formalization of the external requirements, and to present the activities that are
combined, the components of the data-oriented optimization process (see Figure 3.1) are
divided into two parts: (i) the internal components associated with the activities; and (ii)
the external components that enables the communication with external processes. These
external components describe the relation of the external requirements with the activities
of the process through the data-flow (DF). The DF is the information that flows through
the process and is formed by a set of variables. Since the variables of the data-flow can-

3.2. FORMALIZATION 51

not be assigned directly to the activities involved, it is necessary to describe the internal
components, and how they are connected to these external requirements:

...
PDI1, …, PDIn

PDI

PDO1, …, PDOm

PDO

A1

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

An

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

C1, …, Cn

ID

C1, …, Cn

ID

 f(v ϵ ADO) →value

ADI ADO

Figure 3.1 – External and Internal Components of the Data-Oriented Optimization Process

(i) The internal description of the components associated with the activities of the
data-oriented optimization process includes:

– A, a finite set of activities {A1, . . ., Ai, . . ., An} contained in a BP. For each
activity, we define:

* ACTIVITIES DATA INPUT(ADI), all the input variables of the ac-
tivities involved in the data-oriented optimization process, whereby
DATA INPUT(Ai) represents the set of data input of an activity Ai.

∀Ai, DATA INPUT(Ai) ⊆ ADI, where ADI ⊂ DF.

Since various activities can share some data input, then it is also possible
that:

DATA INPUT(Ai) ∩ DATA INPUT(Aj) 6= ∅, for i6=j

The union of all the DATA INPUT, belonging to all the activities, consti-
tutes the set ADI, with non-repetitive elements.

ADI = {DATA INPUT(A1) ∪ . . . ∪ DATA INPUT(An)}
* ACTIVITIES DATA OUTPUT(ADO), all the outputs of the activities

that conform the process, whereby DATA OUTPUT(Ai) represents the
data output of an activity Ai.

∀Ai, DATA OUTPUT(Ai) ⊆ ADO, where ADO ⊂ DF
The union of all the DATA OUTPUT, belonging to all the activities, con-
stitutes the non-repetitive set ADO.

ADO = {DATA OUPUT(A1) ∪ . . . ∪ DATA OUTPUT(An)}

52 CHAPTER 3. COMBI-BP SPECIFICATION

∗ PRE(Ai), the set of constraints that limits the specific values of the
DATA INPUT(Ai) that satisfy the execution of activity Ai.

∗ POST(Ai), the set of constraints that limits the specific values of the
DATA OUTPUT(Ai) that is satisfied after the execution of activity Ai.

(ii) The external description of the components of the data-oriented optimization pro-
cess are:

– PROCESS DATA INPUT(PDI), the set of input variables of the declarative
process, which determines the external requirements defined by the customer.

PDI ⊂ DF
– PROCESS DATA OUTPUT(PDO), the set of output variables of the process.

PDO is formed of a subset of ADO that represents the business outcome of the
process.

PDO ⊆ ADO

– INPUT CONSTRAINTS represents the set of constraints that relates some
PDI variable with some DATA INPUT variable of the involved activities.

– OUTPUT CONSTRAINTS represents the set of constraints that relates some
data (variable) of PDO with some data (variable) of DATA OUTPUT of the
involved activities.

– OBJECTIVE FUNCTION(OBJ FUNC) is an optimization function defined
in terms of the data output of the activities (ADO) that satisfies the pre-
conditions and post-conditions of the activities, and the input and output con-
straints. The objective of this optimization function can be to maximize or
minimize the output data that represent the business product.

OBJ FUNC : f(v ⊆ ADO)→ value, where f is MAX or MIN

In order to solve the objective function, the DATA INPUT(Ai) values that
optimize the output of the objective function must be found.

This formalization, used as a data-oriented optimization processes, includes the data
of the process, the data of the activities, the objective function, and the constraints that
enable the business expert to describe the possible data values and the dependencies of
the activities. These constraints are defined by the following grammar, where Variable

and Constant, can be defined in the Integer, Natural, Float, Dates, and String domains.
On the other hand, Set can be defined as a set of Constant values of a specific Variable.

Constraint := Atomic−Constraint BOOL−OP Constraint

| Atomic−Constraint
| ‘¬’ Constraint

| Variable SET−FUNCTION Set

BOOL−OP:= ‘∨’ | ’∧’ | ‘→’

SET−FUNCTION:= ‘∈’ | ‘/∈’
Atomic−Constraint:= function PREDICATE function

function:= Variable FUNCTION−SYMBOL function

3.2. FORMALIZATION 53

| Variable
| Constant

PREDICATE:= ‘=’ | ‘6=’ | ‘<’ | ‘≤’ | ‘>’ | ‘≥’
{For the String domain only ‘=’ and ‘ 6=’ are allowed}

FUNCTION−SYMBOL:= ‘+’ | ‘−’ | ‘∗’ | ‘/’
{These operators are only applicable to Numerical variables}

Specifically, in the data-oriented optimization process the variables of the constraints
are the data defined by the external and internal components, i.e. PDI, PDO, ADI,
and/or ADO, whose values will be established at runtime for each instance.

3.2.1 Formalization Applied to the Trip Planner

In this subsection, the formalization is applied to the Travel Search sub-process of Sub-
section 2.6 in order to form the cheapest trip package that fits customer preferences.

In the example, there are eight PDIs whose values are given by the customer: de-
partingFrom, setDepartingFrom (the set of possible departure cities for the flight),
goingTo, setGoingTo (the set of possible arrival cities for the flight), earlyDepart-
Date and lastDepartDate (the earliest and the last day when the customer prefers to
depart respectively), and earlyReturnDate and lastReturnDate (the earliest and the
last day when the customer prefers to return).

Given a data input, each activity calculates the price. The activities (Ai) and their
ADI are detailed below.

• Flight Search Activity (AF) returns the price of flights for a tuple of values for the
data input.

DATA INPUT(AF) = {departingFrom, goingTo, departDate, returnDate}

DATA OUTPUT(AF) = {priceF light, flightInformation,Data Input(AF)} where
flightInformation = {outwardArrivalDate, returnArrivalDate, seat, ...}

Certain existing pre- and post-conditions include:

PRE(AF) = {departDate ≥ systemDate ∧ returnDate ≥ departDate
∧ departingFrom 6= goingTo}

POST(AF) =
{flightInformation 6= null→ priceF light > 0 ∧ flightInformation = null→ priceF light = 0}

• Hotel Search Activity (AH) is employed to determine the cost of booking a hotel
room.

DATA INPUT(AH) = {location, checkInDate, checkOutDate}

DATA OUTPUT(AH) = {priceHotel, hotelInformation,DataInput(AH)}

Certain existing pre- and post-conditions include:

PRE(AH) = {checkInDate ≥ systemDate ∧ checkInDate < checkOutDate}

54 CHAPTER 3. COMBI-BP SPECIFICATION

POST(AH) =
{hotelInformation 6= null→ priceHotel > 0 ∧ hotelInformation = null→ priceHotel = 0}

• Car Rental Search Activities (ACR1 and ACR2) are employed to determine the price
of renting a car. Two cars can be rented during the trip, one at the source (ACR1)
and another at the destination (ACR2). Nevertheless, the price of renting both cars
is represented by ACRx, where x can take the values 1 or 2, and depends on these
entries:

DATA INPUT(ACRx) = {departingFrom, goingTo, departDate, returnDate}

DATA OUTPUT(ACRx) = {priceCarRx, carRxInformation,DataInput(ACRx)}

Certain existing pre- and post-conditions include:

PRE(ACRx) = {departDate ≥ systemDate ∧ departDate < returnDate}

POST(ACRx) = {carRxInformation 6= null→ priceCarRx > 0 ∧ carRxInformation =
null→ priceCarRx = 0}

Therefore, the outputs of the process, PDO, are the outputs of the activities, which
contain the information about the various components of the trip, as well as the total
price of the trip (price).

There are several constraints that restrain data input and output that belong to the
process and the activities. The constraints for the input and output data that determine
the problem are defined below:

• INPUT CONSTRAINTS:

– The constraints that define the possible values of departure date (IC1) and
return date (IC2) of the flights, have to satisfy those described by the customer
in the input data.

(IC1) earlyDepartDate ≤ AF .departDate ≤ lastDepartDate

(IC2) earlyReturnDate ≤ AF .returnDate ≤ lastReturnDate

– The constraints that describe the possible values of the departure airport (IC3)
and arrival airport (IC4) of the flight, have to satisfy the possibilities of the
input data proposed by the customer.

(IC3) AF .departingFrom ∈ setDepartingFrom

(IC4) AF .goingTo ∈ setGoingTo

– The date of check-in into the hotel has to coincide with the arrival date of the
outward flight (IC5).

(IC5) AH .checkInDate = AF .outwardArrivalDate

– If the flight does not depart from the departure location (IC6), then the rental
of a car (CR1) is necessary.

3.3. DATA-ORIENTEDOPTIMIZATION DECLARATIVE LANGUAGE (DOODLE)55

(IC6) departingFrom 6= AF .departingFrom→ { ACR1.departingFrom =
departingFrom ∧ ACR1.goingTo = AF .departingFrom ∧ ACR1.departDate =
AF .departDate ∧ ACR1.returnDate = AF .returnArrivalDate}

– If the flight arrives at the destination city ((IC7)), then it is not necessary to
rent a car at the destination city.

(IC7) goingTo = AF .goingTo→ AF .goingTo = AH .location

• OUTPUT CONSTRAINTS:

– The total price is the sum of all the prices returned by the activities, as pre-
sented in constraint (OC1).

(OC1) totalPrice = priceF light + priceHotel + priceCarR1 + priceCarR2

In this example, the optimization involves the minimization of the cost of buying flight
tickets, staying in a hotel room, and renting cars for the departure and arrival cities, and
for the chosen departure and return dates.

OBJ FUNC : (MIN, totalPrice)

3.3 Data-Oriented Optimization Declarative Lan-

guagE (DOODLE)

In order to facilitate the creation of models that follows this formalization into a BP
model, we have defined a declarative language called DOODLE (Data-Oriented Opti-
mization Declarative LanguagE). The declarative description includes the data process,
data activities, objective function and the constraints that let the business experts de-
scribe the possible data values in a declarative way. A graphical notation is also defined
in order to include these components into a BP model easily. Although there is already
a declarative language called DOODLE, presented by Cruz in (Cruz, 1992), it is a visual
and declarative language for object-oriented databases, while our proposal is focused on a
definition of a BP in a declarative way. All these components of the model are graphically
represented by the symbols shown and detailed in Tables 3.1 and 3.2.

3.3.1 DOODLE Applied to the Trip Planner

Figure 3.2 shows how the components related to the Trip Planner Search sub-process,
explained as the case study of this thesis dissertation, are represented with DOODLE.

Thanks to use DOODLE, the data-oriented optimization problems in BP can be spec-
ified easily. However, this kind of processes makes sense within a more complete process,
where one of the main activities is the search of the optimal value. As shown in the case
study, the data-oriented optimization problem corresponds to the sub-process of search-
ing the trip package. Once the trip package is found, the process of booking the parts of
the package, the payment, and even, the monitoring of the whole trip can be part of the

56 CHAPTER 3. COMBI-BP SPECIFICATION

Table 3.1 – Internal Components associated to the activities of the declarative model

Symbol Name Description Type

DI1, …, DIn

DI Data Input (DI)
of the activity

Set of data input of an activity List of variables

DO1, …, DOm

DO
Data Output
(DO) of the

activity
Set of data output of an activity List of variables

C1, …, Cn

<<Pre>>

Pre-condition
Set of constraints that represents
the values of the DI that satisfy

the execution of the activity
Constraints

C1, …, Cn

<<Post>>

Post-condition

Set of constraints that represents
the values of the DO that are
satisfied after the execution of

the activity

Constraints

complete process. These parts can be represented imperatively since the order of the ac-
tivities are known at design time, and can be easily represented. Therefore, as soon as the
data-oriented optimization process could be integrated in any of the existing imperative
languages, the strength of our proposal would be greater.

For example, the resulting data-oriented optimization process could be added to the
diagram presented in (OMG, 2011a) replacing the had-hoc sub-process of searching the
flights, hotel rooms, and rental cars with this new Travel Search Sub-Process (see Figure
3.3). The following subsection details how to integrate the declarative description within
an imperative specification.

3.4. BPMN EXTENSION FOR DATA-ORIENTED OPTIMIZATION PROCESSES 57

Table 3.2 – External Components of the declarative model

Symbol Name Description Type

SDI1, …, SDIn

SDI Process Data
Input (PDI)

Data input of the declarative
sub-process that describe the
external requirement in each

instance

List of variables

SDO1, …, SDOm

SDO Process Data
Output (PDO)

Data output of the declarative
sub-process

List of variables

f: v
Objective
function

An optimization function in
terms of data

Minimize or
Maximize an

objective
variable

C1, …, Cn

ID Input
Constraints (IC)

Set of constraints that relates
the SDI with the DI of each
activity of the sub-process

Constraints

C1, …, Cn

ID
Output

Constraints
(OC)

Set of constraints that relates
the SDO with the DO of each

activity of the sub-process
Constraints

3.4 BPMN Extension for Data-Oriented Optimiza-

tion processes

The main standard used to model BPs is Business Process Model and Notation (BPMN),
proposed by OMG (OMG, 2011b) and detailed in Section 2.2.2. BPMN 2.0 specification
wants to stress the different stages in which the modelling process is composed: descrip-
tion, analysis and execution. The description stage concerns the visible elements and
attributes used in high-level modelling, in other words, the closest stage to the human
level. The analysis stage contains all of the description stage and others, and it is closer
to a software engine level. Both stages are focused on visible elements and a minimal
subset of supporting attributes/elements. On the other hand, the execution stage focuses
on what is needed to execute process models.

To the best of our knowledge, there are no solutions with BPMN that enable to repre-
sent data-oriented optimization processes, such as the formalized before (cf. Section 3.2).
Although BPMN represents business processes, by means of Sequence Flows and Data
Flows, the objective function and the constraints that relate the data can only be added
through annotations. Moreover, the annotations cannot be mapped to executed code
in an automatic way. Fortunately, BPMN gives mechanisms to extend its functionality
with new components. These mechanisms include and define the typography, linguistic
conventions and style of BPMN, which are respecting in the definition of our proposal.

For this reason, the aim of this section is to extend the expressiveness of BPMN 2.0
with a new type of sub-process to include the declarative elements described in previous
section. The proposal is focused on the support of this combination of activities, whose

58 CHAPTER 3. COMBI-BP SPECIFICATION

 departDate ≥ SystemDate,

 returnDate ≥ departDate

<<Pre>>

carR2Information ≠null →

priceCarR2 > 0

<<Post>>

departingFrom,

goingTo,

departDate,

returnDate

DI

DO

priceFlight,

flightInformation,

DI

totalPrice

PDI

ADO

PDO

MIN

totalPrice

Flight

Search

departingFrom,

goingTo,

earlyDepartDate,

lastDepartDate,

earlyReturnDate,

lastReturnDate,

setDepartingFrom,

setGoingTo,

...

PDI

location,

checkInDate,

checkOutDate

DI

DO

priceHotel,

hotelInformation,

DI

hotelInformation ≠null →

priceHotel > 0

<<Post>>

departingFrom,

goingTo,

departDate,

returnDate

DI

DO

priceCarR1,

carR1Information,

DI

Rental

Car 1

Search

DI

departingFrom,

goingTo,

departDate,

returnDate

Rental

Car 2

Search

 departDate ≥ SystemDate,

 returnDate ≥ departDate

<<Pre>>

carR1Information ≠null →

priceCarR1 > 0

<<Post>>

departDate ≥ SystemDate,

 returnDate ≥ departDate,

departingFrom ≠ goingTo

<<Pre>>

flightInformation ≠null →

priceFlight > 0

<<Post>>

checkInDate > checkOutDate

<<Pre>>

Hotel

Search

DO

priceCarR2,

carR2Information,

DI

earlyDepartDate ≤ flight.departDate,

flight.departDate ≤ lastDepartDate,

...

ID

totalPrice = priceFlight + priceHotel +

priceCarR1 + priceCarR2

ID

Travel Search Sub-Process

Figure 3.2 – Example of the trip planner described using DOODLE

Receive Customer Flight, Hotel

Room Reservation Request

+

Travel

Search

Package Flights

and Hotel Rooms

for Customer

Review

Present Flights

and Hotel Rooms

Alternatives to

Customer
...

Figure 3.3 – Data-oriented optimization process included in the Trip Planner Process.

main purpose is to optimize the business product, and whose concrete values vary and
depend on each instance. Thanks to this extension, declarative and imperative paradigms
can be combined in a single model.

To do this, following subsections argues how the existing elements of BPMN can-
not support data-oriented optimization processes, and thus, which solution is proposed.
Specifically, a new metamodel is created in subsection 3.4.1, the new sub-process descrip-
tion is defined in subsection 3.4.2, the operational semantics are detailed in subsection
3.4.3, the event handling is analysed in subsection 3.4.4, and a solution to the executable
stage is proposed in subsection 3.4.5. In addition, an editor capable of supporting our
proposal is developed. Finally, this new extension is applied to the case study.

3.4. BPMN EXTENSION 59

Figure 3.4 – Extension of BPMN 2.0 Sub-Process Metamodel.

3.4.1 Metamodel for the declarative sub-process

BPMN offers a way to represent the activities that have no REQUIRED sequence relation-
ships through Ad-Hoc Sub-Process (OMG, 2011b). The Ad-Hoc Sub-Process semantics
description is not enough for the combination of activities where the concrete values for
the data have to be found to optimize the outcome data, and there is no way to deter-
mine them at design time. Although there is no explicit process structure in Ad-Hoc
Sub-Process, some sequence and data dependencies can be added to the details of the
process. In addition, the performers1 determine when the activities will start, what the
next activity will be, and so on. However, this is not valid when there are no sequence
relationships, the data dependencies are on the data input and/or output of the activities
and external requirements, and the performers cannot determine the sequence, as occur
in data-oriented optimization processes. Furthermore, the list of BPMN elements that
MUST NOT be used in an Ad-Hoc Sub-Process includes: Start and End Events, Con-
versations (graphically), Conversations Links (graphically) and Choreography Activities,
which are useful to combine the activities to achieve an optimal goal.

In order to include these new requirements, an extension of Sub-Process definition
(OMG, 2011b) is necessary. A new contextual scope is defined to achieve the optimization.
Figure 3.4 shows the new metamodel related to Sub-Process, adding the new type of sub-
process, that we called CombA Sub-Process2, presented in this section.

According to the BPMN 2.0 methodology (OMG, 2011b), the descriptive stage is

1A Performer defines the resource that will perform or will be responsible for an activity. The performer
can be specified in the form of a specific individual, a group, an organization role or position, or an
organization (OMG, 2011b).

2A different name is used to define the new sub-process with the aim of distinguish between the
declarative language, called DOODLE, and the BPMN extension, called CombA Sub-Process.

60 CHAPTER 3. COMBI-BP SPECIFICATION

necessary to define the characteristics of this new sub-process. This description enables
the high-level modelling through a visible element and a set of attributes, as detailed in
the following subsection.

3.4.2 CombA Sub-Process Definition as Declarative Component

CombA Sub-Process is a specialized type of Sub-Process which is a set of activities3

that have no REQUIRED sequence relationships. This new sub-process has to combine
the activities in order to search the concrete values for the data handle that optimize
a common objective. The set of activities can be defined in the process. However, the
sequence and the number of performances for the activities cannot be determined by
the performers of the activities, since the behaviour of an activity depends on the data
belonging to other activities (or are external to the sub-process), and vice versa.

The formal definition of the declarative components presented in Section 3.2 is trans-
lated into BPMN elements in order to define the CombA Sub-Process. Therefore, the
CombA Sub-Process is composed of:

• Activities (A in the formal definition): generally, these activities are tasks. A task
is an unit of work, the job to be performed. However, each activity, in turn, can
be another process. The unique requirement is that each activity has different and
independent functionality.

• Data Object: it represents the information flowing through the process. The
CombA Sub-Process handled mainly two types of data:

– Data Input. There are two types of data input in the CombA Sub-Process:
the first corresponds to the external input for the entire process (PDI in the
formal definition). It can be read by an activity and is given by a performer.
And the second type corresponds with the data input of each activity that
participate in the optimization (ADI in the formal definition).

– Data Output. There are two types of data output: the first one corresponds
to the variable available as result of the entire process and the answer of the
customer request (PDO in the formal definition). And the second type corre-
sponds to the output data of each activity (ADO in the formal definition).

• Constraints (C in the formal definition): a set of Formal Expressions4 that relate
both types of data object. The CombA Sub-Process handled mainly two types of
constraints: (1) related to the process and activities (input and output constraints);
and (2) related to each activities (pre and post-conditions).

• Optimization Function: The Formal Expression used to define the function to
be optimized. This function relates the data output of the activities.

3An Activity is a Process step that can be atomic (Tasks) or decomposable (Sub-Processes) (OMG,
2011b).

4A Formal Expression is used to specify an executable Expression using a specified Expression lan-
guage. A concrete constraint language is the one proposed in Section 3.2.

3.4. BPMN EXTENSION 61

As the visible element for the modelling, we propose to use a puzzle piece symbol like
the marker for the CombA Sub-Process and it can be used in a collapsed and expanded way
(see Figure 3.5). The reason of choosing this symbol is that the activities in the CombA
Sub-Process have to fit as the pieces of a puzzle, that can be a right visualization for the
business level. The circular structure in the expanded CombA Sub-Process represents
the lack of predefined order and sequence relationship, centred on the objective function,
which is the CombA Sub-Process Core. The data and constraints are included as part of
the definition of each activity and the sub-process itself.

Figure 3.5 – Collapsed and Expanded representation of CombA Sub-Process.

The CombA Sub-Process element inherits the attributes and model associations of
activities through its relationship to sub-process (OMG, 2011b), such as properties, and
sequence-flow. Table 3.3 presents the additional attributes and model associations of
the CombA Sub-Process.

Table 3.3 – CombA Sub-Process model attributes

Attribute Name Description - Usage

data: set of Formal Expres-
sions

Definition of the input and output data of
the sub-process.

constraints: set of Formal
Expressions

Definition of the input and output con-
straints that relate the data that flow
through the Sub-Process, limiting their po-
ssible behaviours.

objectiveFunction: Formal
Expression

Definition of the global optimization goal.

numberSolutions: Integer

Attribute to determine if the CombA Sub-
Process searches only one of the best solu-
tions or all the best solutions (values 0 or 1
respectively). The default value is 0.

In addition, the activity element should be extended to fit with the formalization. In
order to differentiate this specialized activity, it is called CombA Task. Table 3.4 presents
the additional attributes and model associations of this CombA Task.

62 CHAPTER 3. COMBI-BP SPECIFICATION

Table 3.4 – CombA Task model attributes

Attribute Name Description - Usage

data: set of Formal Expres-
sions

Definition of the input and output data of
the activity.

constraints: set of Formal
Expressions

Definition of the pre- and post-conditions of
the activity, limiting its possible behaviours.

3.4.3 CombA Sub-Process Operational Semantics

Following the definition for Sub-Processes presented in (OMG, 2011b), a CombA Sub-
Process is an activity that encapsulates a Sub-Process that is in turn modelled by Ac-
tivities, Gateways, Events and Sequence Flow. Moreover, the CombA Tasks involved
in the optimization could be composed of Conversations, Choreographies and other Sub-
Processes. The CombA Sub-Process is instantiated when it is reached by a Sequence Flow
token5 through an unique Start Event. The CombA Sub-Process instance is completed
when the CombA Tasks achieve the optimal goal and none of its CombA Tasks are still
activated, in other words, when the End Event is reached by the token. Since various
combination of values can produce the same result, the integer numberSolutions attribute
establishes whether the CombA Tasks should find all the best solutions or only one. As
long as the CombA Tasks do not find the optimal/s goal, and therefore, the concrete
values for the data handle, the sub-process will not end.

3.4.4 CombA Sub-Process Handling Events

Thanks to incorporate the declarative model into a BPMN component, it is possible to
use the handling events defined by the standard. For example, the events can help to
control the spent time to find the optimal data solution. In order to control this kind of
problems, BPMN provides a set of Timer Events. For example to represent that if after a
period of time no optimal goal is obtained, then the operation is cancelled, returning the
best solutions found until that moment. Sometimes, this timer requirement is provided
by the customer who does not want to wait. However, timer requirement can also be used
to provide faster products from the service provider point of view.

In general, BPMN provides several event handlers that help to manage and solve
situations that happen during the course of a Process instance. Various of these event
handlers can be applied to the CombA Sub-Process, especially intermediate events, since
CombA Sub-Process can be affected by the same types of events than a common activity.

An Intermediate Event indicates where something happens (an Event), somewhere
between the start and the end of a process. It will affect into the flow of the process,
although this event will not start or (directly) terminate the process (OMG, 2011b). The

5The concept of a token is used by BPMN to facilitate the discussion of how Sequence Flows are
used within a Process (OMG, 2011b). A token will traverse the Sequence Flows and pass through the
elements in the Process. A token is a theoretical concept that is used as an aid to define de behaviour of
a Process that is being performed. The behaviour of Process elements can be defined by describing how
they interact with a token as it “traverses” the structure of the Process.

3.4. BPMN EXTENSION 63

Intermediate Timer Event, specifically the interrupting type, interrupts the activity, to
which is attached, changing the normal flow into an exception flow.

Applied to the CombA Sub-Process (see Figure 3.6), it implies that there will be two
outcomes: successful completion and failed completion.

Start Event End Event

+

Process 1
Task 1

+

Process 2

Task n
+

Process n

+

CombA

Sub-Process

Core

CombA

Sub-Process

Name

Management of

Timer Event

timeValue

Management of

Timer Event

timeValue

Figure 3.6 – A collapsed and expanded CombA Sub-Process with Timer Event.

Although in this thesis dissertation only Timer Events are detailed, a CombA Sub-
Process can be combined with the set of Events given by BPMN 2.0 (e.g. Error, Message,
Conditional, etc) (OMG, 2011b) and completed handling these possible events as it is
done by sub-processes.

3.4.5 CombA Sub-Process Execution Semantics

BPMN 2.0 pays special attention to the execution semantics since there is an important
need of executable process models. A CombA Sub-Process contains all the necessary
elements to define a data-oriented optimization problem within a BPMN model. However,
these components are defined in a declarative way, which implies certain treatment to
transform them into executable. Specifically, CombA Sub-Process contains a number of
embedded inner activities and is intended to be executed with more flexible ordering,
compared to the routing of Processes or Ad-Hoc Sub-Processes. There are several ways
to combine the activities and all of them depend on the performer (designer) criteria.

A complete study on how this CombA Sub-Process can become executable is provided
in Part IV.

64 CHAPTER 3. COMBI-BP SPECIFICATION

3.4.6 BPMN Editor including CombA Sub-Process

In order to provide a tool with the capability of defining CombA Sub-Processes within a
BPMN model, CombiS-BP6 Editor is developed.

CombiS-BP Editor enables combined modelling of the two aforementioned specifica-
tions: (i) allows an imperative specification when experts know the execution order of
the activities in the model, by means of the BPMN 2.0 components and; (ii) enables a
declarative specification of data-oriented optimization processes through the declarative
component: CombA Sub-Process. Therefore, CombiS-BP Editor is proposed with the
aim of integrating imperative and declarative languages.

To the best of our knowledge, there are no available tools that enable the modelling
of a BP where the order relation among the activities depends on the data values of each
instance. In the search of existing tools that model declarative constraints in BP and
workflows, various relevant tools were found ((Goedertier and Vanthienen, 2007; Kopp
et al., 2012; Pesic et al., 2009; van der Aalst, 2004)). All of them use the value of the
data to determine which task is executed next, deal with multiple instances, and extend
the standard functionality. Although these tools define a set of constraints that relates
the activities, the aim of these constraints is to establish an execution order, that in our
approach is unknown until the value of the data are analysed at runtime.

Heretofore, with the existing BPMN 2.0 modelling tools, business experts had to decide
the exact order (sequential, parallel, etc.) to model the part where the activities require
combination and they could not know how to combine them. CombiS-BP Editor combines
the imperative part of the model where experts know how things should be done, with
the declarative part of the model where experts only know the activities that need to be
executed, the relation between activities, and the optimization function.

In order to include CombA Sub-Process and to describe the declarative part of the
process, the grammar used by CombiS-BP Editor is shown in Figure 3.7. CombA Sub-
Process contains an Identifier, its functionality is described through a Description and
its goal to be optimized is represented as ObjFunc. The set of activities to be combined
are represented as Activities. Each ActivityElem from Activities represents the features of
each activity (e.g. name, and attributes). Finally, the relationships between the activities
are represented as Constraints, where some DeclarationConstraints are defined through
Data (belonged to Process or to Activities).

CombisS-BP Editor has been developed as an extension of OPBUS tool ((OPB, 2012;
Varela-Vaca et al., 2011)), which is an eclipse plug-in. CombiS-BP Editor integrates a
BPMN 2.0 modeller that enables the creation of CombA Sub-Process (see Figure 3.8).
The user interface is composed of four main parts: edition zone, palette, properties and
problem tabs, and a project workspace zone with basic menus. Business experts model
the common BP in the edition zone. In this part, declarative and imperative specifications
are differentiated through the different elements used in the process. The palette provides
the graphical definition of BPMN elements (imperative specification) and CombA Sub-
process(declarative specification), which can be selected and dropped into the edition

6Since this editor covers the first step of Combi-BP framework, its name is associated to the phase of
Combi-BP Specification (CombiS-BP)

3.4. BPMN EXTENSION 65

CombA Sub-process

Identifier Description
Activities

(CombA Tasks)
ObjFunc

1 1
1

1 1
Data Constraints

ProcessDataActivityData

DeclarationConstraint

0..*

refers to

ADI

1..*

ActivityElem

1..*
refers to

1

refers to

ADO

1..*

PDI

1..*

PDO

1..*

Process

Constraints

Activity

Constraints

refers to

Pre-cond.

1..*

refers to

Post-cond.

1..*

Input

Constraints

1..*

Output

Constraints

1..*

refers to

refers to
refers to

refers to
refers to

Figure 3.7 – Vocabulary in CombiS-BP Editor.

zone.
The marker associated to CombA Sub-Process graphical definition in the palette is

a set of puzzle pieces symbol(such as defined in 3.4.2), and to CombA Task (activities
involved in the combination), the graphical definition is a unique puzzle piece symbol.
CombA Flow is a solid line that can connect only CambA Task with CombA Sub-Process.
The declarative definition is completed with the properties part, which provides support
for the definition of elements details. In order to fill the CombA Sub-Process grammar
shown in Figure3.7, some properties and elements are added. Specifically, the property
ActivityData and ProcessData are added, to CombA Task and CombA elements respec-
tively, through a Data element from the palette. In the same way, the set of Constraints
are added to CombA element and specify by the properties provided in the Constraint el-
ement (see Figure 3.8). Finally, the properties, provided in the properties part, associated
to CombA Sub-Process element are Id, Description and Objective function.

3.4.7 BPMN Extension Applied to the Trip Planner

The formal definition given in Section 3.2 for the Trip Planner Example is also valid for
the CombA Sub-Process definition. Therefore, the attributes of CombA Sub-Process for
the example are:

• data: All the input and output data of the process are part of this attribute.

• constraints: All the constraints defined as input and output constraints are part
of this attribute.

• objectiveFunction: To get the cheapest trip, the objective function is to minimize
the total prices, as defined in the formalization OBJ FUNC (MIN, totalPrice).

• numberSolutions: All the best solutions regarding the objective function to opti-
mize. According to the values given in Table 3.3, the value could be 1.

66 CHAPTER 3. COMBI-BP SPECIFICATION

Figure 3.8 – CombiS-BP Editor.

In addition, the activities Flight, Hotel and Car Rentals Search Activities, are special-
ized in CombA Tasks, whose new attributes correspond to:

• data: All the input and output data of each activity are part of this attribute.

• constraints: All the pre- and post-conditions of each activity are part of this
attribute.

Finally, Figure 3.9 depicts the way to represent the combination of these activities
with the new CombA Sub-Process marker.

Start Event End Event

+

Hotel

Search

+

Flight

Search Travel Search
Sub-Process

+

Rental Car

1 Search

+

Rental Car

2 Search

ObjectiveFunction:

Min(totalPrice)

Figure 3.9 – Expanded Search Travel CombA Sub-Process.

3.5. RELATED WORK 67

3.5 Related work

In order to analyse the related works applied in this contribution, it is necessary to study
how the existing imperative and declarative languages support and consider the data-
oriented optimization processes as formalized before.

Related to the imperative specification, Yunzhou Wu et al. in (Wu and Doshi, 2008)
show how the constraints that necessitate coordination may be represented in the Busi-
ness Process Execution Language for Web Services (BPEL). BPEL is an OASIS standard
executable language for specifying actions within business processes with web services
(OASIS, 2005). Processes in BPEL export and import information by using web service
interfaces exclusively. But there is not a protocol defined in BPEL to combine the ac-
tivities nor to select the concrete values of the data input according to the optimization
function. The authors in (Wu and Doshi, 2008) use a generalized adaptation and con-
straint enforcement models to transform the traditional BPEL process into an adaptive
process. However, the authors solve the combined adaptation and constraint enforcement
models in order by obtaining a policy that recommends adaptive actions while respecting
the constraints. Therefore, there is no combination to search the concrete values for the
data handle in terms defined in our work.

Aside from this, service-oriented systems have emerged as the paradigm to provide
such automated support for BP. Van der Aalst et al. in (van der Aalst et al., 2003)
and Papazoglou et al. in (Papazoglou and van den Heuvel, 2007), present Web Services
as the infrastructure to foster BP by composing individual Web Services to represent
complex processes. There are several studies on the composition of services that can be
extrapolated to the composition of activities in BPs since services are specific activities in
the BP. To the best of our knowledge, none of these studies represents graphically or solves
the type of coordination that this contribution presents: a combination of independent
activities to find the concrete values of their data that optimize an overall objective.

On the other hand, various declarative languages can be found in the literature, most
of which describe the correct order of the activities of the BPs. Compared with declarative
languages analysed in Section 2.3 and shown in Table 3.5, our proposal DOODLE includes
data-oriented optimization aspects in a declarative manner. It is done by means of a set
of constraints that describe the data exchanged among the activities, when their relations
cannot be defined explicitly at design time. The model and the reasoning framework
use Constraint Programming in order to configure an imperative model and infer the
possible values of the data and achieve the optimal outcome at run-time. However, every
formalism for reasoning could completely valid whether enable efficient and complete
reasoning algorithms to cover the process necessities. Related to the imperative and
declarative description capacities, only few of them enables to combine and integrate
both types of description in the same model. This characteristic enables a more flexible
and adaptable specification, letting the business experts to describe parts where they know
how to model them in an imperative specification, and the parts where they know the BP
requirements in a declarative way. One of the mains strength of DOODLE is its capacity to
construct an imperative model and also assist to the customer to decide which is the best
activity to execute at runtime, since generally, the languages are oriented to only a use.

68 CHAPTER 3. COMBI-BP SPECIFICATION

In other respects, the data perspective is more widespread. Although all these declarative
languages include some information about data, none of them include the data input and
output of the activities with the aim to optimize the object obtained from the BP being not
the same for the specification of the pre- and post-conditions. This characteristic enables
to define the requirements for the execution of the activities, which play an important role
in the optimization process. Only Condec-R includes an objective function in its language.
However, this objective function is oriented towards the optimization of resources and
execution time, not to the business product. All these characteristics make DOODLE as
a complete alternative to specify declarative requirements within imperative descriptions,
and more specifically, to define data-oriented optimization problems in BP.

Table 3.5 – Declarative Languages Comparative including DOODLE

Language Formalism
Imper.
and
Decl.

Use of
model

Data
persp.

Pre
and
Post

Opt.
Funct.

Pocket of Flex. Graph theory + algorithm X Val.

DeCo First Order Logic X Val. X X
CRGs Pattern matching Val. X
Em-Bra2Ce Color Petri Net X Val. X
Penelope Event calculus X Constr.

ConDec Linear Temporal Logic Val.

ConDec-R Constraint Programming Assist. X X
Data-aware Event Calculus Val. X

DOODLE Constraint Programming X
Constr.
Assist.

X X X

3.6 Summary and Discussion

In this chapter, the specification of data-oriented optimization problems in current BPM
has been tacked. The main obstacles are related to the lack of mechanisms to define
and specify data aspects oriented to the optimization of the business product. In the
majority of cases, the role of data is mostly limited to describing the execution of not of
an activity, which depends on the value of a variable of the data-flow. The proposals fail to
take into account how the exchange of data between the activities can affect the successful
execution of the process. We have analysed some of the most relevant declarative and
imperative languages in business processes. From this analysis we have detected that
none of them permit the declarative description of data in the business processes, and
how it can influence in the obtained model.

In order to face this need, we have firstly formalized the data-oriented optimization
processes. A declarative language, called DOODLE, is proposed. DOODLE permits the
description of the data exchanged among the activities of the process in a declarative way
by means of data, constraints, and an objective function, as shown in Figure 3.10.

3.6. SUMMARY AND DISCUSSION 69

(ii) External Components associated to the declarative process

(i) Internal Components associated to the activities of the declarative process

Post-
Condition

C1, …, Cn

<<Post>>

Pre-
Condition

C1, …, Cn

<<Pre>>

DO1,…,DOm

DO

Data Output
(DO)

DI1, …, DIn

DI

Data Input
(DI)

C1, …, Cn

ID

Output
Constraints

(OC)

Objective
Function

f: v C1, …, Cn

ID

Input
Constraints

(IC)

PDO1,…,PDOm

PDO

Process
Data Output

(PDO)

PDI1,…,PDIn

PDI

Process
Data Input

(PDI)

A
Activity (A)

Figure 3.10 – DOODLE Graphical Components.

In addition, an extension of BPMN 2.0 has been proposed, to incorporate the declar-
ative model into an imperative model. A CombA Sub-Process with its associated marker
enables to incorporate combination requirements into a standard. These combination re-
quirements will increase the scope of the expressive ability of business description. Finally,
the proposal has been supported with the implementation of a plug-in that enables the
graphical specification of the data-oriented optimization process.

70 CHAPTER 3. COMBI-BP SPECIFICATION

Part IV

Contribution II: Combi-BP
Transformation

71

Chapter 4

Configuration of an Imperative
Business Process to minimize the
execution time according to Data
Dependencies

Before software can be reusable it first has to be usable.
Ralph Johnson

4.1 Context and Motivation

As commented in previous chapters, declarative models are commonly used to give flexi-
bility in the description of business models. Unfortunately, the data dependency between
the activities and how this can affect the correct execution have been overlooked in these
declarative specifications. The declarative languages found in the literature pay attention
to the activities order, for example activity A has to be executed after activity B is ex-
ecuted, or if activity C is executed, activity D cannot be executed eventually. However,
we consider that sometime the activities order is determined by the data dependency
requirements. It means that an activity is executed after another because it needs the
data provided by the first one.

Although this dependency can be defined in a declarative way, as presented in Chapter
3, it could also be described in an imperative way. The problem is that the model can
include data optimization aspects that are not covered by the imperative models. For
this reason, we propose to deal with the data dependencies in two steps: (1) Activities
configuration to minimize the execution time, and (2) Data-oriented model to optimize
the process outcome. Combining both strategies it is possible to obtain an optimized
outcome in a minimized time.

In order to clarify or proposal, let us use the simple example shown in Figure 4.1.

73

74 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

This example represents, in a declarative way, four activities whose input and output
data are related by means of constraints. In this example, two problems arises: (1) which
is the order to execute the activities, and (2) how to determine the values for the data
handle to optimize the objective function. The first problems is found when for example,
the designer have to decide which activity has to be executed before A or after C. The
second problem arises when is crucial to determine the values of I1 and I2, since an input
constraint establish that I = I1+I2 to maximize O1+O2. In this chapter the first problem
is faced, while the second problem is analysed in the next chapter.

ai

DI

ao

DO

 O1, O2

SDO

 Max(O1 + O2)

A
bi

DI

bo

DO

B
ci

DI

co

DO

C
di

DI

do

DO

D

I
SDI

 O1 = do

O2 = co

ID

 I = I1 + I2
di = ao

ai = I1
I2 >50→ bi = I2 ˄ ci = bo

I2 ≤ 50→ ci = I2

ID

Figure 4.1 – Imperative BP Representation for Data-Oriented Optimization BP.

Since the data dependencies are defined in the declarative models, and they cannot
change, we propose to build an equivalent model. The reason why we suggest the creation
of an imperative are analysed in the Chapter 1. Principally, an imperative model is: (1)
more understandable, (2) closer to executable models, (3) supported by several commercial
BPMS, where they can be executed.

Since the declarative models are more flexible than the imperative models, it implies
that several imperative models can compliance the same declarative model. This generates
a hesitation about which is the more appropriate imperative model. We deal with this
issue as a configuration problem, where the minimization of the execution time of the
model. A configuration problem is an ordered arrangement of a set of parts, whose solution
is the selection and arrangement of a set of parts that satisfy the problem requirements
as well as constraints associated with these objects (Petrie, 2012). From a BP point of
view, in a configuration problem, it is necessary to find the order relation between the
activities and the control flows that related them.

For the example of Figure 4.1, an imperative model that compliance the data depen-
dencies between the activities minimizing the execution time is shown in Figure 4.2.

Therefore, Figure 4.3 shows our proposal, where an imperative model equivalent to a
declarative model is depicted. In order to model the BP in an imperative way, BPMN

4.1. CONTEXT AND MOTIVATION 75

A

B

C

D
I

SDI

 O1, O2

SDO

I1
DI

I2
DI

Figure 4.2 – Imperative BP Representation for Data-Oriented Optimization BP.

(OMG, 2011b) is chosen, since it is supported by several commercial BPMS. The task
”Supply Input Data Values” provides the different combinations of input data values
for the activities to obtain the optimal business product. The details of this activity
are explained in Chapter 5. On the other hand, the sub-process ”Execute sub-process”
represents the imperative model that is configured according to data dependencies. This
sub-process is formed of the set of activities involved in the declarative model by means
of the BPMN connections and gateways. Several possible imperative models exist that
satisfy the data dependencies, but our objective is to find the optimal imperative BP
model with respect to execution time.

A1 A2

A1

A2

Supply Input

Data Values
Show

Results

O
rg

an
iz

at
io

n

A1

A2

A1

A2

Execute

 sub-process

+
More combination

of data to analyse?

Legend:

Start Event Sequence Flow

End Event Parallel Gateway

Act Activity Exclusive Gateway

+
Sub-process Inclusive Gateway

Sub-process with the model

according to data dependencies

B
u

si
n

es
s

Ex
p

er
t

Figure 4.3 – Imperative BP Representation for Data-Oriented Optimization BP.

To the best of our knowledge, no solution has yet been found that based on a declar-
ative specification focused on data management, enables an imperative BP to be derived
from this specification to optimize the outcome data by minimizing the execution time.
In this chapter, how to obtain this imperative model is analysed.

The rest of the chapter is organized as follows: Section 4.2 presents the configura-
tion system, which also proposes a flexible and adaptable imperative modelling method.
Section 4.3 details the automatic configuration from declarative to imperative modelling.
Section 4.4 applies the proposal to the example. Section 5.4 describes related work. Fi-
nally, conclusions are drawn and future work is proposed in Section 4.6.

76 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

4.2 Configuration System Description

The main aim of the system explained in this chapter is to configure an imperative model
from the declarative specification by establishing an execution order between the activities.
This order is obtained by analysing the relationships between the data provided and used
by the activities.

In order to describe a solution independent of any specific technology that can be
used, the configuration system has been built inspired by the foundations of the Model-
Driven Development (MDD) paradigm. The proposal is focused on a particular view:
the OMG’s Model-Driven Architecture (MDA) (OMG, 2003), which is a software design
approach for the development of software systems. The configuration system therefore
consists of various modelling stages, each with a separate abstraction level. We isolate
the specification, which is independent of the platform, and then isolate the model, which
is independent of the technology but not of the modelling language. The imperative
language BPMN is chosen since it can be enacted in any of the existing BPMSs on
the market. And finally, we isolate the implementation, which is specific to a particular
technology. Among other things, the same BP declarative specification can lead to various
BP imperative models. Furthermore, the configuration system contains various levels of
abstraction which make it easier to detect errors and omissions, to reason and validate,
and to communicate with the many stakeholders in each level.

Declarative BP

Modelling
Automatic Configuration

Imperative BP

Modelling

Variables

Domains

Constraints

Obj. Function

COP
Model Configuration

solver

Business Process

Model Configured
translateBusiness

Expert

Execute

Sub-process

+

Supply Input

Data Values

Show

Results

Im
p

er
at

iv
e

B
P

More input

data to

analyse?

A
ct

iv
it

ie
s

D
ep

en
d

en
ci

es

Rental Car Search 1

Hotel

Search

t1 t2

t

Flight

Search

t3

Rental Car

Search 2

Flight

Search

Rental Car

Search 1

Hotel

Search

Rental Car

Search 2

Flight

Search

Rental Car

Search 1

Hotel

Search

Rental Car

Search 2

Figure 4.4 – Configuration System Architecture.

As shown in Figure 4.4, the Declarative BP Modelling represents this highest level
of abstraction, since, through the elements specified in this stage, it must be possible to
model all concepts that are available in all of the BP platforms supported (Imperative BP
Modelling). The problem is specified in a declarative way by a set of business experts, who
process the entire knowledge of the providers involved in the combination and are well
informed about the BP requirement. The second stage consists of an Configuration System
in charge of the transformation of this declarative specification into a specific model for a
particular standard imperative languages for BP modelling. This transformation consists
of defining a Constraint Optimization Problem which obtains the model configuration
through minimization of the execution time of the process. The configuration determines
the order in which the activities should be executed in the BP. Finally, Imperative BP

4.2. CONFIGURATION SYSTEM DESCRIPTION 77

Modelling completes the third stage together with the functionality explained in chapter
5.

4.2.1 Relation between Data Dependencies and Imperative
Models

The imperative model created by the Configuration System has to follow two main rules to
compliance the declarative model with an optimal execution time: (i) Compliance the data
dependencies (data provided and consumed by the activities), by means of satisfying the
constraints, and (ii) Minimize the execution time of the model for a theoretical constant
execution time for the activities. It means that there is no another imperative model that
compliance the data dependencies in a less execution time.

Applied to the trip planner example, for when solely the activities “Flight Search” and
“Car Rental 1 Search” are considered for the modelling configuration, the possibilities are
shown in Figure 4.5.

(c) (d)

(a) (b)

(e)

Flight

Search

Car Rental 1

Search

Flight

Search

Car Rental 1

Search

Flight

Search

Car Rental 1

Search

Car Rental 1

Search

Flight

Search

Flight

Search

Car Rental 1

Search

Figure 4.5 – “Flight Search” and “Car Rental 1 Search” Model Possibilities

A sequence model implies that an activity use the data provided by another activity,
represented by Figure 4.5(a) and Figure 4.5(b). A parallel model, Figure 4.5(c), could be
even better according to execution time, since these two activities could be executed at
the same time. On the other hand, an inclusive gateway, Figure 4.5(d), implies that at
least one activity is executed and an exclusive gateway, Figure 4.5(e), implies that only
one activity is executed. For this example, the most optimal option is to execute the
activities in a parallel way since they have no data dependencies, and there is no another
imperative model that can execute both activities in less time.

This modelling combination and analysis increases considerably as soon as the number
of activities grows. Hitherto, this configuration has been made by the business experts, we
now propose passing this responsibility to the Configuration System. Therefore, in order

78 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

to transform the declarative model into an imperative model with a minimal execution
time, we propose the use of the Constraint Programming paradigm, as explained in Section
4.3 below.

4.3 Automatic Configuration from Declarative to

Imperative Model

The configuration of the imperative model from the declarative description is a difficult
and hard task, since the flexibility and adaptability that only a declarative description
can offer must be maintained. In our case, the configured imperative model has to be
able to combine the activities with the aim of testing every possible combination of data,
while taking into account the data dependencies between the activities and the objective
function. In order to perform the optimal configuration, we propose the three steps shown
in Figure 4.6.

Variables

Domains

Constraints

Obj. Function

A3A4

A2

Model Configuration

solver

A1

A2

A4 A3

t1 t2 t3
t

Business Process Model

Configured

translate
Activities

Temporal

Variables

And

Domains

Configuration

Problem

Declarative

Definition

Input and output

Constraints

Temporal

Constraints

Minimize

Total Time
Objective Function

Result:

- A1 = <t0,t1>

- A2 = <t1,{t2,t3}>

- A3 = <t2,t3>

- A4 = <t1,t2> A1

t0

(1)

(2) (3)

Figure 4.6 – Configuration from Declarative BP Model to Imperative BP Model

1. Create a Constraint Optimization Problem from the declarative Model:
As explained in detail in Section 4.3.1, we propose transforming the declarative
model into a Constraint Optimization Problem (COP) (cf. Chapter 2.4). A COP is
another declarative model but can be computationally solved in an automatic way.
It is necessary to highlight that a COP specification is very similar to the process
models proposed here, since both are declarative models which define the problem
but do not solve it.

2. Solve the COP: In order to solve the COP created above, a combination of search
and consistency techniques is commonly used (Dechter, 2003). The consistency
techniques remove inconsistent values from the domains of the variables during or
before the search. Several local consistency and optimization techniques have been
proposed as ways of improving the efficiency of search algorithms. This configuration
problem is solved by using any of the existing CSP solvers; JsolverTM (Manual, 2003)
in our case.

4.3. AUTOMATIC CONFIGURATION 79

3. Create the BPMN Model: As explained in detail in Section 4.3.2, by using
the results obtained from the COP, the imperative model can be created. The
translation from the configuration results to a BP model implies to study the type
of gateways that relates the activities, since, although two activities A and B could
start at the same instant of time, perhaps there is a constraint which states that
only one can be executed, not both. In that case, there can be an exclusive or
inclusive gateway relating the two activities, and the decision between these two
gateways is based on the study of the domains of the data related in the constraint:
on whether there are overlaps or not.

4.3.1 Creating a COP from the declarative model

The relation between the input and output data of the various activities determines their
relational order. As was commented, for the same declarative model, it is possible to find
several configurations of activities that satisfy the requirements and/or the declarative
description. We propose the use of an automatic transformation based on Constraint
Programming to find the optimal BP model that maximizes the parallelization of the
activities, with the aim of minimizing the execution time. In order to determine this con-
figuration, we suggest the transformation of the declarative model into a COP, to analyse
the possible instants when the activities can start and end their executions according to
the data dependencies. In the declarative model, the numerical constraints are described
to establish the dependencies between various activities. These dependencies represent
the relationship between the input and output data which generally, imply and prompt a
temporal order between these activities.

In order to model a possible execution order between the activities to find the optimal
according to execution time, the possible value where an activity starts and ends is rep-
resented as the tuple 〈tini, tend〉, where tini < tend. Although the execution time of each
activity is unknown at design time, the input and output dependencies remain significant
and can be represented by the tini and tend relation between the activities. The execution
time of a BP depends on the execution time of each activity, and when they are executed
depending on the control-flow structure. Since in our model, no information about the
execution time of the activities is included, we pre-establish that each activity lasts the
same interval of time; a unit of time t. Therefore, tend − tini ≥ 1, being possible values
greater or equal to 1 in order to design more flexible models as explained below.

Related to the activity execution and how the imperative model can influence in it, in
the worst case scenario, all the activities are executed sequentially, and the total execution
time is the number of activities multiplied by the unit of time, t∗numberOfActivities. In
the best case, every activities can be executed in parallel, in which case the total time is t.
Unfortunately, this best case is not always possible due to the data dependency between
the activities.

In order to find the imperative model, whose instances are the less time consum-
ing, the input and output data relationships of the activities of the declarative de-
scription are translated into a COP, by means of temporal constraints. For exam-
ple, if there is a constraint that relates any input data of activity A with some out-

80 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

put data of activity B, then this means in the COP that activity A cannot start un-
til activity B has finished. For example, in the trip planner example, the constraint
{AH .checkIn == AF .outwardArrivalDate} is translated into tiniAH

≥ tendAF
.

The idea of the transformation is based on that all the activities could start at the
same instant unless there exists a relationship requiring one activity to start after another.
Therefore, the optimization function of the COP would be the minimization of the total
time, where the total time is the tend of the last activity executed. Table 4.1 shows the
relation between the declarative components of data-oriented optimization processes and
the created COP.

Declarative COP

Activity 〈tini, tend〉
Constraints (Input and Out-
put Constraints)

Temporal Constraints

- Minimize Total Time

Table 4.1 – Declarative model and COP elements relationship

As mentioned earlier, since there is no information about the duration of the activities,
we have modelled it as a unit of time. The following question is the determination of the
maximum execution time of each activity, with the same execution time for the complete
model, with the aim of obtaining a more flexible and robust model. In order to study this
problem, the example of Figure 4.7 is analysed.

A1

A2
A4 A3

t1 t2 t3
t

A3A4

A2

A1

A2
A4 A3

t1 t2 t3
t

A1

A3A4

A2

A1

(a)

(b)

Figure 4.7 – Flexibility of the BP in terms of the execution time of the Activities

In this example, how the execution time of each activity can affect the process model
flexibility is analysed. Figure 4.7 depicts an example formed of the activities A1, A2,
A3 and A4, where the inputs of A4 depend on the output of A1, and the inputs of A3

depend on the output of A4. Derived from the data dependencies, A1, A4 and A3 need
to be executed sequentially, but the question remains of when A2 can be executed. The
execution options are: in parallel with each of the rest of the activities (for example
in parallel with A1 (as presented in Figure 4.7(a)) or in parallel with the sequence (as
presented in Figure 4.7(b)). The model of Figure 4.7(b) is better than the model of Figure

4.3. AUTOMATIC CONFIGURATION 81

4.7(a), since it allows activity A2 to expend more time in the execution without increasing
the total execution time of the process.

Therefore, in order to obtain the most parallelized process, all the possible values
when an activity can finish should be known. To this end, we include in the COP the tini
variables as a goal, and leaves the domain of tend open during the search. This results in
the tini variables being instantiated during the propagation phase, while all the possible
values of the domains of tend variables are returned when a value of tini is found. The
greatest value of this domain is the most appropriate tend for each activity.

Algorithm 1 describes the creation of the COP from a declarative specification. In
particular, each activity and constraint of the declarative specification is transformed into
a tuple 〈tini, tend〉 (lines 3-6) and temporal constraint (lines 7-13) respectively. The tini of
the activities are defined as goal variables to obtain a flexible and robust model (line 14).
Finally, the minimization of the total time is defined as objective function in line 15.

Algorithm 1 Create a COP from Declarative Specification

1: Create variable: int TStart = 0
2: Create variable: int TEnd = 0..number of Activities
3: for each Activity(i) do
4: Create variable: int tinii = 0..number of Activities
5: Create variable: int tendi = 0..number of Activities
6: end for
7: for each Activity(i) do
8: Create constraint: tinii ≤ tendi + 1
9: Create constraint: TEnd ≥ tendi

10: end for
11: for each ADIi = ADOj, where an output of Activity j is related to the input of

Activity i do
12: Create constraint: tinii = tendj
13: end for
14: Define goal variables: { tini1 ∪ tinin ∪ TEnd }
15: Define objective function: Minimize (TEnd− TStart)

Using any one of the constraint programming solvers, a result with the instant of time
in which each activity starts and ends can be obtained. Specifically, the solution of a
COP is a list with the possible start time and end time of each activity. In the case of
the tini, its value is returned directly from the COP, while the value of tend is the greatest
value of the domain returned from the algorithm.

4.3.2 Transformation of the COP results into a BP Imperative
Model

The list of pairs for the tini and tend for each activity, obtained from the COP, represent
the most appropriate values for tini and tend for each activity, but it has to be translated
into a BP Model. Firstly, it is necessary to decide the standard modelling language in

82 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

which the BP is going to be represented. In our case, BPMN is applied since it is the most
widely used standard language. As specified in (Weske, 2007) and (OMG, 2011b), BPMN
is a graph-oriented language, therefore, we propose the creation of a directed graph from
the obtained list that will represent a BPMN.

Our objective is to obtain a BPMN − Graph by analyzing the set of activities, and
the times obtained from the COP. This BPMN −Graph represents a BPMN, obtained
with Algorithm 2, that we explain in this section.

We define ConfProblem as the set of activities and a set of relations. The relations
are established from the constraints specified in the declarative specification. There-
fore, each relation is described by the tuple 〈Condition, Activity 1, Activity 2〉, where
Condition represents under which conditions Activity 2 is executed after Activity 1.
Therefore, the value true in the Condition implies that Activity 2 is always executed
after Activity 1, or, in the case when the Condition contains an expression, Activity 2 is
executed after Activity 1, if and only if the expression is met.

For the trip planner example, the input constraint (IC6) 1 could be represented as the
relation 〈DepartingFrom 6= AF .DepartingFrom,AF , ACR1〉, since the condition that es-
tablishes that ACR1 has to be executed after AF is the value of AF .DepartingFrom. With
the activity time interval obtained from the COP, the information of the ConfProblem
is completed by adding the 〈tini, tend〉 information to each activity.

The proposed BPMN − Graph is a direct graph composed of: (i) vertices, which
represent the activities and the gateways; and (ii) the edges, which represent the sequence-
flow that join the various vertices. We also propose an algorithm to obtain an optimal
BPMN −Graph in terms of the relationships of the activities.

Firstly, the idea of the algorithm is explained by means of a trace, after which
the algorithm is detailed. The main idea of the algorithm is to apply a sequen-
tial and parallel treatments over the different parts of the ConfProblem. When
these parts are transformed into BPMN − Graphs, they are combined into a larger
whole. An example of the trace of the algorithm is shown in Figure 4.8. The
ConfProblem is formed by a set of activities A1, ..., A8, where the 〈tini, tend〉 of each
activity (obtained from a COP resolution) and the relations are: (R1)〈A1.output1 ≤
50, A1, A3〉; (R2)〈A1.output1 < 100, A1, A4〉; (R3)〈true, A3, A5〉; (R4)〈true, A4, A5〉;
(R5)〈true, A5, A8〉; (R6)〈true, A2, A8〉; and (R7) 〈true, A6, A7〉.

Firstly, the set of activities should be separated by the sequential points (arrow 1 in
this example). A sequential point is an instant of time at which no activity is executed,
and therefore the ConfProblem can be broken down into two smaller ConfProblem. In
the example, the set of activities is separated into two subsets of activities, since there is
only one sequential point in t3 (there are no activities executing at this point). Each subset
of activities is called a ConfSubProblem. Both ConfSubProblems are then analysed
to establish the parallel subgroups of activities (arrows 2 and 3). The secp1 is separated

1As explained in subsection 3.2.1, the input constraint (IC6) was:

departingFrom 6= AF .departingFrom→ { ACR1.departingFrom =
departingFrom ∧ ACR1.goingTo = AF .departingFrom ∧ ACR1.departDate =
AF .departDate ∧ ACR1.returnDate = AF .returnArrivalDate}

4.3. AUTOMATIC CONFIGURATION 83

t1 t2 t3

t

t4

A1
A3

A4

A6
A7

A2

A5
A8

A1
A3

A4

A6
A7

A2

A5
A88

secp1
secp2

t1 t2 t3
t

t4

A1
A3

A4

A6
A7

A2

A5
A8

...
t3

t

t4

A8

A8

t1 t2 t3

t

A1
A3

A4

A6
A7

A2

A5A11
A3

A4
A55

A2

A66
A7

subg1

subg2

subg3

A2

t1 t2 t3
t

A1
A3

A4
A5A55

A33

A44
A11

...

1

32

5

8

A8

...

4
6

t1 t2 t3

t

A2A2

t1 t2 t3
t

A6
A7

A66
A7

A6 A7

G1 G1

A3

A4

A5A1

A2

A6 A7

G2 G2

G1 G1

A3

A4

A5A1

7

... 9...
10

......
11

A8

G1 G1

A3

A4

A5A1

A2

A6 A7

G2 G2

step

Legend:

Call to the

recursive methods

Result from the

recursive callsProblem

Figure 4.8 – Trace example of the Algorithm 2 to create a BPMN − Graph using the COP
results

in three parallel subgroups: subg1, subg2 and subg3, since, based on the relations, the
activities with relationships are gathered. For example, due to the relations R1, R2, R3
and R4, the activities A1, A3, A4 and A5 are gathered together with no other activities.
The next step involves the sequential treatment of each subgroup (arrows 4, 5 and 6).
The result of secp1 (return of arrow 2) is a graph whose initial and final node is a gateway
vertex, called G2, and the result of each subgroup: subg1, subg2 and subg3, is linked to
this vertex G2. On the other hand, the result of secp2 is a graph with a vertex A8 (return
of arrow 3). Finally, the results of secp1 and secp2 must be joined together. To this end,
the result (BPMN −Graph) of secp1 and secp2 are joined by an edge between the final
vertex of secp1 and the initial vertex of secp2, which are G2 and A8 respectively.

Algorithm 2 details the procedures for the sequential and parallel treatments explained
above. Algorithm 2 takes a ConfProblem and transforms it into a graph. Initially, the
ConfProblem is treated sequentially with the algorithm sequentialTreatment (lines 1-
15), which involves breaking the problem down into sets of activities (ConfSubProblem)
that are executed sequentially (line 8). These sets are differentiated for the existence
of sequential points. If a sequential point differentiates two sets of activities (two
ConfSubProblem), it means that there are no activities that can be executed in the
intermediate point. Each of these ConfSubProblem has to be analysed to identify the

84 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

parallel sets of activities (lines 9-11) with the algorithm parallelT reatment (lines 16-30).
The parallel treatment of a ConfProblem consists of gathering the activities that are
related into groups and creating new problems from these groups (line 23). The relation-
ships between the activities are given by the relation stored in the ConfProblem. Each
ConfSubProblem is then treated sequentially as explained above (lines 24-26). Once all
these ConfSubProblem are sequentially treated, as a result of the parallel treatment, a
gateway vertex is inserted into the solution (graph), and all the solutions generated by
the sequential treatment are linked to this gateway (line 28). Both treatments prevent
activities of the ConfProblem from remaining divided into sequential ConfSubProblem
or parallel subgroups. The algorithm draws to a halt when reaching a base case, or when
the problem contains only one activity. In both treatments, the solution of a base case
is a graph with a unique vertex: this activity (lines 5-6 and 20-21). On the other hand,
two solutions are sequentially joined by an edge between the last node of the first solution
and the first node of the second solution (line 13).

Once the graph is created, the correct gateways that diverge the sequence flows have to
be selected. In the graph, the gateways are identified by means of studying the constraints,
defined in the declarative specification, that may or may not be associated to the execution
of these activities.

The conditions for each type of gateway are explained below:

• Parallel: two activities are executed in a parallel way, if there are no conditions
that relate the tini of both activities (see Figure 4.9).

A1

A2

A3

A2

t1 t2
t A3

A1

Constraints:

...

True, A1, A2

True, A1, A3

...

Figure 4.9 – Parallel Relationship

• Exclusive: two activities are executed in an exclusive way, if the constraints that
relate the tini of the two activities and the domain of these constraints are complete
and do not overlap. For example, as shown in Figure 4.10, if the execution of A2

and A3 depend on the value of the output data A1.oD1, but there are no overlaps
(A2 is executed when A1.oD1 is less than 50 and A3 is executed when A1.oD1 is
greater or equal to 50), then there is an exclusive relationship between them.

A1

A2

A3

A2

t1 t2
t A3

A1

Constraints:

...

A1.oD1 < 50, A1, A2

A1.oD1 ≥ 50, A1, A3

...

Figure 4.10 – Exclusive Relationship

4.3. AUTOMATIC CONFIGURATION 85

Algorithm 2 Create a BP model from COP result

1: procedure sequentialTreatment(ConfProblem p): BPMN-Graph
2: sol: BPMN-Graph to return
3: lprob: list of ConfProblem
4: lsol: list of BPMN-Graphs
5: if (p.listActivities.size() == 1) then
6: sol← p
7: else
8: lprob← separate p by sequential points
9: for each p ∈ lprob do

10: lsol.add(parallelT reatment(p))
11: end for
12: end if
13: sol← link sequentially lsol
14: return sol
15: end procedure
16: procedure parallelTreatment(ConfProblem p): BPMN-Graph
17: sol: BPMN-Graph to return
18: lprob: list of ConfProblem
19: lsol: list of BPMN-Graphs
20: if (p.activitiesList.size() == 1) then
21: sol← p
22: else
23: lprob← separate p in parallel groups
24: for each p ∈ lprob do
25: lsol.add(sequentialTreatment(p))
26: end for
27: end if
28: sol← link lsol by gateways
29: return sol
30: end procedure

86 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

• Inclusive: two activities are executed in an inclusive way, if there are conditions
that relate the tini of both activities, and the domain of these conditions are complete
and overlapping. For example, as shown in Figure 4.11, if the execution of A2 and A3

depends on the value of the output data A1.oD1, but there are overlaps between the
domains that satisfy the constraints (A2 is executed when A1.oD1 is less than 75 and
A3 is executed when A1.oD1 is greater or equal to 25, and hence both coincide when
A1.oD1 is greater than 25 and less than 75), then there is an inclusive relationship.

A3

A2

t1 t2
t

A1

Constraints:

...

A1.oD1 ≤ 75, A1, A2

A1.oD1 ≥ 25, A1,A3

...

A1

A2

A3

Figure 4.11 – Inclusive Relationship

Table 4.2 gives a summary of the resulting gateways depending on the conditions
established by the constraints that relate the data of the activities.

Gateway Constraints Conditions

Parallel No dependencies in domains
Exclusive Domains without overlaps
Inclusive Domains with overlaps

Table 4.2 – Type of gateway decision

For the example explained in Figure 4.8, it is necessary to analyse G2 and G1 (see
Figure 4.12). Since there are no relations between activities A1, A2 and A6, then G2
is a parallel gateway. On the other hand, the execution or not of activities A3 and A4

depends on the outputs of A1. The conditions specified in relations R1 and R2 indicate
that the domain of the constraints is complete and there are no overlaps, therefore, G1 is
an exclusive gateway.

G1 G1

A3

A4

A5A1

A2

A6 A7

G2 G2 A8

A5

A3

A4

A1

A2

A6 A7

A8

Figure 4.12 – From graph to BPMN Model Example

4.4. CONFIGURATION APPLIED TO THE TRIP PLANNER 87

4.4 Configuration applied to the Trip Planner

In order to illustrate the use of the algorithms, the application of the algorithms to the
Trip Planner case study is shown in this section. The input for the configuration problem
is the declarative specification given in Chapter 3. The Trip Planner is formed by a set
of data with the customer requirements, three activities (Flight, Hotel, and Car Rental
Search Activities), a set of constraints that relate the data, and an objective function
to be optimized: the minimization of the total price of the trip. The problem was also
represented using DOODLE, and included in a BPMN model as a CombA Sub-Process.

Given this declarative description, the first step is the Trip Planner transformation
to a COP definition by applying Algorithm 1. Each activity has an associated tuple
〈tini, tend〉 as shown below:

• Flight Search Activity: 〈TF lightini, TF lightend〉

• Hotel Search Activity: 〈THotelini, THotelend〉

• Car Rental Search Activity: is divided into two different activities since there
are two types of rental cars. Both rental cars are defined as 〈TCarRental1ini,
TCarRental1end〉 and 〈TCarRental2ini, TCarRental2end〉.

As the execution time for each activity remains unknown, we consider that every
activity lasts one unit of time. Therefore, for each activity, tini takes a domain with
values between 0 and 3 (numberOfActivities − 1) and tend takes a domain with values
between 1 and 4 (numberOfActivities). In the worst case scenario, all the activities are
executed sequentially, and the total time is equal to the number of activities: 4. In the
best case, every activity is executed in parallel and the total time is 1.

The data dependencies are then transformed into temporal constraints. For example,
the constraint which establishes that if the flight does not serve the destination city,
then the rental of a car is necessary. This data dependency generates the constraint
{TCarRental2ini ≥ TF lightend} since it is necessary to know the output data of Flight
Search Activity in order to determine the input data of Car Rental 1 Search Activity.

The result obtained indicates a value or values assigned to each variable. The variables
that can have various values are the end times of the activities (tend), this means that if
a variable has a domain (various values), it is due to the flexibility of this activity in that
it can finish at different moments. The result for the trip planner example is:

• Goal Variables:

– TF lightini value equal to 0

– THotelini value equal to 1

– TCarRental1ini value equal to 0

– TCarRental2ini value equal to 1

88 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

• Objective Function:

– minimize (TEnd), value equal to 2

• Rest of Variables:

– TF lightend value equal to 1

– THotelend value equal to 2

– TCarRental1end values between 1 and 2

– TCarRental2end value equal to 2

According to Algorithm 1, from the remaining variables, we take the highest value of
the set of possible values. In the example, the variable with a set of possible values is
only TCarRental1End, which finally takes the value 2.

The resulting BP Model, obtained from applying Algorithm 2, is shown in Figure 4.13.
According to the results, “Flight Search” and “Car Rental 1 Search” activities start at
instant 0. However, the “Car Rental 1 Search” activity depends on the value of the input
data of the “Flight Search” activity, so there is an exclusive gateway before this activity.
Since it is not the complete domain with the constraint that determines the execution of
the “Car Rental Search 1 ” activity, then there is a branch by default which indicates that
nothing happens when the condition is not met. The same situation occurs with “Hotel
Search” and “Car Rental 2 Search” activities.

Flight

Search

Rental Car

Search 1

Hotel

Search

Rental Car

Search 2

RCS1Ex

HSEx

t1 t2
t

ASEx

t3

RCS2Ex

Figure 4.13 – Trip Planner Model Result

4.5 Related work

The use of Constraint Programming in configuration problem is very frecuent, since the
configuration involves selecting and arranging parts to achieve particular goals with re-
specting particular constraints. The use of CSP to solve configuration problems has been
using in several works, from the management of configurations in self-adaptive systems
(Sawyer et al., 2012) until service composition (Thiagarajan and Stumptner, 2007).

4.6. SUMMARY AND DISCUSSION 89

Configuration problems have also be used in BPs, but they are applied to obtain
BP model families, by means of capturing all the possible BP that can be defined for a
target domain of interests (GröNer et al., 2013). However, this family of BP comprises a
variability modelling perspective or model template which does not fit with the objective
of data-oriented optimization problems. Furthermore, these approaches represent this
variability, by means of feature model analysis, or the application of software product
lines techniques (Dhring et al., 2014; Ognjanovic et al., 2012; Rosa et al., 2011).

In (Runte, 2009), the author exposes the ideas of applying Constraint Programming
to ensure the consistency in sequential and hierarchical relations of BP, which is then
developed in (Runte and Kharbili, 2009). Although the authors expose the importance of
the data-dependencies between various BP, a BP is not created at design time based on
these BP requirements. They found out the inconsistencies at runtime and then, proposed
configurations of the BP where these inconsistencies do not appear. A similar approach
is proposed in (Borrego, 2012), where Constraint Programming is applied to verify the
correctness of a BP according to a model represented by means of constraints, but in that
work how to modify the model to satisfy the constraints is not proposed.

To the best of our knowledge, none of the existing proposals present a configuration
solution to build an imperative BP model, based on data-structure dependencies repre-
sented declaratively.

4.6 Summary and Discussion

In this chapter, a configuration system to establish an optimal imperative BP model
according to data-structure dependencies has been proposed. The main limitation for
the business experts is the explicit representation of a process when they only know the
BP requirements (activities, data, constraints, and objective function), but not how to
represent these requirements in an imperative model. The configuration of an imperative
model from the declarative description is a difficult and hard task, since the flexibility and
adaptability that only a declarative description can offer must be maintained. Moreover,
when the flexibility depends on the dependencies of activities through their input and
output data relationship, the analyses of every possible configuration is even greater.

The Configuration System presented in this chapter establishes a methodology and
a set of algorithms to configure an imperative representation from a declarative model.
Business experts only have to specify the BP requirements, leaving the configuration of
the activities in the imperative model to the system, which uses the Constraint Program-
ming paradigm and a set of algorithms. This automatic method obtains an imperative
model described by BPMN, where the optimal model related to minimize the possible
execution time of the instances is obtained. The order between the activities is obtained
by analysing the data-structure dependencies, by means of studying the constraints de-
fined in the declarative specification. These constraints could establish the sequential,
parallel, inclusion and/or exclusion execution structure between the activities. Finally,
the configuration is applied to the trip planner case study introduced in Section 2.6 .

90 CHAPTER 4. CONFIGURATION ACCORDING TO DATA DEPENDENCIES

Chapter 5

Creating an Imperative Model to
Optimize the Business Process
Outcome

Good programmers use their brains, but some good
guidelines save us having to do it in each case.

Francis Glassborow

5.1 Context and Motivation

One of the main challenges of a data-oriented optimization BP is the necessity to check
every possible combination of data with the aim of obtaining the optimal outcome of the
BP, e.g. tried every combination of dates and cities to obtain the cheapest trip. Thanks
to the declarative specification proposed in Chapter 3, the BP requirements focused on
data can be described and represented shielding the business expert to know how is the
imperative model or the specific values for the variables that optimize its requirements.
These requirements establish the set of data, activities, and constraints that related the
activities through the data, and the objective function to be optimized. However, this
declarative specification is not enough to be executed neither deployed in a commercial
BPMS. In previous chapter, how to transform the declarative model with data-structure
dependencies to an imperative model was necessary. But how the data values can affect
the optimization of the outcome needs to be studied as well. In this chapter, how the
imperative model obtained in the previous chapter must be modified to support the
data optimization is analysed. The goal of the contribution presented is to maintain
the flexibility of the declarative specification by delegating the search of the optimal data
combination to a component included in the imperative model.For example, in order to
know the flight, hotel, and car rental prices (output of the corresponding search activity),
the specific values for the input data must be known to execute each activity.

This chapter is focused on the design of the functionality in charge of supplying the

91

92 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

search of all possible combination of input data in order to execute the activities. This
functionality depends on the knowledge of the relationship between input and output data
of the activities, specifically, if this relationship can be known with or without executing
the activities. For the Travel Search sub-process, the objective function is to minimize the
totalPrice, which can only be known when the activities are executed in runtime. However,
if the pre- and post-conditions of the activities could relate input and output data, then
the output values of the activities, for given input values, can be obtained without the
execution of the activities. This implies the possibility of solving the optimization problem
in a local manner, thereby reducing the complexity and the way in which the problem is
solved in an imperative model. Therefore, regarding the knowledge about the behaviour
of the activities described by the pre- and post-conditions, two different imperative models
could be created:

• White-Box Model: This is used when the problem is formed by white-box activi-
ties, that means that the output values of the output variables can be obtained in
terms of the input values, the pre-, and the post-conditions, and it is unnecessary
to execute the activity to ascertain the output of the activity. In this case, the opti-
mization problem can be modelled and solved in a local manner, since the execution
of the activities is unnecessary to ascertain the values of the output data for each
activity which optimize the objective function.

• Black-Box Model: This is used when the problem is formed of black-box activities,
which implies that the pre- and post-conditions of the activities are insufficient to
ascertain the output values, given a set of input values. In this case, it is necessary to
execute the activity to obtain the specific values for the data output, since the model
is unknown in a local manner. However, the creation of all the possible combinations
of values for the data input can be modelled and solved locally. These combinations
of input data values generated are used in the execution of the activities (cf. Chapter
4) to ascertain the specific values for the objective function to optimize.

Using the imperative model obtained in the previous chapter, we propose to use con-
straint programming and a set of algorithms to manage the possible data values that
optimize the outcome of the business process. Both white-box and black-box specifi-
cation can use this paradigm to find the best input data combination, where the main
difference is how the objective function is managed. The objective function can be in-
cluded directly in the COP, and solved it locally (white-box); or managed depending on
the output values of the activities once they are executed given a combination of input
data obtained from a CSP (black-box). Although both solutions give reasons for the ne-
cessity to construct a COP and a CSP, the following subsections focus on how white-box
and black-box models develop the necessary functionality to support the data-search in
an imperative business process.

The remainder of the paper is organized as follows: Section 5.2 and Section 5.3 explain
how white-box and black-box models can modify the imperative model to support the
declarative model according to data-value dependencies. Finally, conclusions are drawn
and future work is proposed in Section 5.5.

5.2. THE WHITE-BOX APPROACH 93

5.2 The White-Box Approach

The white-box models are used when the activities that form the data-oriented optimiza-
tion process are white-box activities. A white-box activity is an activity that giving a set
of values of the data input that satisfy its pre-condition, the values of the data output
can be known without the execution of the activity, only by analysing the post-condition
of the activity.

Execution of the activities to optimize the objective function is avoided by trans-
forming the declarative model into a generic COP capable of support any instance. We
propose that this COP can be set-up as a script activity within the imperative model,
created in previous chapter, to manage the possible values of the input data variables of
the activities. Once an instance arrives to this script activity, the variables of the COP
are instantiated with the concrete values, and with the use of a solver integrated in the
BPMS, this COP can be solved, given as a result the optimal outcome.

Therefore, determining and inferring an executable activity by means of automated
transformation from a data-oriented optimization declarative specification is proposed, as
depicted in Figure 5.1. To this end, it is necessary: (1) to create automatically a COP
according to the data-oriented optimization declarative model; and (2) to create a script
activity with the resulting COP and incorporate it into the imperative model. The COP
is solved at instantiation time in terms of the customer requirements for each instance.

Declarative Model

1

2

Automatic

Transformation

Configuration

(Chapter 4)

A C...

PDI1, …, PDIn

PDI

PDO1, …, PDOm

PDO

B1

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

Bn

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

C1, …, Cn

ID

C1, …, Cn

ID

 f: v

ADI ADO

Subprocess B

A C

Imperative Model

COP

 // Variables

 PDI

PDO

ADI

ADO

 // Pre and post conditions

PREB1

POSTB1

…

PREBN

POSTBN

 //Input and Output Constraints

INPUT_CONSTRAINTS

OUTPUT_CONSTRAINTS

…

 // Objective

f:v

Subprocess B

Execute

Sub-process

+

Supply Input

Data

Values

A
ct

iv
it

ie
s

D
ep

en
d

en
ci

es

 B1

 Bn

 B2

 B7

Create

Script

COP

Figure 5.1 – White box transformation.

5.2.1 How to transform a White-Box Specification into an Exe-
cutable Business Process

In order to design a model that involves all the variables and constraints that describe
the data-oriented optimization process, the following COP structure is proposed:

94 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

• X: DF, which implies the PDI, PDO, DATA INPUT(A1), . . .,
DATA INPUT(An), DATA OUTPUT(A1), . . .,
DATA OUTPUT(An).

• D: Domain depending on the DF variables. The values of the domain depend on
each instance of the BP.

• C: PRE(A1) ∧ POST(A1) ∧ . . . ∧ PRE(An) ∧ POST(An) ∧
INPUT CONSTRAINTS ∧ OUTPUT CONSTRAINTS ∧
{Instantiation of the PDI with the values of the specific instance}

• O: OBJECTIVE FUNCTION

The incorporation of the COP in the imperative model allow to obtain at runtime,
the most appropriate input data for the activities to optimize the objective function.
The creation of the COP is carried out using a model-to-text transformation. In our
case, Epsilon (Foundations, 2014) has been used. Among other things, Epsilon provides
a family of languages and tools for code generation and model-to-model transformation.

Once the COP is built, it must be set-up as a script activity (OMG, 2011b) within
the imperative model obtained after the configuration process. This imperative model
can then be executed in any of the existing BPMSs. Therefore, the creation of this script
activity depends on the mechanisms provided by the modelling tool of the BPMS used,
and also on the BPMS engine capabilities.

Regardless of the BPMS used, the COP can be solved using any of the existing COP
solvers, Choco Solver (Choco Solver, 2014) in our case, which connects the script activity
with an external constraint programming solvers.

In our case, the BPMS employed to design and execute the BPs is Bonita Open
SolutionTM since it is an open-code application with a free distribution, and is commonly
used in the private market. We have implemented a connector called COP Script in
order to solve the COP inside the BP. A connector is the way in which Bonita Open
SolutionTM (Community, 2012a) links an activity with a service or application that exe-
cutes a functionality. The connector has been implemented with the libraries provided by
Choco (Choco Solver, 2014) solver, and the plug-in of Bonita Open SolutionTM to extend
its functionality. The business modeller can therefore use this connector to link the COP
solver with the script activity. Figure 5.2 shows an example of how a business modeller
can include the generated COP into any script activity using the developed COP Script
connector in Bonita Open SolutionTM (Community, 2012a).

Finally, at runtime, when an instance reaches the script activity with the specific data
values, the COP is solved and the result is obtained.

5.2.2 White-Box Model Transformation applied to the Trip
Planner

A clear example of white-box transformation in the trip planner example occurs when the
cost of each part of the travel is included in different travel brochures, such as the offers

5.2. THE WHITE-BOX APPROACH 95

Figure 5.2 – Choco Script Task Configuration in Bonita Open SolutionTM .

available at agencies. In this case, since the prices are pre-established for specific date
and conditions, the sub-process knows, without executing the activities, the data input
and output relation for each part of the trip.

Therefore, the COP generated from the model specified in Chapter 3 is shown in Table
5.1. Since we are analysing white-box models, the relation between input and output are
known. For example, all flights from Seville to London, regardless of the date, costs 100
euros in November (AF .departureDate ≥ “2014-11-01” ∧ AF .departureDate ≤“2014-11-
31”−→ priceF light = 100). Since the travel brochures are accessible and public, and
cannot change for the dates published, then this information can be included in the COP.

//Variables:
earlyDepartureDate: Date

lastDepartureDate: Date

priceF light: Integer

. . .
//Pre and post-conditions
AF : AF .departureDate > SystemDate
AF .departureDate ≥ “2014− 11− 01′′ ∧
AF .returnDate ≤ “2014− 11− 31′′ → priceF light = 100

. . .
AH: AH .checkOutDate > AH .checkInDate
AH .checkOutDate > AH .checkInDate

. . .
// Input and Output Constraints
AF .returnDate = AH .checkOutDate
earlyDepartureDate ≤ AF .departDate
AF .departDate ≤ lastDepartureDate
. . .

//Optimization function:
TotalPrice = priceF light + priceHotel + priceCarR1 + priceCarR2

//Objective
minimize(TotalPrice)

Table 5.1 – Constraint Optimization Problem for outcome data optimization

96 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

5.2.3 Empirical Evaluation

In this section, the experimental results corresponding to the evaluation performed are
shown, the obtained results are discussed, and the limitations of our proposal are laid out.

5.2.3.1 Experimental Design

Since the generated COP only depends on the declarative model, it is created only once in
design time. Therefore, this COP is used for every instance at runtime, and finds the best
option for any customer requirements and maintains the flexibility. The COP provides
the necessary mechanisms to obtain the optimal value of the process by checking the
various existing catalogues. Therefore, the critical phase is on the resolution of the COP
at runtime. A faster resolution of the COP implies that the desired result is obtained
earlier.

In general, the time to find the solution of a COP depends on: (1) the type of con-
straints (lineal, polynomial); (2) the number of constraints; and (3) the number and type
of the variables. It is possible to find an analysis in (Cheeseman et al., 1991) on the com-
plexity of the NP-complete constraint problem resolution according to these characteris-
tics. The complexity of resolution of CSPs depends on the number of possible solutions
of the problem, and on whether it is neither under constraint nor over-constrained. The
most complex of these problems are those that are neither under constraint nor over-
constrained. For these reasons, no affirmation can be given concerning the efficiency in
a generic way of our proposal, since our declarative specification permits any type and
any number of constraints; therefore the evaluation time depends on the specific prob-
lem. Depending on the number of constraints associated to a COP, and the number of
variables, the COP evaluation time remains variable.

For this reason, and with the aim of performing the evaluation of our proposal, the
resulting COP of the case study is executed over a set of 150 generated test cases. Each
test case establishes a different number of values for the PDI. For their part, the different
values for each PDI generate, in turn, a number of combinations for PDI variables, in
such a way that each test case increases the number of combinations as shown in Figure
5.3. Since not all the combinations are possible solutions of the problem, Figure 5.3 also
indicates the number of possible solutions for each test.

Figure 5.3 – Number of possible combinations for each test case.

5.3. THE BLACK-BOX APPROACH 97

5.2.3.2 Experimental Result

Therefore, the main purpose of the experimental evaluation is the determination of the
computing time(s), the memory used (MB) and the quotients between the time and used
memory needed to solve the COP of the example. In order to realise the importance of the
optimization, the measurements have been carried out over the COP with and without
the objective function, and hence, all the solutions are found.

The test cases were measured using a PC with an Intel Core i7-2675QM CPU with a
2.2 GHz processor and 8.00 GB of RAM.

Figure 5.4 shows the memory used to solve the COP. It is possible to notice that, for
the optimized option, the memory used is almost constant regardless of the number of
permutations. On the one hand, the used memory of all solution option is exponential.

Figure 5.4 – Memory used for the tests of the example.

On the other hand, the behaviour of the results of time fits an exponential model
for all solution option. However, it is necessary to highlight the increase in time for
the optimized option. However, it is necessary to highlight the increase in time for the
optimized option, which remains almost constant, in comparison with the great increase
with respect to the number of combinations (see Figure 5.5).

5.3 The Black-Box Approach

The black-box models are used when the activities that form the data-oriented optimiza-
tion process are black-box activities. A black-box activity is an activity that giving a set
of values of the data input that satisfy its pre-condition, the values of the data output are
unknown until the activity are executed, which means that the pre- and post-conditions
of the activities are insufficient to ascertain the output values, given a set of input values.

The main problem of black-box activities is that until the activities are not executed,
their output are unknown. This implies that the activity in charge of supplying the input
data to the imperative model, obtained in Chapter 4, must ensure that the activities
not only carry out an instantiation of the variables that satisfies all constraints, but also

98 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

Figure 5.5 – Time used for the tests of the example.

searches for the optimal value of the objective function. In other words, now the func-
tionality of this activity must be the coordination of the search. Therefore, a coordinator
activity, called Coordinator is necessary (see Figure 5.6).

Declarative Model

Configuration

(Chapter 4)

A C...

PDI1, …, PDIn

PDI

PDO1, …, PDOm

PDO

B1

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

Bn

DI1, …, DIn

DI

DO1, …, DOm

DO

C1, …, Cn

<<Pre>>

C1, …, Cn

<<Post>>

C1, …, Cn

ID

C1, …, Cn

ID

 f: v

ADI ADO

Subprocess B

A C

Imperative Model

A
ct

iv
it

ie
s

D
ep

en
d

en
ci

es

 B1

 Bn

 B2

 B7

Subprocess B

Execute

Sub-process

+

Supply

Input Data

Values

Show

Results

More input

data to

analyse?

Coordinate 1

Figure 5.6 – Black box approach schema.

This Coordinator is an script activity which has the knowledge of the whole problem:
from the objective function to the accesses to the activities needed. In addition, the
Coordinator is also responsible for executing the algorithm necessary for the assignment of
values to variables. Each activity has certain ADI; therefore the coordinator must provide
such data to each activity. Therefore, the Coordinator is composed of an algorithm that
instantiates the variables and execute the activities to obtain the values necessary for
the calculation of the objective function. Furthermore, it must prevent repetition of the
searches since it could carry out endless loops. Following subsections detail the algorithms
developed for this coordinator and the experimental results done.

5.3. THE BLACK-BOX APPROACH 99

5.3.1 Coordinator Algorithm

The algorithm used by the coordinator has to consider all possibilities and retains only
the best result. Algorithm 3 is based on DisCSP algorithms, which can be classified as a
combination of Centralized (Yokoo and Hirayama, 2000) and Synchronous Backtracking
(Yokoo et al., 1998). Centralized, since there is an Coordinator which has overall knowl-
edge of the problem: organizing the different activities, taking control of the instantiation
of variables, and ensuring that the activities achieve the objective function. It is also syn-
chronous since all activities remain in communication only when the Coordinator needs
to combine their returned values.

In the same way as for the search space in backtracking algorithms, the search space
in Algorithm 3 also has a tree structure. The Coordinator chooses the variable that is
instantiated at each level of the tree, by composing the new partial candidate. The various
activities return the best solution according to the values of the instantiated variables and
the ranges of the non-instantiated variables.

Algorithm 3 Iterative Backtracking Algorithm.

1: V := List of ordered variables v1,...,vk and their possible values {v1 =
{val11, ..., val1n}, ..., vk = {valk1, ..., valkm}}

2: C := A set of constraints (c1, c2, ..., cj)
3: STAGE := A set of functions (Key,Value) where: Keyi = {vi belongs to V } and

V aluei = {valix belongs to Vi}.
4: SOL := solution contains a list with the values of the variables and the value of the

objective associated to these values.
5: SOL OP := The optimum solution so far.
6: for (each v belongs to V) do
7: for (each val ∈ v and satisfy C) do
8: STAGE := (v, val)
9: if (∀v∃val in STAGE) then

10: OBJ := Calculate Objective()
11: SOL:= STAGE and OBJ
12: if (OBJ < SOL OP.OBJ) then
13: SOL OP := SOL
14: end if
15: else
16: //Go line 21
17: end if
18: //Do backtrack if there are no more values for variable v
19: end for
20: //Terminate if there are no more values for variables even if there are some vari-

ables left
21: end for

The key of the algorithm is in line 10, where the function that calculates the objective
of the problem is invoked (Calculate Objective()). This function is the execution of the

100 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

BP which contains the imperative model configured in Chapter 4 in order to obtain the
output values.

In general, the objective of a backtracking algorithm is to find the best value according
to a certain criteria over the set of solutions. In order to reduce the search space, a branch
of the search tree is discarded (pruned) if a node is reached (partial candidate), and if it is
known that this branch of the tree will not improve the best solution for f(x) found so far.
Thus, once the algorithm obtains a first solution, if the function Calculate Objective() fails
to return a value that can improve this solution, then this branch of the search is pruned.
Following on with the Trip Planner example, the customer wants to buy an airline ticket
to travel from Seville to London and to book a hotel in London. Moreover, to obtain
the cheapest trip, the customer is flexible with the departure date: 2014-07-01 or 2014-
07-02 and return date: 2014-07-05 or 2014-07-06. The Coordinator executes Algorithm
3 (Backtracking Iterative Algorithm) and obtains the best solution. The resulting tree
structure is shown in Figure 5.7.

Figure 5.7 – Backtracking Tree Structure.

The function Calculate Objective() is called once there is a complete assignment. How-
ever, the function Calculate Objective() replies that there are no flights departing on
2014-07-02 and the return date is either 2014-07-05 or 2014-07-06, therefore, why call
Calculate Objective() giving all the possible combinations with dates, if it is impossible
to obtain a better solution since there are no flights? (see Figure 5.8).

The new algorithm modifies Algorithm 3 from line 9 to 17, as shown in Algorithm 4.
The bound is applied before setting the value of all variables to further reduce the search
space.

5.3.2 Experimental Results

The empirical evaluation of the techniques is focused on performance measures of the
algorithms presented. These algorithms can be applied to any BP that has to achieve the
optimization. The main purpose of the experimental evaluation is the determination of the
time needed to find the optimal: the function Calculate Objective() is responsible for this
objective since it invokes the BP that calls the activities to combine. Therefore, estimating

5.3. THE BLACK-BOX APPROACH 101

Figure 5.8 – Branch and Bound Tree Structure.

Algorithm 4 Iterative Branch-and-Bound Algorithm.

1: OBJ := Calculate Objective()
2: if (OBJ < SOL OP.OBJ) then
3: SOL:= (v, val) and OBJ
4: if (∀v∃val in SOL) then
5: if (SOL.OBJ < SOL OP.OBJ) then
6: SOL OP := SOL
7: end if
8: else
9: //Go line 21

10: end if
11: end if

the number of calls to Calculate Objective() is the same as calculating the time to obtain
the optimal outcome. Thus, the number of calls to the function Calculate Objective() are
calculated in both algorithms for comparison purpose. On the other hand,

The hardware used in the execution test is a server Intel Xeon 2.40GHz - 8GB RAM
where the Web Services are located, and an Intel Core 2 Duo 3.00GHz - 3.49GB RAM,
where test cases are measured.

For the evaluation, the algorithms are applied to the problem based on the illustrative
example, the Trip Planner. The Flight Search Activity and the Hotel Search Activity
internally use a database (DB) to establish the priceand the Rental Car Search Activity
uses input values and a set of constraints to establish the price, and hence can be described
as a simple CSP.

A comparison of the execution of these two algorithms is carried out over a set of test
cases. In order to create an effective and efficient comparison, each test case is composed
of different values and combinations of input parameters. These values and combinations

102 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

are sufficiently representative to perform a good comparison between the two algorithms.

Both algorithms obtain the same price in each test case of the airline ticket, the hotel
and the rental car for the same dates. However, the most interesting parameter is the
number of calls to the function Calculate Objective() in both algorithms (Figure 5.9).

Figure 5.9 – Number of calls to Calculate Objective() by Algorithm 1(Backtracking) and by
Algorithm 2 (Branch-and-Bound).

The difference between the number of calls by the Backtracking algorithm and by the
Branch-and-Bound algorithm is outstanding. In most cases, the number of calls in the
Branch-and-Bound solution is lower than that of the Backtracking algorithm, except for
Case 8, where the Backtracking calls 18 times and Branch-and-Bound 20 times. If there
is a good bound and the best price is at the beginning of the search space, it will not
always be necessary to call Calculate Objective() in every case. However, this does not
occur in Case 8. This case highlight the importance of good bounds, since it can reduce
considerably the search space. Therefore, the number of calls to the Calculate Objective()
is not only important, but also the extra processing that has the branch-and-bound to
not make so many calls, which means a tradeoff between both factors.

5.4 Related work

In general, papers found in the literature related to the transformation from declarative
to imperative descriptions are not focused on the assistance of the customer for the input
data. Only in (Gómez-López et al., 2011) is the decision-making support oriented towards
data input, but it omits optimization of an objective function, and only makes the BP
instances satisfiable for imperative models. In other work related to how to model the
processes, such as (Barba et al., 2013), Barba et al. propose a framework of assistance
to create models which take the necessary resources involved in the process into account.
In that paper, the data that describe the resources of the execution of the process are
used, but not the data that flow at runtime, nor does it consider the input data for the
activities that constitute the process. On the other hand, there are various studies that
apply transformations to BP modelling. Victoria Torres et al. in (Torres and Pelechano,
2006) apply transformations to generate the navigation between web pages from a BP

5.5. SUMMARY AND DISCUSSION 103

definition, specifically the BPEL executable description that implements the entire pro-
cess. In (Fabra et al., 2012), Fabra et al. integrate a service-oriented development method
(SOD-M) and a platform for the development and execution of interoperable dynamic web
processes (DENEB). They present a model-driven framework for the analysis, design, de-
velopment and execution of business processes which covers BPM solutions from the very
early stages of their development to their deployment and execution. Furthermore, an
existing gap is highlighted between BPM and Service-Oriented Architecture, and several
solutions that use Model-Driven Architecture to cover this gap are also pointed out. Al-
though a certain number of these papers are focused on defining the interaction between
various participants in order to achieve business goals, none of them deals with the type
of problems presented in this work: the creation of an imperative model to minimize the
BP execution time focused on data dependencies.

5.5 Summary and Discussion

In this chapter, we present two approaches focused on designing the necessary mecha-
nisms to check every possible combination of data of a data-oriented optimization BP.
The proposals show how the declarative language is automatically transformed into an
executable process. This executable activity is in charge of obtaining the outcome data
optimization of each instance of the process for customer requirements. Firstly, our focus
is on problems formed by white-box activities, which means that the output values of the
output variables can be obtained in terms of the input values by means of the pre and the
post-conditions, thereby rendering the execution of the activity unnecessary in the search
for knowledge of the output of the activity. Thus, the execution of the activities for the
optimization of the objective function is avoided by incorporating the imperative model
that support the data-structure dependency of the activities into a script activity with
a COP. The use of the constraint programming paradigm enables the necessary input
data values that optimize this outcome data to be ascertained. The approach presented
is detailed and tested with a case study implemented in a commercial BPMS.

Secondly, our focus is on problems formed by black-box activities, which means that the
activities have to be executed in order to know the output values of the output variables
given a set of input values. In order to solve the aforementioned problem, an adaptation of
a Backtracking algorithm is developed together with an improvement using Branch-and-
Bound algorithm. This adaptation permits the activities to obtain the optimal outcome,
which, in the case of the trip planner example, is the determination of the cheapest trip.
One of the main problems in the search for solutions is the size of the search space. A
bound is established to prevent unnecessary executions of activities when it is known
that no better result could be obtained. Results show that a well-designed bound can
significantly reduce the performance time of the algorithm.

104 CHAPTER 5. OPTIMIZING THE BP OUTCOME DATA

Part V

Contributions III: PAIS-DQ

105

Chapter 6

PAIS-DQ

It is your design, it is your decision.
Anonymous.

6.1 Context and Motivation

The BPs under the scope of our research are those which are centred on developing sound
data in business processes, analysing how data-structure and data-value dependencies can
affect the correct business process execution. However, if the data provided at runtime
for the activities that conform the model have not got enough level of quality, then
business process will not be successfully executed.When a BP is executed, it implies that
the straightforward management of the data is exchanged between activities or that the
data are acquired from external resources in order to compose the final outcome data.
Consequently, the data that generate and compose the final product is considered critical,
and is essential for the BP (Wang, 1998). Among other factors, it can be said that the
success of an instance of the processes is grounded in the quality of the data used. The
management of data with the adequate level of quality constitutes a key value for the
successful execution of these processes. In order to make organizations aware of the
importance of data-quality, a data-quality management plan should be implemented that
covers the main data and data-quality requirements in the BP. The scope of both kinds
of requirements should already have been dealt with by business experts. On the other
hand, IT people should be able to implement the corresponding mechanism to satisfy the
stated requirements. Furthermore, both business experts and IT people (along with Data
Quality experts) have to decide how to incorporate the data-quality requirements through
BPM life-cycle phases as suitable mechanisms and make them available for use. Once the
data-quality requirements are gathered, the next step is to adapt the BPs to support
the data-quality analysis without altering their fundamental structure and behaviour but
taking into account the data-quality aspects.

Although certain data-quality related studies could be used at the design phase, such

107

108 CHAPTER 6. PAIS-DQ

as (Cappiello et al., 2013; Pipino et al., 2002; Rodŕıguez et al., 2012), there is a lack of
proposals for their system configuration and process enactment phases: a necessity which
we intend to cover in this contribution. Therefore, not only do we propose a theoretical
solution, but we also define the steps to obtain an executable quality-aware BP using an
imperative model with data management.

This chapter analyses the different modifications that a BP must suffer to be data-
quality aware. In order to minimize the modifications over the model itself, and to facili-
tate both the model and the needed implementations to be able to deploy it, we propose
the modification of the traditional PAIS. In (Dumas et al., 2005), the authors introduced
the concept of Process-Aware Information System (PAIS) for facilitate the specification
and enactment of business processes. One of the main advantages is that a PAIS sepa-
rates process logic from application code (Weber et al., 2009). Specifically, in the PAIS
framework, models of business processes are represented in the Process Layer, and the
functionality of their activities are implemented and deployed by services situated in the
Application Layer. We propose that certain data-quality management activities (e.g.
measurement, assessment, or improvement) can be both supported by and implemented
as part of the PAIS. The main consequence of our hypothesis is that part of the data-
quality management activities, that should be implemented as part of the BP, can be
now externalized as services. It makes possible that the BP, where required, can simply
invoke these data-quality activities. Therefore, the modification of the traditional PAIS
is proposed with the aim of supporting and addressing the data-quality management in
various phases of the BPM life-cycle, facilitating the incorporation of data-quality aspects
and reducing the complexity to implement them. In our proposal, all the data-quality
activities in charge of the control and enhancement are externalized and gathered in a
new Data Quality Layer, called the DQ Layer. To guide the incorporation and usage of
this new DQ Layer, a methodology is also provided to help and support both business
and data-quality experts through the various phases.

The remainder of the chapter is organized as follows: Section 6.2 proposes a case study
which could be successfully applied to our problem. Section 6.3 presents the PAIS-DQ
framework, extended with the DQ Layer to address DQM. Section 6.4 shows the steps
to transform a BP into a data-quality aware BP. In Section 6.5, our proposal is applied
to the case study. Section 6.6 includes an overview of relevant work. Finally, conclusions
are drawn in Section 6.7.

6.2 Detailing a Case Study

In order to let the readers achieve a better understanding of the benefits of this proposal,
at this point a brief summary is introduced of one of the case studies covered. This
case study is an adaptation of the Trip Planner example presented in Section 2.6. This
corresponds to the process only aimed at finding and booking the cheapest flight to
make a trip according to customer requirements. Increasingly, people use marketplace
applications on the web that integrate several results from queries to a variety of flight
providers. A possible BP using the PAIS framework is shown in Figure 6.1. Business
Process Model and Notation (BPMN) (OMG, 2011b) is used to describe the different

6.2. DETAILING A CASE STUDY 109

activities that constitute the BP, namely:

(i) Firstly, the customer, through the presentation layer, introduces his or her travel
requirements.

(ii) Several activities are then executed in parallel to search for the flight that best
meets customer requirements. These activities invoke a number of external services
to obtain the flight information.

(iii) The best flight is chosen, typically according to the cheapest price.

(iv) The customer is informed of this flight.

External

services

(Internet)
Web

Service

1

Web

Service

2

Web

Service

3

Request Flight
From Provider 1

Request Flight
From Provider 3

Request Flight
From Provider 2

Choose the best
Flight based on
the Customer
Preferences

Fl
ig

h
t

Se
ar

ch

Receive

Customer

Flight

Preferences

Send

Flights

Alternatives

to Customer

Customer

preferences

Flight Data

from

Provider 1

Flight Data

from

Provider 3

Flight Data

from

Provider 2

Flight

Data

(i) (ii) (iii) (iv)

Flight

Request

Flight

RequestFlight

Request

Process
 Layer

Application
Layer

Presentation Layer

DBPersistence Layer

Figure 6.1 – Illustrative Example: Flight Search process.

In particular, the process model described in the Process Layer includes:

• The activities (“Request Flight From Provider 1”, “Request Flight From Provider
2”, ...);

• The data generated that flow through the process and is exchanged with the Appli-
cation Layer (drawn in red, “Customer preferences”, “Flight Request”,...);

• And the control-flow (AND gateway in the example).

At the same time, in the Application Layer, the external services invoked by the
activities are deployed and ready to be called (“Web Service 1”, “Web Service 2”, ...).

In each step of the process, a set of data is created, queried and updated. Special
attention should be paid to the data obtained from external resources (step (ii) of the

110 CHAPTER 6. PAIS-DQ

example), and to the decisions taken based on the just-received data (step (iii) of the
example). In other words, it is paramount to observe the levels of quality of the data of
interest in steps (ii) and (iii). In our case, data-quality concerns are addressed for the
set of data used by the activities. In a particular case, the data whose levels of qual-
ity should be borne in mind due to its importance, are on the one hand the customer
preferences, which could be represented as presented in Section 3.2.1 by departingFrom,
goingTo, departDate and returnDate; and on the other hand, the flightInformation could
be represented by flightNumber, carrier, departureTime, arrivalTime, priceFlight,
checkedLuggagePrice and creditCardCharge. After introducing our proposal, we will re-
turn to this case study to describe the steps taken to ensure the quality of this specific
data.

6.3 PAIS-DQ Description

Based on the definitions given in 2.5.1, let us take into consideration the following points
as the main rational for our investigation: (i) the idea of considering data as a product
(Wang, 1998), which enables the application of basic quality principles to the data; (ii)
the need to consider only the quality of data in the process design phase; and (iii) the
increment of the complexity of the model to include quality and more control-flow tasks.

We propose PAIS-DQ as a way to simplify the execution of some of the low-level
DQ management activities. These activities articulated as part of the high-level DQ
management activities are defined by the organization in order to ensure the overall
level of quality of the data used in their running BPs. The simplification includes the
possibility of externalizing the services to enable their reusability at different points of
the BP. Therefore, the objective is the attainment of advantages of having externalized,
to any BPs, the set of reusable mechanisms that are aligned to DQ strategy.

The set of low-level activities includes measurement, assessment, and enhancement
of data; these activities should be considered as atomic operations for the high-level
DQ management activities of DQ control and/or DQ assurance. In other words, if an
organization is willing to grant its BPs DQ awareness at design level (Cappiello et al.,
2013), then the PAIS-DQ offers the means to do so at an implementation level.

This section describes how the PAIS-DQ is structured. Along with the extension of
PAIS, we also considered that, in order to support business and DQ experts and to enable
PAIS-DQ to be used, some methodological guidelines must be provided: PAIS-DQ-HOW.

6.3.1 PAIS-DQ Architecture

We propose extending the classic PAIS framework (Weber et al., 2009) with the so-called
DQ Layer, at the same level as the Presentation, Process, and Application Layers (see
Figure 6.2).

BP models designed in the Process Layer establish communication with the customer
through the Presentation Layer and run the services implemented in the Application
Layer, since it is possible to combine several services within the same process. The
DQ Layer is in charge of providing, in an external and independent way, the necessary

6.3. PAIS-DQ DESCRIPTION 111

Application Layer

Presentation Layer

Process Layer

Persistence LayerDB

Data

Quality

Layer

Figure 6.2 – Framework for Data Quality Management.

functionalities and mechanisms to manage the level of quality of the data that flow through
the process in each instance. To this end, not only the Process Layer is affected by the DQ
Layer. Firstly, certain mechanisms must be provided to enable the customer to establish
the required DQ level. These mechanisms must be provided by the DQ Layer at the
Presentation Layer level. At the same time, in the process model of the BP under study,
it must be specified which data are to be controlled and/or assured.

Therefore, the DQ Layer must provide the necessary mechanisms to the Process Layer
to locate, specify and define the data involved in the low-level DQ management activ-
ities. And finally, the services in charge of the DQ functionalities (i.e. activities) are
implemented, deployed and located by the DQ Layer in the Application Layer.

Table 6.1 summarizes the various needs in each of the four PAIS Layers: DQ Layer
Necessities, What needs to work; DQ Capabilities, What is provided; and DQ Layer
Responsible, Who is in charge of configuring these capabilities.

Table 6.1 – DQ Layer in PAIS-DQ

PAIS Layer DQ Layer Necessities DQ Layer Capabilities
DQ Layer
Responsible

Presentation
Layer

Required DQ level by cus-
tomer

Data defining required DQ
level

Business and
DQ Expert

Process
Layer

BP model + DQ level + re-
quired Low-level DQ man-
agement activity

BPMN enriched with DQ
requirements

Business and
DQ Expert

Application
Layer

DQ Services DQ functionality DQ Expert

Persistence
Layer

- -
Business Ex-
pert

On the other hand, once data used in the BP is analysed and/or modified in the DQ
Layer, the information about the level of DQ should be included in the BP model. For
this reason, a new type of data is included in order to make the BP data-quality aware.
This new data type is called Data-Quality Items (DQ Items).

112 CHAPTER 6. PAIS-DQ

Hence, DQ Items constitutes the set of data that contain the information about the
level of quality of a specific item of data and/or a specific dataset, and is related to a set of
DQ dimensions. Therefore, these DQ Items should point to other types of data, since they
could include additional information related to the level of quality. In our case study, the
piece of data called arrivalTime can be enriched with the DQ item corresponding to its
accuracy information (e.g. level required, moment in the BP where it must be controlled
and/or assured, and value obtained). How this information should be included in the
data-flow is detailed in Section 6.4.

6.3.2 Data Quality Management Activities

As explained earlier in Section 2.5.1, the high-level DQ management activities (control
and/or assurance) are to use some low-level DQ management activities (measurement,
assessment, decision-taking, enhancement). The relationship between these activities is
shown in Table 2.3. How details concerning these DQ management activities can affect the
BP, and how PAIS-DQ support this influence are introduced in the following subsections.

6.3.2.1 How High-Level DQ Management can affect the BP Model

When an organization decides to make its business processes “data-quality aware”, then
they high-level DQ management activities (control and/or assurance) should be included
into the BP. This decision implies modification of the process model.

Implementing DQ control involves inclusion of the low-level DQ management activities
of measuring, assessing and/or enhancing data. To this end, business experts, together
with the DQ experts, must decide whether or not the BP model should be changed, and
if necessary, how to introduce these new activities. For example, a BP model should
not be changed if the consequences of including decisions related to DQ only imply the
modification of the conditions associated to the branches of the flow, or if the consequences
only affect one activity. Specifically, Figure 6.3 shows how the conditions to take the
different outgoing branches of an exclusive gateway are enriched with the assessment
results.

On the other hand, on implementing DQ assurance in order to ensure a specific level
of DQ in a BP, both types of expert should study and evaluate how, at a certain point
in the process, a set of DQ requirements must be implemented. For example, a level of
DQ can be assured by enhancing a set of data, or possibly, by going back to a point at
which the level of DQ was acceptable, such as shown in Figure 6.4, where if the DQ level
of the flight data from the provider is assessed as “not good”, then the provider is asked
for flight information again.

6.3.2.2 How Low-Level DQ Management Activities can affect the BP Model

The implementation of low-level DQ management activities brings several consequences
to the BPs:

• Leverage of Internal Performance: This strategy proposes the implementation
of some of the previously stated low-level DQ management activities inside the

6.3. PAIS-DQ DESCRIPTION 113

A4

C
o
m
p
an
y

Receive

Customer

Request

Send

result

to Customer

a, b, c

A1

A2

A3

a≥500

500>a≥ 50

a<50

A4

C
o
m
p
an
y

Receive

Customer

Request

Send

result

to Customer

a, b, c

+dq_a

A1

A2

A3

a≥500 and

dq_a is good

500>a≥ 50

 and dq_a

is good

a<50 or dq_a

is not good

Figure 6.3 – Data Quality Control by including new decision rules in a gateway.

BPs. This commonly implies the inclusion of new activities within the BP model
by using some of the programmable languages that exist in a Business Process
Management System (BPMS). In (Caro et al., 2012), the authors show how these
types of activities can be included in the BP as new activities. Specifically, a new
activity is included for the overall assurance of the level of quality for a DQ dimension
required.

• Leverage of External Performance: External services are responsible for pro-
viding the low-level DQ management functionality. Therefore, the activities that
need to measure, assess and/or enhance the level of quality of some data must call
the external service that contains the necessary DQ functionalities. This external
enactment can be invoked from:

– One of the existing activities in the BP, such as those shown in Figure 6.5.

– A new activity created for the invocation, as proposed in (Cappiello et al.,
2013), (Caro et al., 2012) and (Rodŕıguez et al., 2012).

In this work, externalization into the DQ Layer is proposed of as many of the low-level
DQ management activities as possible, as shown in Figure 6.6.

6.3.3 Data Quality Layer Functionalities

In our proposal, we strive to optimize the implementation of the DQ management activ-
ities from the point of view of the development of the software systems that support the
BP. It is assumed that the DQ Layer can minimize the degree of modification required
of the BP process model and the corresponding software system(s) that support the BP.
Consequently, the more these functionalities can be externalized, the less the software
system(s) will need to be modified. It is therefore intended, by means of the DQ Layer,
to enable the reduction of the implementation time for the specific DQ requirement for
each problem. The various activities of the BP process must interchange the DQ items

114 CHAPTER 6. PAIS-DQ

Request Flight
From Provider 1

Request Flight
From Provider 3

Request Flight
From Provider 2

Choose the best Flight
based on Customer

Preferences
Fl

ig
h

t
C

o
m

p
an

y
Receive

Customer

Flight

Request

Send

Best Flight

to Customer

Customer

preferences

Flight

Data

+dq_measure

+dq_assess

Flight Data

from Provider 1

+dq_assess

Flight Data

from Provider 2

+dq_assess
Flight Data

from Provider 3

+dq_assess

Request Flight
From Provider 1

Request Flight
From Provider 3

Request Flight
From Provider 2

Choose the best Flight
based on Customer

Preferences

Fl
ig

h
t

C
o

m
p

an
y

Receive

Customer

Flight

Request

Send

Best Flight

to Customer

Customer

preferences

Flight

Data

+dq_measure

+dq_assess

Flight Data

from Provider 1

+dq_assess

Flight Data

from Provider 2

+dq_assess

Flight Data

from Provider 3

+dq_assess

dq_assess

is good

dq_assess

is not good

dq_assess

is good

dq_assess

is not good

Figure 6.4 – Data Quality Assurance by inclusion of new branches.

with the corresponding activities of the DQ Layer associated with measurement, assess-
ment, and/or enhancement. Consequently, the functionalities to be included as part of
DQ Layer are determined by the low-level DQ management activities required to render
the process DQ aware, such as DQ Measurement, DQ Assessment, and DQ Enhancement
(cf. Section 6.3.2).

The deployment and usage of the various functionalities could be performed by taking
into account the technologies that best fit the BPs. For example, web-service technology
has been demonstrated to be highly useful (van der Aalst et al., 2003).

6.4 PAIS-DQ-HOW: Methodology to use PAIS-DQ

A methodology is proposed in order to ease the utilization of PAIS-DQ and to provide some
structured guides that enable IT people to use the corresponding DQ Layer. Compared
to certain proposals in the literature, such as BPiDQ by (Cappiello et al., 2013), our
proposed methodology, called PAIS-DQ-HOW, goes beyond the design phases of BPs. In
fact, not only does it cover the Design Process phase of the PAIS life-cycle, but it also
completes the rest of PAIS life-cycle phases to facilitate the inclusion of DQ management
activities into the BP.

In addition, PAIS-DQ-HOW should cover:

• The design of the high-level DQ management activities in the organization.

• The design of the low-level DQ management activities.

• A full description of the DQ items that should be exchanged.

• The design and deployment of the DQ Layer.

6.4. PAIS-DQ-HOW: METHODOLOGY TO USE PAIS-DQ 115

Request Flight
From Provider 1

Request Flight
From Provider 2

Choose the best
Flight based on
the Customer

references

External

services

(Internet)
Web

Service

1

Web

Service

2

Web

Service

3

Flight Request

Request Flight
From Provider 3

Flight Request Flight Request

Data Quality

Action

Service

Application Layer

Fl
ig

h
t

C
o

m
p

an
y

Receive

Customer

Flight

Preferences

Send

Flights

Alternatives

to Customer

Customer

preferences

Flight

Data from

Provider 1

+dq_items

Flight Data

from Provider 3

+dq_items

Flight Data

from

Provider 2

+dq_items

Flight

Data

+dq_items

Figure 6.5 – Data Quality Action Performance in an external service.

Application Layer

Process Layer

Data Quality Layer

Data Quality

Measurement

Data Quality

Assessment

Data Quality

Improvement
Web Service

1 Web Service

3

Web Service

2

Data Quality

Measurement

and Assessment

Figure 6.6 – Data Quality Layer services.

• How low-level DQ activities are included in the BPs by using the DQ Layer to
achieve the goals of the high-level DQ activities.

Therefore, how these inclusions affect the various PAIS-DQ Layers is described and
specified through the PAIS life-cycle phases.

6.4.1 Business Process Design

BP models contain all the information about the activities, the data-flow, and the
sequence-flow located in the Process Layer. In addition, the necessary services in charge of
the functionality of several activities are situated and described in the Application Layer.
BPs can be modelled in any Business Process Management System, or can also form the
input of the methodology. This step can be skipped if the BP already exists and if the
objective is to make this BP DQ-aware.

6.4.2 Data Quality Layer and System Configuration

Once the process is modelled in the Process Design phase, the business expert together
with the DQ expert must configure the process (System Configuration phase) and decide

116 CHAPTER 6. PAIS-DQ

which DQ management activities must be considered in the BP. Both experts must then
also decide the data affected, the BP changes, and the specific implementation.

6.4.2.1 Configuration of High-Level DQ Management Activities

The organization, taking into account its specific needs, should identify which activities
(control and/or assurance) should be implemented to obtain greater benefits. This also
implies the selection of those parts of the BP are susceptible to requiring special attention
for the data used.

As part of the control and/or assurance, not only does data requiring control and/or
assurance have to be identified, but also the DQ dimensions representing the criteria that
should be covered. Developers should therefore specify the DQ requirements for each item
of data through the specification of the following information:

• Data : the data that should be controlled and/or assured.

• DQ Requirements: the DQ characteristics that are going to be considered, (e.g.
completeness, accuracy, and credibility). These DQ characteristics, along with their
corresponding values, are included as new DQ items into the data-flow.

• Who measures: who is in charge of the measurement of the level of DQ.

• Who assesses: who is in charge of the assessment of the level of DQ.

• Who enhances: who is in charge of the enhancement (improvement) of the level
of DQ.

As a result, several DQ items are identified and must be fully described. Furthermore,
their usage has to be standardized across the BP.

In order to communicate to the final customers the state of the data that they are
about to use, these DQ items are exchanged between the layers of the PAIS. The way to
calculate the value for these DQ items in the BP is performed through the corresponding
low-level DQ management activities. These activities should establish various algorithms
and mechanisms for the calculation of the value for each DQ item as explained below.

6.4.2.2 Configuration of Low-Level DQ Management Activities

In order to conduct the design of the high-level DQ management activities, organizations
should coordinate the required low-level DQ management activities.

There are several possible configurations for the low-level DQ management activities.
Therefore, along with the identification of the activities, in this stage, certain further
elements must be defined:

1. The set of low-level DQ management activities that are part of the high-level DQ
management activities.

6.5. PAIS-DQ APPLIED TO THE CASE STUDY 117

2. The interface for each activity. As part of this interface, the corresponding input and
output data (parameters) that enable customization to different scenarios should
also be defined. Examples of these parameters include the data requirements related
to certain DQ dimensions, such as the measurement related to completeness, or the
assessment related to completeness.

3. The corresponding algorithm/mechanism for the measurement method, assessment
method and/or enhancement methods. For example: for measurement, the corre-
sponding measurement methods (the algorithms) have to be defined; for enhance-
ment, the corresponding enhancement of data (including possible sources) should
be identified.

Once the low-level DQ management activities are designed, the corresponding imple-
mentation must be developed and deployed. In this case, the DQ expert, in representation
of the entity (organization or department) in charge of performing the DQ aspects, must
develop the necessary implementation in order to make these low-level DQ management
activities available.

6.4.2.3 Changes to the BP to make it DQ aware

Therefore, depending on the high-level DQ management activities, the set of changes to
apply to the BP varies. On the one hand, the data-flow is always modified to include
DQ items. On the other hand, the experts should act accordingly on the control and/or
assurance necessities, as explained previously, (e.g. externalizing the measurement, in-
cluding a decision rule in a gateway, and including a new activity to improve a set of
data). In other words, the adaptation or redesign of the BP includes the low-level DQ
management activities that form the high-level DQ management activities planned by the
organization.

6.4.3 Business Process Execution

Once all the parts of the extended model have been defined, the executable process can
be performed. When an instance reaches an activity connected with an external service in
charge of the DQ aspect, then the values for the data of the instance and the requirements
and thresholds (if necessary) are sent to this service. Otherwise, when an instance reaches
an activity in charge of the DQ aspects, then the values for the data, the requirements
and the thresholds (if necessary) are taken from the incoming sequence-flow.

The synopsis of which PAIS-DQ Layer is affected in each step of the methodology,
what is used, what is obtained, and who is responsible is detailed in Table 6.2 below:

6.5 PAIS-DQ Applied to the Case Study

In order to illustrate the usage of both the methodology and the DQ-PAIS, in this section
an explanation is given as to how to render the case study DQ-aware. To this end, the

118 CHAPTER 6. PAIS-DQ

T
a
b
le

6
.2

–
P

A
IS

-D
Q

-H
O

W
M

eth
o
d

ology

M
e
th

o
d
o
lo

g
y

S
ta

g
e

P
A

IS
-D

Q
L

a
y
e
r

W
h
a
t

is
u
se

d
W

h
a
t

is
o
b
-

ta
in

e
d

R
e
sp

o
n
sib

le

1
.

P
ro

ce
ss

D
e
sig

n
P

A
IS

P
A

IS
B

P
M

o
d
el

B
u
sin

ess
E

x
p

ert

2
.

D
Q

L
a
y
e
r

a
n
d

S
y
s.

P
resen

tation
,

P
ro

cess
an

d
A

p
p
lication

L
ayers

P
A

IS
-D

Q
B

P
M

o
d
el

+
D

Q
B

u
sin

ess,
IT

an
d

D
Q

E
x
p

ert

2
.1

.
H

ig
h

L
e
v
e
l.

P
resen

tation
an

d
P

ro
cess

L
ayers

B
P

M
o
d
el

H
igh

L
evel

A
c-

tiv
ities

+
D

Q
Item

s

B
u
sin

ess
an

d
D

Q
E

x
p

ert

2
.2

.
L

o
w

L
e
v
e
l.

A
p
p
lication

L
ay

-
ers

H
igh

L
evel

A
c-

tiv
ities

L
ow

L
evel

A
c-

tiv
ities

D
esign

an
d

Im
p
lem

en
-

tation

D
Q

E
x
p

ert

2
.3

.
C

h
a
n

g
e
s

to
B

P
.

P
ro

cess
L

ayer
B

P
M

o
d
el

+
D

Q
R

eq
u
irem

en
ts

B
P

M
o
d
el

w
ith

D
Q

B
u
sin

ess
an

d
IT

E
x
p

ert
3
.

B
P

E
x
e
cu

tio
n

P
A

IS
-D

Q
P

A
IS

-D
Q

E
x
ecu

tab
le

B
P

IT
E

x
p

ert

6.5. PAIS-DQ APPLIED TO THE CASE STUDY 119

three steps of our aforementioned methodology are applied and detailed in the following
subsections.

6.5.1 BP Design: Flight Search Process

The BP used here is that presented in Section 6.2 as a case study. This process can be
modelled in any Business Process Management System, such as IntalioTM (Community,
2012b), ActivitiTM (Team, 2012), and Bonita Open SolutionTM (Community, 2012a). In
our case, Bonita Open SolutionTM is applied to design and execute the BPs, as shown in
Figure 6.7, since it is an open-code application with a free distribution, and is commonly
used in the private market.

6.5.2 DQ Layer and System Configuration

In our case study, we are specifically interested in implementing a DQ control plan,
since we consider that customers can be aware of the level of quality of the data they
are using when booking flights. Therefore, the DQ Layer and the System configuration is
focused on providing and developing the necessary mechanisms to control the level of DQ
in the Flight Search Process. Therefore, the aim of this stage is to make a BP become
DQ-aware through the configuration of its DQ items, required low-level DQ activities and
implementation of these low-level DQ activities.

6.5.2.1 Configuration to Control Data Quality Levels

Regarding the data that are required to be controlled, we focus on that corresponding
to the outcome data of the activities Request Flight from Provider 1, Request Flight from
Provider 2 and Request Flight from Provider 3. These items of data in the case study
are the result of the data exchange between these three activities and the related external
services. Table 6.3 provides details of the information needed, given by the DQ Experts,
for some of these items of data. In this case study, no one enhances since it is not required,
therefore, this information is omitted.

Table 6.3 – Data Quality Requirements for Request Flight from Provider 1 activity output

Data Dimension Level
Control/
Assurance

Who
measures

Who
evaluates

arrivalTime Accuracy High Control I8K I8K

checkedLuggagePrice Accuracy High Control I8K I8K

creditCardCharge Completeness High Control I8K I8K

...

6.5.2.2 Data Quality Items

The DQ dimensions chosen were completeness and accuracy. For these DQ dimensions,
it was decided to include this information into that which should be communicated to the

120 CHAPTER 6. PAIS-DQ

customer. This information is given by the DQ items. These DQ items must be managed
as part of the operation of the DQ Layer, and must be exchanged from and to the DQ
Layer and the corresponding activities in our example. See the next subsection for a more
in-depth description.

6.5.2.3 Low-Level DQ Activities to Control DQ Configuration

On the other hand, since we have chosen a DQ control plan, and taking into account
the set of activities in Table 2.3, the low-level DQ management activities that should
be implemented and deployed to the DQ Layer are the measurement, assessment, and
decision on what to do. Therefore, an explanation is given below on how these DQ
requirements are carried out through a BPMS.

As part of this process, details are shown in Figure 6.7 on how to measure the level of
quality of the data produced by the activity Request Flight from Provider 1 (first step of
the business process).

Figure 6.7 – Add a Data Quality Connector to an activity with Bonita Open SolutionTM .

Since the DQ measurement is externalized and located in the DQ Layer, one way to
measure the level of quality of the data returned by a provider involves the addition of a
Data Quality Connector to this activity (second step). A connector is the way in which
Bonita Open SolutionTM links an activity with the service or application that executes a
functionality, such as the DQ measurement.

The connector, called the Data Quality Connector, has been designed with the aim of
specifying the DQ requirements in order to send the data values at run-time to the software
in charge of the DQ measurement, assessment, and/or improvement. In other words, it
connects activities in the Process Layer to the DQ Layer to obtain the results of DQ
functionalities. In addition, the Data Quality Connector also permits connector outputs
to be retrieved and to store them in the process variables. As shown in Figure 6.8, the DQ
requirements detailed in Table 6.3 are indicated through the wizard provided and then the
result obtained by the service can be stored in the DQ items of the BP. In the example, the
DQ items are: arrivalFlightProvider1Accuracy and creditFlightProvider1Completenness.

6.5. PAIS-DQ APPLIED TO THE CASE STUDY 121

Figure 6.8 – Data Quality Connector configuration for the activity Request Flight From
Provider 1.

6.5.2.4 Low-Level DQ Activities to DQ Control Implementation

It is possible to find various solutions that implement the necessary functionalities to
support the operation of the DQ Layer. The implementation must support several combi-
nations of the aspects described in the previous section. In this section, the opportunity of
adding certain information concerning the certification of DQ levels is also considered in
order to increment the reliability of the data. This information is to be included into the
DQ items. Once the information of the certification of the data is conveniently supplied,
the process can be adapted so that it may be managed, and decisions, based on such
information (control and/or assurance), may be made in execution time.

Specifically, we have developed a service architecture, named I8K and previously intro-
duced in (Caballero et al., 2013), which satisfies the requirements for the DQ certification
schema given by the ISO 8000-1x0:2009 family (ISO, 2011a). These requirements consist
in the incorporation of certain information on the data being exchanged between the Pro-
cess and the Application Layer. As part of this information, the certification of the DQ
is included (see Figure 6.9).

Figure 6.9 – Fragment corresponding to the completeness dimension given by I8K Architecture.

More specifically, the standard supports the certification of only those two DQ dimen-
sions chosen: accuracy in ISO 8000-130 (ISO, 2011b), and completeness in ISO 8000-140
(ISO, 2011c).To the best of our knowledge, there is currently only one public usable imple-
mentations of standard ISO 8000-1x0:2009: that developed by ECCMA, which is available

122 CHAPTER 6. PAIS-DQ

at (Benson and Hildebrand, 2012b) under payment. However, the I8K implementation
strives to satisfy all of the requirements established in the various parts of the family of
standards. This motivated our decision to carry out our own implementation.

This I8K therefore provides our DQ Layer and supports the low-level DQ management
activities needed for our case study.

6.5.2.5 Flight Search Process Changes

While focusing on the case study, let us explain one of the changes to be made: as part of
the DQ control, the business and DQ experts must adapt the Choose the best Flight based
on Customer Preferences activity so that they are responsible for verifying and deciding
how the decision can affect these DQ levels. For example, if a customer establishes, as a
DQ requirement that the landing time (arrivalTime) has to be accurate, then it is expected
that if any of the activities returns a flight with a landing time without specifying whether
it is “a.m.” or “p.m.”, then, this flight is not considered by the activity Choose the best
Flight based on Customer Preferences, and therefore, not offered to the customer.

On the other hand, for the activity Request Flight From Provider 1, it was decided to
include the measurement of the DQ. To implement the measurement, two connectors to
the activity were required: the first, which connects with the provider; and the second,
which connects with the entity in charge of the DQ measurement, such as shown in Figure
6.10. This implementation was in a similar way for the remainder of the activities.

Figure 6.10 – Connectors in Bonita Open SolutionTM for the activity Request Flight From
Provider 1.

6.6. RELATED WORK 123

6.5.3 BP Execution

Once all the parts of the BP have been defined, the execution process can be performed
using the execution engine of Bonita Open SolutionTM . The selection of the best flight
now takes into account the DQ items containing information about the completeness and
the accuracy, and that information can be used accordingly.

6.6 Related work

Once the underlying concepts about PAIS and DQM have been studied, our purpose is
to include DQM activities into PAIS in a transversal way. This enables BP to take ad-
vantages of using the various activities of DQ management. This implies the capacity to
ascertain the level of quality of the data that flow through a process without devaluating
the process itself. It means that it would be possible to implement the DQ management
activities, along with any activities or decision processes, without the need for imple-
menting a specific solution to manage the DQ in each case. Therefore, an increase in the
number of the layers is implied (Presentation, Process, Application and Persistence) with
any other layers that have specific goals. In (Jablonski and Bussler, 1996), Jablonski and
Bussler identified other important perspectives for PAIS: causality, integrity and failure
recovery, history, security and quality. The quality perspective is related to the “establish-
ment of a control mechanism to determine whether a process instance has been executed in
an efficient manner or not”. However, they fail to define a DQ perspective related to the
level of quality that data should reach. In (Gómez-López and Mart́ınez Gasca, 2010a) and
(Gómez-López and Mart́ınez Gasca, 2010b), Gómez-López et al. present an extension of
the PAIS framework, where an analysis of the correctness of the data stored in the Persis-
tence Layer is proposed in order to diagnose the incorrect data according to the Business
Rules of the process, but this extension is not related to the DQ aspects. Furthermore,
related to DQ aspects, there is otherwise a wide variety of applicable works. In (Marotta
et al., 2012), Marotta et al. highlight the importance of applying data-quality in Web
Warehouse (WW). They present a framework to include DQM in WW life-cycle with the
aim of develop a data-quality aware WW. This awareness is obtained by means of filtering
undesirable items and also to guide the processes of source selection and extraction.

On the other hand, there are various studies that specifically focus on how to design
quality-aware BPs. In (Heravizadeh et al., 2009), Heravizadeh et al. identify which DQ
dimensions should be analysed in a BP. Cappiello and Pernici, in (Cappiello and Pernici,
2006), describe a methodology for integrating some concerns related to DQ management,
specifically, on how BPs should react when errors due to poor DQ occurs during the
enhancement of the Web Services. However, they focused their research on the detection
and correction of errors of data exchanged by the services and found at runtime. In
addition, they also analysed the correct way of working for an activity based on this data.
The main difference to our work is that we study how to better address the various ways
to measure, assess, control, improve and assure the DQ level in a BP that is supported
by a PAIS, and not just the possible errors of these data. On their part, Rodŕıguez
et al., in (Rodŕıguez et al., 2012), propose a BPMN extension to model several DQ

124 CHAPTER 6. PAIS-DQ

aspects. Nevertheless, their focus is on a descriptive approach rather than an analytical
approach. Following on from that work, Caro et al. (Caro et al., 2012), and Cappiello et al.
(Cappiello et al., 2013) tackle the problem of how the BP is affected by the management of
DQ by defining a methodology called BPiDQ to consider DQ issues in the BP modelling
phase; however, they fail to consider how this BP is affected at runtime when the model
is executed in a BPMS.

Furthermore, after conducting a systematic literature review, it is found that none of
the proposals encountered specifically address this DQ perspective in the PAIS Framework
and through any of the PAIS life-cycle stages. In addition, we demonstrate this proposal
with an implementation of these ideas in a BPMS.

6.7 Summary and Discussion

This contribution proposes a methodology to manage the data-quality in business process,
a key characteristic in data management. In order to do applicable this methodology,
we propose an extension of the Process-Aware Information System framework, called
PAIS-DQ, with the aim of including data-quality aspects into business processes. The
control and/or assurance of data-quality should not be given by the activities that shape
the process, since the level of data-quality has to be guaranteed by an external and
independent entity. PAIS-DQ includes a Data Quality Layer in charge of incorporating
these quality aspects into the BP, thereby avoiding modification of the BP model itself
with data-quality aspects, and maintaining a separation between the BP model and how
the quality level is obtained. Thanks to this layer, it is possible to execute a BP instance
which not only covers the preferences of customers, but also surpasses their expectations
with regards to data-quality. Data quality awareness is incorporated by means of the
inclusion of these data-quality aspects into a BP model using DQ Layer.

The usage of the methodology and the DQ Layer have been illustrated by applying
them to a case study, in which we have shown how to introduce several data-quality
activities to control the levels of completeness and accuracy of the data. In our case
study, Bonita Open SolutionTM is applied to design and execute the BPs. Specifically, a
Data Quality Connector has been designed within Bonita Open SolutionTM with the aim
of specifying the DQ requirements in order to send the data values at run-time to the
software in charge of the DQ management activities. I8K, which meets the requirements
of ISO 8000-100 to ISO 8000-140, has been used as the implementation of the DQ Layer,
to provide the support to the low-level data-quality activities.

Part VI

Conclusions and Future Work

125

Chapter 7

Final Remarks

Your work is going to fill a large part of your
life, and the only way to be truly satisfied is to
do what you believe is great work. Don’t settle.

Steve Jobs.

The current Thesis Dissertation presents three main contributions to support the data-
oriented optimization in business processes. These contributions have been orchestrated
under the umbrella of Combi-BP Framework to improve the data aspect in Business
Processes. The framework presents the process of specifying a data-oriented optimization
problem in a declarative way, and how it is transformed into an imperative model taking
into account the data-structure and the data-value dependencies. This imperative process
maintains the flexibility of the declarative specification, thanks to the use of constraint
programming, but enables its deployed and is closer to an executable model deployed in a
commercial BPMS. In order to cover various data aspect, how the data-quality dimensions
can be included in a business process is also dealt.

In order to shield the business experts to unnecessary details and to help them to
describe the a data-oriented optimization problems in business process in a more flexible
and adaptable way, we propose a declarative language where the data aspects are included.
This declarative language allows the business experts to describe what they want instead
of how to obtain it. This declarative model will be transformed into an imperative model.
The business experts will not have to think about how to design the BP where the
activities need coordination to obtain a concrete combination of data, only to specify the
BP requirements, leaving the analysis of the best activities modelling and the model to
the framework.

• Part III formalizes the type of problems dealt in this Thesis Dissertation. We de-
fine a data-oriented optimization problem in business process as the set of activities
that are related and have to optimize the outcome of the process. This optimization
means that the order of the activities and the final product depends on the values of
the data handle in each instance. This problem implies a depth study and analysis

127

128 CHAPTER 7. FINAL REMARKS

of how to design an executable BP capable of check every possible combination of
data to obtain the optimal outcome. In order to describe a data-oriented optimiza-
tion problem, two proposals are presented. Firstly, a Data-Oriented Optimization
Language, called DOODLE, is developed. DOODLE provides a graphical notation
to describe the set of activities, their input and output data, and pre- and post-
conditions, the set of constraints that relate the activities, and objective function.
Secondly, an extension of the standard BPMN has been described. This extension
enables to include the declarative description of the BP as a new type of sub-process
in a BPMN model, allowing the combination of imperative and declarative descrip-
tions in the same model.

These contributions have been addressed in various publications. Related to DOO-
DLE the following publications have been published: (Fernández Narváez, 2013;
Parody et al., 2013a,b). Furthermore, an article including DOODLE has been sub-
mitted as to an indexed journal (Parody et al., 2014c). Related to BPMN extension,
an article in the International Workshop on the Business Process Model and Nota-
tion focused on the latest developments around BPMN (Parody et al., 2012a). In
addition, a tool has been developed (Parody et al., 2013c) and (Parody, 2013) to
support the data-oriented optimization description within an imperative BP model
using BPMN. This tool has been also registered in the Intellectual Property Record
of Andalusia (Spain).

However, this specification is insufficient to be deployed neither executed in a com-
mercial BPMS. This incapacity brings us to develop a set of configurations and transfor-
mations to convert this declarative model into an imperative model. The configuration
permits to establish an order between the activities in function of data-structure depen-
dencies. This order depends on the data constraints and the relationships between the
activities, but also remains insufficient to support the data-value dependencies to find
the most appropriate input data to optimize the outcome data. In order to solve this
problem, two transformations have been developed to solve locally, or by executing the
activities, but guaranteeing that the optimal outcome is found.

• Part IV presents a configuration based on the data-structure dependencies, and two
approaches to solve the data-values dependencies, as detailed as follows:

– Chapter 4 is focused on the configuration process. The configuration enables to
transform the declarative model, formalized before, into an imperative repre-
sentation. An automatic method based on Constraint Programming, and a set
of developed algorithms, establishes an order between the activities taking into
account the data relationship between the activities. This order is translated
into an imperative model represented using the standard BPMN 2.0 (OMG,
2011b). Furthermore, the BPMN model obtained is optimal in the sense that
the execution time of the instances is the minimum.

– Two approaches are proposed in Chapter 5 in order to solve the data-value
dependencies of data-oriented optimization problems in BP. Each approach

129

depends on the knowledge related to the functionality of the activities. If
the values of the output variables of an activity can be ascertained through
their pre- and post-conditions (white-box approach), then, the optimization
problem can be solved locally by using Constraint Programming. Otherwise,
if the activities have to be executed to ascertain the output values (black-box
approach), then, an algorithm is developed to guarantee that every possible
combination of data is checked, and the optimal solution is obtained.

These contributions have been addressed in various publications. Related to the
configuration system, an article has been submitted to an indexed journal (Parody
et al., 2014b). Related to white-box, the paper (Parody et al., 2013b) has been
published, and an article has been submitted to an indexed journal (Parody et al.,
2014c). The black-box approach has been addressed in the following publications
(Parody et al., 2010, 2011a,b, 2012b).

One of the main problems to focus a business process to the final product optimization,
is that as soon as the final product satisfy customer requirements, the successful of the
BP will be greater. However, there are issues that are out of the company reach. For
example, in the majority of cases, the data provided by the activities come from external
entities. This implies that the final product will depend, in part, on the level of quality
provided by these entities. This problem can be solved including a set of data-quality
requirements in the BP in order to warranted that the final product has a high level of
data-quality. One of the main disadvantages of including data-quality requirements in a
BP is the besmirched of the BP.

• Part V presents an extension of the traditional process-aware information system
and a methodology to include data-quality requirements in a business process. This
extension enables to obtain the data-quality management advantages without mod-
ify the BP itself by externalized every data-quality functionality. Furthermore, this
extension permits to execute a BP instance which not only covers the preferences
of customers, but also surpasses their expectations with regards to data-quality.

This contribution has been addressed in various publications. (Bermejo, 2013;
Bermejo et al., 2013; Caballero et al., 2013). In addition, two articles have been
submitted to indexed journals (Bermejo et al., 2014; Parody et al., 2014a). Fur-
thermore, a tool has been developed (Bermejo and Parody, 2013) to support the
family of standards ISO 8000-1x0:2009, and has been registered in the Intellectual
Property Record of Ciudad Real (Castilla La-Mancha, Spain).

In short, this Thesis Dissertation provides a complete support to data-oriented in
BP. This support enables business expert to describe the problem composed by a set of
activities, data, constraints, and an objective function to be optimized, and let to the
different proposals, the transformation into an optimal imperative BP that obtain the
optimal outcome, following the data-quality requirements needed in each case.

130 CHAPTER 7. FINAL REMARKS

Chapter 8

Directions of Future Work

”The consequences of our actions are so compli-
cated, so diverse, that predicting the future is a
very difficult business indeed.”

Albus Dumbledore.

In the current Thesis Dissertation, a significant research works are presented. All the
proposed approaches can be extended with new research topics to be addressed in future
work.

In the first instance, regarding the declarative specification centred on data-oriented
optimization problems, the contribution provided in Part III is intended to be extended
with the next ideas:

• The proposals provided in this thesis dissertation are oriented towards the opti-
mization of an objective function. However, it would be interesting to study the
inclusion of several objective functions, or multi-objective functions in the BP. For
example, the customer could want the cheapest travel, but also the fastest one.
A combination of both objectives enlarges the possibilities related to the optimal
business product offered to the customers.

• The possible constraints that can be used in our proposal could limit the capacity
of their expressiveness as allowed by the grammar and the type of variables. The
constraints constitute the formal representation of the relations between the data
that forms the BP. The limitations of use of the proposal appear when the con-
straints cannot be represented by the relations described; by means of the presented
grammar; by the data type; or by the operators included in this proposal, such
as when a relation between two variables is described by means of a trigonometric
function. The limitation of the data domain and the operations that can be applied,
are established by the solver for the Constraint Optimization Problem, explained in
Section 3.2. Most of the commercial solvers maintain the capacity to include Float,
Integer, Sets, Boolean, Date and String variables in the model, thereby making it
possible to cover a significant number of problems and the constraints that they

131

132 CHAPTER 8. FUTURE WORK

need. For future work, we plan to extend the grammar of the constraint presented
in this thesis dissertation to enlarge the expressiveness of the model.

• New types of data-oriented optimization processes could be analysed: for example, in
the determination of whether it is necessary to execute certain activities apart from
those which achieve the objective. Furthermore, the activities could be executed
more than once for the optimization process in each instance. This means that the
activities could be provide various results that compose the final business product.

The configuration problem presented in Chapter 4 by considering the data-structure
dependencies, could be extended with the following characteristics:

• Since the specification of data-oriented optimization processes does not establish the
execution time of each activities, the Algorithm 1 (cf. Subsection 4.3.1) creates a
COP from the declarative specification assuming that every activities lasts the same
interval of time: a unit of time t. Therefore, the real execution time of each activity
could be specified in the declarative model and considered for the configuration
proposal.

• The imperative model configured from the declarative specification includes start
and creation of the BPMN model includes the following BPMN components: start
and end events; tasks; and parallel, exclusive, and inclusive gateways. However,
BPMN enables and defines more components in a BP. We propose to increase the
capabilities of the configuration, such as by including loops within the model.

Related to the white-box and black-box proposals, the advances are related to the
changes made to enlarge the capacities of the specification, since both proposals must be
adapted to provide the functionality required when a multi-objective is required, there
are new type of constraints, the activities can be executed more than once, and/or other
BPMN elements are considered in the imperative process.

However, one of the main challenges for our future work is the application of our
proposal to real scenarios. On the one hand, several real services to give the necessary
functionalities to the activities that compose the trip planner example are being developed.
The various services will take the data from existing providers on Internet. Unfortunately,
few providers allow us to take data in order to test our proposal, so the negotiations to
have the permissions are taking time. On the other hand, an application example, in
which we are working on, is the smart cities process developed in Trento, Italy (http://
www.smartcampuslab.it/). The main idea of the process is to improve travel experience
for citizens/tourists in the Trentino area providing accurate, real-time, and customized
mobility services supporting the whole travel duration.

• Provide more accurate and customized mobility solutions: possibility to provide
specific solutions that take into account the user context and preferences (additional
information for tourists, services for elderly people, disabled people)

http://www.smartcampuslab.it/
http://www.smartcampuslab.it/

133

• Support citizen awareness for smart mobility choices: possibility to combine different
mobility services, present different alternatives and support the choice with relevant
information (cost, duration, environmental impact, cultural/landscape attractions,
users recommendations)

• Provide more travel options: not only traditional mobility services (parking, taxi,
public transportations), but also less known/used services (car sharing/pooling, bike
sharing)

• Support the whole travel duration: not only information services (availability, sched-
ule, cost information) but also booking/payment services, and notification services
(delays, cancellation, unavailability).

Our objective is to obtain the best route by taking into account the user context
and preferences (additional information for tourists, services for elderly people, disabled
people) and the run-time information (see Figure 8.1).

Bus

Range
Bike

Range

Source

Bus Stops

Target

Bus

Stops

Source

Location

Target

Location Date Hour
Walk

Limit

Customer

Avión Hotel

Alquiler
 de

Coche

Car

Sharing

Range

Parking

Range

Bike

Register
Car Sharing

Register

Source

Bike Pick Up

Target

Bike Pick

Up

Time

Result

Limit

Source

Parkings

Target

Parkings

Combinations

Calculate Intermediate Relevant Points (from the ranges)

Intermediate

Relevan Points

Figure 8.1 – Smart cities requirements.

A combination of several services related to various transports must be combined to
establish a personalized route between two places in Trento city. This combination fits
with the data-oriented optimization problems, but requires the possibility to execute the
services more than once, since the customer can walk to go to a bus stop, and then
walk again to go from the bus stop where the bus let the customer, and walk to his/her
destination.

Related to the data-quality proposal explained in Part V, future work are related to
the improvement of the I8K architecture by including more data-quality dimensions to
the assessed and certified capabilities. In addition, the refinement of I8K by adding some

134 CHAPTER 8. FUTURE WORK

features, like the one regarding to security, would be advantageous in order to offer a
more complete data-quality services. On the other hand, negotiations to conduct a pilot
project with organizations from different domains that have different volumes of traffic
data, could help us to tune up adequately the optimization of I8K architecture.

Finally, although each contribution has been implemented and tested independently,
two of them even counting on their own registered tools, it would be desirable to develop
a tool including all the functionality provided by Combi-BP framework. This way, the
tool would support every approach explained in this thesis dissertation through a single
access point.

Part VII

Appendices

135

Appendix A

Abbreviations

Throughout this thesis, we made use of abbreviations. Even though we carefully intro-
duced abbreviations, for the sake of completeness and quick lookup, all abbreviations used
in this thesis are listed in Table A.1

137

138 APPENDIX A. APPENDICES

Table A.1 – Abbreviations

Abbreviation Full Name

ADI Activity Data Input
ADO Activity Data Output
BP Business Process
BPEL Business Process Execution Language
BPM Business Process Management
BPMN Business Process Model and Notation
BPMS Business Process Management System

Combi-BP
Combination of Activities in Business Process
Framework

CP Constraint Programming
CPN Coloured Petri Net
COP Constraint Optimization Problem
CSP Constraint Satisfaction Problem
DF Data-Flow
DOODLE Data-Oriented Optimization LanguagE
DQ Data Quality
DQM Data Quality Management
EPC Event-driven Process Chain
HL High-Level
IDEF Integration DEFinition Diagram
IT Information Technology
LTL Linear Temporal Logic
PAIS Process-Aware Information System
PDI Process Data Input
PDO Process Data Output

Penelope
Process ENtailment from the ELicitation of Obli-
gations and PErmissions

PSL Process Specification Language

SBVR
Semantics of Business Vocabulary and business
Rules

UML Unified Modelling Language
WfM Workflow Management
WS Web Service
XPDL XML Process Definition Language

Bibliography

Opbus tools. ”http://www.lsi.us.es/~quivir/index.php/Main/AJVarelaOPBUS”,
2012.

M. Abril López, F. Barber Sanchs, and M. A. Salido Gregorio. Particionamiento y Res-
olución Distribuida Multivariable de Problemas de Satisfacción de Restricciones. Va-
lencia, 2007.

F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge
for planning. Artif. Intell., 116(1-2):123–191, 2000.

I. Barba. Constraint-based Planning and Scheduling Techniques for the Optimized Man-
agement of Business Processes. PhD thesis, University of Seville, 2012.

I. Barba, B. Weber, C. Del Valle, and A. Jiménez Ramı́rez. User Recommendations for
the Optimized Execution of Business Processes. Data & Knowledge Engineering, 86(0):
61 – 84, 2013. ISSN 0169-023X. doi: 10.1016/j.datak.2013.01.004.

J. Becker, D. Breuker, P. Delfmann, H.-A. Dietrich, and M. Steinhorst. A runtime analysis
of graph-theoretical algorithms to detect patterns in process model collections. In
M. Rosa and P. Soffer, editors, Business Process Management Workshops, volume 132
of Lecture Notes in Business Information Processing, pages 489–500. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-36284-2. doi: 10.1007/978-3-642-36285-9 50. URL
http://dx.doi.org/10.1007/978-3-642-36285-9_50.

P. Benson and M. Hildebrand. Managing Blind: A Data Quality and Data Governance
Vade Mecum. ECCMA, Bethlehem (Pensylvania), 2012a.

P. Benson and M. Hildebrand. Managing blind: A data quality and data governance vade
mecum. Bethlehem (Pensylvania): ECCMA, 2012b.

I. Bermejo. I8K: Arquitectura de Servicios para la Gestión de la Calidad de los Datos:
Una implementación de ISO 8000:2009-100. Master’s thesis, University of Castilla-La
Mancha, Ciudad Real, Spain, 2013.

I. Bermejo and L. Parody. I8K Tool, 2013. URL http://alarcosj.esi.uclm.es/i8k/.

I. Bermejo, L. Parody, I. Caballero, M. T. Gómez López, and R. M. Gasca. Gestión de
calidad de datos en la combinación de actividades dentro del marco de los procesos de

139

http://www.lsi.us.es/~quivir/index.php/Main/AJVarelaOPBUS
http://dx.doi.org/10.1007/978-3-642-36285-9_50
http://alarcosj.esi.uclm.es/i8k/

140 BIBLIOGRAPHY

negocio. In XVIII Jornadas de Ingeniera del Software y Bases de Datos (JISBD 2013),
pages 195–208, 2013. ISBN 978-84-695-8310-4.

I. Bermejo, I. Caballero, L. Parody, M. T. Gómez-López, M. Piattini, and
R. Mart́ınez Gasca. Managing data quality in master data exchange by means of iso
8000-1x0. 2014.

I. Bider. Choosing approach to business process modeling. practical perspective. Journal
of Conceptual Modeling, Issue, 2005.

I. Bider, M. Khomyakov, and E. Pushchinsky. Logic of change: Semantics of object
systems with active relations. Autom. Softw. Eng., pages 9–37, 2000.

D. Borrego. Diagnostic Reasoning with Structural Analysis and Constraint Programming
for Quality Improvement of Business Process Management Systems. PhD thesis, Uni-
versity of Seville, 2012.

V. Bosilj-Vuksic and V. Hlupic. Petri Nets and IDEF diagrams: Applicability and efficacy
for business process modelling. An International Journal of Computing and Informatics,
25(1):123–133, 2001.

J. Büchi. The Collected Works of J. Richard Büchi. Springer New York, 1990. ISBN
978-1-4613-8930-9. doi: 10.1007/978-1-4613-8928-6 23.

I. Caballero, I. Bermejo, L. Parody, M. T. Gómez López, R. Mart́ınez Gasca, and M. Pi-
attini. I8k: An implementation of iso 8000-1x0. In The 18th International Conference
on Information Quality (ICIQ 2013), pages 379–393, 2013. ISBN 978-84-695-8310-4.

C. Cappiello and B. Pernici. A methodology for information quality management in self-
healing web services. In The 11th International Conference on Information Quality
(ICIQ 2006), pages 18–29, 2006.

C. Cappiello, A. Caro, A. Rodŕıguez, and I. Caballero. An approach to design business
processes addressing data quality issues. In ECIS, page 216, 2013.

A. Caro, A. Rodŕıguez, C. Cappiello, and I. Caballero. Designing business processes
able to satisfy data quality requirements. In The 17th International Conference on
Information Quality (ICIQ 2012), pages 31–45, 2012.

N. Castela, J. M. Tribolet, A. Silva, and A. Guerra. Business process modeling with uml.
In ICEIS (2), pages 679–685, 2001.

P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard problems are. In
J. Mylopoulos and R. Reiter, editors, IJCAI, pages 331–340. Morgan Kaufmann, 1991.
ISBN 1-55860-160-0.

T. Choco Solver. Choco 3.1.1. 2014.

BIBLIOGRAPHY 141

J. Chomicki. Depth-bounded bottom-up evaluation of logic program. J. Log. Program.,
25(1):1–31, 1995.

B. Community. Bonita Open Solution. http://www.bonitasoft.org//, 2012a.

I. Community. Intalio. http://www.intalio.com/, 2012b.

P. B. Crosby. Quality is free. McGraw-Hill, 1979.

I. F. Cruz. Doodle: a visual language for object-oriented databases. SIGMOD Rec.,
21(2):71–80, jun 1992. ISSN 0163-5808. doi: 10.1145/141484.130299. URL http:

//0-doi.acm.org.fama.us.es/10.1145/141484.130299.

M. De Backer and M. Snoeck. Deterministic Petri net languages as business process
specification language. Open access publications from katholieke universiteit leuven,
Katholieke Universiteit Leuven, 2005.

R. Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003. ISBN 978-1-55860-
890-0.

M. Dhring, H. A. Reijers, and S. Smirnov. Configuration vs. adaptation for business
process variant maintenance: An empirical study. Information Systems, 39(0):108 –
133, 2014. ISSN 0306-4379. doi: http://dx.doi.org/10.1016/j.is.2013.06.002. URL
http://www.sciencedirect.com/science/article/pii/S0306437913000811.

M. Dumas, W. M. P. van der Aalst, Van der Aalst, and A. ter Hofstede, editors. Process-
Aware Information Systems: Bridging People and Software through Process Technology.
Wiley, 2005. ISBN 978-0-471-66306-5.

L. English. Total Quality data Management (TQdM). Kluwer Academic Publishers, 2001.

K. Eshghi. Abductive planning with event calculus. In ICLP/SLP, pages 562–579, 1988.

R. Ezzahir, C. Bessiere, I. Benelallam, H. Bouyakhf, and M. Beläıssaoui. Dynamic back-
tracking for distributed constraint optimization. In ECAI, pages 901–902, 2008.

J. Fabra, V. D. Castro, P. lvarez, and E. Marcos. Automatic execution of business process
models: Exploiting the benefits of model-driven engineering approaches. Journal of
Systems and Software, 85(3):607 – 625, 2012. ISSN 0164-1212.

D. Fahland, D. Lubke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zugal.
Declarative versus imperative process modeling languages: The issue of understand-
ability. In Enterprise, Business-Process and Information Systems Modeling, volume 29
of Lecture Notes in Business Information Processing, pages 353–366. Springer Berlin
Heidelberg, 2009. ISBN 978-3-642-01861-9.

W. Fan and S. Weinstein. Specifying and reasoning about workflows with path constraints.
In L. C. K. Hui and D. L. Lee, editors, ICSC, volume 1749 of Lecture Notes in Computer
Science, pages 226–235. Springer, 1999. ISBN 3-540-66903-5.

http://www.bonitasoft.org//
http://www.intalio.com/
http://0-doi.acm.org.fama.us.es/10.1145/141484.130299
http://0-doi.acm.org.fama.us.es/10.1145/141484.130299
http://www.sciencedirect.com/science/article/pii/S0306437913000811

142 BIBLIOGRAPHY

J. F. Fernández Narváez. Aplicación Web para la Especificación Declarativa de Procesos
de Negocio. Master’s thesis, University of Seville, Seville, Spain, 2013.

E. Foundations. Epsilon. https://www.eclipse.org/epsilon/, 2014.

S. Goedertier and J. Vanthienen. Designing compliant business processes with obligations
and permissions. In Business Process Management Workshops, pages 5–14, 2006.

S. Goedertier and J. Vanthienen. Em-bra2ce v0.1: A vocabulary and execution model
for declarative business process modeling. In Department of Decision Sciences and
Information Management - KBI, 2007.

M. T. Gómez-López and R. Mart́ınez Gasca. Run-time auditing for business processes
data using constraints. In Business Process Management Workshops, pages 146–157,
2010a.

M. T. Gómez-López and R. Mart́ınez Gasca. Fault diagnosis in databases for business
processes. In 21st International Workshop on Principles of Diagnosis, 2010, 2010b.

M. T. Gómez-López, R. Mart́ınez Gasca, L. Parody, and D. Borrego. Constraint-driven ap-
proach to support input data decision-making in business process management systems.
In International Conference on Information System Development, ISD 2011, pages 15–
25. Springer, 2011.

G. GröNer, M. BošKović, F. Silva Parreiras, and D. GašEvić. Modeling and validation
of business process families. Inf. Syst., 38(5):709–726, July 2013. ISSN 0306-4379. doi:
10.1016/j.is.2012.11.010. URL http://dx.doi.org/10.1016/j.is.2012.11.010.

T. Gschwind, J. Koehler, and J. Wong. Applying patterns during business process mod-
eling. In M. Dumas, M. Reichert, and M.-C. Shan, editors, Business Process Manage-
ment, volume 5240 of Lecture Notes in Computer Science, pages 4–19. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-85757-0. doi: 10.1007/978-3-540-85758-7 4. URL
http://dx.doi.org/10.1007/978-3-540-85758-7_4.

M. Heravizadeh, J. Mendling, and M. Rosemann. Dimensions of business processes quality
(qobp). In Business Process Management Workshops, pages 80–91. Springer, 2009.

K. Hirayama and M. Yokoo. Distributed partial constraint satisfaction problem. 1330:
222–236, 1997.

S.-M. Huang, Y.-T. Chu, S.-H. Li, and D. C. Yen. Enhancing conflict detecting mechanism
for web services composition: A business process flow model transformation approach.
Inf. Softw. Technol., 50(11):1069–1087, 2008. ISSN 0950-5849.

ISO. ISO/DIS 8000-100: Master Data: Exchange of characteristic data: Overview. ISO,
2011a.

ISO. ISO/DIS 8000-130: Master Data: Exchange of characteristic data: Accuracy. ISO,
2011b.

https://www.eclipse.org/epsilon/
http://dx.doi.org/10.1016/j.is.2012.11.010
http://dx.doi.org/10.1007/978-3-540-85758-7_4

BIBLIOGRAPHY 143

ISO. ISO/DIS 8000-140: Master Data: Exchange of characteristic data: Completeness.
ISO, 2011c.

ISO-25012. Iso/iec 25012: Software engineering-software product quality requirements
and evaluation (square)-data quality model. 2008.

S. Jablonski and C. Bussler. Workflow management - modeling concepts, architecture and
implementation. International Thomson, 1996. ISBN 978-1-85032-222-1.

A. Jiménez Ramı́rez, I. Barba, C. Del Valle, and B. Weber. Generating multi-objective
optimized business process enactment plans. In 25th International Conference on Ad-
vanced Information Systems Engineering, CAISE ’13, 2013.

D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and P. Dadam. On enabling data-
aware compliance checking of business process models. In ER, pages 332–346, 2010.

O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann. Bpmn4tosca: A domain-specific
language to model management plans for composite applications. In Business Process
Model and Notation, volume 125, pages 38–52, 2012. ISBN 978-3-642-33154-1.

R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Comput., 4(1):67–95, 1986.

V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine, 13
(1):32–44, 1992.

B. List and B. Korherr. A uml 2 profile for business process modelling. In ER (Workshops),
pages 85–96, 2005.

B. List and B. Korherr. An evaluation of conceptual business process modelling languages.
In Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06, pages
1532–1539, New York, NY, USA, 2006. ACM. ISBN 1-59593-108-2. doi: 10.1145/
1141277.1141633. URL http://doi.acm.org/10.1145/1141277.1141633.

D. Loshin. Enterprises Knowledgement Management: The Data Quality Approach. Mor-
gan Kauffman, San Francisco, CA, USA, 2001.

L. T. Ly, S. Rinderle-Ma, and P. Dadam. Integration and verification of semantic con-
straints in adaptive process management systems. Data Knowl. Eng., 64(1):3–23, 2008.

L. T. Ly, D. Knuplesch, S. Rinderle-Ma, K. Goeser, H. Pfeifer, M. Reichert, and P. Dadam.
Seaflows toolset - compliance verification made easy for process-aware information
systems. In Proc. CAiSE’10 Forum - Information Systems Evolution, number 72 in
LNBIP, pages 76–91. Springer, 2010. URL http://dbis.eprints.uni-ulm.de/687/.

L. T. Ly, S. Rinderle-Ma, D. Knuplesch, and P. Dadam. Monitoring business process com-
pliance using compliance rule graphs. In 19th International Conference on Cooperative
Information Systems (CoopIS 2011), number 7044 in LNCS, pages 82–99. Springer,
2011.

http://doi.acm.org/10.1145/1141277.1141633
http://dbis.eprints.uni-ulm.de/687/

144 BIBLIOGRAPHY

F. M. Maggi, M. Montali, M. Westergaard, and W. van der Aalst. Monitoring Business
Constraints with Linear Temporal Logic: An Approach Based on Colored Automata.
In Proc. of BPM, LNCS. Springer-Verlag, 2011a.

F. M. Maggi, M. Westergaard, M. Montali, and W. van der Aalst. Runtime Verification of
LTL-Based Declarative Process Models. In Proc. of RV, LNCS. Springer-Verlag, 2011b.

F. M. Maggi, M. Westergaard, W. M. P. van der Aalst, F. Staff, M. Pesic, and H. Scho-
nenberg. Declare tool. 2014.

R. Manual. Jsolver 2.1. 2003.

D. B. Maŕıa Teresa Gómez-López and R. M. Gasca. Data state description for the migra-
tion to activity-centric business process model maintaining legacy databases. In 17th
International Conference on Business Information Systems (BIS 2014), 2014.

A. Marotta, L. González, and R. Ruggia. A quality aware service-oriented web warehouse
platform. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, EDBT-ICDT
’12, pages 29–32, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1143-4. doi:
10.1145/2320765.2320783.

K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. Adaptive
Computation and Machine. MIT Press, 1998. ISBN 9780262133418. URL http://

books.google.es/books?id=jBYAleHTldsC.

J. Mendling and M. Weidlich, editors. Business Process Model and Notation - 4th Interna-
tional Workshop, BPMN 2012, Vienna, Austria, September 12-13, 2012. Proceedings,
volume 125 of Lecture Notes in Business Information Processing, 2012. Springer. ISBN
978-3-642-33154-1.

A. Meyer, S. Smirnov, and M. Weske. Data in business processes. EMISA Forum, 31(3):
5–31, 2011.

A. Meyer, L. Pufahl, D. Fahland, and M. Weske. Modeling and enacting complex data
dependencies in business processes. In BPM, pages 171–186, 2013.

M. Montali, F. Chesani, P. Mello, and F. M. Maggi. Towards data-aware constraints in
declare. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, pages 1391–1396. ACM, 2013.

K. Namiri and N. Stojanovic. Using control patterns in business processes compliance. In
M. Weske, M.-S. Hacid, and C. Godart, editors, Web Information Systems Engineering
- WISE 2007 Workshops, volume 4832 of Lecture Notes in Computer Science, pages
178–190. Springer Berlin - Heidelberg, 2007. ISBN 978-3-540-77009-1.

NIST. Process Specification Language (PSL) Version 2.1. National Institute of Standards
and Technology (NIST), 2004.

http://books.google.es/books?id=jBYAleHTldsC
http://books.google.es/books?id=jBYAleHTldsC

BIBLIOGRAPHY 145

B. V. Nuffelen and A. C. Kakas. A-system: Declarative programming with abduction.
In T. Eiter, W. Faber, and M. Truszczynski, editors, LPNMR, volume 2173 of Lecture
Notes in Computer Science, pages 393–396. Springer, 2001. ISBN 3-540-42593-4.

OASIS. Business Process Execution Language for Web Services. OASIS Standard, 2005.

OASIS. Web Services Business Process Execution Language (BPEL) Version 2.0. OASIS
Standard, 2007.

I. Ognjanovic, B. Mohabbati, D. Gasevic, E. Bagheri, and M. Boskovic. A metaheuristic
approach for the configuration of business process families. In L. E. Moser, M. Parashar,
and P. C. K. Hung, editors, IEEE SCC, pages 25–32. IEEE, 2012. ISBN 978-1-4673-
3049-7.

OMG. OMG Model Driven Architecture. OMG Standard, 2003.

OMG. Unified Modeling Language: Superstructure version 2.0. http://www.uml.org/,
2005.

OMG. Semantics of business vocabulary and business rules (sbvr). 2008.

OMG. BPMN 2.0 by Example. Version 1.0 (non-normative). OMG Standard, 2011a.

OMG. Business Process Model and Notation (BPMN) Version 2.0. Object Management
Group Standard, 2011b.

M. P. Papazoglou and W.-J. van den Heuvel. Service oriented architectures: approaches,
technologies and research issues. VLDB J., 16(3):389–415, 2007.

L. Parody. CombiS-BP Editor, 2013. URL http://www.lsi.us.es/~quivir/index.

php/Main/LParodyCombi-BP.

L. Parody, M. T. Gómez-López, R. Mart́ınez Gasca, and D. Borrego. Resolución de
acuerdos en procesos de negocio para multiprocesos software usando programacin con
restricciones distribuidas. In Workshop de Apoyo a la Decisión en Ingenieŕıa del Soft-
ware (ADIS10), volume 4, pages 23–34, 2010.

L. Parody, M. T. Gómez-López, R. Mart́ınez Gasca, and D. Borrego. Using distributed
csps to model business processes agreement in software multiprocess. In 3rd Interna-
tional Conference on Agents and Artificial Intelligence (ICAART’11), volume 2, pages
434–438, 2011a. ISBN 978-989-8425-41-6.

L. Parody, M. T. Gómez-López, R. Mart́ınez Gasca, and A. J. Varela-Vaca. An ap-
proach for optimization agreements in business processes based on web services. In
17th International Business Information Management Association Conference (IBIMA
Conference), pages 183–194, 2011b. ISBN 978-0-9821489-6-6.

L. Parody, M. T. Gómez-López, and R. Mart́ınez Gasca. Extending bpmn 2.0 for mod-
elling the combination of activities that involve data constraints. In Mendling and
Weidlich (2012), pages 68–82. ISBN 978-3-642-33154-1.

http://www.uml.org/
http://www.lsi.us.es/~quivir/index.php/Main/LParodyCombi-BP
http://www.lsi.us.es/~quivir/index.php/Main/LParodyCombi-BP

146 BIBLIOGRAPHY

L. Parody, M. T. Gómez-López, R. Mart́ınez Gasca, and A. J. Varela-Vaca. Improvement
of Optimization Agreements in Business Processes involving Web Services. Communi-
cations of the IBIMA, 2012, 2012b.

L. Parody, M. T. Gómez-López, and R. Mart́ınez Gasca. Data-oriented declarative lan-
guage for optimizing business processes. In 22nd International Conference on Informa-
tion Systems Development (ISD2013), page To appear, 2013a.

L. Parody, M. T. Gómez-López, and R. Mart́ınez Gasca. Decision-making sub-process to
obtain the optimal combination of input data in business processes. In IX Jornadas de
Ciencia e Ingeniera de Servicios (JCIS 2013), pages 17–31, 2013b. ISBN 978-84-695-
8351-7.

L. Parody, M. T. Gómez-López, R. Mart́ınez Gasca, and A. J. Varela-Vaca. Combis-bp
editor: Combining declarative and imperative languages in bp modelling. In Seventh
IEEE International Conference on Research Challenges in Information Science, pages
663–664, 2013c. ISBN 978-1-4673-2914-9.

L. Parody, M. T. Gómez-López, I. Bermejo, I. Caballero, R. Mart́ınez Gasca, and M. Pi-
attini. Pais-dq: Extending process-aware information systems to support data quality
in pais life-cycle. 2014a.

L. Parody, M. T. Gómez-López, and R. Mart́ınez Gasca. Configuration of an imperative
business process according to data dependency aspects. 2014b.

L. Parody, M. T. Gómez-López, and R. Mart́ınez Gasca. Optimization of outcome data
of business processes. from declarative to imperative process models. 2014c.

D. Peixoto, V. Batista, A. Atayde, E. Borges, R. Resende, and C. Pádua. A comparison
of bpmn and uml 2.0 activity diagrams. In VII Simposio Brasileiro de Qualidade de
Software, volume 56, 2008.

M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business processes
management. In J. Eder and S. Dustdar, editors, Business Process Management Work-
shops, volume 4103 of Lecture Notes in Computer Science, pages 169–180. Springer,
2006. ISBN 3-540-38444-8.

M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. Declare demo: A constraint-based
workflow management system. In BPM (Demos), 2009.

C. A. Petri. Fundamentals of a Theory of Asynchronous Information Flow. In IFIP
Congress, pages 386–390, 1962.

C. J. Petrie. Automated Configuration Problem Solving. Springer Publishing Company,
Incorporated, 2012. ISBN 1461445310, 9781461445319.

L. Pipino, Y. Lee, and R. Wang. Data quality assessment. Communications of the
ACM, 45(4):211–218, Apr. 2002. ISSN 0001-0782. doi: 10.1145/505248.506010. URL
http://doi.acm.org/10.1145/505248.506010.

http://doi.acm.org/10.1145/505248.506010

BIBLIOGRAPHY 147

Princeton University. WordNet: A lexical database for English, 2014. URL http://

wordnet.princeton.edu/. Accedded on the 24th of February of 2014.

T. Redman. the impact of poor data quality on the typical enterprise. Commun. ACM,
41(2):79–82, 1998.

A. Rodŕıguez, E. Fernández-Medina, and M. Piattini. Towards a uml 2.0 extension for the
modeling of security requirements in business processes. In S. Fischer-Hbner, S. Furnell,
and C. Lambrinoudakis, editors, Trust and Privacy in Digital Business, volume 4083
of Lecture Notes in Computer Science, pages 51–61. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-37750-4. doi: 10.1007/11824633 6. URL http://dx.doi.org/10.

1007/11824633_6.

A. Rodŕıguez, A. Caro, C. Cappiello, and I. Caballero. A bpmn extension for including
data quality requirements in business process modeling. In Mendling and Weidlich
(2012), pages 116–125. ISBN 978-3-642-33154-1.

W. D. Roover, F. Caron, and J. Vanthienen. A prototype tool for the event-driven
enforcement of sbvr business rules. In F. Daniel, K. Barkaoui, and S. Dustdar, editors,
Business Process Management Workshops (1), volume 99 of Lecture Notes in Business
Information Processing, pages 446–457. Springer, 2011.

M. L. Rosa, M. Dumas, A. H. ter Hofstede, and J. Mendling. Configurable multi-
perspective business process models. Information Systems, 36(2):313 – 340, 2011.
ISSN 0306-4379. doi: http://dx.doi.org/10.1016/j.is.2010.07.001. URL http://www.

sciencedirect.com/science/article/pii/S0306437910000633. Special Issue: Se-
mantic Integration of Data, Multimedia, and Services.

F. Rossi, P. v. Beek, and T. Walsh. Handbook of Constraint Programming (Foundations
of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006. ISBN
0444527265.

W. Runte. Modelling and solving configuration problems on business processes using
a multi-level constraint satisfaction approach. In W. Abramowicz, L. A. Maciaszek,
R. Kowalczyk, and A. Speck, editors, BPSC, volume 147 of LNI, page 237. GI, 2009.
ISBN 978-3-88579-241-3.

W. Runte and M. E. Kharbili. Constraint checking for business process management. In
S. Fischer, E. Maehle, and R. Reischuk, editors, GI Jahrestagung, volume 154 of LNI,
pages 4093–4103. GI, 2009. ISBN 978-3-88579-248-2.

N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and P. Wohed. On the suitabil-
ity of uml 2.0 activity diagrams for business process modelling. In Proceedings of the 3rd
Asia-Pacific Conference on Conceptual Modelling - Volume 53, APCCM ’06, pages 95–
104, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc. ISBN
1-920-68235-X. URL http://dl.acm.org/citation.cfm?id=1151855.1151866.

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://dx.doi.org/10.1007/11824633_6
http://dx.doi.org/10.1007/11824633_6
http://www.sciencedirect.com/science/article/pii/S0306437910000633
http://www.sciencedirect.com/science/article/pii/S0306437910000633
http://dl.acm.org/citation.cfm?id=1151855.1151866

148 BIBLIOGRAPHY

I. Rychkova and S. Nurcan. Towards adaptability and control for knowledge-intensive
business processes: Declarative configurable process specifications. In HICSS, pages
1–10, 2011.

I. Rychkova, G. Regev, and A. Wegmann. High-level design and analysis of business
processes: the advantages of declarative specifications. In O. Pastor, A. Flory, and
J.-L. Cavarero, editors, RCIS, pages 99–110. IEEE, 2008a. ISBN 978-1-4244-1677-6.

I. Rychkova, G. Regev, and A. Wegmann. Using declarative specifications in business
process design. IJCSA, 5(3b):45–68, 2008b.

S. W. Sadiq, M. E. Orlowska, and W. Sadiq. Specification and validation of process
constraints for flexible workflows. Information Systems, 30(5):349 – 378, 2005. ISSN
0306-4379. doi: {10.1016/j.is.2004.05.002}.

S. W. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives for business
process compliance. In Proceedings of the 5th international conference on Business
process management, BPM’07, pages 149–164. Springer-Verlag, 2007. ISBN 3-540-
75182-3, 978-3-540-75182-3.

K. Salimifard and M. Wright. Petri net-based modelling of workflow systems: An
overview. European Journal of Operational Research, 134(3):664 – 676, 2001. ISSN
0377-2217. doi: http://dx.doi.org/10.1016/S0377-2217(00)00292-7. URL http://www.

sciencedirect.com/science/article/pii/S0377221700002927.

N. G. Saoussen Cheikhrouhou, Slim Kallel and M. Jmaiel. The temporal perspective in
business process modeling : An evaluative survey and research challenges. Open access
publications, Unit de Recherche en dveloppement et contrle d’applications distribues
(REDCAD), Laboratoire d’analyse et d’architecture des systmes [Toulouse] (LAAS)
and Institut national Des Sciences Appliques de Toulouse (INSA Toulouse), 2013.

P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes. Using constraint programming
to manage configurations in self-adaptive systems. Computer, 45(10):56–63, 2012. ISSN
0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2012.286.

M. Shanahan. Event calculus planning revisited. In S. Steel and R. Alami, editors, ECP,
volume 1348 of Lecture Notes in Computer Science, pages 390–402. Springer, 1997.
ISBN 3-540-63912-8.

M.-C. Silaghi and M. Yokoo. Adopt-ing: unifying asynchronous distributed optimization
with asynchronous backtracking. Autonomous Agents and Multi-Agent Systems, 19(2):
89–123, 2009.

S. Smirnov, M. Weidlich, J. Mendling, and M. Weske. Action patterns in business process
models. Springer, 2009.

S. X. Sun, J. L. Zhao, J. F. Nunamaker, and O. R. L. Sheng. Formulating the data-flow
perspective for business process management. Info. Sys. Research, 17(4):374–391, dec

http://www.sciencedirect.com/science/article/pii/S0377221700002927
http://www.sciencedirect.com/science/article/pii/S0377221700002927

BIBLIOGRAPHY 149

2006. ISSN 1526-5536. doi: 10.1287/isre.1060.0105. URL http://dx.doi.org/10.

1287/isre.1060.0105.

A. Team. Activity BPM Platform. http://www.activiti.org/, 2012.

R. K. Thiagarajan and M. Stumptner. Service composition with consistency-based match-
making: A csp-based approach. In ECOWS, pages 23–32. IEEE Computer Society,
2007.

V. Torres and V. Pelechano. Building business process driven web applications. In S. Dust-
dar, J. L. Fiadeiro, and A. P. Sheth, editors, Business Process Management, volume
4102 of Lecture Notes in Computer Science, pages 322–337. Springer, 2006. ISBN 3-
540-38901-6.

A. Tsai, J. Wang, W. Tepfenhart, and D. Rosea. Epc workflow model to wifa model
conversion. In Proceedings of IEEE International Conference on Systems, Man and
Cybernetics, volume 4766/2007, pages 2758 – 2763. IEEE International Conference on
Systems, Man and Cybernetics, 2006. SMC ’06., 2006. ISBN 1-4244-0099-6.

W. M. P. Van der Aalst. Formalization and verification of event-driven process chains.
Information & Software Technology, 41(10):639–650, 1999.

W. M. P. van der Aalst. Business process management demystified: A tutorial on models,
systems and standards for workflow management. Lectures on Concurrency and Petri
Nets, pages 21–58, 2004.

W. M. P. van der Aalst. A decade of business process management conferences: Personal
reflections on a developing discipline. In Business Process Management, volume 7481
of Lecture Notes in Computer Science, pages 1–16. Springer Berlin / Heidelberg, 2012.
ISBN 978-3-642-32884-8.

W. M. P. van der Aalst and C. Stahl. A Petri Net-Oriented Approach. The MIT Press,
2011. ISBN 978-0-262-01538-7.

W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process man-
agement: A survey. In W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske,
editors, Business Process Management, volume 2678 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2003. ISBN 3-540-40318-3.

W. M. P. van der Aalst, M. Weske, and D. Grnbauer. Case handling: A new paradigm
for business process support. Data and Knowledge Engineering, 53, 2005.

A. J. Varela-Vaca, R. Mart́ınez Gasca, and S. Pozo. Opbus: Risk-aware framework for
the conformance of security-quality requirements in business processes. In SECRYPT,
pages 370–374, 2011.

C. Venera Geambasu. BPMN vs. UML Activity Diagram for Business Process Modeling.
Journal of Accounting and Management Information Systems, 11(4):637–651, December
2012. URL http://ideas.repec.org/a/ami/journl/v11y2012i4p637-651.html.

http://dx.doi.org/10.1287/isre.1060.0105
http://dx.doi.org/10.1287/isre.1060.0105
http://www.activiti.org/
http://ideas.repec.org/a/ami/journl/v11y2012i4p637-651.html

150 BIBLIOGRAPHY

R. Y. Wang. A product perspective on total data quality management. Communications
of the ACM, 2(41):58–65, 1998.

B. Weber, S. W. Sadiq, and M. Reichert. Beyond rigidity - dynamic process lifecycle
support. Computer Science - R&D, 23(2):47–65, 2009.

M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer,
2007. ISBN 978-3-540-73521-2.

WfMC. XML Process Definition Language) Version 2.1. The Workflow Management
Coalition (WfMC), 2004.

Y. Wu and P. Doshi. Making bpel flexible - adapting in the context of coordination
constraints using ws-bpel. pages 423–430, 2008. doi: http://dx.doi.org/10.1109/SCC.
2008.71.

M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A review.
In AAAI, volume 3, pages 185–207, 2000.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satis-
faction problem: Formalization and algorithms. IEEE Transactions on knowledge and
data engineering, 10(5):673–685, 1998.

	Contents
	List of Figures
	List of Tables
	I Preface
	Introduction
	Context and Motivation
	Problem Statements
	Contributions
	Thesis Context and Published Results
	Roadmap: Structure of the Thesis

	II Foundations
	Foundations
	Business Process Management
	Concepts
	Business Process Management Life-cycle
	Business Process Perspectives
	Process-Aware Information System

	BP Imperative Description
	Analysis of Imperative Languages
	Business Process Model and Notation (BPMN)

	BP Declarative Description
	Characteristics
	Analysis of Declarative languages
	Comparative

	Constraint Programming Paradigm
	Constraint Programming Concepts
	CSP Consistency
	CSP Search Algorithms

	Constraint Optimization Problems
	COP Search Algorithms

	Distributed Constraint Satisfaction Problem
	Algorithms for solving DisCSP

	Data Quality Management in Business Process
	Data Quality Management Concepts
	High-level and Low-Level DQM Activities
	Data Quality Dimensions

	Case Study: Trip Planner

	III Contribution I: Combi-BP Specification
	Specifying Data-Oriented Optimization in Business Processes
	Context and Motivation
	Formalization of Data-Oriented Optimization in BPs
	Formalization Applied to the Trip Planner

	Data-Oriented Optimization Declarative LanguagE (DOODLE)
	DOODLE Applied to the Trip Planner

	BPMN Extension for Data-Oriented Optimization processes
	Metamodel for the declarative sub-process
	CombA Sub-Process Definition as Declarative Component
	CombA Sub-Process Operational Semantics
	CombA Sub-Process Handling Events
	CombA Sub-Process Execution Semantics
	BPMN Editor including CombA Sub-Process
	BPMN Extension Applied to the Trip Planner

	Related work
	Summary and Discussion

	IV Contribution II: Combi-BP Transformation
	Configuration of an Imperative Business Process to minimize the execution time according to Data Dependencies
	Context and Motivation
	Configuration System Description
	Relation between Data Dependencies and Imperative Models

	Automatic Configuration from Declarative to Imperative Model
	Creating a COP from the declarative model
	Transformation of the COP results into a BP Imperative Model

	Configuration applied to the Trip Planner
	Related work
	Summary and Discussion

	Creating an Imperative Model to Optimize the Business Process Outcome
	Context and Motivation
	The White-Box Approach
	How to transform a White-Box Specification into an Executable Business Process
	White-Box Model Transformation applied to the Trip Planner
	Empirical Evaluation
	Experimental Design
	Experimental Result

	The Black-Box Approach
	Coordinator Algorithm
	Experimental Results

	Related work
	Summary and Discussion

	V Contributions III: PAIS-DQ
	PAIS-DQ
	Context and Motivation
	Detailing a Case Study
	PAIS-DQ Description
	PAIS-DQ Architecture
	Data Quality Management Activities
	How High-Level DQ Management can affect the BP Model
	How Low-Level DQ Management Activities can affect the BP Model

	Data Quality Layer Functionalities

	PAIS-DQ-HOW: Methodology to use PAIS-DQ
	Business Process Design
	Data Quality Layer and System Configuration
	Configuration of High-Level DQ Management Activities
	Configuration of Low-Level DQ Management Activities
	Changes to the BP to make it DQ aware

	Business Process Execution

	PAIS-DQ Applied to the Case Study
	BP Design: Flight Search Process
	DQ Layer and System Configuration
	Configuration to Control Data Quality Levels
	Data Quality Items
	Low-Level DQ Activities to Control DQ Configuration
	Low-Level DQ Activities to DQ Control Implementation
	Flight Search Process Changes

	BP Execution

	Related work
	Summary and Discussion

	VI Conclusions and Future Work
	Final Remarks
	Directions of Future Work

	VII Appendices
	Abbreviations

