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Abstract

Nowadays, the interest in neutrinos extends to a large variety of fields in Astrophysics, Nuclear
Physics and Particle Physics. One of the open questions in theoretical physics is the description of
neutrino oscillations for which an accurate interpretation of neutrino-nucleus reactions is crucial.
In this context, recent years have witnessed an intense experimental and theoretical activity to de-
termine the properties of neutrinos and their interaction with matter.

This PhD Thesis is thus focused on the analysis of charged-current neutrino-nucleus reactions
at kinematics of interest for neutrino oscillation experiments, where the neutrino energy is typically
in the GeV region. Additionally, weak interactions in the nuclear medium at intermediate energies
are an extraordinary opportunity to study the dynamics of the nuclear many-body system, beyond
the information accesible from electron and hadron probes, and to gain a deeper knowledge of the
axial structure and the strangeness content of the nucleons.

In any accelerator-based neutrino oscillation experiment, neutrinos are produced as the decay
products of successive reactions, thus implying a wide-ranged energy beam. Hence, when in-
teracting with the nuclear matter, a large variety of nuclear effects come into play, going from
quasielastic scattering to deep inelastic processes, multi-nucleon excitations or meson production
via nucleon resonances. Accordingly, robust models that properly describe neutrino-nucleus in-
teractions over the whole experimental range (of the order of 10s of MeV up to 10s of GeV) are
required for the experimental analyses. Notice also that the kinematics involved demand a rela-
tivistic description of the microscopic nuclear structure.

In this thesis, the analysis of these processes are addressed by using realistic models that pro-
vide, within a fully relativistic framework, an accurate description of the different reaction mecha-
nisms of relevance for neutrino oscillation measurements. We begin analyzing neutrino scattering
off free nucleons and describing the weak hadronic responses together with the inner structure
of the nucleons. With the aim of achieveing a consistent analysis of charged-current quasielastic
(CCQE) neutrino interactions with nuclei, we present the so-called SuSAv2 model, which is based
on the superscaling behavior exhibited by electron scattering data and makes use of the relativistic
mean field (RMF) theory to describe the nuclear effects arising in neutrino-nucleus interactions.
This prescription accounts for the final-state interactions (FSI) between the outgoing nucleon and
the residual nucleus and allows for a description in terms of the different isovector/isoscalar and
axial/vector reaction channels that play a role in weak interactions. At very high kinematics, where
FSI are negligible, we approach our model to the relativistic plane wave impulse approximation
(RPWIA) where no FSI affect the outgoing nucleon.

Furthemore, a basic feature in this thesis also concerns the evaluation of multi-nucleon exci-
tations, in particular two-body meson exchange currents (2p-2h MEC) contributions, which are
proved to be an essential ingredient to interpret neutrino cross section measurements at interme-



diate energies. In this regard, we develop a highly accurate parametrization of the 2p-2h MEC
nuclear responses based on a fully relativistic microscopic calculation.

In order to test the reliability of this SuSAv2-MEC model, we firstly compare our predictions
with the large amount of existing inclusive 12C(e,e′) data over the whole energy spectrum. In this
connection, we also extend our description to the complete inelastic regime performing a detailed
analysis of the inelastic structure functions for protons and neutrons. All this provides a solid
benchmark to assess the validity of our model for the analysis of charged-current neutrino-nucleus
cross sections. Regarding this point, we compare our calculations with recent CCQE and inclu-
sive νµ and νµ measurements on 12C from different collaborations: MiniBooNE, T2K, MINERνA,
NOMAD and SciBooNE, covering an energy range from a few MeV to tens of GeV. This com-
parison also allows us for a deeper understanding of the nuclear reaction mechanisms at different
kinematics as well as their influence in terms of the energy and momentum transfers to the nu-
cleus. In this regard, the SuSAv2- MEC approach is applied to the analysis of diverse nuclei of
relevance for future neutrino oscillation experiments with the aim of shedding light on the exper-
imental uncertainties arising from nuclear effects in both initial and final states. Furthermore, the
SuSAv2-MEC can easily make predictions at high kinematics in which other microscopic-based
models would require demanding, time-consuming calculations.

Moreover, we also focus on the difference between electron and muon neutrino reactions,
where a detailed knowledge of νµ and νe cross sections is decisive in connection to the νµ → νe

oscillation experiments aiming at the determination of the neutrino mass hierarchy and the search
for CP violation in the leptonic sector.

In summary, this PhD thesis constitutes an extensive analysis of the different neutrino-nucleus
interaction mechanisms of interest for neutrino oscillation experiments and conforms an open win-
dow for further works and collaborations in hadronic and nuclear physics.
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Chapter 1

Introduction

1.1 A brief history of neutrino

When Wolfgang Pauli postulated the existence of the neutrino in 1930 to preserve energy and mo-
mentum conservation in the β-decay process, he was afraid that this extremely light and elusive
particle would never be detected: “I have done a terrible thing, I have postulated a particle that

cannot be detected”. This statement summarized the features of the neutrino, an electrically neu-
tral and weakly interacting particle, whose mass was supposed to be negligible. Eighty years later,
and with a well-proved existence, neutrino interactions provide an extraordinary opportunity to
investigate relevant issues in several areas of Physics.

Nowadays, several neutrino experiments around the world have provided conclusive evidence
of neutrino oscillations which implies neutrinos are not massless particles. The accurate determi-
nation of neutrino masses is one of the open questions in Particle Physics. Nevertheless, interest in
neutrinos transcends the study of their intrinsic properties and extends to a large variety of fields
as Astrophysics, Nuclear Physics and Particle Physics.

In 2012, the discovery of the Higgs boson at LHC [1] completed the Standard Model (SM)
of Particle Physics, one of the essential theories in Modern Physics. Neutrino oscillations, that
imply that neutrinos are not massless, have brought some limits on the validity of the Standard
Model. The SM does not take proper account of the baryonic matter-antimatter asymmetry of the
Universe, in which neutrino can play an important role. In this sense, violation of CP-symmetry
(charge conjugation parity symmetry) has been found on the quarks domain, though further studies
could be valuable in the lepton-hadron sector. On this subject, neutrino oscillations have proved
their relevance in explaining violation of CP-symmetry (charge conjugation parity symmetry) in
the quarks domain [2, 3].

In this context, neutrinos are essential to study astrophysical processes such as solar energy
production, where nuclear reactions in the core generate an important flux of neutrinos, as well
as in supernovae explosions. Neutrinos are a powerful tool to study hadronic and nuclear prop-
erties. Indeed, a great challenge of Nuclear Physics is to explore the structure of the nucleon
and its excited states by means of electromagnetic and weak probes. The conclusions drawn in
these processes are of relevance to test the validity of current hadronic models. The information
obtained by weak interactions also complements the one received from electromagnetic processes.

Specifically, the vector-axial (V-A) weak interaction, related to the vector and axial hadronic
currents, allows the study of QCD properties such as the axial structure of the nucleon, hardly
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2 1. INTRODUCTION

decipherable by using electron or photon scattering. In this sense, the charged-current neutrino-
nucleon scattering (CC ν-N) is the more efficient way to analyze the nucleon axial form factor.
This subject is addressed in detail in this thesis. Moreover, the study of neutral-current neutrino-
nucleon processes (NC ν-N) shed light on the strange sea quark-gluon effects on the nucleon.

Despite its relevance in several fields of Physics, neutrinos are still elusive particles. They
only interact through weak forces and are hardly detectable, so they can only be clearly observed
through the detection of the secondary particles produced in the process. For this reason, heavy
targets are often employed in neutrino experiments in order to increase neutrino-nucleus cross
sections. At the same time, a proper theoretical understanding of the weak nuclear response is a
prerequisite for the analysis of current and future neutrino oscillation experiments.

Therefore, a precise study of neutrino oscillations requires an adequate description of their in-
teractions with nuclei and nucleons. The neutrino-nucleus reaction mechanisms are diverse, going
from the quasielastic scattering to deep inelastic scattering, multi-nucleon processes or the excita-
tion of nucleon resonances (see Chapters 3-5 for details). Most of these regimes require both better
theoretical and experimental understanding. Accordingly, it would be advantageous to employ the
knowledge extracted from electron-nucleus scattering as a solid benchmark to assess the validity
of the theoretical neutrino interaction approaches in the different nuclear regimes (see Chapter 6)
as well as to improve the understanding of current neutrino oscillation experiments.

Theoretical models on (e,e′) reactions can still be improved by taking care of the recent de-
velopments in the inelastic structure functions along with the progress on parton density functions
(PDFs) through QCD calculations. Furthermore, the employment of theoretical models including
multinucleon excitations and realistic mean field theories, in addition to the large amount of (e,e′)
data for different nuclei, will likely help us to deepen our understanding of the reaction mech-
anisms in electromagnetic reactions and its extension to the weak sector, i.e., to the analysis of
neutrino interactions. This, makes research on neutrino interactions an attractive ingredient for the
future of Particle and Nuclear Physics.

1.2 Neutrino Properties and Historical Context

As previously mentioned, the “birth” of neutrino dates back to 1930, when Pauli postulated its
existence from the analysis of the continuum energy spectrum observed in the beta decay process.
This was inconsistent with the image of only electrons being emitted in the nuclear process. The
"possible" existence of an extra particle (the neutrino) with negligible mass and electrically neu-
tral, that is, a "silent" partner, was needed in order to preserve energy and momentum conservation.
Thus the beta decay process would imply the emission of not only electrons but also of new, un-
known, particles that would gather the energy loss in the process. Hence, the description of the
β-decay process was defined as: n → p + e− + ν.

In the 30’s and 40’s new particles were discovered, specifically, the muon, very similar to the
electron but with a much larger mass, and the pion, the particle proposed by Yukawa to explain
the strong interaction between nucleons inside the nuclei. A careful study of the pion proved that
it decayed into a muon which emerged with an almost perpendicular track in relation to the pion,
ensuring the existence of an extraordinary light particle in the process. It was suggested to be a
neutrino. A few months later, the experimental proof of the muon decay into an electron led to the
conclusion that the latter must be accompanied by two neutrinos.
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In the early 1950’s and despite the different hypotheses about the existence of the neutrino,
there had no experimental evidence yet. It was in 1956, when Cowan and Reines [4] developed
a method to observe the inverse β decay (ν + p → n + e+), in which this elusive particle was
clearly, unambiguously detected. In these experiments, the actual particle taken into consideration
was the antineutrino (ν). But how could one distinguish between neutrino and antineutrino? This
distinction was explained by Davis and Harmer [5] in the late 1950s, showing that whereas the
process ν + n → p + e− was commonly detected, on the contrary, the ν + n → p + e− one never
took place. This was the beginning of the lepton number assignment to neutrinos and the rest of
leptons as well as its conservation law. Therefore, neutrinos in muon decay should be particle and
antiparticle, whose difference comes from its own helicity. This subject will be addressed in detail
later.

The hypothesis of neutrinos with different flavors came up after realizing that, unlike the pro-
cess µ → e + ν + ν, the reaction µ → e + γ was not observed. Consequently, it was proposed
the existence of two different kinds of neutrinos, one related to the electron and another one to the
muon. Therefore, some of the processes mentioned above are really given as:

n → p + e− + νe

π+ → µ+ + νµ

π− → µ− + νµ
µ+ → e+ + νe + νµ

µ− → e− + νµ + νe

Neutrino flavors

The Standard Model of Particle Physics contains three different neutrino flavors (νe, νµ and ντ),
which respectively form a doublet with the corresponding charged leptons (e, µ and τ) as shown in
Table. 1.1. In the 1990s, the LSND experiment [6] suggested the possibility of further neutrinos to
explain neutrino masses and introduced a new type of neutrinos, called “sterile” neutrinos, whose
existence is still under investigation. This particle would not interact with any other (except through
gravity). The search for sterile neutrinos is an active area of particle physics and it is expected that
future neutrino oscillation facilities could shed more light on this issue.

Helicity

Within the framework of the SM, neutrinos are massless leptons and exhibit purely negative he-
licity (left-handed), i.e., their spin is antiparallel to their momentum; whereas the reverse occurs
for antineutrinos,i.e., their spin projection points out parallel (positive helicity) to the momentum.
This reflects the parity violation in electroweak processes. In the SM, only left-handed neutrinos
and right-handed antineutrinos exist. Nevertheless, the discovery that neutrinos have mass could
modify this description. Moreover, it is not clear yet if neutrinos are Majorana particles, that is,
neutrino and antineutrino are the same particles. Neutrinoless double beta decay, which can be
viewed as two beta decay events with the produced antineutrinos immediately annihilating with
one another, is a possible way to detect if neutrinos are their own antiparticles. Experiments are
underway to search for this type of decay.
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Charged leptons Neutrinos
Name Symbol Charge Mass (MeV) Name Symbol Charge Mass (MeV)

1st gen. Electron e− -1 0.511 Electron neutrino νe 0 < 3 · 10−6

Positron e+ +1 Electron antineutrino νe 0
2nd gen. Muon µ− -1 105.658 Muon neutrino νµ 0 < 0.19

Antimuon µ+ +1 Muon antineutrino νµ 0
3rd gen. Tauon τ− -1 1766.99 Tauon neutrino ντ 0 < 18.2

Antitauon τ+ +1 Tauon antineutrino ντ 0

Table 1.1: The Protoypical Family of Leptons.

Neutrino mass

The experimental evidence of solar and atmospheric neutrino oscillations [7–9] led to the conclu-
sion that neutrinos are not massless, even though, at present, we do not know the absolute values
of their masses but only the upper limits (see Table 1.1).

In addition to the three different flavors, there are also three mass states ν1, ν2 and ν3 with
masses m1,m2 and m3 respectively, which are associated to the flavor states through the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [10, 11],

*.,
νe

νµ
ντ

+/- =
*.,

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

+/-
*.,
ν1

ν2

ν3

+/- . (1.1)

The PMNS matrix can be expressed as the product of four sub-matrices [2], which contain
three mixing angles (θ12, θ13 and θ23). These parameters determine the degree to which the mass
and flavour states are mixed, as well as diverse CP-violation terms.

1.3 Neutrino Oscillations

In 1998 the Super-Kamiokande facility [7] revealed the flavor change in atmospheric neutrinos. A
few years later, the Sudbury Neutrino Observatory experiment (SNO) [8] concluded that the loss
observed in the incoming electron solar neutrino flux was due to neutrino oscillations. These ob-
servations were confirmed in subsequent years in different neutrino experiments based on the use
of reactors and accelerators [9].

The neutrino oscillation phenomenon, predicted by Bruno Pontecorvo [10], indicates the pos-
sibility that a specific neutrino (electronic, muonic or tauonic) transforms into a one with different
flavor. This effect is of high experimental and theoretical relevance as it implies neutrinos are not
massless. In this context, a proper understanding of cross sections in neutrino-nucleus reactions is
essential.

In the simple hypothesis that only two families of neutrino exist, the probability that a neutrino
of energy Eν changes its flavor from νi to ν f after traveling a distance L is given by

P(νi → ν f ) = sin2 2θ sin2
(

∆m2L

4Eν

)

, (1.2)

where θ is the mixing angle related to the combination of the different flavor states into the mass
states. The mass square difference parameter ∆m2

= m2
1 − m2

2 is the difference between the two
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mass states and is the only mass parameter that can be measured in neutrino oscillation experi-
ments, which cannot give information on the absolute masses. The ratio between L/Eν and ∆m2

is optimized in neutrino facilities to maximize the sensitivity to neutrino oscillations. In the three-
flavor case the formula for the oscillation probabilities is more complicated and depends upon three
mass squares differences (∆m2

12 = m2
1 − m2

2, ∆m2
13 = m2

1 − m2
3, ∆m2

23 = m2
2 − m2

3), three oscillation
angles (θ12, θ13, θ23) and a phase δCP corresponding to the possible violation of CP symmetry in
the leptonic sector. The measurements of the latter is one of the most important challenges for
future neutrino oscillation experiments. Thus the oscillation probability is given by

Pνα→νβ (L,E) = δαβ − 4
∑

i> j

Re(U∗αiUβiUα jU
∗
β j ) sin2 *,

∆m2
i j

4E
L+-

+ 2
∑

i> j

Im(U∗αiUβiUα jU
∗
β j ) sin *,

∆m2
i j

2E
L+- , ∆m2

i j ≡ m2
i − m2

j . (1.3)

The Particle Data Group [2] provides a review of the up-to-date values of the oscillation pa-
rameters, shown in Table 1.2.

Parameter Value
θ12 33.9◦ ± 1.0◦

θ13 9.1◦ ± 0.6◦

θ23 39◦ < θ23 < 51◦

∆m2
12 (7.50 ± 0.20)10−5 eV2

∆m2
23 (2.32+0.12

−0.08)10−3 eV2

Table 1.2: Current world knowledge of neutrino oscillation parameters. ∆m2
13 is determined

through ∆m2
13 = ∆m2

12 + ∆m2
23.

There are two methods to determine neutrino oscillations:

• Appearance mode: These experiments are focused on the search for a new neutrino flavor,
absent in the original beam, or an enhancement of neutrinos of a given flavor in the initial
beam. These effects are detected through the corresponding charged lepton produced via
charged-current weak interaction:

νl + N → l− + X (1.4)

with l = e, µ, τ and X the final hadron state. These processes will be addressed in following
chapters.

• Disappearance mode: It is based on the reduction of the expected number of a particular
neutrino flavor at the detector, as the case of the SNO experiment [8]. This method requires
an accurate understanding of the neutrino beam at the source.

Neutrino sources employed in oscillation experiments are diverse, going from nuclear reactors
(νe), atmospheric (νe, νe, νµ, νµ), solar (νe) and accelerators (νe, νe, νµ, νµ). In the case of solar
and atmospheric neutrinos, there are some constraints on L and Eν which prevent from an opti-
mum combination of these parameters for the oscillation measurements. Therefore, the current
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efforts focus on accelerator-based neutrino experiments where a better sensitivity to oscillations
can be achieved. A detailed analysis of current neutrino experimental facilities will be presented
in Sect. 1.6.

1.4 Interaction with Matter

The neutrino interaction with matter is purely weak, acting at very short distances with a low inten-
sity, and being able to modify the flavor of the particles involved. Such interaction is described by
the electroweak theory, developed by Weinberg [12], Salam [13] and Glashow [14] in the 1970s,
by the exchange of the weak bosons W± and Z . The W± boson is connected with charged-current
(CC) scattering processes where there is a charge exchange in the interaction vertex, whereas the Z

boson is associated to neutral-current scattering where no charge exchange occurs. Moreover, the
fact that the electroweak interaction is 5 to 6 orders of magnitude lower than the electromagnetic
one, leads to extremely low cross sections which makes experimental procedure highly demand-
ing. In addition to this, the low intensity of weak interactions allows for a perturbative analysis,
so that the Born approximation, that is, the 1-boson exchange between the leptonic and hadronic
vertices, represents an accurate approach.

Unlike electromagnetic scattering, the weak processes do not conserve parity, which provides
specific information about the axial structure of the nucleon. In particular, the charged-current
neutrino-nucleon (ν-N) scattering contains the most precise information about the nucleon axial
form factors (addressed in Chapter 2). On the other side, neutral current processes give essential
details about the strange sea quarks in the nucleon structure.

In Fig. 1.1, the Feynman diagrams related to the elastic lepton-hadron reactions are shown. In
weak interactions, a distinction between charged current processes, where a charged lepton is emit-
ted, and neutral current ones, where the neutrino does not change in the final state, is considered.

Figure 1.1: Lepton-hadron elastic scattering processes: a) Electromagnetic interaction. b)
Charged-current weak interaction. c) Neutral-current weak interaction.

Compared to CC neutrino reactions, the experimental study of NC processes is a fairly de-
manding task due to the considerable difficulties to obtain information in a process with a reduced
cross section and without charged leptons in the final state. Thus, the event recognition lies on the
hadron detection.
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1.4.1 Neutrino-nucleus scattering

At the lowest neutrino energies, the most probable interaction is the elastic scattering where the
energy transfer to the nucleus is not enough to release an unbound nucleon so the nucleus recoils
intact. The quasielastic (QE) scattering appears once the energy transfer is large enough to scat-
ter off a nucleon from the nucleus. When this process occurs via neutral-current scattering, all
neutrinos and anti-neutrinos can scatter off both neutrons and protons in what is referred to as
neutral-current quasielastic (NCQE) scattering: νl (νl ) + N → νl (νl ) + N . Once neutrinos acquire
sufficient energy to create the charged lepton’s mass they can also undergo the analogous charged-
current quasielastic (CCQE) interaction: νl + n → p + l− and νl + p → n + l+. For Eνµ ≈ 1 GeV,
CCQE is the dominant interaction.

The interaction of neutrinos with nuclei at intermediate energies, of the order of 100s of MeV
up to 10s of GeV, plays an important role in the precise determination of neutrino oscillation
parameters. At these energies, nuclear effects are very significant, providing also relevant infor-
mation on the axial hadronic currents. From the experimental point of view, the data analysis needs
to consider a large number of nuclear effects that distort the signals and produce new sources of
background that are absent in the elementary neutrino-nucleon processes. In this sense, a complete
theoretical model should include, at least, three kinds of contributions: (i) quasielastic (QE) for
low-intermediate energy transfers, (ii) nucleon correlations and two-body contributions and (iii)
the complete inelastic spectrum, containing pion production arising from the ∆(1232) resonance
peak, non-resonant contributions, other meson production as well as higher-energy nucleonic res-
onances and deep inelastic scattering processes.

In this work, we focus on intermediate and high energies covering from QE reactions to deep
inelastic scattering processes. The different reaction mechanisms are briefly described in the fol-
lowing lines:

• Quasielastic scattering: The most relevant contribution at intermediate energies (Eν ∼ 1
GeV) in which a neutrino scatters off a single bound nucleon being the latter ejected from the
nuclear target. We can distinguish between NCQE neutrino interactions, where a neutrino is
emitted, and CCQE neutrino interactions with a charged lepton in the final state. Regarding
the notation employed in the experimental literature, CCQE-like scattering (or CC0π) is
defined as the process where one lepton and no pions are detected in the final state. In
this sense, QE-like processes are contaminated with other contributions such as short-range
correlations (SRC), multinucleon emissions (np-nh) induced by meson-exchange currents
(MEC) and by rescattering processes, pion absorption in the nuclear medium and pionless
resonance decay.

• 2p-2h MEC contributions: This corresponds to a weak boson being exchanged by a pair of
nucleons (2-body current) leading to the emission of two nucleons from the primary vertex.
This contribution is essential to interpret properly the “dip” region between the QE and ∆
peaks for (e,e′) reactions as well as to reproduce the neutrino QE-like experimental data.

• Resonance production: At higher energies, which implies large Q2 values, neutrinos gain
access to inelastic scattering processes. Here the target nucleon is “knocked” into a bary-
onic resonance, a ∆ or a heavier resonance N∗ depending on the energy transfer. These
resonances decay into a variety of final states with combinations of nucleons and mesons.
Neutrino-induced pion production is the dominant process in the region 0.5 GeV < Eν < 10
GeV.
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• Deep inelastic scattering (DIS): At higher energies the neutrino is able to transfer sufficient
momentum so the inner structure of the nucleon can be resolved. The neutrino can scatter
directly off any of the quarks inside the nucleon, including those which form the “sea”
of quarks and anti-quarks that are constantly popping in and out of existence. At lower
transfer momentum the nucleons contain mostly up, down and strange quarks, but higher
transfer momentum values get access to higher-mass and shorter-lived quarks too. DIS is
the dominant process for Eν > 10 GeV and its most visible consequence is the break up of
the nucleon containing the struck quark.

The different reaction mechanisms contributing to (anti)neutrino-nucleus interactions are shown
in Fig. 1.2 as function of the incoming (anti)neutrino energy. In order to give a more complete de-
scription of the scattering mechanisms, the nuclear response in terms of the energy transferred to
the nucleus is schematically represented in Fig. 1.3 for a fixed momentum transfer q. In the latter,
we can observe how small energy transfers of the order of tens of MeV result in elastic scattering
off the nucleus followed by a collective excitation of the nucleus. Intermediate energies are related
to the process where the lepton scatters off a bound nucleon giving a broad QE peak centered
around ∼ Q2/2M (being M the nucleon mass). At higher energies, multinucleon excitations and
nucleonic resonances start to be relevant as well as DIS processes when the incident energy is
enough for the nucleon break-up. Notice also the overlap of the different reaction mechanisms in
the intermediate kinematical region (1-10 GeV). This effect should be considered carefully when
analyzing neutrino-nucleus experimental data.

1.4.2 Elastic neutrino-nucleon interactions and nucleon form factors

Doing calculations for the interaction of neutrinos with nuclei presents additional complexity over
electrons with nuclei since, in addition to the purely vector electromagnetic responses, new axial
and interference vector-axial contributions arising from weak leptonic and hadronic currents come
into play.

Although essentially composed of only three quarks, nucleons are constantly interacting via
exchange of gluons which in turn can produce other temporary quark/anti-quark pairs. The four-
momentum of the weak boson (Q2) determines how much of the nucleon’s internal structure is
resolved by a weak interaction. The description of the inner structure of the nucleon can be pro-
vided by the use of nucleon form factors, that are given as phenomenological functions expressed
in terms of Q2. The type of interaction determines which form factors enter in the process. A more
detailed description of hadronic form factors will be addressed in Chapter 2.3.

With respect to the nucleon structure, elastic neutrino-nucleon scattering processes are particu-
larly important to neutrino physics for two reasons. First, they provide essential information on the
weak nucleon form factors which are difficult or inaccessible for other scattering probes. Second,
the previous processes enable the kinematics to be completely reconstructed, and hence the initial
neutrino energy can be determined. This is critical for measurements of the oscillation parameters.
In spite of this, most of the experiments employ heavy targets in order to get larger cross sections.
This makes the analysis of the process much more complex, i.e., a great caution should be drawn
on how to reconstruct the kinematics, and how to get information on the weak nucleon form fac-
tors.

Regarding the weak nucleon form factors in CCQE neutrino scattering we can distinguish
vector, F1(Q2) and F2(Q2), axial, FA(Q2), and pseudoscalar, FP (Q2), ones, related to the corre-
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Figure 1.2: Total neutrino (left) and antineutrino (right) cross sections per nucleon in terms of the
incident neutrino energy (Eν). Different reaction channels are shown separately. The figures are
taken from [15].
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Figure 1.3: Regimes of the nuclear response in terms of the energy transfered (ω) to the nucleus.

sponding components of the hadronic current. The vector form factors, as a consequence of the
conserved vector current hypothesis (CVC) [16], can be defined in terms of the electromagnetic
ones related to electron-nucleon scattering. Concerning the axial form-factor, FA(Q2), it is com-
mon to assume a “dipole” form, where two control parameters must be determined experimentally:
the “axial charge” gA = 1.26 from beta-decay, and the “axial mass” MA = 1.014±0.014 GeV from
CCQE neutrino scattering on deuterium and pion production by electrons [17]. It should be noted
though that the dipole form is an assumption motivated by the analysis of electromagnetic form
factors [18]. A study of the differences between dipole and monopole axial form factor is shown in
Appendix D as well as in [19]. Although, to date, neutrino experiments do not have the precision
required to test explicitly the Q2-dependence of the weak form factors, a dipole form works nicely
in most situations [18]. Finally, the pseudoscalar form factor, FP, is related to the axial one via the
“Goldberger-Treiman” relation. The basic features of these functions are analyzed in Chapter 2.3.

1.5 Theoretical approaches to neutrino-nucleus scattering

With the aim of achieving a complete theoretical description of neutrino-nucleus interactions, sev-
eral theoretical groups have developed different models to account for the different ingredients
needed for a deep understanding of experimental data. The first MiniBooNE CCQE measurements
for neutrino interactions on 12C motivated a large theoretical effort to explain the apparent dis-
crepancy between the experimental cross sections and the theoretical predictions, which seem to
underestimate the data [20, 21]. A first approach to disentangle this apparent discrepancy was to
increase the value of the nucleon axial mass (MA) from the world’s averaged value (1.032 GeV)
emerging from deuterium bubble chamber experiments [22, 23] to ∼ 1.35 GeV. However, while
improving the theoretical agreement with the MiniBooNE data, such a high value of MA does not
match with other experimental data, as NOMAD [24], nor with former elastic neutrino cross sec-
tions on light nuclei [25–29]. The key to this issue lays on the definition of the CCQE event in
the experiment. Whilst theorist define CCQE as the event where one nucleon is knocked out in
the final state along with a charged lepton, MiniBoone defined CCQE as an event with one lepton
and no pion observed in the final state, which has been “renormalized” to CCQE-like. Therefore,
the definition of CCQE-like event also includes effects beyond the Impulse Approximation, i.e.,



1.6. EXPERIMENTAL STATUS 11

the neutrino only interacts with a single-bound nucleon. Thus, nucleon-nucleon correlations and
multinucleon emission processes, such as 2p-2h MEC contributions, should be accounted for in
the analysis of experimental data.

From this baseline, a large number of theoretical groups began to investigate on this topic. In
particular, Martini et al. employed a local Fermi gas model [30], taking into account RPA correla-
tions, coherent and incoherent pion production as well as quasielastic excitations. Besides this, the
inclusion of contributions arising from np-nh excitations [30] led them to a reasonable agreement
with MiniBooNE data without resorting any effective parameter or increasing the MA value. A
similar approach was taken by Nieves et al. [31], achieving a good agreement with data after a
subtraction of ∼ 10%. Moreover, the Pavia group made use of a relativistic Green’s function ap-
proach [32] including the imaginary part of the relativistic optical potential to describe final-state
interactions (FSI). Their predictions are in accordance with data for some particular choices of
the optical potentials. The contributions of one-body and two-body currents have also been ana-
lyzed in [33] using the spectral function formalism. A semiphenomelogical model that considers
the quantum-kinetic transport theory (GiBUU) has been also applied for the analysis of electro-
magnetic and weak interactions [34], using a parametrization of the transverse electromagnetic
contributions as a basis for 2p-2h neutrino interactions.

In this thesis, the analysis of the electron and neutrino-nucleus interactions in the QE and in-
elastic regimes will be carried out within the framework of the SuperScaling Approach (SuSA),
which assumes the existence of universal scaling functions for both electromagnetic and weak in-
teractions. The analysis of inclusive (e,e′) experimental data [35–38] has proved that scaling is
fulfilled with very good accuracy. This implies that the reduced cross section exhibits indepen-
dence of the momentum transfer (first-kind scaling) and of the nuclear target (second-kind scaling)
when expressed as a function of the appropriate scaling variable, itself a function of the energy
and momentum transfer. In a recently improved version, called SuSAv2 model, we have employed
the Relativistic Mean Field Theory (RMF) and the Relativistic Plane Wave Impulse Approxima-
tion (RPWIA) to obtain a complete set of scaling functions that embody all the nuclear depen-
dence of the interaction, being valid for all nuclei. The description of the the many-body physics
of the interacting nucleons within the SuSAv2 model, takes into account the different contribu-
tions of both longitudinal and transverse nuclear responses, as well as the isovector and isoscalar
channels. This is of great interest for charged-current (CC) neutrino reactions, which are purely
isovector. Regarding the 2p-2h MEC contributions and contrary to other works on this topic, we
employ a microscopic calculation in a fully relativistic framework without further approximations.
The SuSAv2-MEC predictions, based on the use of the RMF/RPWIA model plus the 2p-2h MEC
fully microscopic calculations, have been succesfully applied to the analysis of (e,e′) and CCQE
neutrino-nucleus reactions covering from low to very high energies [38, 39].

1.6 Experimental status

Once neutrino oscillations were confirmed in solar and atmospheric neutrinos [7, 8], an ample ex-
perimental program was developed with the aim of studying these oscillations and determining
precisely their masses through the oscillation parameters. This deep research has renewed the in-
terest on neutrino cross sections as an essential ingredient on the analysis of neutrino oscillation
experiments as well as on the study of the weak nucleon structure. Nevertheless, due to the ex-
tremely reduced cross sections in weak reactions, neutrino experiments are highly complicated.
In the words of Haim Harari [40], “Neutrino physics is largely an art of learning a great deal by
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observing nothing”.

In this section, we focus on accelerator-based neutrino experiments which provide better con-
trolable conditions for the study of oscillations. The purpose of these facilities is either the direct
measurement of oscillation parameters or the production of data that can help to reduce the system-
atic and theoretical uncertainties related to neutrino-nucleus scattering. Most of current and future
experiments have a baseline of hundreds of km and operate in the 1-10 GeV region. At these
kinematics, the most relevant contribution to the cross section comes from the charged-current
quasielastic (CCQE) scattering processes. In Table 1.3, we briefly compare the main features of
some recent and forthcoming experiments. We can observe a predominant use of carbon as nu-
clear target in most facilities whereas other experiments employ heavier nuclei, obtaining higher
cross sections but also providing, in some situations, outstanding spatial and energy resolution as
the case of the liquid-argon time-projection chamber (LArTPC) technology. The neutrino energies
cover a range from hundreds of MeV to a few GeV in MiniBooNE [20, 21], SciBooNE [41], MI-
NOS [42] and NOνA [43] whereas it steps up to tens of GeV for T2K [44,45], MINERνA [46,47],
NOMAD [24] or ArgoNeuT [48, 49]. Neutrino beams in most experiments are generated through
the decay of pions into muons and neutrinos, the latter being directed towards the final target.

Experiment Nuclear Target Beam Process Detected Eν range (GeV)

MiniBooNE CH2 νµ, νµ
CCQE-like, Pion pro-
duction

0.2-3.0

MINERνA CH, C, Fe, Pb νµ, νµ, νe, νe
CCQE-like, Pion pro-
duction, DIS, Inclusive

1-20

T2K C8H8 νµ, νµ, νe, νe CCQE-like, Inclusive 0.2-30

ArgoNeuT Ar νµ, νµ
Pion production, Inclu-
sive

0.5-10.0

SciBooNE C8H8 νµ

CCQE-like, Inclusive,
Kaon production, Pion
production

0.2-3.0

NOMAD
64%C, 22%O,
6%N, 5%H,
1.7%Al

νµ, νµ CCQE 2.5-300

MINOS Fe νµ
CCQE-like, Pion pro-
duction

0.2-6.0

NOνA CH2 νµ CCQE-like 0.2-3.0

MicroBooNE Ar νµ, νµ CCQE-like 0.2-5.0

Hyper-Kamiokande H2O νµ, νµ CCQE-like 0.3-5.0

DUNE Ar νµ, νµ CCQE-like, Inclusive 0.2-15.0

Table 1.3: Overview of current and forthcoming accelerator-based neutrino-oscillation experi-
ments.
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A complete knowledge on the neutrino beam is essential to the success of neutrino oscilla-
tion experiments. Unlike most electron experiments, the neutrino beams are not monochromatic.
In general, to produce intense beams of high energy neutrinos, protons from a synchrotron are
accelerated to be extracted afterwards and sent against a target (commonly made of beryllium)
where they produce π and K mesons. The mesons are collimated and pass in a long vacuum tube
of hundred meters where they decay into leptons and neutrinos (see Fig. 1.4 for details). After
the vacuum tube, there is a region with absorbing material in which photons and electrons are
stopped first, followed by hadrons and finally muons. Only neutrinos reach the experimental area
where different detectors are installed. Due to these different processes, the neutrino beams are not
monochromatic. Their degree of breadth depends on the focusing of the charged hadrons produced
in the primary collision as well as on the energy of the primary beam. Therefore, in any exper-
iment the neutrino beam involves a broad energy distribution around a maximum, and the true
energy for a detected event is thus not known. At the same time, the inaccuracy on the meson flux
determination affects the prediction of the final neutrino flux. In order to reduce flux uncertainties,
two identical detectors are employed. These are located near the neutrino production region (near

detector) and in the place where a maximum or minimum oscillation is expected (far detector).
Moreover, the reliability of neutrino cross section measurements strongly depend on a precise de-
termination of the net neutrino flux. Given that the uncertainties in the meson flux have an impact
on the neutrino flux, several investigations have been carried out to analyze the hadron productions
in pA (proton-nucleus) collisions, such as the HARP experiment [50] whose results have improved
the neutrino flux prediction in facilities such as MiniBooNE.

Figure 1.4: Layout of neutrino beam production on neutrino oscillation experiments.

Event selection is another important issue in neutrino experiments as different experiments use
diverse criteria to identify CCQE events which depend on their hadron identification ability. In
this way, MiniBooNE and MINERνA do not have complete information about protons or neutrons
in the final state, so processes such as multi-nucleon emission (np-nh MEC) can be measured
as CCQE events. These type of measurements are called CCQE-like events (see discussion in
previous sections). On the contrary, experiments as NOMAD and SciBooNE make use of the
recoil proton information to distinguish purely CCQE events. Thereupon some recent neutrino
experiments and their main features are briefly described.

MiniBooNE

MiniBooNE is an experiment at Fermilab designed to observe neutrino oscillations, being BooNE
an acronym for the Booster Neutrino Experiment. A neutrino beam consisting primarily of muon
neutrinos is directed to a detector filled with 800 tons of mineral oil (CH2) and lined with 1,280
photomultiplier tubes. An excess of electron neutrino events in the detector would support the
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short-baseline neutrino oscillation indicated by the LSND Collaboration (Liquid Scintillator Neu-
trino Detector) result [6]. It collected data and measurements from 2002 up to 2012.

In particular, the experiment is focused on detecting the νe(νe) appearance from the νµ(νµ)
beam in the ∆m2 ∼ 1 eV2 region through CCQE-like interactions. This mass difference is much
larger than the one observed in solar and atmospheric oscillations. Furthermore, MiniBooNE
presents a high statistics (POT=7×1020), remarkably greater than the one in solar and atmospheric
neutrinos.

A detailed comparison of the (anti)neutrino beam for different facilities is shown in Fig. 1.5.
In particular, the MiniBooNE flux is peaked at Eν ∼ 0.7 GeV, where the dominant process is the
QE scattering. This makes the MiniBooNE results in neutrino-nucleus cross sections a very useful
tool in our theoretical study.

Figure 1.5: Muon neutrino and muon antineutrino flux predictions from current and future acceler-
ator based neutrino experiments. The plots on the top represent neutrino flux predictions, whereas
the plots on the bottom are anti-neutrino flux predictions. Predictions are all arbitrary normalized.
Left plots are current experiments (T2K, MiniBooNE, MINERνA with low energy (LE) NuMI),
and right plots are forthcoming experiments (Hyper-Kamiokande, MicroBooNE, NOνA, DUNE,
MINERvA with medium energy (ME) NuMI). Figure taken from [51].

MiniBooNE is the first step of the BooNE experiment. At this stage, neutrino oscillation mea-
surements are obtained with a single detector which records Cherenkov and scintillation photons
from the charged particles produced in neutrino reactions. After verifying these oscillations, Mini-
BooNE will move forward to a second stage with two detectors in order to determine more pre-
cisely the oscillation parameters.
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The BooNE experimental line consists of three main components, as shown in Fig. 1.6, a
primary beam of protons, a secondary beam of mesons and a third one of neutrinos. Protons are
accelerated up to 8 GeV in the Booster synchrotron where they are directed to a beryllium target.
The secondary mesons produced after the collision are driven towards a toroidal magnetic field
where the neutrinos originated after the meson decay are directed towards the detector. Finally, the
neutrino flux is calculated by using a Geant-4 simulation.

Figure 1.6: Scheme of the MiniBooNE beamline and detector.

The main purpose of these measurements is to determine the CCQE double differential cross
section for the process νµ + n → µ− + p, using 12C as target. The identification of the CCQE event
on the MiniBooNE detector only depends on the Cherenkov light arising from the primary muon
and the subsequent electron after its decay (see Fig. 1.7). The scintillation light is produced by the
charged lepton and the recoil proton. However, the reconstruction method employed at FermiLab
prevents this light to be separated from the dominant Cherenkov one. Thus, the proton is typically
under the Cherenkov threshold, enabling a proton-lepton coincidence detection.

Figure 1.7: Schematic overview of CCQE scattering in the MiniBooNE detector.

This lack of sensitivity makes the results less dependent of the uncertainties related to the
final-state model employed to described the final proton. On the contrary, this prevents from dis-
entangling between purely quasielastic processes and other possible reaction mechanisms, i.e.,
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multi-nucleon excitations, nucleon correlations or processes where pion production is abosorbed
in the target nucleus. These contributions are not, strictly speaking, CCQE but are considered in
that way in the experimental definition, as they have the same final state (CCQE-like events).

The previously-described CCQE process, including muon decay, can be summarized as fol-
lows:

1 : νµ + n → µ− + p

2 : →֒ e− + νe + νµ

On the other hand, the primary background stems from the CC pion production which is described
as,

1 : νµ + p(n) → µ− + p(n) + π+

2 : →֒ µ+ + νµ

3 : →֒ e− + νe + νµ

4 : →֒ e+ + νe + νµ

Figure 1.8: The inside of the MiniBooNE tank is filled with 818 tons of scitillator mineral oil
(CH2) and covered with 1280 inward-facing photomultiplier tubes. Picture taken from the BooNE
website.

MiniBooNE has produced a large amount of data concerning CCQE, CC pion production as
well as NC cross sections. The preliminary analysis of these data led to propose a larger value
of the nucleon axial-mass with respect to the world average value obtained in previous deuterium
filled bubble chamber experiments. However, this result could be explained as a consequence
of the measurements of CCQE-like events which also include multinucleon processes or nucleon
correlations.
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Finally, it is also worth mentioning the MicroBooNE Collaboration [52], a further step into the
BooNE experiment. The MicroBooNE collaboration is currently operating a large Liquid Argon
Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at Fermilab.
The experiment first started collecting neutrino data in October 2015. MicroBooNE will measure
low energy neutrino cross sections and investigate the low energy excess events observed by the
MiniBooNE experiment. The detector also serves as a next step in a phased program towards the
construction of massive kiloton scale LArTPC detectors for future long-baseline neutrino physics
(DUNE) and is the first detector in the short-baseline neutrino program at Fermilab.

SciBooNE

As mentioned before, two facilities have made use of the 8-GeV Booster beam at FermiLab, Mini-
BooNE and SciBooNE. The SciBooNE experiment was built at Fermilab to get precise measure-
ments of neutrino and antineutrino cross sections on carbon and iron targets. The SciBooNE Col-
laboration has measured the intrinsic properties of the neutrino beam produced in the “Booster”
unit which sends this flux to MiniBooNE (next experimental stage) improving its precision. The
SciBooNE detector consists of scintillator-bar detector (carbon target), a muon range detector and
an electron capture detector (ECD).

SciBooNE satisfactorily completed its measurements in 2008 and their results have already
been published [41].

MINERνA

The aim of the MINERνA Collaboration is to study neutrino-nucleus interactions in detail. Its
main objective is to support neutrino oscillation experiments through the analysis of neutrino in-
teractions at intermediate energies. It measures neutrino reactions covering an energy range from
1 to 20 GeV. The detector is placed on the NUMI line at FermiLab and it is equipped with different
targets (C, CH, Fe, Pb) in order to achieve precise measurements of the nuclear effects. Its design
allows to reconstruct and analyze the track of the involved particles. The facility started working
in 2010 and several data have been already taken [46, 47, 53].

The source of MINERνA’s neutrino beam is the Neutrinos at the Main Injector beamline, or
NuMI. The NuMI neutrino beam is created by firing protons from Fermilab’s Main Injector into a
carbon target resembling a yardstick, located inside a magnetic focusing horn. The interaction of
protons with the target produces a stream of positively and negatively charged particles. The horn
produces a magnetic field used to focus either the positive or negative particles into a 675 meter
long decay pipe. There the particles decay in flight to produce muons and muon neutrinos (from
positive particles) or anti-muons and muon anti-neutrinos (from negative particles). The approxi-
mately 240 meters of rock and muon absorbers between the end of the decay region and the near
detector hall absorb all particles except the neutrinos, creating a clean neutrino beam for use in the
particle detectors.

Neutrinos passing through a particle detector will collide with nuclei in the various materi-
als making up the detector. These interactions produce ionizing radiation and secondary charged
particles that leave measurable energy deposits in the detector. These energy deposits are used to
identify and study the neutrino interactions. Highly energetic muons created in neutrino interac-
tions are capable of escaping the MINERνA detector and entering MINOS. MINERvA uses data
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collected by MINOS to identify and measure these energetic particles.

Figure 1.9: Side-view of the MINERνA experiment. The neutrino beam travels left to right through
the various detector components [46].

MINERνA has produced CCQE-like cross sections on CH [46, 47] which are in agreement
with theoretical estimations including also multinucleon excitations, without further ingredients or
larger axial mass values. Its recent measurements on DIS cross sections for different nuclei [54]
could be valuable to assess the relevant ingredients for the neutrino reaction models at very high
energies.

K2K

The K2K experiment [9] was designed in Japan to confirm atmospheric neutrino oscillations using
Super-Kamiokande as detector. A schematic diagram of this detector is shown in Fig. 1.10. This
consists of a water Cherenkov detector, a water-based liquid scintillator (SciFi, oxygen target)
and a muon range detector (MRD). Thus, the impact of 12-GeV protons on an aluminium target
produces neutrinos with an energy spread from 1 to 1.5 GeV. Finally, in the SciFi detector the
neutrino cross section is measured.

Figure 1.10: Schematic view of K2K detector [9].
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T2K

The T2K experiment (Tokai to Kamioka) is a long-baseline neutrino experiment in Japan which is
focused on neutrino oscillations and can be considered the successor of K2K. It employs a high-
resolution detector with the aim of determining the neutrino energy spectrum as well as its flavor
and the resulting cross sections.

T2K has made a search for oscillations from muon neutrinos to electron neutrinos, already
published [55] as well as its work on the measurement of oscillations from muon neutrinos to tau
ones. A large set of experimental data from forward to backward angles has also been published
for the analysis of CC0π production processes as well for the inclusive ones [44, 45, 56].

Figure 1.11: Schematic view of T2K detector [44].

The T2K experiment sends an intense beam of muon neutrinos from Tokai, which is on the
east coast of Japan, to Kamioka at a distance of 295 km in western Japan. The neutrino beam is
produced from collisions between a proton beam and a graphite target; these collisions produce
pions, which quickly decay to muons and muon neutrinos. The muons and any remaining protons
and pions are stopped by a second layer of graphite, but the neutrinos pass through it.

T2K studies neutrino oscillations with two separate detectors, both of which are 2.5 degrees
away from the centre of the neutrino beam. The ND280 near detector is located at 280 metres
distance from the target, and measures the number of muon neutrinos in the beam before any os-
cillation occurs. T2K neutrinos have much higher energies than solar neutrinos, and high-energy
neutrinos are more likely to interact. A small number of muon neutrinos interact with scintillator
or water in the ND280, and many of these interactions produce a muon. The muon can be de-
tected since it ionises gas which is placed immediately after the interaction points. These ND280
measurements are used to predict the number of muon neutrinos that would be seen in the “far
detector” SuperKamiokande if there were no oscillations.

The walls of SuperKamiokande are lined with more than 10,000 sensitive photo-multipliers,
which detect the cone of Cerenkov light as a ring (see Figure 1.12). This detector system can
distinguish muons originated from muon neutrinos (which produce a sharp ring) from electrons
arising from electron neutrinos (which produce a more diffuse ring).

A next step into the Kamiokande investigations is the Hyper-Kamiokande experiment [57],
which will operate in the same beam line as T2K. This detector consists of a megaton scale water
tank and ultra high sensitivity photosensors. The Hyper-Kamiokande detector is both a “micro-
scope”, used to observe elementary particles, and also a “telescope” for observing the Sun and su-
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Figure 1.12: Experimental view of muon rings in the T2K detector [44].

pernovas, using neutrinos. The Hyper-Kamiokande project has an extremely rich physics portfolio
that spans from the study of the CP violation in the leptonic sector and neutrino mixing parame-
ters using accelerator neutrino and anti-neutrino beams to proton decay, atmospheric neutrinos and
neutrinos from astronomical origin.

NOMAD

The NOMAD experiment (Neutrino Oscillation MAgnetic Detector) was designed to search for ντ
appearance from neutrino oscillations in the CERN wide-band neutrino beam produced by the 450
GeV proton synchrotron. The single-particle reconstruction and lepton identification capability of
the NOMAD detector allowed the search for ντ appearance in most of the leptonic and hadronic τ
decay channels and also to look for νµ → νe oscillations. A second phase of the NOMAD analysis
started after the completion of the oscillation searches, with the aim of exploiting the high quality
of the available neutrino data samples for precise measurements of cross sections and particle pro-
duction. This activity could be also of interest for oscillation studies.

The NOMAD detector consisted of a high resolution magnetic detector. In 2000, NOMAD
completed its search for νµ → ντ through their charged-current interactions followed by the τ
decay into one or two neutrinos and by the corresponding τ decay daughters. No oscillation signal
was found but the limit set was in accordance with the expectations of the proposal, thus demon-
strating the validity of the kinematic method used by NOMAD to search for ντ charged-current
interactions.

This collaboration produced interesting results about the total CCQE muon neutrino cross sec-
tion on 12C [24] which, unlike MiniBooNE, do not claim for a larger axial mass value of the
nucleon.

ArgoNeuT

The ArgoNeuT (Argon Neutrino Test) Experiment ran on the NuMI beam line at the FermiLab,
from September 2009 to February 2010. It is the first stage of a project that makes use of Liquid
Argon Time Projection Chambers (LArTPCs) as neutrino detectors. ArgoNeuT has collected thou-
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sands of beam neutrino events in the 0.1 -10 GeV energy range during its run and some results have
been recently published, including the first measurements of the inclusive muon neutrino charged
current differential cross sections on argon [48, 49].

In a LArTPC experiment, the free electrons are drifted towards the anode in a uniform electric
field where they are registered on wires in multiple (at least two) planes, due to electromagnetic
induction and collection of the electrons on the last plane of wires. Because the wires in different
planes are at an angle with respect to each other, it is possible to get the full 3D reconstruction of an
event. The LArTPC, given its ability for simultaneous precise 3D and calorimetric reconstruction
of particle interactions, is an extremely interesting detector technology. It connects physics goals,
like sterile neutrino search, with technology development milestones that will lead to a multi-
kiloton long-baseline neutrino experiment. This has provided the first ever data for low energy
neutrino interactions within a LArTPC, paving the way for construction of larger detectors. Its
goals included measurements of the CC inclusive cross sections in the 1-5 GeV range, examining
the effects of Final State Interactions (FSI) and testing the Particle ID capabilities of the LArTPC,
especially the e/γ separation crucial for future neutrino experiments.

νSTORM

νSTORM (Neutrinos from STORed Muons) is a proposed storage ring facility [58, 59] to deliver
beams of muon antineutrinos and electron neutrinos from positive muon decays (muon neutrinos
and electron antineutrinos from negative muon decays), with a central muon momentum of 3.8
GeV/c and a momentum acceptance of 10%. The facility will allow searches for eV-scale sterile
neutrinos at better than 10 sigma sensitivity. It will be able to provide measurements of neutrino
and antineutrino-nucleus scattering cross sections with percent-level precision and will serve as a
first step towards developing muon accelerators for particle physics. The flux of the neutrino beam
can be determined with percent-level accuracy to perform cross-section measurements for future
neutrino oscillation experiments and to resolve the hints for eV-scale sterile neutrinos. νSTORM
may be considered as a first step towards a Neutrino Factory and a Muon Collider. In this sense,
our studies about the difference between electron neutrino reactions and muon neutrino ones could
be valuable for the analysis of its experimental results.

DUNE

The Deep Underground Neutrino Experiment (DUNE), conducted with the detectors installed in
the Long-Baseline Neutrino Facility (LBNF) at FermiLab, is expected to achieve important discov-
eries in forthcoming years, making definitive determinations of neutrino properties, the dynamics
of the supernovae that produced the heavy elements necessary for life, and the possibility of proton
decay.

With the LBNF facilities and the detectors provided by DUNE [60], the DUNE Collaboration
proposes to disentangle the puzzle of neutrinos with broad sensitivity to neutrino oscillation param-
eters in a single experiment. The focus of the scientific program is the determination of the neutrino
mass hierarchy and the analysis of leptonic CP violation by precisely measuring differences be-
tween the oscillations of muon-type neutrinos and antineutrinos into electron-type neutrinos and
antineutrinos, respectively. Furthermore, the DUNE experiment also focuses on determining the
ordering of the neutrino masses as well as on searching for neutrinos beyond the currently known
three.
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1.7 Structure and motivation of this thesis

As already mentioned in previous sections, most events analyzed by the different collaborations
correspond to CCQE processes where a muonic neutrino is scattered by a bound nucleon (νµ+n →
µ− + p). The employment of realistic nuclear models is crucial for the analysis of these and forth-
coming experiments, such as NOνA, MINERνA, MiniBooNE or T2K, focused on the search for
neutrino oscillations νµ → νe.

A proper interpretation of neutrino oscillations implies an accurate description of the CCQE
process in a wide range of neutrino energies. It should be noted that the beam neutrino energy is
not precisely determined and only an energy distribution of the incoming flux is predicted. There-
fore, a control over the uncertainties associated to the nuclear model is indispensable. Likewise,
background processes are also important and hard to disentangle from the CCQE signal as the case
of the pion production and its subsequent absorption by the nuclear target. Other effects, such as
nucleon correlations, meson-exchange currents related to multi-nucleon knock-out or final-state
interactions (FSI), can also contribute significantly to the final result and have to be appropriately
accounted for in the nuclear models.

Moreover, the oscillation probability directly depends on the neutrino energy, which must be
reconstructed from the final-state particles. This reinforces the need to dispose of realistic models
that provide an accurate description of the mechanisms involved in neutrino-nucleus interactions.
These models are in turn used in the simulations with which experiments define their analyses and
interpret their data so it is essential to improve the understanding of neutrino interactions in order
to improve neutrino oscillation measurements.

Therefore, the focus of the following chapters is to study electroweak scattering processes,
deepening in neutrino-nucleus reactions along the different nuclear regimes of interest for neutrino
oscillations. This will be addressed by using realistic models that treat the process in a fully rel-
ativistic way, describing both hadronic and nuclear structure. This is directly connected with the
growing interest in neutrino-oscillation experiments where an accurate theoretical description of
weak interactions is essential to interpret properly the experimental results.

The structure of this thesis will be the following: in Chapter 2 we analyze the case of charged-
current neutrino-nucleon elastic interactions where the weak response functions and the nucleon
form factors are described; in Chapter 3 we present the formalism of quasielastic neutrino-nucleus
interactions within the SuSAv2 model, which is based on the superscaling behavior and the rela-
tivistic mean field theory. The Chapter 4 focuses on the 2p-2h MEC contributions as an essential
ingredient for the analysis of experimental data, where we make use of an accurate parametrization
of fully relativistic microscopic calculations. The extension of the SuSAv2 model to the inelas-
tic regime is detailed in Chapter 5. Afterward, in Chapter 6 we compare the previous theoretical
description with electron-nucleus scattering data for all kinematics. This constitutes a solid bench-
mark to assess the validity of our model for the analysis of the existing charged-current neutrino
experimental data, as detailed in Chapter 7. Finally, in Chapter 8 we present a summary and the
main conclusions of this PhD thesis.



Chapter 2

Charged-current elastic neutrino-nucleon

scattering

In this chapter we introduce the formalism employed to describe elastic charged-current neutrino-
nucleon (CC ν-N) scattering processes, which will be of relevance to understand properly the
CCQE neutrino-nucleus reactions. Accordingly, we also analyze the relevance of the diverse elec-
tromagnetic and weak nucleon form factors and the different single-nucleon responses. This anal-
ysis is carried out within the Born Approximation, where a single W boson is exchanged, thus
resulting an accurate approach due to the reduced value of the weak coupling constant and the
large W -boson mass.

2.1 General formalism

The kinematics of the CC ν-N scattering process (νl + n → l− + p), where l represents e, µ or
τ, and the frame of reference employed are schematically shown in Fig. 2.1. In this figure, the
elastic neutrino-neutron interaction via the exchange of a W− is displayed, leading to a final state
composed of an outgoing lepton and a proton. The antineutrino-nucleon process (νl + p→ l+ + n)
is analogous to the previous one.

Figure 2.1: Frame of reference and kinematics involved in the CC neutrino-nucleon
process where the outgoing lepton is a muon.

23
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Accordingly, the charged-current neutrino (antineutrino) interaction, which is purely isovector,
is associated to isospin T = 1 as there is a charge exchange where the initial neutron (proton) turns
into a proton (neutron) in the final state. This implies an isospin change in the Z-component as
|∆Tz | = 1. In neutral current interactions (ν + N → ν + N), this Z-component is zero in such a
way that isoscalar contributions would also be permitted.

The frame of reference selected for these processes is the laboratory frame in which the ini-
tial nucleon is at rest. It is taken for simplicity the momentum transfer to the nucleon along the
Z axis and, therefore, the final momentum of the nucleon. Thus, the initial and final momenta
of the leptons are contained in the X Z plane. For completeness, the following analysis has also
been addressed briefly for the electromagnetic electron-nucleon interaction (e− + N → e− + N) in
Appendix A.

The notation employed for the kinematics in CC weak processes is summarized as follows:

➲ Incident neutrino νl :

– 4-momentum: kν = (Eν,~kν)

– Mass: mν = 0→ Eν = |~kν |

➲ Final lepton l−:

– 4-momentum: kl = (El ,~kl )

– Mass: ml

– Scattering angle: θl

➲ Initial nucleon n:

– 4-momentum: Pi = (Mn,0)

– Mass: Mn

➲ Final nucleon p:

– 4-momentum: P f = (E f ,~q)

– Mass: Mp

➲ Exchanged boson W−:

– 4-momentum: Qν = (ω, ~qν ≡ qν)

The energy-momentum conservation law in the leptonic and hadronic vertexes implies the
following relations:

Leptonic vertex

➦ Energy conservation: Eν − El = ω

➦ Momentum conservation: ~kν − ~kl = ~q ⇒ q2
= E2

ν + |~kl |2 − 2Eν |~kl | cos θl

Hadronic vertex

➦ Energy conservation1: E f = ω + MN ⇒ ω2
+ 2MNω = q2⇒− Q2 ≡ |Q2 | = 2MNω

➦ Momentum conservation: ~q = ~Pi +
~P f ⇒ ~q = ~P f

As shown in the previous equations, the kinematical variables Eν, El and θl are not independent
so the kinematics of the process is completely defined by determining two of them.

1Notice that a generic nucleon mass MN is employed. This can be either the neutron or proton mass depending on
the neutrino or antineutrino case, respectively.
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Interaction hamiltonian

The transition amplitude S f i of the neutrino-nucleon scattering process is obtained from the asso-
ciated interaction hamiltonian (HW ),

S f i = −i

∫

d4X HW (X ) . (2.1)

with the hamiltonian expressed as

HW (X ) =

[
g

2
√

2

]2

J
(l)†
µ (X )A

µ

(N ) (X ) =

[
g

2
√

2

]2

J
(l)†
µ (X )D

µν

W
(Q)J

(N )
ν (X ) , (2.2)

where g is the dimensionless weak coupling constant, related with the Fermi constant, GF , as

GF√
2
=

g2

8M2
W

; MW = 80.401(38) GeV . (2.3)

The 4-potential A
µ

(N ) (X ), i.e., the field generated by the nucleon in the interaction with the corre-

sponding lepton, can be described in terms of the hadronic current, J
(N )
ν , and the weak propagator,

D
µν

W
,

A
µ

(N ) (X ) =
∫

d4Y

DW
︷                                                ︸︸                                                ︷
∫

d4Q

(2π)4
*,
−gµν + QµQν/M2

W

Q2 − M2
W
+ iε

+- eiQ·(X−Y ) J
(N )
ν (Y )

≈
∫

d4Y

∫

d4Q

(2π)4
eiQ·(X−Y ) *,

1

M2
W

+- J
µ

(N ) (Y ) , (2.4)

where the approximation |Q2 | ≪ M2
W

(MW = 80.401 GeV/c2), valid for energies corresponding to
the elastic and QE regimes, has been considered.

Next we introduce the leptonic and hadronic currents, used to obtain the double differential
cross section.

Leptonic and hadronic currents

The leptonic j
(l)
µ current is defined as a sum of vector (γµ) and axial (γµγ5) terms associated to

the vector and axial structure of the nucleon. The axial term makes possible the parity violation
in weak interactions. The previous definition is general for all weak processes and, in particular,
for the charged current ones. On the contrary, the analysis of the leptonic current ( j

(e)
µ ) in electro-

magnetic (e,e′) processes only involves the vector component. Thus, the weak leptonic current is
defined as

j
(l)
µ = ψl (kl , sl)γ

µ(1 ∓ γ5)ψνl (kνl , sνl ) , (2.5)

where the -(+) sign refer to neutrino (antineutrino) processes.

Likewise, the hadronic currents for charged-current weak processes, J
µ

(N ) , are also composed of
vector and axial terms associated to the vector and axial structure of the nucleon. On the contrary,
only the vector part remains for electromagnetic interactions (see Appendix A for details),

J
µ

(N ) = ψPf
(P f ,S f )Γ̃µψPi

(Pi ,Si) , (2.6)
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where

Γ̃
µ
= FV

1 γ
µ
+

iFV
2

2MN

σµνQν

︸                     ︷︷                     ︸
Γ̃
µ

V

+GAγ
µγ5
+ FPQµγ5

︸                  ︷︷                  ︸
Γ̃
µ

A

. (2.7)

At first order in perturbation theory and considering plane waves, the wave functions related to the
hadronic and leptonic particles can be defined as

ψα (X ) =

√

mα

EαV
uα (pα, sα)e−ipα ·X , (2.8)

where u(pα , sα) are the Dirac spinors and α the corresponding single particle state.

In the previous expresion for the hadronic current (2.6), the inner structure of the nucleon is de-
scribed by means of the purely-isovector nucleon form factors (FV

1 , FV
2 , GA and FP), arising from

the CC weak interaction and dependent on Q2. The isospin symmetry allows for a description of
the isovector form factors FV

1 and FV
2 in terms of the electromagnetic Dirac, F

p,n

1 and Pauli, F
p,n

2 ,
form factors for protons and neutrons.

Conserved vector current (CVC)

When comparing both electron-nucleon and charged-current neutrino-nucleon scattering, it can be
observed that the electromagnetic current (see Appendix A) and the vector component of the weak
one are related through the conserved flavor current. This is knwon as the CVC (conserved vector
current) hypothesis and implies that the weak vector component is conserved. In the words of
J.D. Walecka [16], the CVC implies that the vector part of the single nucleon matrix element of
the charge changing weak current, whatever the detailed dynamic structure of the nucleon, can be
obtained from electron scattering through the electromagnetic interaction.

The CVC hypothesis assumes that the vector part of the hadronic current and the electromag-
netic current are components of the same conseved-current isospin multiplet and thus their form
factors are interrelated,

FV
1 (Q2) =

F
p

1 (Q2) − Fn
1 (Q2)

2
, FV

2 (Q2) =
µpF

p

2 (Q2) − µnFn
2 (Q2)

2
, (2.9)

where µp = 2.793 and µn = −1.913 are the corresponding proton and neutron magnetic moments.
For completeness, the isoscalar form factors are defined as

FS
1 (Q2) =

F
p

1 (Q2) + Fn
1 (Q2)

2
, FS

2 (Q2) =
µpF

p

2 (Q2) + µnFn
2 (Q2)

2
. (2.10)

Finally, the axial form factor, GA, describes the axial-pseudovector structure of the nucleon
whereas the FP one englobes the pseudoscalar structure. All these form factors have been studied
in detail in the literature and will be carefully analyzed in Section 2.3. Additional information on
the electroweak form factors can also be found in [61–63].
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Neutrino-nucleon elastic cross section

The double differential cross section for the elastic neutrino-nucleon interaction can be expressed,
in terms of the outgoing lepton energy (El ) and the solid scattering angle (Ωl), as:

d2σ

dEldΩl

=

|~kl |
|~kνl |

G2
F

4π2
δ

(

ω − |Q
2 |

2MN

)

η̃µνW̃
µν , (2.11)

where η̃µν and W̃ µν are the leptonic and hadronic tensors, respectively, which arise from the con-
traction of the leptonic and hadronic currents. The leptonic tensor reads,

η̃µν = j
(l)†
µ j

(l)
ν = k f ,µki,ν − k f · kigµν + k f ,νki,µ ± iεµναλkαf kλi , (2.12)

being the axial contribution negative for neutrinos and positive for antineutrinos as a consequence
of their different helicity. Moreover, the hadronic tensor W̃ µν is given by:

W̃ µν
= J

µ†

(N ) Jν(N ) = W̃
µν

V
+ W̃

µν

A
+ W̃

µν

V A

= −W1(Q2)gµν +W2(Q2)
P
µ

i
Pν

i

M2
N

+ i
W3(Q2)

2M2
N

εµνρσPi,ρQσ

+

W4(Q2)

M2
N

QµQν
+W5(Q2)

P
µ

i
Qν
+QµPν

i

2M2
N

, (2.13)

where Wi (Q2) are the hadronic structure functions defined in terms of the nucleon form fac-
tors [63],

W1 =
|Q2 |
4M2

N

[(
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1 + FV
2

)2
+ (GA)2

]
+ G2

A (2.14)

W2 = (FV
1 )2
+

|Q2 |
4M2

N

(FV
2 )2
+ (GA)2 (2.15)

W3 = 2GA(FV
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2 ) (2.16)

W4 =
|Q2 | − 4M2

N

(4M2
N

)2
(FV

2 )2 − FPGA

MN

+

|Q2 |
4M2

N

(FP)2 (2.17)

W5 = W2 . (2.18)

In the previous expression (2.13), the antisymmetric term corresponds to the axial contributions

and, in particular, to the interference vector-axial term associated to W3. The contraction of the
leptonic and hadronic tensors η̃µνW̃ µν results in the following expression,

d2σ
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. (2.19)
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where the +(-) sign in W3 is related to the helicity of neutrinos (antineutrinos), respectively. A
similar expresion is found for the electromagnetic case but neglecting the presence of the axial
form factors in the hadronic structure functions Wi (see [63]). In situations where the lepton mass
is negligible, as in the ultrarelativistic limit, the expression (2.19) can be reduced to
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δ
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We can also evaluate the single differential cross section by integrating (2.19),

dσ

dΩl

=

G2
F

4π2

|~kl |
Eνl

f −1
rec η̃µνW̃

µν
�����cos θ=cos θ0

, (2.21)

where the nucleon recoil factor ( frec) emerges as

frec ≡ 1 +
Eνl (|~kl | − El cos θ)

MN |~kl |
. (2.22)

2.2 Weak response functions

The previous expression for the elastic cross section (2.21) can be also decomposed in terms of the
single-nucleon response functions (RK ) [64], which are given as the different µν components of
the hadronic tensor (W µν), [

dσ

dΩ

]
χ

= σ0F 2
χ , (2.23)

where the χ = +(−) term is referred to neutrino (antineutrino) processes2. The σ0 term is given as

σ0 =
G2

F
cos θ2

c

2π2
kl El cos2 θ̃

2
f −1
rec , (2.24)

where θc is the Cabibbo angle [65], cos θc = 0.975, and a generalized angle, θ̃, is also defined as

tan2 θ̃/2 ≡ |Q
2 |

v0
; vo = (Eν + El )

2 − q2
= 4EνEl − |Q2 | . (2.25)

The nucleon structure information is contained in the F 2
χ term,

F 2
χ = [VCC RCC + 2VCL RCL + VLLRLL + VT RT ] + χ[2VT ′RT ′] , (2.26)

which is expressed in terms of the leptonic kinematic factors (VK ) and the hadronic response func-
tions (RK ). This expression can be seen as a generalized Rosenbluth decomposition [66]. The
diverse terms included in the above expression, (2.26), are related to the different µν combinations
of the η̃µνW̃ µν contraction:

2It can be proven that

[
dσ

dΩ

]
χ

= σ0F 2
χ =

G2
F

4π2

|~k f |
|~ki |

f −1
rec η̃µν ~W µν where

v0

2
F 2
χ = η̃µν ~W µν
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• CC (charge-charge): µν = 00.

• LL (longitudinal-longitudinal): µν = 33.

• CL (charge-longitudinal): µν = 03,30

• T (transverse): µν = 11,22

• T’ (transverse vector-axial interference): µν = 12,21

where the charge terms are related to the time component and the longitudinal ones are those along
the direction of the momentum transfer to the nucleon. The 1 and 2 contributions correspond to
the transverse components.

For the contraction η̃µνW̃
µν, it should be noticed that the vector current satisfies the current

conservation property, QµJ
µ

V
= 0. Thus the time and longitudinal components of the leptonic and

hadronic currents are related through the energy and momentum transfer, ωJ0
V
= qJ z

V
≡ qJ3

V
, and

hence,

η03
VV = η

30
VV =

ω

q
η00

VV ; η33
VV =

(

ω

q

)2

η00
VV (2.27)

W 03
VV = W 30

VV =
ω

q
W 00

VV ; W 33
VV =

(

ω

q

)2

W 00
VV . (2.28)

2.2.1 Leptonic factors

Following the previous expressions, (2.21) and (2.23), it can be proven that the different leptonic
factors, VK , can be expressed as the individual components of the leptonic tensor, η̃µν:

VCC =

2
v0
η00 = 1 − δ2 tan2 θ̃

2
(2.29)

VCL =

2
v0

1
2

[

η03 + η30
]

=

2
v0
η03 =

λ

κ
+

δ2

ρ′
tan2 θ̃

2
(2.30)

VLL =
2
v0
η33 =

(

λ

κ

)2

+

(

1 +
2λ
κρ′
+ ρδ2

)

δ2 tan2 θ̃

2
(2.31)

VT =

2
v0

[η11 + η22] =

1
2
ρ + tan2 θ̃

2
− δ

2

ρ′
tan2 θ̃

2

(

λ

κ
+

1
2
ρρ′δ2

)

(2.32)

VT ′ =
2
v0

i

2
[η12 + η21] =

1
ρ′

tan2 θ̃

2

(

1 − λρ
′

κ
δ2

)

, (2.33)

where it has been assumed mν = 0, and an adimensional variable, δ, related to the muon mass (mµ)
has been introduced

δ ≡
mµ

√

|Q2 |
. (2.34)
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The rest of variables are defined as

ρ ≡ |Q2 |
q2
=

τ

κ2
, (2.35)

ρ′ ≡ q

Eν + Eµ

=

tan θ̃/2
√

ρ + tan2 θ̃/2
∈ (0,1) . (2.36)

2.2.2 Hadronic response functions

Once defined the kinematic factors, VK , we detail the hadronic response functions, RK , which are
related to the components of the hadronic tensor W̃ µν as follows,

RCC = W 00 (2.37)

RCL = −1
2

(

W 03
+W 30

)

(2.38)

RLL = W 33 (2.39)

RT = W 11
+W 22 (2.40)

RT ′ = −
i

2

(

W 12 −W 21
)

. (2.41)

These response functions can be also decomposed in terms of the vector and axial components
arising from the hadronic current.

RCC = RVV
CC + RAA

CC (2.42)

RCL = RVV
CL + RAA

CL (2.43)

RLL = RVV
LL + RAA

LL (2.44)

RT = RVV
T + RAA

T (2.45)

RT ′ = RV A
T ′ . (2.46)

Furthermore, the tensorial contraction can be expressed as a sum of symmetric (S) and asymmetric
parts (A),

η̃µνW̃
µν
= η̃S

µνW̃
µν

S
+ η̃A

µνW̃
µν

A
(2.47)

W̃
µν

S
= W̃

µν

VV
+ W̃

µν

AA
; W̃

µν

A
= W̃

µν

V A
. (2.48)

As a consequence of the conserved vector current (see Eqs. 2.27 and 2.28), the CC and LL re-
sponses can be simply written in terms of the CC one,

RVV
CL = −ω

q
RVV

CC (2.49)

RVV
LL =

(

ω

q

)2

RVV
CC . (2.50)
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This implies that all polar-vector contributions can be reduced to a single longitudinal response,

defined as the the sum of the contributions (0,0), (0,3), (3,0) and (3,3) components,

VCC RVV
CC + 2VCL RVV

CL + VLLRVV
LL = VL RVV

L ≡ XVV
L , (2.51)

where the response RVV
L

is simply reduced to the pure time component of the hadronic tensor, and
it is given by

RVV
L (q,ω) =

(

q2

|Q2 |

)2 W
00
VV −

ω

q
(W 03

VV +W 30
VV ) +

(

ω

q

)2

W 33
VV

 = W 00
VV = RVV

CC , (2.52)

and the corresponding VL term is defined, according to the current conservation, as

VL = VCC − 2

(

ω

q

)

VCL +

(

ω

q

)2

VLL . (2.53)

The previous reduction for the vector term is not allowed for the axial current, as it is not conserved,
namely, QµJ

µ

A
, 0. In this case, we obtain

VCC RAA
CC + 2VCL RAA

CL + VLLRAA
LL ≡ X AA

C/L . (2.54)

To complete the analysis we need to study the transverse contributions (µ, ν)=(1,1) and (2,2), as
well as the interference V-A channel arising from crossed terms (µ, ν)=(1,2) and (2,1),

VT [RVV
T + RAA

T ] ≡ XT . (2.55)

2VT ′R
V A
T ′ ≡ XT ′ . (2.56)

Following this procedure, the complete single-nucleon response results

F 2
χ = XVV

L + X AA
C/L + XT + χXT ′ . (2.57)

In the case of electromagnetic (e,e′) interactions, which are purely vector, the hadronic re-
sponse functions considered are only the purely vector RL and RT , which are defined analogously
to the weak ones but considering the electromagnetic form factors for protons and neutrons. This,
together with the expression of the differential cross section for electron-nucleon reactions, is de-
tailed in Appendix A.

Hadronic response functions and nucleon form factors

Next, we detail the dependence of the previous hadronic responses with the nucleon form factors.
Accordingly, considering the hadronic tensor given in (2.13), making use of the notation:

λ ≡ ω

2MN

; κ ≡ q

2MN

; τ ≡ |Q
2 |

4M2
N

(2.58)

and the energy-conservation property in elastic scattering,

ω =
|Q2 |
2MN

⇒ λ = τ , (2.59)
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the response functions for neutrino induced reactions can be described in terms of the isovector
nucleon form factors as follows,

RVV
L = W 00

VV = RVV
CC =

κ2

τ

[
G

(1)
E

]2
, (2.60)

where we have applied the conserved current property (see Eq. 2.52), and G
(1)
E

is the weak Sachs
form factor related to the isovector Dirac and Pauli form factors,

G
(1)
E
= FV

1 − τFV
2 , (2.61)

with the superscript (1) denoting the isovector nature of the charged-current weak interaction. On
the contrary, as the axial current is not conserved, it is necessary to calculate each single term:

RAA
CC = W 00

AA =
κ2

τ

(

λ

κ

)2 [
G
′(1)
A

]2
(2.62)

RAA
LL = W 33

AA =
κ2

τ

[
G
′(1)
A

]2
(2.63)

RAA
CL = −1

2

(

W 03
AA +W 30

AA

)

= − κ
2

τ

(

λ

κ

) [
G
′(1)
A

] 2
, (2.64)

with G′
A

expressed as a combination of the axial (GA) and pseudoscalar (GP =
FP

2MN
) form factors,

G
′(1)
A
= GA − τGP . (2.65)

The transverse responses are given as

RVV
T = W 11

VV +W 22
VV = 2τ

[
G

(1)
M

]2
(2.66)

RAA
T = W 11

AA +W 22
AA = 2(1 + τ) [GA]2 (2.67)

RV A
T ′ = − i

2

(

W 12
V A −W 21

V A

)

= −2
√

τ(1 + τ)G
(1)
M

GA , (2.68)

where G
(1)
M

is the weak Sachs form factor:

G
(1)
M
= FV

1 + FV
2 . (2.69)

2.3 Hadronic structure

The study of neutrino-nucleon and neutrino-nucleus interactions requires to achieve a deep knowl-
edge of the hadronic current that involves the nucleon form factors, where the latter are intimately
related to the inner structure of the nucleon. In this section, we analyze various parametrizations
of the nucleon form factors and comment on their differences.

2.3.1 Vector structure

As introduced in Section 2.1, the vector part of the weak hadronic current (2.6) is given in terms of
two independent isovector functions, FV

1 (Q2) y FV
2 (Q2), associated to the electromagnetic Dirac
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(Fn,p

1 (Q2)) and Pauli (Fn,p

2 (Q2)) form factors (2.9) by means of the CVC hypothesis. These elec-
tromagnetic form factors have been experimentally determined by measuring differential cross
sections. In this context, it is common to use the electric (Gn,p

E
(Q2)) and magnetic (Gn,p

M
(Q2))

Sachs form factors,

G
n,p

E
≡ F

n,p

1 − τF
n,p

2 (2.70)

G
n,p

M
≡ F

n,p

1 + F
n,p

2 , (2.71)

where τ ≡ |Q2 |/4M2. The terms G
n,p

E
y G

n,p

M
are known, respectively, as electric and magnetic

Sachs form factors, and depend on the 4-momentum transferred (Q2) to the nucleon.

For electron-nucleon scattering and considering the static limit Q2 → 0, the nucleon structure
is not revealed; the incident lepton interacts with a “point-like” particle with charge “+e” for the
proton and electrically neutral for the neutron. At these kinematics, the nucleon form factors must
fulfill some requirements,

F
p

1 (0) = 1 , F
p

2 (0) = 1 ; (2.72)

Fn
1 (0) = 0 , Fn

2 (0) = 1 ; (2.73)

G
p

E
(0) = 1 , G

p

M
(0) = µp = 2.793 ; (2.74)

Gn
E (0) = 0 , Gn

M
(0) = µn = −1.913 , (2.75)

whereas in the asymptotic limit, |Q2 | → ∞, the behavior of the nucleon form factors can be ob-
tained by making use of perturbative QCD (pQCD).

Accordingly, the weak isovector Sachs form factors, G
(1)
E

(Q2) and G
(1)
M

(Q2), are defined in
terms of the electromagnetic ones as,

G
(1)
E
= G

p

E
− Gn

E ≡ FV
1 − τFV

2 (2.76)

G
(1)
M
= G

p

M
− Gn

M ≡ FV
1 + FV

2 , (2.77)

with G
(1)
E

(0) = 1/2 and G
(1)
M

(0) ≡ µV = (µp − µn)/2 = 2.353, being µV the isovector magnetic
moment.

2.3.2 Dynamical description of the electromagnetic form factors

Once determined the relationship between the electromagnetic and the weak form factors and their
behavior in extreme situations: static limit (Q2 → 0) and asymptotic limit (|Q2 | → ∞), we focus
on the explicit dependence of G

n,p

E,M
with Q2 for low and intermediate kinematics. For this purpose,

we consider the most common parametrizations and models for the nucleon form factors.
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Galster dipolar parametrization

This parametrization, firstly introduced in 1971 [18], is widely used by the theoretical and experi-
mental community and gives a reasonable description of the proton experimental data for |Q2 | ≤ 1
GeV2 (∼ 5%). In the neutron case, the description is not very accurate due to the data uncertainty.
It presents a high simplicity based on a dipolar functional form,

G
p

E
(Q2) = GV

D (Q2) (2.78)

Gn
E (Q2) = −µnτGV

Dξn (2.79)

G
p

M
(Q2) = µpGV

D (Q2) (2.80)

Gn
M (Q2) = µnGV

D(Q2) , (2.81)

where ξn = (1 + λnτ)−1 with λn = 5.6 and τ = |Q2 |/4M2
N

, and µp = 2.793 and µn = −1.913 are
the proton and neutron magnetic moments. The dipolar form factor, GV

D
, is described as:

GV
D (Q2) =

1
(

1 + |Q
2 |

M2
V

)2
≡ 1

(

1 + λV
D
τ
)2

; GV
D(0) = 1 ; GV

D(|Q2 | → ∞) = 0 , (2.82)

where the parameter values are λV
D
= 4M2

N
/M2

V
= 4.97 and MV = 0.843 GeV. For Q2 → 0,

the form factors are fixed by the electric charge and the nucleon magnetic moments. Typically
this parametrization is constrained to be consistent with experimental data for the neutron charge
radius. However, recent and more precise experimental results [67] have shown the limitation of
this parametrization to fit all these data. This has motivated the analysis of other approaches.

Kelly parametrization

Recently, a new parametrization of the electromagnetic form factors has been developed by J.J.
Kelly [68]. This is basically an extension of the Galster one, providing a reasonable description of
all experimental data. In this approach, the electric and magnetic form factors are defined as,

G(Q2) ∝

n∑

k=0

akτ
k

1 +
n+2∑

k=1

bkτ
k

, (2.83)

where both numerator and denominator are polynomials in τ. With n = 1 and a0 = 1, this
parametrization provides excellent fits to G

p

E
, G

p

M
/µp and Gn

M
/µn using only four parameters.

However, this approach is less successful for Gn
E

. More specific details can be found in [68].

VMD models: GKeX parametrization

A more accurate description of the nucleon form factors can be obtained from the VMD (vector
meson dominance) models. Within this phenomenological description, the form factors are ex-
pressed in terms of mesonic propagators and meson-nucleon form factors. The most representative
VMD models are the Gari-Krumpelmann parametrization [69], which incorporates the description
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for high |Q2 | introduced by the pQCD; and the recently-developed GKeX parametrization, also
known as Lomon prescription [70]. The validity of the GKeX parametrization extends over all
range of Q2 where electron data exist (0.1-10 GeV). This description represents an extension of
the Gari-Krumpelmann one, including also the effects arising from the vector mesons: ρ, ρ′, ω, ω′

and φ.
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Figure 2.2: Electromagnetic Sachs form factors as a function of |Q2 | for the Galster and GKeX
parametrizations and divided by the appropriate dipole factor. Experimental data taken from [71].

In Fig. 2.2 we compare the electromagnetic form factors, G
n,p

E
y G

n,p

M
, divided by the appro-

priate dipole term for the Galster and GKeX parametrizations. Both are very similar for low |Q2 |
values, whereas their differences increase substantially with |Q2 |. Furthermore, the GKeX model
reproduces the experimental results accurately, due to its more sophisticated description of the nu-
cleon structure. For completeness, we also show in Fig. 2.3 the isovector form factors, G

(1)
E

y G
(1)
M

,
associated to the weak current for both parametrizations. This analysis reinforces the idea of using
the GKex parametrization in the nucleon form factors employed in the study of QE processes. Ad-
ditionally, a detailed analysis of various nucleon form factors’ parametrizations and their relevance
on the charged-current quasielastic neutrino-nucleus cross section will be analyzed in Chapter 7.
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Figure 2.3: Isovector form factors as a function of |Q2 | for the Galster and GKeX paramterizations
where µV makes reference to the isovector magnetic moment.

2.3.3 Axial structure

The weak hadronic current shown in Eq. (2.6) also depends on the axial GA(Q2) and pseudoscalar
GP(Q2) form factors. The axial one, GA, has been widely studied in last years [71, 72] in order
to determine its functional structure. On the contrary, the pseudoscalar GP ≡ FP/2MN , is harder
to analyze, being its contribution very small in most of the kinematical situations addressed and
negligible for the momentum transferred involved in β-decay processes. Moreover, current data
are not precise enough to determine the functional form of GA, which is usually parametrized using
a dipole form, analogously to the vector form factors,

GA(Q2) =
gA

(

1 + Q2

M2
A

)2
, (2.84)

where gA = −1.267 is the axial-vector coupling constant and MA = 1.032(36) GeV is the nucleon
axial mass. The gA parameter is determined through β-decay processes with neutrons in the elastic
limit Q2 → 0 [73], and the axial mass MA value has been extracted from deuterium-filled bubble
chamber experiments [17]. More information regarding the functional form of GA and the possible
quenching of gA can be found, respectively, in Appendices D and E.

The axial and pseudoscalar form factors can be connected making use of the PCAC (partially
conserved axial current) hypothesis (see [74] for details), through the Goldberger-Treiman relation,

GP (Q2) =
4M2

N

Q2
+ m2

π

GA(Q2) ; mπ : pion mass . (2.85)

In current neutrino-nucleus investigations, one of the main sources of uncertainty comes from
the axial form factor, and specifically, its dependence with Q2 and MA. In this sense, recent CCQE
neutrino experiments on 12C, such as MiniBooNE or MINERνA, have estimated higher MA values
(MA ≈ 1.35 GeV) in disagreement with the standard estimations. It must be taken into account that
the standard value, MA = 1.03 GeV, is consistent with deuterium experimental data where nuclear
effects are negligible as well as with weak pion production data at low |Q2 |. Hence the increase of
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the axial mass value in these experiments must be interpreted as the lack of some ingredients in the
model employed for the data analysis. In particular, the role played by multinucleon effects, such
as 2p-2h MEC in CCQE neutrino-nucleus experiments will be explored in Chapter 7 as a possible
explanation of the “apparent” increase of MA.

In Fig. 2.4, we analyze the axial form factors, GA and GP, using the world average axial mass
value as well as an increase value of 1.35 GeV. Whilst small differences emerge at very low |Q2 |,
we can observe how GA increases with MA for large values of |Q2 |. On the contrary, this effect
is not visible for GP due to the factor 1

1+|Q2 |/m2
π

where mπ ≪ MA. Moreover, the pseudoscalar
form factor falls to zero faster than the axial one which turns into a less relevant contribution of
pseudoscalar effects in the region of elastic, QE scattering and beyond.
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Figure 2.4: Axial (GA) and pseudoscalar (GP) form factors for two MA values as a function of
|Q2 |.

Finally, it is worth mentioning that the differences between neutrino and antineutrino cross
sections, which arise basically from the V-A interference term (2.21), start to disappear as |Q2 |
increases. Notice that the RV A

T ′ response (see Eq. 2.68) depends on GA that approaches zero for
large |Q2 |.





Chapter 3

Charged-current quasielastic

neutrino-nucleus scattering

After presenting the formalism of neutrino-nucleon elastic scattering, in this chapter we extend our
theoretical description to charged-current neutrino-nucleus interaction in the quasielastic regime
and the study of nuclear effects. This is of interest for most recent neutrino experiments that em-
ploy different nuclear targets to measure the oscillation parameters at energies where the quasielas-
tic regime dominates.

Unlike the elastic scattering where we only consider the inner structure of the nucleon, quasielas-
tic reactions require a description of the nuclear structure. In this PhD thesis, the description of the
lepton-nucleus interaction and, in particular, the nuclear dynamics, is addressed within the context
of the SuperScaling Approach (SuSA), which assumes the existence of universal scaling functions
for both electromagnetic and weak interactions. For a proper understanding of this approach, we
give a brief description of the relativistic Fermi gas model that will help to introduce the basis of
the SuSA model as a semiphenomelogical approach based on the analysis of inclusive (e,e′) data.
Next, we extend our description to the relativistic mean field (RMF) theory and the relativistic
plane wave impulse approximation (RPWIA) models as a more sophisticated procedure to include
final-state interaction (FSI) effects as well as the mean field generated by the nuclear constituents
in the neutrino-nucleus interaction. The RMF has the merit of treating final-state interactions in a
relativistic framework, which is of relevance for the analysis of neutrino experiments. In neutrino-
nucleus interactions, after the final-state particles have been created, they propagate out through the
nucleus, undergoing strong interactions with the other nucleons inside the nucleus. These “final-
state interactions” can significantly alter the momentum and direction of the final-state particles as
well as the type and number of particles. Accordingly, pions and nucleons can be absorbed within
the nuclear medium or their collisions with other nucleons can generate additional particles. Thus
a consistent and relativistic treatment of these interactions is essential to determine the contribution
of the different reaction mechanisms to neutrino-nucleus cross section.

The description of the the many-body physics of the interacting nucleons within the RMF and
RPWIA models is therefore included in our framework, in the so-called SuSAv2 (SuperScaling
Approach version 2) model. This approach has been recently applied to the analysis of QE electron
scattering data [38] for several nuclear targets as well as to charged-current quasielastic (CCQE)
neutrino-nucleus experiments [39], yielding an accurate description of the experimental data in
both cases.

39
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3.1 General formalism of the CCQE process

In this section we show schematically the kinematics involved in studies of lepton scattering from
nuclei, focusing on charge-changing neutrino reactions. Most kinematic variables have been pre-
viously defined in Chapter 2 for elastic neutrino-nucleon scattering. Here we employ that notation
for (νl , l

−) and (νl , l
+) neutrino-nucleus reactions.

We specifically analyze the CCQE neutrino scattering process in which an incident beam of
neutrinos with 4-momentum k µ = (Eν,kν) interacts with a nucleus. In the final state, a charged
lepton with 4-momentum k′µ = (E′

l
,k′

l
) emerges as well as an outgoing nucleon. This process is

mediated by a weak boson (W ) and can be described as,

νµ(νµ) + A→ µ−(µ+) + p(n) + (A − 1) (3.1)

with A the nuclear target and (A − 1) the residual nucleus after the interaction. Compared to
the elastic case, the complexity of the nuclear dynamics introduces some uncertainties in the de-
scription, related to the inner structure of the nucleus or final-state interactions described above.
Many theoretical approaches evaluate these processes in the Impulse Approximation (IA), which
assumes the incident lepton to only interact with a single bound nucleon as shown in Fig. 3.1. The
influence of the remaining nucleons over the entire process is taken into account in different ways
depending on the nuclear model employed. Hence, the IA describes the nuclear many-body matrix
element as a sum of single-nucleon current matrix elements.

Figure 3.1: Schematic view of the charged-current neutrino-nucleus scattering process in the Im-
pulse Approximation (IA).
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3.1.1 Lepton scattering kinematics

Going into detail to the description of lepton kinematics, the neutrino and final-lepton energies are
given as

Eνl =

√

m2
ν + k2

ν (3.2)

El =

√

m2
l
+ k′2

l
, (3.3)

where mν and ml are the masses of the incident neutrino and outgoing lepton, respectively. The
4-momentum transfer to the nucleus Qµ

= (ω,q) is given by

ω = Eν − El (3.4)

q = kν − k′l , (3.5)

being ω and q the energy transfer and 3-momentum transfer, respectively. Given an excitation
from target rest mass Mi to some final rest mass M f ≥ Mi (that is, the final hadronic rest frame
total energy is W = M f ), we define a sort of excitation energy

ω0 ≡
1

2Mi

(

M2
f − M2

i

)

≥ 0 , (3.6)

related to the mass excess of the residual nucleus. This value sets a minimum neutrino energy
for the QE neutrino interaction to take place. In the case of NCQE scattering, this would be the
minimum energy required for the process whereas in the CCQE one we must also consider the
energy needed to create the outgoing-lepton mass. Then from energy-momentum conservation
one has

ω = ω0 +
|Q2 |
2Mi

. (3.7)

Solving Eqs. (3.4) and (3.7), one gets expressions for the scattered lepton’s energy and 3-momentum.
Defining

ǫ1 ≡
√

M2
i
+ 2MiEν + m2

ν + k2
ν sin2 θl (3.8)

ǫ2 ≡
√

Mi(Eν − ω0) + M̃2, (3.9)

where θl is the lepton scattering angle (the angle between kν and k′
l
) and M̃ =

√

(m2
l
+ m2

ν)/2, it
can be shown that

k′l =
1

ǫ2
1

[
ǫ2

2(kν cos θl ) + (Mi + Eν)
√

ǫ4
2 − m2

l
ǫ2

1

]
(3.10)

El =
1

ǫ2
1

[
ǫ2

2(Mi + Eν) + (kν cos θl )
√

ǫ4
2 − m2

l
ǫ2

1

]
, (3.11)

where for the results to be real for all scattering angles, the beam energy must be greater than
Eν,min,

Eν,min = ml + ω0 +
mlω0 + (m2

l
− m2)/2

Mi − ml

. (3.12)

This result represents the minimum energy required for the CCQE process in terms of the lepton
mass and the mass excess of the residual nucleus. In addition, the contribution of the ω0 parameter
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is generally smaller than the lepton mass. In the particular case of (ν, µ−) reaction on 12C, we have
mµ ≫ ω0 as the mass excess of the residual nitrogen, ∼ 15 MeV, is much smaller than the muon
mass, mµ ≈ 105 MeV. Taking into account the mass difference between leptons and nucleus, the
third term in Eq. (3.12) gives a negligible contribution in most of the cases.

Hence, for given values of the excitation energy ω0, beam energy Eν and the scattering angle
θl , the quantities ǫ1,2 can be computed and from them the final lepton’s energy and 3-momentum
are fixed. The 4-momentum transfer is then given as well.

3.2 Relativistic Fermi Gas Model and SuperScaling Approach

Next, in order to describe the structure of the nuclear responses in our theoretical prescription, we
introduce the concept of scaling and the main features of the relativistic Fermi gas model [75, 76]
that has been used as a basis for the study of scaling and superscaling behaviors.

3.2.1 The concept of scaling and superscaling

Scaling is a phenomenon observed in several areas of Physics and is a fundamental part of the
scientific methodology. This is not new; we can think of Galileo’s observations of the oscillations
of a pendulum, Kepler’s discovery of the equal area law for planetary motion and Newton’s inverse
square law of gravitation. The establishment of a scaling relationship between physical quantities
reveals an underlying driving mechanism, and it is the task of Physics to understand and to provide
a formalism for that mechanism.

The concept of y scaling in lepton-nucleus reactions was firstly introduced by West [77] as
an analog of x scaling in high-energy physics. There it was shown that a collection of non-
relativistic point-like charged “nucleons” with negligible final-state interactions leads to an inclu-
sive quasielastic electron scattering cross section that can be written in terms of a factor containing
a single-nucleon cross section times a specific function. In the limit of large momentum transfers,
this function scales; that is, it becomes a function of only one variable, usually represented by y,
and largely independent on the momentum transfer.

Further studies focused on the analysis of this scaling behavior on inclusive electron-nucleus
scattering data in a relativistic framework [77] show that this behaviour can also be observed for
different nuclei [36, 78]. Concerning the difficulties for this analysis, it should be noticed that the
explicit energy dependence of the cross sections complicates the attempt to factorize the electron-
nucleus cross section by extraction of a unique single-nucleon cross section. In addition to this,
there also exists the question of the off-mass-shell extrapolation of the single-nucleon current as
well as the fact that FSI and multi-nucleon interactions can also affect the scaling analysis.

In the particular case of QE electron-nucleus scattering processes, in most of the models based
on IA, the inclusive (e,e′) cross section can be approximated by a single-nucleon cross section
times a specific function of (q,ω). In this case, the lepton interacts with a many-body system in
such a way that the energyω and momentum q are transferred only to individual constituents of the
complex system. Scaling occurs at some specific kinematics, where the specific function scales,
that is, it becomes dependent on only a single quantity, namely, the scaling variable ψ. This quan-
tity, whose definition is discussed later, is in turn a function of q and ω: ψ = ψ(q,ω). The function
that results once the single-nucleon cross section has been divided out is called the scaling function
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f = f (q,ψ). In other words, to the extent that at some kinematics this function depends on ψ, but
not on q, one says that ψ-scaling occurs.

The study of the scaling function can shed light on the dynamics of the nuclear system. Indeed,
within some specific approaches, the scaling function is related to the momentum distribution of
the nucleons in the nucleus (or, more generally, with the spectral function) [79, 80].

When studying (e,e′) processes it is useful to introduce the following concepts:

• Scaling of first kind. This is related to the concept of y-scaling: it is satisfied when the
scaling function does not explicitly depend on the transferred momentum, but only on ψ

including its implicit dependence on q and ω.

• Scaling of second kind. It is observed when the scaling function is independent of the
nuclear species.

• Scaling of zeroth kind. It occurs when the scaling functions linked to the different chan-
nels that make up the cross section, longitudinal (L) and transverse (T), are equal. Hence in
inclusive electron scattering, zeroth-kind scaling means that the electromagnetic (EM) scal-
ing functions satisfy f = f L = fT , where f represents the scaling function associated to
the total cross section whereas f L,T refer to the scaling functions obtained from the separate
longitudinal and transverse responses.

• Superscaling. Finally, when scaling of both the first and second kinds occurs simultaneously
one has superscaling [35, 36].

With these ingredients it is clear that the natural starting point for such an examination is the
relativistic Fermi gas (RFG) model in which the nucleus is described as a noninteracting gas of
nucleons. Indeed, this model fulfills exactly all of the kinds of scaling previously defined.

The RFG has the appeal of simplicity while maintaining important aspects in the problem such
as Lorentz covariance and gauge invariance in a fully relativistic way. Naturally it ignores poten-
tially important effects such as those stemming from strong final-state interactions or two-body
MEC and employs an oversimplified initial-state spectral function; nevertheless, such ingredients
can be added to the basic model and appear not to invalidate it as a basic starting point for analyses
of scaling.

The general procedure used to define scaling functions consists of constructing the inclusive
cross section, or nuclear response functions, within a particular theoretical model (or experimental
data) and divide them by the appropriate single-nucleon quantity computed within the RFG model.

Here the word “appropriate” entails two aspects to be considered. First, the usual analysis in
the region of the quasielastic (QE) peak assumes that the dominant process is elastic scattering
from nucleons in the nuclear ground state followed by quasifree ejection of the nucleons from the
nucleus, and hence the appropriate single-nucleon form factors are the elastic ones. Second, the
nucleons in the nuclear ground state are moving (Fermi motion) and accordingly the single-nucleon
cross section used must take this into account.

3.2.2 Nuclear effects and dynamical parameters in the RFG model

The RFG model can be taken as a guide for incorporating relativistic ingredients to more sophisti-
cated models and, particularly, as a first approximation to the nuclear dynamics involved in the QE
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region. Within this context, an effective parameter, the Fermi momentum (kF), sets the transition
between occupied states and free nucleons. This parameter is not fixed for all nuclei due to the
different nuclear densities which are proportional to k3

F
. On the other hand, the width of the QE

response goes as kF . Typically, the Fermi momentum ranges from ∼ 55 MeV/c for deuterium,
200 MeV/c for 4He, to as large as about 250 MeV/c for very heavy nuclei. Moreover, the RFG
model accounts for some nuclear effects which are relevant for a scaling analysis such as the Pauli
blocking (PB) effects and an average nucleon separation energy, named energy shift (Eshi f t). Pauli
blocking affects the low momentum and energy region and will be carefully analyzed in Sect. 3.5.1.

A summary of Eshi f t and kF values within the RFG model for different nuclei is shown in
Table 3.1. These efective parameters have been determined by means of a detailed analysis of
inclusive electron scattering data [37].

Nucleus kF (MeV/c) Eshi f t (MeV)
Lithium 165 15
Helium 200 15
Carbon 228 20
Magnesium 230 25
Aluminium 236 18
Calcium 241 28
Iron 241 23
Nickel 245 30
Tin 245 28
Gold 245 25
Lead 248 31

Table 3.1: Estimation of the kF and Eshi f t parameters within the context of the RFG model for
different nuclear species.

The energy shift, Eshi f t , is introduced in the theoretical description to account phenomenolog-
ically for the shift observed in the QE peak when the cross section is plotted as a function of ω.
This energy shift depends on the different nucleus and can be q-dependent as in the RMF model.

3.2.3 Nuclear responses and QE cross section in the RFG model

With the aim of analyzing the scaling properties, we need to determine the RFG cross section for
QE reactions as well as the nuclear responses associated. Here we present the basic formalism for
neutrino-induced reactions within the context of the RFG.

In the laboratory system and considering the Born approximation, the charged-current QE
(anti)neutrino-nucleus cross section can be written in the form

d2σ

dΩl dω
= σ0F 2

χ , (3.13)

where σ0 is the same as defined for elastic scattering (see Eq. 2.24) in Chapter 2. The whole
information on the nuclear structure is contained in F 2

χ , given as

F 2
χ = VL RVV

L + VCC RAA
CC + 2VCL RAA

CL + VLLRAA
LL + VT RT + χVT ′RT ′ , (3.14)
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where the kinematical factors VK coming from the leptonic tensor are the same as defined for elas-
tic scattering in Eqs. (2.29-2.35) and χ = +1(−1) for neutrino (antineutrino) induced reactions.

As defined in Chapter 2, the weak response functions are given by

RCC = W 00 (3.15)

RCL = −1
2

(

W 03
+W 30

)

(3.16)

RLL = W 33 (3.17)

RL = W 00 only for vector terms (3.18)

RT = W 11
+W 22 (3.19)

RT ′ = −
i

2

(

W 12 −W 21
)

(3.20)

in terms of the inclusive nuclear tensor and composed of vector and axial contributions. Contrary
to the case of elastic scattering, here the responses depend not only on the hadronic structure but
also on the nuclear many-body system.

Within the RFG model, the nuclear tensor W µν associated to the (anti)neutrino-nucleus scat-
tering process involves a struck nucleon of momentum Pi = [E (p),p] with corresponding on-shell
energy E (p) = (p2

+ M2)1/2 lying below the Fermi momentum kF . The neutrinos supply energy
(ω) and momentum (q) to the nucleus resulting in a four-momentum (Pi + Q)µ lying above the
Fermi surface. Conserving energy and momentum and integrating over the momenta in the Fermi
sea, the nuclear tensor reads:

W µν
=

3NM2

4πk3
F

∫

d3p

E (p)E (p + q)
× θ (kF − |p|)θ (|p + q| − kF )

×δ(ω − [E (p + q) − E (p)]) × W̃
µν
s.n.(Pi +Q,Pi) (3.21)

where W̃
µν
s.n. (Pi +Q,Pi) is the single-nucleon hadronic tensor previously shown for the elastic case

in (2.13), but obtained by Lorentz transforming the measured responses at the nucleon rest frame
to the system where the struck nucleon has 4-momentum P

µ

i
.

After integration over the hadronic variables, the nuclear response functions can be written as

RK = NΛ0UK f RFG (ψ), K = CC,CL,LL,T,T ′, (3.22)

where N is the appropriate nucleon number, and with

Λ0 =
ξF

DMNη
3
F
κ
�

1
2κkFD

. (3.23)

The term D is a relativistic correction given by

D = 1 +
1
2
ξF (1 + ψ2) . (3.24)

In Eq. (3.22), f RFG (ψ) is the RFG scaling function defined in the region ψ′ ∈ (−1,1), and simply
given by

f RFG (ψ′) =
3
4

(1 − ψ′2)θ (1 − ψ′2) , (3.25)
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where ψ is the scaling variable defined as

ψ ≡ 1
√
ξF

λ − τ
√

(1 + λ)τ + κ
√
τ(τ + 1)

(3.26)

and we have introduced the following dimensionless variables

ξF =

√

1 + η2
F
− 1, (3.27)

ηF =

kF

MN

≪ 1, (3.28)

κ = q/(2MN ), (3.29)

λ = ω/(2MN ) MN : nucleon mass, (3.30)

τ =
|Q2 |

(2MN )2
= κ2 − λ2 . (3.31)

At the naïve quasielastic peak where λ = τ (which corresponds toω = |Q2 |/2MN ) one has ψ =
0 and finds that the RFG response region is mapped into the range −1 ≤ ψ ≤ +1 [36]. However,
the scaling function does not consider the separation energy between nucleons in the Fermi state,
in such a way that the maximum of the QE peak does not correspond exactly with ω = |Q2 |/2MN .
Then, we introduce the Eshi f t parameter into the scaling variable through ω′ = ω − Eshi f t to fulfill
the previous condition. The shifted scaling variable is given as

ψ′ ≡ 1
√
ξF

λ′ − τ′
√

(1 + λ′)τ′ + κ
√
τ′(τ′ + 1)

(3.32)

with

λ′ = ω′/(2MN ), (3.33)

τ′ = κ2 − λ′2 . (3.34)

Finally, the single-nucleon responses UK ≡ U s.n
K

are basically the same RK functions shown in
the elastic case (see equations (2.60-2.68)) but also including some extra terms related to correc-
tions of higher order in kF , which arise from the integration of the nuclear tensor (3.21).

For K = CC we have

UCC = UVV
CC +

(

U AA
CC

)

c.
+

(

U AA
CC

)

n.c.
(3.35)

UVV
L ≡ UVV

CC =
κ2

τ

[
(G(1)

E
)2
+ W̃2∆

]
, (3.36)

where

W̃2 =
(G(1)

E
)2
+ τ(G(1)

M
)2

1 + τ
(3.37)

∆ = ξF (1 − ψ2)

[ √
τ(1 + τ)
κ

+

ξF

3
τ

κ2
(1 − ψ2)

]
(3.38)
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and we have written the axial-vector response as the sum of conserved (c.) plus non conserved
(n.c.) parts,

(

U AA
CC

)

c.
=

κ2

τ
G2

A∆ (3.39)

(

U AA
CC

)

n.c.
=

κ2

τ

λ2

κ2
G′A

2. (3.40)

For K = CL,LL we have

UCL = UVV
CL +

(

U AA
CL

)

c.
+

(

U AA
CL

)

n.c.
(3.41)

ULL = UVV
LL +

(

U AA
LL

)

c.
+

(

U AA
LL

)

n.c.
, (3.42)

where the vector and conserved axial-vector parts are determined by current conservation as

UVV
CL = −λ

κ
UVV

CC (3.43)

(

U AA
CL

)

c.
= −λ

κ

(

U AA
CC

)

c.
(3.44)

UVV
LL =

λ2

κ2
UVV

CC (3.45)

(

U AA
LL

)

c.
=

λ2

κ2

(

U AA
CC

)

c.
, (3.46)

while the n.c. parts are

(

U AA
CL

)

n.c.
= − κ

2

τ

λ

κ
G′A

2 (3.47)

(

U AA
LL

)

n.c.
=

κ2

τ
G′A

2 . (3.48)

Finally the transverse responses are given by

UT = U AA
T +U AA

T (3.49)

UVV
T = 2τ(G(1)

M
)2
+ W̃2∆ (3.50)

U AA
T = 2(1 + τ)G2

A + G2
A∆ (3.51)

UV A
T ′ = 2GA(G(1)

M
)
√

τ(1 + τ)[1 + ∆′] (3.52)

with

∆
′
=

√

τ

1 + τ
ξF (1 − ψ2)

2κ
. (3.53)

To summarize, the quasielastic nuclear response functions have the general structure

R
QE

K
=

1
kF

f RFG (ψ′)
N

2κDU s.n.
K ≡ 1

kF

f RFG (ψ′)GK (3.54)

with

GK =
N

2κDU s.n.
K . (3.55)
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For completeness, the electromagnetic electron-nucleus (e+A→ e′+N+ (A−1)) cross section
can be determined in a similar way but only considering the purely-vector terms of the hadronic
tensor (2.13) introduced in (3.21). This results in:

d2σ

dΩedω
= σMott (vL Ree′

L + vT Ree′
T ) (3.56)

where σMott is the Mott cross section and the vL and vT terms are the leptonic factors associated
to the electromagnetic interactions. In this connection, some similarities can be found with regard
to the elastic electron-nucleon interaction equations (see Appendix A for further details).

The electromagnetic nuclear responses, Ree′

L
and Ree′

T
, exhibit the same functional form as

the vector longitudinal (3.35) and vector transverse nuclear (3.49) ones obtained for the charged-
current neutrino interaction, but considering the isovector form factors, G

(1)
E,M

, as well as the

isoscalar ones, G
(0)
E,M

. Furthermore, the isoscalar and isovector combination can also be related
to proton and neutron contributions as shown in Section 2.3.1. Accordingly we can define the
electromagnetic nuclear responses as follows,

Ree′

L,T =
1

kF

f RFG (ψ′)
1

2κDU
e,e′

L,T
; Gee′

L,T =
1

2κDU
e,e′

L,T
, (3.57)

where

Uee′

L =

κ2

τ

[
G̃2

E + W̃ ee′

2 ∆
]

(3.58)

Uee′
T = 2τG̃2

M + W̃ ee′

2 ∆ , (3.59)

with

G̃2
E = Z (Gp

E
)2
+ N (Gn

E )2
=

A

4

[
(G(0)

E
)2
+ (G(1)

E
)2

]
+ MT G

(0)
E

G
(1)
E

(3.60)

G̃2
M = Z (Gp

M
)2
+ N (Gn

M )2
=

A

4

[
(G(0)

M
)2
+ (G(1)

M
)2

]
+ MT G

(0)
M

G
(1)
M

(3.61)

W̃ ee′

2 =

G̃2
E
+ τG̃2

M

1 + τ
, (3.62)

being A = Z + N and MT = (Z − N )/2. Notice that the terms MT only contribute for asymmetric
nuclei (N , Z).

3.2.4 Scaling functions

In the previous expressions for the nuclear responses, (3.22) and (3.57), and the subsequent dif-
ferential cross sections, we have observed that the RFG scaling functions were the same for all
longitudinal and transverse channels. While this is true for the RFG model where a universal
scaling function emerges from the calculation, the scaling functions that can be extracted from ex-
perimental data or different nuclear models can differ between the different channels. In this sense,
the general procedure used to define scaling functions consists of constructing the inclusive cross
section and the response functions within a particular model (or just taking experimental data)
and divide them by the corresponding single-nucleon quantities computed within the RFG model.
Thus, we define a global scaling function as well as a specific one for the different channels:
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• Scaling functions obtained from the cross section:

f QE(e,e′)
=

d2σ
dΩedω

σMott (vLGee′
L
+ vT Gee′

T
)

for (e,e′) (3.63)

f QE(ν)
=

d2σ
dΩl dω

σ0(VLGVV
L
+ VCCGAA

CC
+ 2VCLGAA

CL
+ VLLGAA

LL
+ vT G

T
+ χvT ′GT ′)

(3.64)

for CC (ν, l−); (ν, l+)

• Specific scaling functions for the individual channels:

fK = kF

RK

GK

. (3.65)

Likewise, the proton and neutron scaling functions can be also isolated as well as the isovector
and isoscalar ones:

f
p,n

K
= kF

R
p,n

K

G
p,n

K

, (3.66)

f
(0),(1)
K

= kF

R
(0),(1)
K

G
(0),(1)
K

. (3.67)

3.3 SuperScaling Approach: a semiphenomelogical model

Making use of the previous description of the scaling formalism, our aim in this PhD thesis is to
achieve a complete theoretical description of neutrino-nucleus reactions that can be applied up to
very high energies. This description has to fulfill two basic requirements; it has to be relativistic
and it must describe QE electron scattering data from low-intermediate up to high energies. In
this sense, the analysis of the large amount of existing (e,e′) data is taken as a solid benchmark
to test the validity of the model for neutrino reactions at different kinematics and for several nuclei.

Accordingly, the SuperScaling Approach (SuSA) was developed in previous works [64, 81].
This model is based on the superscaling function extracted from QE electron scattering data so as
nuclear effects can be analyzed through a semiphenomelogical scaling function f (ψ′) ≡ fSuSA(ψ′)
extracted from the ratio between the experimental QE cross section and the appropriate single-
nucleon one [35, 36, 78] (see Section 3.2 for definitions):

f (ψ′) =

(
d2σ

dΩedω

)

exp

σMott(vLGee′
L
+ vT Gee′

T
)

(3.68)

The scaling function extracted from the analysis of inclusive electron data at different kinemat-
ics and for several nuclei (see Fig. 3.2) shows a spread whose width is rather narrow in the region
of ψ′ < 0 that corresponds to low-intermediate kinematics (below the QE peak). On the contrary,
the scaling does not work properly in the region above the QE peak where other contributions can
play also an important role. Notice the wide spread of data as ψ′ increases.
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Figure 3.2: Scaling function f (ψ′) as a function of ψ′ for different nuclei (A ≥ 12) and several
kinematics covering from forward to very backward angles as well as from low to very high inci-
dent energies. The values of A corresponding to different symbols are shown in the figure. Data
taken from [36].

Nevertheless, the scaling behavior becomes particularly clear if one studies the experimental
cross section separated into its longitudinal f L (ψ′) and transverse fT (ψ′) contributions, as shown
in Fig. 3.3. The separate longitudinal and transverse contributions lead to the conclusion that the
longitudinal experimental data superscale throughout the whole region of the QE peak, whereas the
transverse data do not scale, being scaling violations more prominent in the region above the QE
peak (ω > ωQEP, i.e., ψ′ > 0). Scaling violations at high ω occur because of other non-QE pro-
cesses, such as meson production and resonance excitations, which are predominantly transverse,
come into play. At very high transfer energies (i.,e. high ψ′-values) deep inelastic scattering starts
to be relevant. Likewise, 2p-2h states induced by meson-exchange currents are known to have a
relevant contribution in the “dip” region between the QE and the ∆ peaks. As we detail in Chap-
ter 4, 2p-2h MEC contributions are predominantly transverse for electromagnetic interactions. All
these contributions beyond the IA are responsible for scaling violations, mainly observable in the
transverse channel.

Other mechanisms, not included in the present work, can introduce some effects in the general
discussion. This is the case of RPA nucleon-nucleon correlation effects [30] that can modify the
longitudinal and transverse responses because of the very different isospin character of the two
channels. However, RPA is only relevant for very low energy/momentum transfers and, in overall,
they are expected to be very small.

The prescription adopted in the first version of the SuperScaling Approach has been to employ
the experimental longitudinal responses to define a general scaling function for both electromag-
netic longitudinal and transverse channels. This implies that both L and T scaling functions are
roughly the same after subtracting the non-scaling contributions related to processes beyond the
QE regime, that is, zeroth kind scaling is fulfilled. As we shall illustrate, the most modern version
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of the model (SuSAv2) contains corrections to this assumption based on Relativistic Mean Field
theory.

Figure 3.3: Scaling function, f L (ψ′) and fT (ψ′), from the longitudinal and transverse response,
respectively, as a function of ψ′ for different nuclei (A ≥ 12) and for different values of q (in
MeV/c). Data taken from [82].

From the analysis of the separate longitudinal data shown in Fig. 3.3 (left panel), a “universal”
phenomenological L superscaling function f L has been extracted. In Fig. 3.4, we show the data
analysis. The solid curve refers to a fit of the longitudinal data given by the following parametriza-
tion, which corresponds to the SuSA scaling function,

fSuSA(ψ′) ≡ f L (ψ′) =
p1

[1 + p2
2(ψ′ − p3)2](1 + ep4ψ

′)
(3.69)

where p1 = 2.9883, p2 = 1.9438, p3 = 0.67310 and p4 = −3.8538. The RFG scaling function is
also shown for reference (dashed line).

Note that fSuSA(ψ′) presents an asymmetric shape and a tail that extends towards positive val-
ues of ψ′, i.e., ω > ωQEP. Its maximum reaches about ∼ 0.6. In contrast, the RFG scaling function
is symmetric in the scaling variable ψ′, is limited strictly to the region −1 ≤ ψ′ ≤ +1 and has
a maximum value of 3/4. This behavior clearly differs from data and, hence, the RFG does not
reproduce the scaling behavior shown by the incusive electron scattering data.

The previous superscaling behavior shown in Fig. 3.4 has been evaluated with other models
based on the harmonic oscillation shell model (HO+FSI) and the relativistic Fermi gas (RFG+FSI)
that incorporate different descriptions of FSI (see [83] for details). Some asymmetry in the corre-
sponding scaling functions emerges from these calculations, mainly due to the FSI, but the theoret-
ical predictions still differ significantly from the data. In subsequent sections we provide a detailed
study of the longitudinal and transverse scaling function within the framework of the RMF theory,
analyzind the specific role played by FSI and the relativistic nuclear dynamics.
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Figure 3.4: Averaged experimental fSuSA(ψ) versus ψ′ in the quasielastic region together with a
phenomenological parameterization of the selected (e,e′) longitudinal scaling data obtained from
the RL data on [82]. The integral of the curve has been normalized to unity. The RFG scaling
function is also shown as reference.

.

Moreover, in spite of the difficulty in analyzing the transverse scaling function, previous stud-
ies [84] based on the modeling of the QE longitudinal response and contributions from non-QE
channels have provided some evidence that the scaling of zeroth kind is not fully satisfied by data.
In particular, these studies have found f ee′

T,exp > f ee′

L,exp, a result that has motivated a deep study of
the scaling behavior as addressed in the next section.

3.4 Extension of the Superscaling Approach from Relativistic

Mean Field Theory: the SuSAv2 Model

As defined before, the SuperScaling Approach (SuSA) is based on the scaling properties of the
longitudinal response extracted from (e,e′) data to predict charged-current quasielastic (CCQE)
neutrino- and antineutrino-nucleus cross sections [85]. Thus, SuSA is based on the hypothesis
that the neutrino cross section scales as does the electron scattering cross section. This feature is
observed in most of the models based on IA (see, for instance, [85–87]). Accordingly, the SuSA
model uses the experimental scaling function f ee′

L,exp as a universal scaling function and then builds
the different nuclear responses by multiplying it by the corresponding single-nucleon responses.
In most IA approaches, one finds that once the single-nucleon cross section is removed in defining
the scaling functions, the longitudinal and transverse responses are basically the same.

However, within the framework of the RMF theory, one finds that 0th-kind scaling is mildly
broken for momentum transfers in the 1 GeV region being fT (ψ′) > f L (ψ′). Moreover, notice
that the extraction of f ee′

L,exp entails the analysis of the purely-vector longitudinal (e,e′) nuclear
response, which combines isoscalar+isovector contributions. In contrast, CC neutrino-nucleus re-
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actions involve only isovector couplings and are mainly dominated by purely transverse responses
(TVV + TAA and T ′

V A
). Thus, one could question the validity of the SuperScaling Approach. This

subject was studied in [88] by analyzing the scaling functions evaluated with the RMF model.
There, it was found that, contrary to what one might expect, the (e,e′) longitudinal scaling func-
tion agrees with the total (νl , l

−) one (which is mainly transverse) better than does the transverse
scaling function from (e,e′). This result is explained by the different roles played by the isovector
and isoscalar nucleon form factors in each process (see [88] for details).

These previous studies have motivated a superscaling analysis based on the RMF theory in
order to improve the analysis of neutrino reactions. Within the RMF model [89] the bound and
scattered nucleon wave functions are solutions of the Dirac-Hartree equation in the presence of
energy-independent real scalar (attractive) and vector (repulsive) potentials. Since the same rel-
ativistic potential is used to describe the initial and final nucleon states, the model is shown to
preserve the continuity equation [90] (this is strictly true for the CC2 current operator [86]); hence
the results are almost independent of the particular gauge selected [86, 87]. In the RMF model
the nucleons are dynamically and strongly off-shell and, as a consequence, the cross section is not
factorized into a spectral function and an elementary lepton-nucleus cross section.

The RMF has achieved significant success in describing QE electron scattering data. On the
one hand, its validity has been widely proved through comparisons with QE (e,e′) data (see [86]
and Sect. 3.5.2). In this connection, an important result is that the model reproduces surprisingly
well the magnitude and shape of f ee′

L,exp, i.e., it yields an asymmetric longitudinal scaling function,
with more strength in the high-ω tail, and with a maximum value (∼0.6) very close to the exper-
imental one. On the other hand, the model predicts f ee′

T
> f ee′

L
. For instance, at q = 500 MeV/c

(1000 MeV/c) the transverse RMF scaling function at the maximum is 13% (20%) larger than the
longitudinal one. This violation of zeroth-kind scaling was analyzed in [88], where it was shown
that the origin of such an effect lies in the distortion of the lower components of the outgoing nu-
cleon Dirac wave function by the FSI.

However, the RMF model also presents some drawbacks. First, it predicts a moderate depen-
dence of the scaling function on the transferred momentum q. For increasing values of q the RMF
model presents: i) a strong shift of the scaling functions to higher ω values, ii) too much enhance-
ment of the area under the tail of the functions, and iii) correspondingly too severe a decrease in
the maximum of the scaling functions. Despite these shortcomings, the scaling functions obtained
within the RMF model reproduce reasonably well the experimental longitudinal scaling function
in a wide kinematical region (see Section 3.5). Second, getting results with the RMF model is
computationally very expensive, especially when the model is employed to predict neutrino cross
sections where one has to fold in the flux distribution of the incident neutrino or to compute totally
integrated cross sections. Hence in what follows, after correcting for the too strong q-dependence
of the RMF model, we shall implement the main features of the model in a new version of the
SuSA approach, called “SuSAv2”, that makes it possible to obtain numerical predictions to com-
pare with data using fast codes, yet retaining the basic physics of the RMF.

In summary, in this work we extend the original SuSA model by incorporating in its formalism
information from the RMF model. Thus we build the new model in such a way that it reproduces
the experimental longitudinal scaling function, produces f ee′

T
> f ee′

L
, takes into account the dif-

ferences in the isoscalar/isovector scaling functions and avoids the problems of the RMF model in
the region of high momentum transfer.
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3.4.1 RMF and RPWIA scaling behavior

In this section we present a systematic analysis of the scaling functions computed with the Rel-
ativistic Mean Field (RMF) and the Relativistic Plane Wave Impulse Approximation (RPWIA).
Both models are based on the relativistic impulse approximation (RIA) and provide a fully rela-
tivistic description of the scattering process. The bound state Dirac-spinors are the same in both
models and correspond to the solutions of the Dirac equation with scalar and vector potentials.
The two prescriptions differ in the treatment of the final state: the RPWIA describes the outgoing
nucleon as a relativistic plane wave while the RMF model accounts for the FSI between the outgo-
ing nucleon and the residual nucleus using the same mean field as used for the bound nucleon. In
what follows, we analyze the scaling functions involved in (e,e′), (ν, µ−) and (ν, µ+) reactions as
functions of the momentum transfer q. Due to the large number of existing electron and neutrino
experimental data for 12C, most of the calculations presented in this thesis correspond to this nu-
cleus. The extension to other nuclear systems will be addressed in following chapters.

We first split all different response functions by isolating the isoscalar (T = 0) and isovector
(T = 1) contributions in electron scattering, and the vector and axial contributions for neutrino
and antineutrino induced reactions: VV (vector-vector), AA (axial-axial), VA (vector-axial). This
strategy will allow us to extract clear information on how the FSI affect the different sectors of
the nuclear current. Furthermore, it will make it easier to explore the relationships between the
different responses linked to (e,e′), (ν, µ−) and (ν, µ+) reactions.

Assuming charge symmetry, the two channels, L and T , accesible in electron scattering (3.57)
can be decomposed as a sum of isoscalar (T = 0) and isovector (T = 1) contributions. In terms of
the scaling functions, the nuclear responses are defined as,

Ree′

L,T (q,ω) =
1
kF

[
f

T=1,ee′

L,T
(ψ′)GT=1

L,T (q,ω)

+ f
T=0,ee′

L,T
(ψ′)GT=0

L,T (q,ω)
]
. (3.70)

Similarly, the charge-changing muon-neutrino (antineutrino) responses (3.54) can be given as,

R
VV,ν(ν)
L

(q,ω) =
1

kF

f
VV,ν(ν)
L

(ψ′)GVV
L (q,ω) (3.71)

R
AA,ν(ν)
CC

(q,ω) =
1

kF

f
AA,ν(ν)
CC

(ψ′)GAA
CC (q,ω) (3.72)

R
AA,ν(ν)
CL

(q,ω) =
1

kF

f
AA,ν(ν)
CL

(ψ′)GAA
CL (q,ω) (3.73)

R
AA,ν(ν)
LL

(q,ω) =
1

kF

f
AA,ν(ν)
LL

(ψ′)GAA
LL (q,ω) (3.74)

R
ν(ν)
T

(q,ω) =
1

kF

[
f

VV,ν(ν)
T

(ψ′)GVV
T (q,ω)

+ f
AA,ν(ν)

T
(ψ′)GAA

T (q,ω)
]

(3.75)

R
ν(ν)
T ′ (q,ω) =

1
kF

f
V A,ν(ν)
T ′ (ψ′)GV A

T ′ (q,ω). (3.76)

The GK ’s terms in (3.70) and (3.71–3.76) are the single-nucleon responses defined in (3.55). No-
tice that the previous scaling functions fK for neutrino induced reactions are purely isovector.



3.4. THE SUSAV2 MODEL: AN EXTENSION FROM THE RMF THEORY 55

In the following we examine three basic features of the scaling functions in the RPWIA and
RMF models: shape, position and height of the peak, and the integrals of the scaling functions
over ψ′.

3.4.2 Shape of the scaling functions

The goal here is to study the shape of all scaling functions. In Fig. 3.5 (Fig. 3.6), for different values
of q, we present the transverse (longitudinal) RMF scaling functions normalized to the maximum
value corresponding to a reference function, in this case f

VV,ν
T

, and relocated so that the maximum
is at ψ′ = 0. As already mentioned, the scaling variable ψ′ depends on q, ω and Eshi f t . Thus, for
each scaling function, Eshi f t is taken so that the maximum is located at ψ′ = 0. The results within
the RPWIA model are presented in Fig. 3.7.

We do not present results of f AA
CC

, f AA
CL

, f AA
LL

for neutrino and antineutrino scattering, and f T=0
T

for electron scattering because they are very sensitive to small effects due to cancellations and/or to
the smallness of the denominator (G function) which appears in the definition of the scaling func-
tion (3.55). The first three are seen to be insignificant for neutrino reactions as it will be shown in
Chapter 7, whereas the fourth does not enter in that case and is known to be a minor correction in
the QE regime for electron scattering.

The results from the RPWIA model show that all scaling functions have the same shape (see
Fig. 3.7). This comment also applies to models based on nonrelativistic and semirelativistic de-
scriptions (see [85, 91]).
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Figure 3.5: Transverse RMF scaling functions normalized to the maximum value corresponding to
an arbitrary reference function and relocated at ψ′ = 0 (see text for details). The convention used
to label the different curves is as follows: “e” for electron-induced reactions and “ν” (“aν”) for
neutrino- (antineutrino-) induced reactions.
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Figure 3.6: As in Fig. 3.5, but now for the longitudinal RMF scaling functions.
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Figure 3.7: As in Fig. 3.5, but in this case the results correspond to RPWIA. Transverse and
longitudinal sets are presented together.

Within the RMF model, all transverse scaling functions approximately collapse in a single
one. On the contrary, the longitudinal responses are grouped in two sets: one corresponding to

the pure electron isovector and neutrino (antineutrino) VV-responses, i.e., f
T=1,ee′

L
and f

VV,ν(ν)
L

,

and the other to the isoscalar contribution for electrons, namely, f
T=0,ee′

L
. This result emerges

for all q-values and tends to be rather general. It is also noticeable that the tail is higher and more
extended for the transverse responses, whereas for the longitudinal ones it tends to go down faster.
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It is worth observing that in all cases the RMF scaling functions display a much more pro-
nounced asymmetric shape than the RPWIA ones, an effect related to the specific treatment of
final state interactions.

3.4.3 Height and position of the peak of the scaling function

In the top (bottom) panel in Fig. 3.8 the peak-height of the transverse (longitudinal) set of scaling
functions is presented as function of q. The results correspond to RMF and RPWIA predictions.
We observe that the peak-heights of the scaling functions within RPWIA are almost q-independent
(and very close to RFG value of 3/4), while the RMF ones present a mild q-dependence in the
transverse set and a somewhat stronger one for the longitudinal set. It is well known that FSI
tend to decrease the peak-height of the responses putting the strength in the tails, especially at
high energy loss. This is particularly true for the RMF approach [86, 92] and models based on
the Relativistic Green Function (RGF) [93, 94]. Similar effects have also been observed within
semirelativistic approaches [85, 91].
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Figure 3.8: Top panel: Peak height of the transverse set of scaling functions as a function of the
transferred momentum q. The upper set of lines corresponds to the prediction within RPWIA (thin
lines), while the lower set of lines has been obtained with the RMF model. Bottom panel: As for
the top panel, but now for the longitudinal set of scaling functions.
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More specifically, in Fig. 3.8, we see that the discrepancies between the RMF and RPWIA
peak-height results average to ∼25% in the transverse set. On the other hand, those discrepan-
cies are more strongly q-dependent in the longitudinal sector, reaching ∼30% (∼70%) in the lower
(higher) q-region for the longitudinal isovector responses (blue lines). Finally, the difference be-
tween the isoscalar longitudinal (e,e′) scaling function produced by RMF and RPWIA (magenta
dashed-dotted lines) is somewhat smaller: ∼20% (∼30%) for lower (higher) q.
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Figure 3.9: Top panel: Shift energy, Eshi f t , needed in order to have the corresponding scaling
function peak located at ψ′ = 0, as function of q. Results for the transverse set of scaling functions.
Bottom panel: As for the top panel, but now for the longitudinal set of scaling functions.

In Fig. 3.9 we study the position of the peak of the transverse and longitudinal sets. To this
scope we display the energy shift, Eshi f t, needed to place the peak of the scaling function at ψ′ = 0
as a function of q. In the top panel of Fig. 3.9 we see that for the RPWIA transverse scaling
function, Eshi f t is almost q-independent, while the corresponding RMF shift increases almost
linearly with the momentum transfer. This q-linear dependence of Eshi f t was already observed and
discussed within the framework of a semirelativistic model based on the use of the Dirac-equation-
based potential [91]. Approximately the same behavior is observed for the longitudinal set (bottom
panel in Fig. 3.9), although in this case the RPWIA results are softly linearly dependent on q. It
is also worth mentioning that the three transverse scaling functions linked to the same neutrino or
antineutrino process, f VV

T
, f AA

T
and f V A

T ′ , collapse in a single line for RMF as for RPWIA.
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From the analysis of Figs. 3.8 and 3.9 one may conclude that f
T=1,ee′

L
presents the same behav-

ior (height and position) as f
VV,ν(ν)
L

(blue lines). The differences between these three curves are
approximately constant and arise from the differences in the bound states involved in the reaction:
proton+neutron in (e,e′), neutron in (ν, µ−) and proton in (ν, µ+). The Coulomb-FSI, namely, the
electromagnetic interaction between the struck nucleon and the residual nucleus, which plays a
role when the outgoing nucleon is a proton, could also introduce a difference; however, we find
that its effects are negligible and that the differences between, for instance, f

VV,ν
L

and f
VV,ν
L

in RP-
WIA (where no Coulomb-FSI are involved) are almost the same as in RMF (see Figs. 3.8 and 3.9).

The strong q-dependence of the RMF peak position, which keeps growing with the momentum
transfer, is a shortcoming of the model, whose validity is questionable at very high q. Indeed for
high q the outgoing nucleon carries a large kinetic energy so the effects of FSI should be sup-
pressed for such kinematics. In fact, it would be desirable that the RMF results tend to approach
the RPWIA ones for increasing momentum transfer, i.e., the scaling functions should become
more symmetric, and a saturation of the peak-height reduction and of the energy shift should be
observed. That trend is consistent with the scaling arguments [36, 37, 86], i.e., the experimental
evidence of a universal scaling function for increasing q. This is one of the motivations to use an
alternative model if one aims to reproduce the experimental (e,e′) data at medium-to-high mo-
mentum transfers.

A possible alternative for the behavior of the peak height, peak position and shape of the scaling
functions is to implement the RMF model at low to intermediate-q and the RPWIA one for higher
q-values, as it is proposed in following sections.

3.4.4 Sum rules

In Fig. 3.10, the values of the integrals over ψ′ of the different scaling functions within RMF model
are presented versus q. These are given by

Si (q) =
∫ ∞

−∞
f i (ψ,q) dψ . (3.77)

The integration limits, denoted by (−∞,+∞), extend in reality to the range allowed by the kine-
matics. The above integral in the case of the longitudinal (e,e′) scaling function was shown to
coincide, apart from some minor discrepancies ascribed to the particular single-nucleon expres-
sions considered and the influence of the nuclear scale introduced, with the results obtained using
the standard expression for the Coulomb Sum Rule (see [95] for details)1. Hence in what follows
we denote the functions Si (q) simply as sum rules.

We see that all integrals of the transverse set are above unity and increase almost linearly with
q. On the contrary, the integrals of f

VV,ν(ν)
L

and f
T=1,ee′

L
(blue lines) are below unity and decrease

with q up to q = 1100 MeV/c. From q = 900 MeV/c they begin to be stable around the value 0.7.
Then, from q = 1200 MeV/c to higher q-values the integrals start growing again. However, notice
that in that q-region the result of the integrals is very sensitive to the behavior of the tail of these
particular scaling functions (see Fig. 3.6). Finally, the values of the integral of the longitudinal
isoscalar function, f

T=0,ee′

L
, is approximately constant and close to unity. The behavior of the

integrals of the two longitudinal scaling functions for (e,e′) is consistent with the analysis of the
Coulomb sum rule for these two models (see [95]).

1Coulomb sum rule (CSR) in inclusive electron scattering states that by integrating the longitudinal strength over
the full range of ω at large q, one should get the total charge (number of protons) of the nucleus.
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Figure 3.10: Integrals of RMF scaling functions as functions of q.

Although not shown here, we have also studied the integrals within RPWIA. In general, one
observes that they are almost q-independent in all cases: ∼1 for the longitudinal set and ∼1.05 for
the transverse set.

3.5 Analysis of the SuSAv2 model

In this section we build the SuSAv2 model as a combination of the original SuSA model and some
of the physical ingredients contained in the RMF and RPWIA models.

As we have shown in the previous sections, the RMF model has a q-dependence that is too
strong whereas, on the contrary, the SuSA approach does not account for the difference between
the longitudinal and transverse (e,e′) scaling functions. Similarly, SuSA neglects the possible dif-
ferences in the scaling function linked to isospin effects (isovector, isoscalar, isovector+isoscalar)
or to the character of the current (VV, AA and V A).

Thus, we aim to improve the SuSA model by introducing into it specific information from the
RMF approach. Thus, the SuSAv2 model is based on the following four assumptions:

1. f ee′

L
superscales, i.e, it is independent of the momentum transfer (scaling of first kind) and

of the nuclear species (scaling of second kind). It has been proved that f ee′

L
superscales for a

range of q relatively low (300 < q < 570 MeV/c), see [36]. As in the original SuSA model,
here we assume that superscaling is fulfilled by Nature.

2. f ee′

T
superscales. It has been shown that f ee′

T
approximately superscales in the region ψ < 0

for a wide range of q (400 < q < 4000 MeV/c), see [37]. However we assume that once
the contributions from non-QE processes are removed (MEC, ∆-resonance, DIS, etc.) the
superscaling behaviour could be extended to the whole range of ψ.

3. The RMF model reproduces quite well the relationships between all scaling functions in
the whole range of q. This assumption is supported by the fact that RMF model is able to
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reproduce the experimental scaling function, f ee′
L,exp, and the fact that it naturally yields the

inequality f ee′

T
> f ee′

L
.

4. At very high q the effects of FSI disappear and all scaling functions must approach the
RPWIA results.

Contrary to what is assumed in the SuSA model, where only f ee′
L,exp is used as reference scaling

function to build all nuclear responses, within SuSAv2 we use three RMF-based reference scal-
ing functions (which will be indicated with the symbol f̃ ): one for the transverse set, one for the
longitudinal isovector set and another one to describe the longitudinal isoscalar scaling function in
electron scattering. This is consistent with the study of the shape of the scaling functions discussed
in the previous section, where three different sets of scaling functions emerged.

We employ the experimental scaling function f ee′

L,exp as guide in our choices for the reference

ones. In Fig. 3.11 we display the RMF longitudinal scaling function, f L, for several representative
values of q. Notice that the functions have been relocated by introducing an energy shift (see later)
so that the maximum is at ψ′ = 0. It appears that scaling of first kind is not perfect and some
q-dependence is observed. Although all the curves are roughly compatible with the experimental
error bars, the scaling function that produces the best fit to the data corresponds to q ≈ 650 MeV/c.
This is the result of a χ2-fit to the 25 experimental data of f ee′

L,exp
, as illustrated in the inner plot in

Fig. 3.11.
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Figure 3.11: Longitudinal scaling function for (e,e′) computed within RMF. The scaling functions
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25

∑25
i=1[( f ee′

L,exp,i
− f RMF

L,i
)/σexp

L,i
]2 where σexp

L,i
are the errors of the experimental data,

is presented versus q. The minimum χ2 is around q = 650 MeV/c. Data from Ref. [82].

According to this result, we identify the reference scaling functions with f
T=1,ee′

L
, f

T=0,ee′

L
and

f
T=1,ee′

T
evaluated within the RMF model at q = 650 MeV/c and relocated so that the maximum is

at ψ′ = 0 (we will account for the energy shift later):

f̃T ≡ f
T=1,ee′

T
|RMF
q=650 (3.78)

f̃ L,T=1 ≡ f
T=1,ee′

L
|RMF
q=650 (3.79)

f̃ L,T=0 ≡ f
T=0,ee′

L
|RMF
q=650 . (3.80)
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Thus, by construction, the (e,e′) longitudinal scaling function built within SuSAv2 is f L |SuSAv2
=

f L |RMF
q=650 ≈ f ee′

L,exp
. In order to work with these reference scaling functions we need analytical ex-

pressions for them. To that end, we have used a skewed-Gumbel function which depends on four
parameters. The expressions that parametrize the reference scaling functions are presented in Ap-
pendix B.

Next step before building the responses (see Eqs. (3.70-3.76)) is to define the rest of scaling
functions starting from the reference ones. According to the third assumption for the construction
of SuSAv2, we define:

f
VV,ν(ν)
L

(q) ≡ µ
VV,ν(ν)
L

(q) f̃ T=1
L (3.81)

f
VV,ν(ν)
T

(q) ≡ µ
VV,ν(ν)
T

(q) f̃T (3.82)

f
AA,ν(ν)

T
(q) ≡ µ

AA,ν(ν)
T

(q) f̃T (3.83)

f
V A,ν(ν)
T ′ (q) ≡ µ

V A,ν(ν)
T

(q) f̃T , (3.84)

where we have introduced the ratios µ defined for the transverse and longitudinal sets as:

µ
VV,ν(ν)
T

(q) ≡ f
VV,ν(ν)
T

(q)/ f
T=1,ee′

T
(q) (3.85)

µ
AA,ν(ν)
T

(q) ≡ f
AA,ν(ν)

T
(q)/ f

T=1,ee′

T
(q) (3.86)

µ
V A,ν(ν)
T ′ (q) ≡ f

ν(ν)
T ′ (q)/ f

T=1,ee′

T
(q) (3.87)

µ
VV,ν(ν)
L

(q) ≡ f
VV,ν(ν)
L

(q)/ f
T=1,ee′

L
(q) . (3.88)

From the results of these ratios, presented in Fig. 3.12, it emerges that one can assume µVV,ν(ν)
T

(q) ≈
1, with an error of the order of ∼1%. The same assumption could be made for µν(ν)

T ′ (q) and

µ
AA,ν(ν)
T

(q) but in this case the error averages to ∼3% and ∼7%, respectively. Regarding the longi-

tudinal isovector set, although not shown, one gets µVV,ν(ν)
L

≈ 1 with an error of the order ∼1%.
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Figure 3.12: Ratios of the transverse scaling functions.

Therefore it is a good approximation to set all of the µ-ratios equal to unity in Eqs. (3.81-3.84),
i.e., to assume: f

VV,ν(ν)
T

= f
AA,ν(ν)

T
= f

V A,ν(ν)
T ′ = f̃T and f

VV,ν(ν)
L

= f̃ L. Notice that since
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f
T=0,ee′

T
and f

AA,ν(ν)
CC,CL,LL

are not defined (see Sect. 3.4.2) we will also assume f
T=0,ee′

T
= f̃ L,T=1

and f
AA,ν(ν)
CC,CL,LL

= f̃ L,T=1.

Finally, in order to implement the approaching of the RMF results to the RPWIA ones at high
kinematics, that is, the disappearance of FSI at high q, we build the SuSAv2 L and T scaling
functions as linear combinations of the RMF-based and RPWIA reference scaling functions:

F T=0,1
L

≡ cos2 χ(q) f̃
T=0,1
L

+ sin2 χ(q) f̃ RPW I A
L (3.89)

FT ≡ cos2 χ(q) f̃T + sin2 χ(q) f̃ RPW I A
T , (3.90)

where χ(q) is a q-dependent angle given by

χ(q) ≡ π

2
*,1 −

[
1 + e

(
q−q0
ω0

) ]−1+- (3.91)

with q0 and w0 the transition parameters between RMF and RPWIA prescriptions which will be
defined in Sect. 6.1. The reference RPWIA scaling functions, f̃ RPW I A

K
, are evaluated at q=1100

MeV/c, while the reference RMF scaling functions, f̃K , are evaluated at q=650 MeV/c and are
shown in Fig. 3.13. The q-values chosen for the reference scaling functions were previously dis-
cussed whereas the explicit expressions of the RMF ( f̃K ) and RPWIA ( f̃ RPW I A

K
) scaling functions

are given in Appendix B. With this procedure we get a description of the responses based on RMF
behavior at low-intermediate q values while for higher momentum transfers it mimics the RP-
WIA trend. The transition between RMF and RPWIA behaviors occurs at intermediate q-values,
namely, ∼ q0, in a region of width ∼ w0, as detailed in Sect. 6.1.
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SuSAv2 model.
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The response functions (see Eqs. (3.70) and (3.71–3.76)) are simply built as:

Ree′

L (q,ω) =
1

kF

[
FL,T=1(ψ′)GT=1

L (q,ω) +FL,T=0(ψ′)GT=0
L (q,ω)

]
(3.92)

Ree′
T (q,ω) =

1
kF

FT (ψ′)
[
GT=1

T (q,ω) + GT=0
T (q,ω)

]
(3.93)

R
VV,ν(ν)
L

(q,ω) =
1

kF

FL,T=1(ψ′)GVV
L (q,ω) (3.94)

R
AA,ν(ν)
CC

(q,ω) =
1
kF

FL,T=1(ψ′)GAA
CC (q,ω) (3.95)

R
AA,ν(ν)
CL

(q,ω) =
1

kF

FL,T=1(ψ′)GAA
CL (q,ω) (3.96)

R
AA,ν(ν)
LL

(q,ω) =
1

kF

FL,T=1(ψ′)GAA
LL (q,ω) (3.97)

R
ν(ν)
T

(q,ω) =
1
kF

FT (ψ′)
[
GVV

T (q,ω) + GAA
T (q,ω)

]
(3.98)

R
ν(ν)
T ′ (q,ω) =

1
kF

FT (ψ′)GV A
T ′ (q,ω). (3.99)

Furthermore, in order to reproduce the peak position of RMF and RPWIA scaling functions,
discussed in Sect. 3.4.3, within SuSAv2 we consider a q-dependent energy shift, namely, Eshi f t (q).
This quantity modifies the scaling variable ψ(q,ω) −→ ψ′(q,ω,Eshi f t) as described in Sec-
tion 3.2.3. In particular, we build this function Eshi f t (q) from the results of the RMF and RPWIA
models presented in Fig. 3.9. Thus, Eshi f t (q) for the reference RMF scaling function f̃T [ψ′(Eshi f t)]
is the parametrization of the brown dot-dot-dashed line in the top panel of Fig. 3.9. The same pro-
cedure is used to parametrize Eshi f t (q) corresponding to the f̃ L,T=1 and f̃ L,T=0, but in this case
using, as an average, the blue dot-dot-dashed line from the bottom panel of Fig. 3.9. Moreover, for
the RPWIA case we use for the longitudinal and transverse responses the corresponding RPWIA
Eshi f t (q) curves shown in Fig. 3.9.

Notice that for q . 300 − 350 MeV/c it is difficult to extract the peak position of the RMF
scaling function from the data so we have set a minimum shift energy, Eshi f t = 10 MeV. This
choice of Eshi f t (q) depending on the particular q-domain region considered is solely based on the
behavior of the experimental cross sections and their comparison with our theoretical predictions
(see results in next sections). In the past we have considered a fixed value of Eshi f t [37] (different
for each nucleus) to be included within the SuSA model in order to fit the position of the QE peak
for some specific q-intermediate values. Here we extend the analysis to very different kinematics
covering from low to much higher q-values. On the other hand, the RMF model leads the cross
section to be shifted to higher values of the transferred energy. This shift becomes increasingly
larger for higher q-values as a consequence of the strong, energy-independent, highly repulsive
potentials involved in the RMF model. Comparison with data (see the results in the next sections)
shows that the shift produced by RMF is too large. Moreover, at very high q-values, one expects
FSI effects to be less important and lead to results that are more similar to those obtained within
the RPWIA approach. This is the case when FSI are described through energy-dependent optical
potentials. Therefore, as already mentioned, our choice for the functional dependence of Eshi f t (q)
is motivated as a compromise between the predictions of our models and the comparisons with
data.



3.5. ANALYSIS OF THE SUSAV2 MODEL 65

3.5.1 Pauli blocking effects on SuSA and SuSAv2 models

In this Section, we show the relevance of Pauli Blocking (PB) effects on the SuSA and SuSAv2
models. The phenomenon of Pauli blocking arises from the exclusion principle, which dictates
that two fermions cannot share the identical set of quantum eigenstates. As a fermion, a nucleon is
not permitted to be in a state which is already occupied by another nucleon, reducing the available
phase space and hence the lepton-nucleus cross section.

Within the RFG model, the bound nucleons are simulated as a “gas” of particles, with a uni-
form momentum distribution from the lowest state up to an empirically-determined maximum kF .
In this case, the Pauli principle requires the final-state nucleon’s momentum to exceed the Fermi-
momentum.

As detailed in Sect. 3.2, the RFG model combines the free-nucleon cross sections with a poten-
tial well in the form of binding energy as well as Pauli blocking to restrict the available kinematics
of struck nucleons. These effects are implemented when integrating the nuclear tensor (3.21) by
means of a factor proportional to:

θ (kF − |p|)θ (|p + q| − kF ) × δ(ω − [E (p + q) − E (p)]) . (3.100)

The first term requires the nucleon participating in the interaction to have momentum below kF ,
the second enforces Pauli blocking requiring the struck nucleon to be above the Fermi momentum,
whereas the third assures energy conservation. Therefore, the Pauli-blocked regime occurs at low
momentum transfers when |p| < kF which, regarding the expression above, implies q ≤ 2kF .

Moreover, the SuperScaling model works well for high enough momentum and energy trans-
fers, whereas in the low q and ω region (typically, q ≤ 400 MeV/c and ω ≤ 50 MeV) it is
inadequate and some prescription that accounts for Pauli blocking and collective nuclear excita-
tions should be used. In the phenomenological SuSA approach, Pauli blocking effects are not
trivial to implement and have been neglected in the first applications of the model [19, 64, 81]. In
this thesis we introduce PB using the procedure proposed in [96,97], which generalizes the simple
RFG prescription [75] – only valid for a step-like momentum distribution – to accommodate more
realistic momentum distributions. In summary, the prescription consists in subtracting from the
scaling function f (ψ′(ω,q)) its mirror function f (ψ′(−ω,q)),

fblocked (ψ′(ω,q)) = f (ψ′(ω,q)) − f (ψ′(−ω,q)) ; for ω < 0 . (3.101)

This incorporates a correct blocking of unphysical excitations, which are then excluded in a more
satisfactory way than through the ad hoc factor [1 − n(p + q)/n(0)] commonly used in the litera-
ture [98, 99]. If applied to a non-Pauli-blocked version of the RFG, this procedure yields exactly
the correct Pauli blocking for that model. Moreover, this method does not require the knowledge
of the nucleon momentum distribution n(p).

In Fig. 3.15, Pauli blocking effects in the scaling function for 12C (kF = 228 MeV/c) and dif-
ferent fixed values of the transferred momentum are shown. The Pauli-blocked regime appears at
q . 2kF = 456 MeV/c and, in particular, PB effects are noticeable for q < 250 MeV. At these
kinematics, the subtractions to the non-Pauli-blocked scaling function come mainly from ω < 50
MeV/c. We also note how f (ψ′) does not scale when plotted versus ω (3.15) where the curves are
shifted to lower ω values as q decreases.
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When displayed versus the scaling variable ψ′ (Fig. 3.14), we notice that the non-blocked
scaling function is exactly the same for all kinematics and is only limited for the range of ω-values
compatible with the fixed q value. As also observed, the PB effects only have an impact in the
region of low ψ′ which is related to the lower values of ω.
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Next we show the effects of PB in the SuSA and SuSAv2 models when comparing with (e,e′)
data on 12C. For this purpose, we display in Fig. 3.16 the SuSA results with and without PB and
compare them with a few sets of data at the kinematics in which PB effects are significant, i.e.,

very low q. In the region of low-ω, the PB effects can be observed on the width and peak height
of the cross sections. In general we conclude that the agreement between SuSA and data improves
when PB is introduced. SuSA without PB (green-dashed) produces cross sections too wide, while
SuSA with PB (brown) provides narrower cross sections in better agreement with data. This is
particularly true in panels (1) and (2) in Fig. 3.16. The same comments apply to Fig. 3.17 where
SuSAv2 with and without PB is compared with the same set of low-q data. The lowest energy
transfer data, corresponding to the excitation of resonant and collective states, cannot be described
by any of the present models.
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Figure 3.16: SuSA with and without Pauli Blocking is compared with (e,e′) data. Eshi f t = 10
MeV has been employed. Data taken from [100, 101].
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Figure 3.17: SuSAv2 with and without Pauli Blocking is compared with (e,e′) data. Data taken
from [100, 101].

A clear difference between SuSA and SuSAv2 (Figs. 3.16 and 3.17) is that the latter clearly
overestimates the data in the region below and close to the peak whereas the SuSA model un-
derestimates all data for medium and high q-values (Figs. 3.19-3.20). However, in all cases the
maximum is placed atω . 50−60 MeV where, as discussed in Sect. 3.5.2, the validity of the mod-
els based on IA is questionable and no definitive conclusions can be drawn based on comparison
of model and data in this ω-region. Nevertheless, the agreement of the SuSAv2 model with data in
the low-energy range can be improved by determining more accurately the q0 transition parameter
between RMF and RPWIA contributions, as shown in Sect. 6.1, in such a way that the effects of
FSI via the RMF model be more significant for lower kinematics, thus reducing the resulting cross
section.

The effect of Pauli Blocking is also of relevance for the analysis of CCQE neutrino cross
sections, particularly at low kinematics, as will be shown in Chapter 7.
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3.5.2 Analysis of the SuSAv2 model for (e,e′) reactions within the QE regime

In this section we present a systematic comparison of inclusive 12C(e,e′) experimental cross sec-
tions and the predictions for the QE process within RMF, SuSA and SuSAv2 models. As men-
tioned, data correspond to the total inclusive cross section which includes contributions from sev-
eral channels, mainly: QE scattering, inelastic scattering, many-nucleon emission, etc. Here we
only focus on the QE process, whereas a more detailed analysis of the inclusive cross section
including inelastic processes and 2p-2h MEC contributions will be addressed in Chapter 6. There-
fore, one expects that the models do not reproduce the total inclusive experimental data corre-
sponding to kinematical situations in which non-QE contributions play some role. Thus, the main
interest of the systematic analysis presented in this section is the comparison between SuSAv2
predictions and those from the SuSA and RMF models. Full analyses of the inclusive (e,e′) cross
section (including descriptions of QE and non-QE contributions) have been presented with some
success in the past [84, 85] within the context of the semiphenomelogical SuSA. Our aim in the
following is to complete the description of the inclusive process within the context of SuSAv2
model, via the inclusion of the inelastic spectrum and 2p-2h contributions. This will be detailed in
the next chapters.

In Figs. 3.18-3.20 we present the comparison of the (e,e′) experimental data and models. Due
to the large amount of available data on 12C(e,e′) at different kinematics (see [100, 101]) in these
three figures we only show some representative examples. A more detailed analysis will be drawn
in Chapter 7. Each figure is labeled by the incident electron energy, εi (in MeV), the scattering
angle, θe, and the transferred momentum corresponding to the center of the quasielastic peak, q

(in MeV/c). Pauli Blocking has been included in the SuSA and SuSAv2 models following the
procedure described in [96, 97] and detailed in Section 3.5.1.
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SuSA (green-dashed) and SuSAv2 (brown) models (see text for details). Set of panels correspond-
ing to low-q values. Data are taken from [100, 101].
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Figure 3.19: Continuation of Fig. 3.18. Set of panels corresponding to medium-q values. Data are
taken from [100, 101].
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Figure 3.20: Continuation of Fig. 3.18. Set of panels corresponding to high-q values. Data are
taken from [100, 101].
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The panels in Figs. 3.18-3.20 are organized according to the value of the transferred momen-
tum (at the center of the QE peak) in three sets: low-q (from q = 238 to q = 333 MeV/c) in
Fig. 3.18, medium-q (from q = 401 to q = 792 MeV/c) in Fig. 3.19 and, high-q (from q = 917
to q = 3457 MeV/c) in Fig. 3.20. The only phenomenological parameters entering in the calcula-
tion are the Fermi momentum kF and the energy shift Eshi f t . For these we use kF = 228 MeV/c
(see [37]) in both SuSA and SuSAv2 models. A constant energy shift of 20 MeV is employed in
SuSA [37] while a q-dependent function, the one described in Sect. 3.5, is used for Eshi f t in the
SuSAv2 model. Preliminary values for the SuSAv2 transition parameters of q0 = 800 MeV/c and
ω0 = 200 MeV have been applied.

We begin commenting on the low-q panels presented in Fig. 3.18. The main contributions to
the cross section from non-QE processes such as inelastic processes contributions (∆-resonance)
and MEC, are very small, even negligible, in this low-q region. In spite of that, when the trans-
ferred energy is small (ω . 50 − 60 MeV) other processes such as collective effects contribute to
the cross section making questionable the treatment of the scattering process in terms of IA-based
models. This could explain, in part, the general disagreement between models and data in that
ω region in (a), (b) and (c) panels. Moreover, we can observe that the SuSA model seems to be
shifted to high ω values with regard to the experimental data whereas the SuSAv2 model matches
with the experimental QE peak position. At the same time, the SuSAv2 results are higher than
the SuSA ones, which is mainly due to the natural enhancement on the RMF transverse scaling
function.

Some clarifications are called for regarding the RMF results in Fig. 3.18, where sharp reso-
nances appear at very low ω values. These correspond to 1p-1h excitations with the phase shift of
a given partial wave going through 90 degrees. With more complicated many-body descriptions
these sharp features are smeared out.

In summary, in order to test the goodness of the models in the kinematical situation of Fig. 3.18,
one should focus on the study of the tails of the cross sections where large enough ω-values
(ω & 50 − 60 MeV) are involved. There, one observes that SuSA predictions are clearly over-
shifted to high ω-values while RMF and SuSAv2 models fit the data reasonably well. In addition,
as expected, SuSA results are systematically below SuSAv2 and RMF ones at the QEP.

We now discuss the results for medium-q values presented in Fig. 3.19. First of all, one should
mention that for the kinematics of this figure, in addition to the QE process, non-QE contributions
are essential to describe the experimental cross sections. For instance, in panels (f), (g) and (h) the
∆-peak appears clearly defined at ω values above the QE peak. In panel (e) one sees that in the
region around the center of the QE-peak, the RMF prediction is slightly above the SuSAv2 one,
being closer to the experimental data. This is consistent with the behavior of the RMF scaling
function studied in Sect. 3.4.3 (see Fig. 3.8), namely, the peak-height of the RMF scaling functions
increases for decreasing q-values.

If the main non-QE contributions are not included in the modeling it is hard to conclude which
model is better to reproduce the purely QE cross section. However, it seems reasonable to conclude
that SuSAv2 improves the agreement with data compared to SuSA. For instance, in the situation of
panel (e), it would be needed that non-QE processes would contribute more than 20% around the
QE-peak in order to SuSA fits the height of the data. A 20% fraction of the cross section linked to
∆-resonance and MEC contributions is probably too much for that kinematics. Similar comments
and conclusions apply to the results in panel (d) of Fig. 3.18.
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For q-values close to 650 MeV/c (panels (f) and (g)) RMF and SuSAv2 produce very similar
results because of the way in which SuSAv2 has been defined (see Sect. 3.5). For higher q-values,
q & 792 MeV/c ((h) panel), SuSAv2 and RMF predictions begin to depart from each other. In
particular, RMF results tend to shift the peak to higher ω values and to place more strength in the
tail while SuSAv2 cross sections tend to be more symmetrical due to the increasing dominance of
the RPWIA scaling behavior (see Sect. 3.5).

This difference is more evident for higher q-values, as observed in panels (j)-(l) of Fig. 3.20.
It is important to point out that for the kinematics presented in Fig. 3.20 the non-QE contributions
are not only important but they become dominant in the cross sections. This is the case presented
in panels (k) and (l) where the QE-peak is not even visible in the data.

Next, we summarize the main conclusions from the present comparison of the SuSA and
SuSAv2 models in the QE regime with the inclusive (e,e′) data:

• Regarding the enhancement of the transverse response, RT , in SuSAv2 compared with SuSA:
prior to the addition of non-QE contributions (which will be addressed in Chapter 6), the
most clear indications that support the SuSAv2 assumptions arise from the comparison with
data at kinematical situations in which non-QE effects are supposed to be small (panels (e)
and (d) in Figs. 3.18 and 3.19, respectively).

• Regarding the energy-shift analysis: within the SuSA model we have used a constant energy
shift of 20 MeV/c. From the comparison with the low-q set of experimental data, Fig. 3.18,
one concludes that 20 MeV is a too large shift. On the contrary, the comparison with the
high-q set of data, Fig. 3.20, suggests that 20 MeV is probably too small. Then, one is led to
conclude that a constant energy shift is not the best option to reproduce (e,e′) data. These
results support the idea of introducing a q-dependent energy shift such as we made in the
SuSAv2 model. The theoretical justification of this assumption was already discussed in
Sect. 3.5.

In Chapter 7 we will show that the SuSAv2 model describes more accurately the neutrino
induced reactions than the semiphenomelogical SuSA aproach. This result mainly comes from
the q-dependence on the energy shift, the enhancement on the transverse response via RMF pre-
scriptions as well as the possibility of separating scaling functions into isoscalar and isovector
contributions.

Finally, we should add a remark concerning the RMF/RPWIA transition parameters, q0 and
ω0, appearing in Eq. 3.91. In the previous results (Figs. 3.18-3.20), we have applied a fixed value
of these parameters which have shown a reasonable agreement with some experimental data at the
QE peak. However, the transition between the RMF and RPWIA models depends on the particular
kinematics involved, namely on the momentum transfer q. Accordingly, the transition parameter,
q0, is expected to increase with q in such a way that the RMF contribution will be dominant
at low kinematics where FSI effects are of high relevance, whereas the RPWIA description is
needed at higher kinematics. Therefore we introduce a dependence on the momentum transfer
q that determines explicitly the relative RMF and RPWIA contributions at different kinematics.
This analysis is carried out together with the extension of the SuSAv2 formalism to the inelastic
spectrum and applied to the study of the (e,e′) data in Chapter 6.



Chapter 4

2p-2h MEC contributions for electroweak

reactions

In this Chapter, we evaluate and discuss the impact of two-particle two-hole meson-exchange cur-
rents (2p-2h MEC) on electron- and neutrino-nucleus cross sections. The 2p-2h MEC responses
are calculated within the RFG model in which a fully Lorentz and transitionally invariant calcu-
lation can be developed. In order to reduce the computational time, we make use of an accurate
parametrization of these responses.

4.1 Introduction

As shown in Fig. 4.1, the 2p-2h MEC process takes place when a weak or electromagnetic bo-
son from the leptonic current is exchanged by a pair of nucleons (2-body current) leading to the
emission of two nucleons from the primary vertex. These states, where two nucleons are promoted
above the Fermi level leaving two holes inside the Fermi sea, are known to give a large contribution
in the so-called “dip region”, corresponding to excitation energies lying between the quasielastic
(QE) and ∆(1232) excitation peaks. These contributions are essential for a correct interpretation of

Figure 4.1: Schematic view of the 2p-2h MEC process for lepton-nucleus interactions.

current and forthcoming neutrino oscillation experiments, which strongly relies on our understand-
ing of neutrino-nucleus scattering at intermediate energies (from 0.5 to 10 GeV) and in particular

73
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of the nuclear-structure effects involved. At these kinematics, it has been proved that processes be-
yond the IA, in which MEC play a major role, give a significant positive contribution to the cross
section which helps to account for the discrepancy observed in (e,e′) processes between theory
and experiment in the “dip” region as well as for the discrepancies between some recent neutrino
CCQE measurements (e.g., MiniBooNE, NOMAD, MINERνA, T2K) [20, 21, 24, 46, 47, 56]. In-
deed, the inclusion of 2p-2h MEC contributions has allowed to explain these data without modify-
ing any effective parameter (such as the axial mass MA) [30,31,39,102,103]. All this supports the
need to consider mechanisms such as final-state interactions (included in our QE description via
RMF theory), nuclear correlations or MEC, in particular through their contribution to multinucleon
knock-out around and beyond the QE peak as suggested by explicit modeling [30, 31, 104, 105].

As commented in Chapter 3, the 2p-2h MEC processes together with inelastic contributions
and, in particular, meson production via baryon resonances such as the∆, are responsible of scaling
violations in (e,e′) reactions, which are more prominent in the transverse [84, 85]. However, even
below the meson production threshold there are scaling violations in the transverse response [36],
one source of which is clearly the MEC contributions, again predominantly transverse. These
two-body currents can excite both one-particle one-hole (1p-1h) and two-particle two-hole (2p-
2h) states. Most studies of electromagnetic (e,e′) processes performed for low-to-intermediate
momentum transfers with MEC in the 1p-1h sector (see, e.g., [106–109]) have shown a small re-
duction of the total response at the QE peak, mainly due to diagrams involving the electroexcitation
of the ∆ resonance. Nevertheless, they are roughly compensated by the positive contributions of
correlation diagrams, where the virtual boson couples to a correlated pair of nucleons. In this work
we shall therefore neglect them and restrict our attention to 2p-2h final states, computed in a fully
relativistic way. As discussed in previous works [105, 110–113], relativity is an essential ingre-
dient in the analysis of 2p-2h processes at momentum transfers above 400-500 MeV/c. At these
kinematics, the non-relativistic reduction can lower the resulting 2p-2h MEC cross section around
a ∼ 40% or more [105]. This statement is in connection with the kinematical regions of interest for
neutrino oscillation experiments which extend to relativistic domains. At these q-values, the static
approximation used for the ∆ propagator in the non-relativistic calculations of 2p-2h transverse
response function [114] fails to explain the “dip” region.

Moreover, the presence of nucleon-nucleon correlation interactions involving the one-nucleon
current may lead to the excitation of 2p-2h final states, and interference between these processes
and those involving MEC should be analyzed to assess their relevance. These effects, taken into ac-
count in the RFG-based descriptions of 2p-2h provided by Nieves et al. [31] and Martini [30], are
not included explicitly in our RFG MEC model, that relies on a hybrid description where the one-
particle emission already contains contributions of nuclear ejections due to nuclear correlations
— via scaling functions from the SuSAv2 model. Explicit calculations of the correlation-MEC
interference terms are still in progress and their contributions will be presented in further works.

The contributions considered in this thesis englobe the 2p-2h states excited by the action of
meson-exchange currents within a fully relativistic framework (see [110,112,113,115] for details),
involving virtual ∆ resonances as well as the seagull (contact) and pion-in-flight currents obtained
in previous works [110, 111]. Deviations from the Fermi gas model 2p-2h responses produced
by ingredients such as final-state interactions, finite nuclear effects or nuclear correlations are
expected to be moderate, which would result in small corrections in the impulsive cross section as
the MEC contributions are also moderate. The previous assumption is based on previous works at
low-to-intermediate momentum transfers for 12C and 40Ca within the framework of the continuum
shell model [114, 116] as well as in other analyses [117–119].



4.2. GENERAL FORMALISM 75

4.2 General formalism

The evaluation of the 2p-2h MEC contributions is performed within an exact microscopic cal-
culation, where the two-body current is the sum of seagull, pion-in-flight, pion-pole and ∆-pole
operators and the basis wave functions are non-interacting Dirac spinors. The features of the RFG
model allows for a fully Lorentz covariant calculation of the MEC. In Refs. [110, 113, 115] it
has been calculated for the first time the fully relativistic weak (with vector and axial compo-
nents) charged meson-exchange currents for neutrino-nucleus interaction in both longitudinal and
transverse channels as well as a complete analysis for electromagnetic reactions. The numerical
integration method is described in [105, 113, 120] where the 2p-2h MEC hadronic tensor is calcu-
lated considering two particles p′1 and p′2 above the Fermi momentum in the final state, p′

i
> kF ,

and two holes h1 and h2 below the Fermi momentum, hi < kF ,

W
µν

2p−2h
=

V

(2π)9

∫

d3p′1d3h1d3h2
M4

E1E2E′1E′2
Θ(p′1, p

′
2, h1, h2)

r µν(p′1,p
′
2,h1,h2)δ(E′1 + E′2 − E1 − E2 − ω) , (4.1)

where by momentum conservation, p′
2
= h1 + h2 + q − p′

1
and Ei and E′

i
are the on-shell energies

of the holes and particles. The only two parameters in the description are the Fermi momentum kF

associated to the nuclear species and the separation energy, i.e., Eshi f t. Pauli-blocking effects are
also considered through the step function

Θ(p′1, p
′
2, h1, h2) = θ (p′2 − kF )θ (p′1 − kF )θ (kF − h1)θ (kF − h2) . (4.2)

The elementary 2p-2h hadronic tensor r µν is defined in terms of the two-body MEC antisym-
metrized matrix element j µ(1′,2′,1,2)A,

r µν (p′1,p
′
2,h1,h2) =

1
4

∑

s1s2s′1s′2

∑

t1t2t ′1t ′2

j µ(1′,2′,1,2)∗A jν (1′,2′,1,2)A . (4.3)

The MEC operator is written as the sum of four contributions, seagull (a,b), pion-in-flight (c),
pion-pole (d,e), and ∆ pole (f–i), as shown in Fig. 4.2,

j
µ

MEC = j
µ
sea + j

µ
π + j

µ

pole + j
µ

∆
. (4.4)

The different contributions are characterized in terms of how the virtual boson is attached to the
hadronic vertex. The seagull or contact terms are associated to the attachment of the virtual boson
to the N Nπ vertex whereas the pion-in-fligh operator is referred to the direct interaction of the bo-
son with the virtual pion. At variance with the pion-in-flight current, the pion-pole terms has only
the axial component and therefore it is absent in the electromagnetic case. This contribution could
be considered as the “axial counterpart” of the pion-in-flight term, in the sense that it contains two
pion propagators. MEC contributions involving the virtual ∆ resonance (∆-pole terms) are also of
relevance for the description. For completeness, it is worth pointing out that those diagrams that
correspond to the excitation of a 2p2h + π state, hence to pion production [121], are implicitly
included in the phenomenological inelastic scaling function described in Chapter ??.

The exact evaluation of the 2p-2h hadronic tensor (4.1) in a fully relativistic way involves
numerical seven-dimensional integrations of a huge number of terms. This makes the computation,
exactly performed in [105, 110, 113, 120], highly non-trivial. In order to reduce the computational
time as well as to ease the implementation of the results in Monte Carlo generators used in the
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Figure 4.2: Feynman diagrams of the MEC considered in the present analysis, including the seagull
(a,b), pion-in-flight (c), pion-pole (d,e), and ∆ pole (f-i) contributions. Taken from [105].
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analysis of neutrino experiments, where a wide range of kinematic conditions — momentum and
energy transfers — are involved, we make use of a parametrization of the MEC responses that
can be applied from low to very high momentum and energy transfers. The parametrization form
employed for the different electromagnetic and weak responses is a function of the momentum and
energy transfers, or equivalently, of the momentum and the scaling variable, and reads

R
2p−2hM EC

X
(ψ′,q) =

2a3,X e
− (ψ′−a4,X )2

a5,X

1 + e
− (ψ′−a1,X )2

a2,X

+

2∑

k=0

bk,X · (ψ′)k , (4.5)

where X = L,T (= TVV ) for electromagnetic reactions and X = CC,CL,LL,T (= TVV ,TAA),T ′
V A

for neutrino reactions. The parameters ai,X (q),bk,X (q) are q-dependent and are defined for each
reaction channel. The ψ′ scaling variable is the same as defined in Chapter 3,

ψ′ =
1
√
ξF

λ′ − τ′
√

(1 + λ′) τ′ + κ
√
τ′ (1 + τ′)

, (4.6)

where ξF is the dimensionless Fermi kinetic energy and the following dimensionless transfer vari-
ables have been also previously defined: λ = ω/2MN , κ = q/2MN , τ = κ2 − λ2. Primed variables
contain the energy transfer shift, ω′ = ω − Eshi f t , which accounts for the binding energy of the
ejected nucleon, which is usually determined phenomenologically. With this parametrization, the
evaluation of the 2p-2h MEC cross sections for electromagnetic and weak reactions is similar to
the quasielastic case, just replacing the QE response functions in Eqs. (??) and (??) by the corre-
sponding 2p-2h MEC ones.

In the following sections, we analyze the 2p-2h MEC responses for electromagnetic (Sec-
tion 4.3) and charged-current weak (Section 4.4) reactions on 12C, also detailing the different
parametrization forms. The extension to other nuclei will be addressed in Section 4.5.

4.3 2p-2h MEC responses for (e,e′) reactions

Next, we consider the purely isovector nuclear longitudinal and transverse response arising from
electromagnetic 2p-2h MEC states on 12C, based on the work by De Pace et al. [110] and Amaro
et al. [105, 113]. An accurate parametrization of these responses as a function of the momentum
and energy transfers involved is presented.

Although MEC clearly dominate in the transverse channel, the study of Refs. [105, 113] in-
cludes also for the first time MEC contributions in the longitudinal sector. In Fig. 4.3 we present
the separate 2p-2h MEC responses in the two channels for different q values. As shown, the trans-
verse sector clearly dominates up to q ∼ 1800 MeV/c, while the L and T contributions are of the
same order for larger values of the momentum transfer. However, note that the kinematics where
the MEC give the largest contribution to the cross section corresponds to q . 1000− 1500 MeV/c,
as stated in [115] and will be discussed later.
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Figure 4.3: Comparison between 2p-2h MEC RL and RT response functions versus ω. The curves
are displayed from left to right in steps of q =200 MeV/c.

The electromagnetic MEC response functions for q ≥ 400 MeV/c exhibit a peak that decreases
with q together with a tail that rises with ψ′ and q. In order to parameterize these functions we
applied an expression with two terms, the first one mainly fitting the peak of the response1 and the
second fitting the tail at larger ψ′:

RM EC
L(T )VV

(ψ′) =
2a3,L(T )e

− (ψ′−a4,L(T ) )2

a5,L(T )

1 + e
− (ψ′−a1,L(T ) )2

a2,L(T )

+

2∑

k=0

bk,L(T ) · (ψ′)k . (4.7)

In this expression the parameters ai,L(T ), bk,L(T ) are q-dependent, and they are used to fit the origi-
nal RM EC

L(T )VV
responses shown in Fig. 4.3. We first fit each response for a given q to get the values

of the ai, bk parameters for that specific q-value, ensuring a smooth dependence on q for each of
them. The q-dependent values of the fitting parameters are shown in Fig. 4.4. We then parametrize
the q-dependence of the parameters themselves using a polynomial in q. The responses in Eq. (4.7)
then become explicitly dependent on the momentum transfer, RM EC

L(T )VV
(ψ′,q), through the depen-

dence in the parameters, ai.L(T ) (q), bk,L(T ) (q).

In order to fit the responses above q = 2000 MeV/c, which show almost no peak but a tail-
like shape, we keep only the second term in Eq. (4.7), namely a3,L(T ) = 0; since these responses
are very similar in the large-q region under consideration (up to 3500 MeV/c), we use the same
parametrization for all of them, namely bk,L(T ) (q > 2000) = bk,L(T ) (q = 2000). As it will be
discussed later, there are no significant MEC contributions for q >2000 MeV/c and the same is
true for large ω > 1000 MeV [115]. For the responses below q = 300 MeV/c we use again a
polynomial to fit the results (a3 = 0),

RM EC
T,VV (ψ′,q<300) =

3∑

k=0

ck,L(T ) (q) · (ψ′)k . (4.8)

1Note that the functional form for the first term is similar to the one employed for the SuSAv2 scaling functions
(see Appendix B for details).
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Figure 4.4: Dependence on q of the fitting parameters {ai ,bk } for the electromagnetic 2p-2h MEC
transverse response.
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The results of the above parametrization for the transverse MEC responses are presented as
a function of the scaling variable ψ′ in Fig. 4.5 where it is shown that it gives an excellent rep-
resentation of the exact results in the full region of q and ψ′ explored. Going into detail, some
minor differences between the microscopic calculations and the parametrization can be observed
at the highest ψ′ values, above ψ′ = 2, which corresponds to ω → q. When comparing them
versus the energy transfer, ω, we can observe how these small discrepancies roughly dissapear for
all cases. Additionally, a succesful comparison with the 2p-2h MEC calculations at very low-q
values is shown in Fig. 4.6. For completeness, we show in Fig. 4.7 the Q2-dependence of the
transverse MEC response in terms of the energy transfer. The 2p-2h MEC responses decrease and
are shifted to large ω-values as |Q2 | increases. We also notice that the increase observed in the tail
of the MEC responses for fixed q-values at ω → q (see Fig. 4.5) does not appear in Fig. 4.7 as
|Q2 |-values below 0.1 GeV2 are neglected.
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Similarly to the transverse channel, a high accuracy is achieved for the parametrization of the
2p-2h MEC longitudinal response functions, as reproduced in Fig. 4.8. Notice that no approxi-
mations are involved in the present calculations for the longitudinal and transverse functions. The
MEC parametrizations considered here takes care of the complete relativistic calculation, making
it suitable to be applied at very high values of the momentum and energy transfers.
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Figure 4.8: 2p-2h MEC RL responses (dashed lines) compared with the parameterized ones (thick
solid lines) versus ω. The curves are displayed from left to right in steps of q = 200 MeV/c.

4.4 2p-2h MEC responses for (νl, l) reactions

In this section, we consider the fully relativistic weak charged meson-exchange currents on 12C, in
both longitudinal and transverse channels and for the vector and axial components. These have
been evaluated in [105, 113, 120] from an exact microscopic calculation based on the RFG model.
The procedure to obtain the weak 2p-2h MEC response functions has been previously detailed in
Section 4.2 and is similar to the one for electromagnetic reactions.

We use the same functional form (Eq. 4.5) employed for the parametrization of the electromag-
netic MEC responses (Section 4.3) but extending it to the different axial and vector components
involved in the analysis of CC neutrino reactions. As for (e,e′) reactions, the parametrization
yields an excellent representation of the microscopic calculations in the same region of q and ψ′.
In Fig. 4.9 we compare the contributions of the different 2p-2h MEC responses as functions of the
energy transferred to the nucleus for three values of the momentum, q = 200, 600 and 1000 MeV/c.
Note that in general the 5 weak responses (CC,CL,LL,T (= TVV + TAA) and T ′

V A
) are comparable

in size, depending on the specific kinematics. We also show the contributions of the vector-vector
(TVV ) and axial-axial (TAA) responses, which are closer to the interference vector-axial term (T ′

V A
).

The electromagnetic responses are also shown as reference, where it can be observed the neg-
ligible contribution of the vector longitudinal contribution whereas it is recognized the factor 2
between the weak vector contribution (TVV ) and the purely-vector electromagnetic one (TEM ) as a
consequence of the isovector nature of the CC weak interaction considered2.

2The electromagnetic 2p-2h MEC responses and the ones for charged-current neutrino reactions corresponding to
the TVV channel are related through Rν

T ,VV
= 2REM

T ,VV
. The factor 2 arises from the transition between the isovec-

tor+isoscalar electromagnetic contributions, where the isoscalar term is negligible, and the purely isovector one for
CC neutrino scattering.
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) response
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We can also notice a larger relevance of the weak longitudinal contributions with respect to
the electromagnetic case. Nevertheless, when computing the total MEC neutrino cross section,
the contribution of the CC and LL channels is roughly compensated by that of the negative CL

response, so that for neutrino energies below ∼ 1 GeV the net longitudinal contribution plays
a minor role in the total MEC response. This is illustrated in Fig. 4.10, where the L, T and
T ′ contributions to the 2p-2h MEC cross section are displayed versus the neutrino energy. At
higher energies the L and T ′ contributions become comparable, both being much smaller that the
dominant T one. The balance between the longitudinal and transverse 2p-2h channel discussed
above is somehow different from the one emerging in the electromagnetic case. As described in
Section 4.3, the longitudinal electromagnetic MEC response is indeed negligible with regard to the
transverse one. However, as illustrated in Fig. 4.10, we notice that when computing the total 2p-2h
MEC weak cross section the longitudinal contribution is dominated by the axial channel and thus
it plays a more relevant role compared with the purely-vector electromagnetic case. Concerning
the transverse responses, it is noticeable that the magnitude of the pure axial and vector channels
to the cross section is very similar. Moreover, the vector-axial interference contribution reaches its
maximum around Eν ∼1 GeV and decreases at higher energies as a consequence of the behavior
of the leptonic factor VT ′ and the axial form factor GA(Q2), which vanish as |Q2 | increases (see
Chapter 2 for details).
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The analysis of the evolution with q of the individual transverse components (see Fig. 4.11)
shows that the axial term is larger than the vector one at low-intermediate kinematics (q < 800
MeV/c) whereas the opposite occurs at higher kinematics. The interference vector-axial response
functions yield an intermediate result between the axial and vector responses.

The present evaluation of the 2p-2h MEC responses and their corresponding fits also have the
merit of covering a very wide q range, including the tail of the responses at high ψ′ and ω values.
In general, (e,e′) data are rarely available when ω → q and hence the high-ω region was ignored
in some prescriptions. In contrast, for CCQE reactions one must integrate over a broad neutrino
spectrum and hence, potentially, the high-ω region may be relevant. This has motivated us to
make an accurate description of the MEC contributions also for these kinematics. In Fig. 4.5, the
analysis of the RM EC

T,VV
results versus ω shows a small contribution below q < 300 MeV/c as well

as the relevance of the tail in the response at q > 800 MeV/c. On the other hand, the tail of the
MEC responses at high q (q > 1000 MeV/c) which appears at ω & 1000 MeV does not contribute
significantly to the cross section at lower kinematics, as can be deduced from Fig. 4.12. In fact, if
we neglect the tail of the MEC response in our parametrization, no significant differences emerge
except at neutrino energies above 1 GeV where the complete approach yields somewhat larger
contributions, as seen in Fig. 4.13. It can also be deduced from Fig. 4.12 that no significant MEC
contributions appear for q >2000 MeV/c, and the same is true for large ω > 1000 MeV, showing
that the kinematics where the MEC give the largest contribution to the cross section corresponds
to q ∼ 500 − 1500 MeV/c and ω ∼ 250 − 1000 MeV, as also stated in [115]. A more detailed
analysis of the relevant kinematic regions for the entire 2p-2h MEC contribution will be shown in
Chapter 7. Moreover, the comparison between the electromagnetic 2p-2h MEC calculations and
the (e,e′) data will be addressed in Chapter 6 together with the QE and inelastic contributions.

0.1 1 10
Eν (GeV)

0

0.2

0.4

0.6

0.8

1

1.2

σ ν (
1

0
-3

9
cm

2
)

MEC
MEC, q>100 MeV/c

MEC, q>250 MeV/c

MEC, q>500 MeV/c

MEC, q>1000 MeV/c

MEC, q>2000MeV/c

0.1 1 10
Eν (GeV)

0

0.2

0.4

0.6

0.8

1

1.2

σ ν (
1

0
-3

9
cm

2
)

MEC
MEC, ω>50 MeV
MEC, ω>100 MeV
MEC, ω>250 MeV
MEC, ω>500 MeV
MEC, ω>1000 MeV
MEC, ω>2000MeV

Figure 4.12: Total 2p-2h MEC νµ cross section for the TVV channel per target nucleon evaluated
excluding all contributions coming from transferred momentum (upper panel) and energy (lower
panel) below some selected values, as indicated in the figure.

The main merit of the parametrization provided here for 2p-2h MEC electromagnetic and weak
reactions on 12C is that it translates a sophisticated and computationally demanding microscopic
calculation into a smooth parametrization which depends on the values of the transfer variables
of the process, easing its implementation into Monte Carlo neutrino event simulations used in the
analysis of experiments. In the following section, we study the extension of this parametrization
to other nuclei.
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Figure 4.13: Comparison between the total 2p-2h MEC νµ cross section per target nucleon for the
TVV channel with and without considering the tail contribution in the responses.

4.5 Density dependence of 2p-2h meson-exchange currents

In this section, we analyze the density dependence of the 2p-2h MEC contributions in lepton-
nucleus interactions in order to extend the above parametrization on 12C to other nuclei. This is
connected to the growing interest in the extension to heavier nuclei, such as 16O, 40Ar, 56Fe and
208Pb, used in ongoing and future neutrino experiments. Therefore, an estimation of the density
dependence of the 2p-2h MEC responses would be extremely useful to extrapolate the results from
the current parametrization on 12C to other nuclei.

In Chapter 3, the “superscaling” behavior of the inclusive electron scattering data was analyzed
for various nuclei (see Figs. 3.2 and 3.3), showing that, below the quasielastic peak, these data were
independent on the momentum transfer (scaling of first kind) and on the mass number (scaling of
second kind). On the contrary, some scaling violation emerged for energy transfer around and
above the QE peak, mainly in the transverse channel and ascribed to reaction mechanisms differ-
ent from one-nucleon knockout, such as 2p-2h MEC contributions. This superscaling behavior
was also reproduced through the SuSAv2 scaling functions arising from the RMF theory. More
specifically, it is worth mentioning that the reduced QE cross section, i.e. the QE cross section
divided by the appropriate single-nucleon one, scales as ∼ A/kF , kF being the Fermi momentum.
This can be deduced by simple inspection of the equations described in Sections 3.2-3.4. The
Fermi momentum of most nuclei belongs to the range 200-300 MeV/c (see Table 3.1 for a detailed
comparison). In what follows we explore the density dependence of the 2p-2h nuclear responses.

Since the behavior with density of the nuclear response is not expected to depend very much on
the specific channel or on the nature of the probe, for simplicity we focus on the electromagnetic
2p-2h transverse response, which largely dominates over the longitudinal one. Our starting point
is therefore the electromagnetic transverse response for Z = N nuclei, RM EC

T
, associated with

meson-exchange currents carried by the pion and by the ∆-resonance, evaluated within the model
of [110].

In a previous work [117] based on the non-relativistic Fermi gas, it has been suggested that the
nuclear dependence of the 2p-2h MEC responses scales as Ak2

F
. Thus, in order to test this scaling



86 4. 2P-2H MEC CONTRIBUTIONS FOR ELECTROWEAK REACTIONS

rule within our relativistic approach, we remove the single-nucleon physics from the problem by
defining the following reduced response (per nucleon)

F̃ M EC
T (q,ω) ≡ 1

η2
F

RM EC
T

(q,ω)

Gee′
T

(τ)
, (4.9)

where the single-nucleon term Gee′

T
was previously defined in Section 3.2.3 and depends on the

proton (GM p) and neutron (GMn) magnetic form factors. For simplicity here we neglect in the
single-nucleon dividing factor small contributions coming from the motion of the nucleons (W ee′

2 ∆

term), where the electric form factor contributes, which depend on the Fermi momentum (see
Section 3.2.3). Note that the reduced response F̃ M EC

T
is divided by η2

F
= (kF/mN )2, together with

the single-nucleon factor Gee′
T

in the search for the Ak2
F

scaling. We can also introduce a 2p-2h
MEC scaling function, f M EC

T
, defined analogously to the transverse scaling function coming from

the one-body response,

f M EC
T (q,ω) =

RM EC
T

(q,ω)

Gee′
T

(τ)
= η2

F kF F̃ M EC
T . (4.10)

The particular case of asymmetric nuclei, Z , N requires more involved formalism and will be
addressed in future work, although preliminary studies indicate that the qualitative behavior with
kF does not change significantly unless N − Z is very large.

4.5.1 Analysis of results

In Fig. 4.14 we show the dependence on q of the above described 2p-2h MEC scaling function,
f M EC
T

, for 12C. Unlike the QE case, where the scaling functions for the RFG and RMF models
“collapse” into a single one for all q values, the MEC scaling functions depend largely on q and
spread far beyond the QE region (−1 ≤ ψ′ ≤ +1 within the RFG model). This behavior is more
pronounced for q : 400− 600 MeV/c. As q increases, the MEC scaling functions are more similar
and their maxima tend to lower ψ′ values, getting closer to the QE peak (ψ′ = 0). Furthermore,
we can also notice that at very high momentum transfers the 2p-2h MEC contributions are very
significant in the deep scaling region (large negative ψ′ values), to the extent that they may even
provide a contribution similar to the QE one at very low ω. Nevertheless, the QE and 2p-2h MEC
contributions for low ω and high q are very small. In general, the observed trend with q of the
2p-2h MEC responses is consistent with the violation of first-kind scaling exhibited by the MEC
in [111].

In Fig. 4.15 we display RM EC
T

as a function of the energy transfer ω for momentum transfers
q ranging from 200 to 2000 MeV/c and three values of the Fermi momentum kF from 200 to 300
MeV/c. Unlike the 1-body quasielastic case, it clearly appears that the 2p-2h response functions
increase with kF , i.e. with the mass number of the nuclear species. This motivates the search for
a second-kind scaling behavior in the 2p-2h MEC regime. In order to study the kF-dependence of
the responses, we fix the momentum transfer to a specific value in Fig.4.16, where we show the
response RM EC

T
for q=800 MeV/c (upper panels) and the same three values of kF used above. In

the lower panels of Fig. 4.16 we display the scaled 2p-2h MEC response, F̃ M EC
T

, as a function
of the MEC scaling variable ψ′

M EC
(q,ω, kF ) and of the quasielatic one ψ′ ≡ ψ′

QE
(q,ω, kF ). The

MEC scaling variable is defined in the Appendix C, in analogy with the usual QE scaling variable,
to adjust the maximum of the 2p-2h results at ψ′

M EC
≈ 0.
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The results show that the reduced 2p-2h response roughly scales as k2
F

when represented as a
function of ψ′

M EC
, i.e., the scaled 2p-2h MEC responses shown blend at the peak into a universal

result. This scaling law is very accurate at the peak of the 2p-2h response, while it is violated
to some extent at large negative values of the scaling variable. These effects in the “deep scal-
ing” region are reduced when considering the usual scaling variable ψ′

QE
devised for quasielastic

scattering.
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Figure 4.16: Upper panels: the 2p-2h MEC response plotted versus ω (left panel) and ψ′
QE

(right
panel) for q = 800 MeV/c and Fermi momentum kF varying between 200 and 300 MeV/c. Lower
panels: the corresponding scaled 2p-2h MEC response F̃ M EC

T
plotted versus the scaling variables

ψ′
M EC

(left panel) and ψ′
QE

(right panel).

In Fig. 4.17 the scaled 2p-2h MEC response is now plotted versus ψ′MEC for four values of q

and kF . In particular, we have considered the cases of 12C (kF = 228 MeV/c) and 40Ca (kF = 241
MeV/c). The first is clearly relevant for ongoing neutrino oscillation studies whereas the second is
a symmetric nucleus lying close to the important case of 40Ar for upcoming neutrino experiments.
Here we see that the same kF-dependence is valid for different values of q as long as Pauli blocking
is not active, namely q > 2kF . At lower q and in the deep scaling region this type of scaling is
mildly broken. In particular, this corresponds to q . 500 MeV/c and the lowest ω values. Nev-
ertheless, this is not a relevant kinematic region for the analysis of 2p-2h MEC cross sections on
neutrino reactions as shown in Fig. 4.12 ensuring an accurate extension of the 12C-parametrization
to other nuclei.

For completeness, we compare in Fig. 4.18 the scaled responses F̃ M EC
T

for different powers
of ηF for q = 1000 MeV/c, which reinforces the idea of the Ak2

F
scaling behavior observed in

Fig. 4.17 also for the same value of q. In particular, no scaling behavior is observed in terms of
AkF (left panel) even though some agreement between different kF values appears in the deep
scaling region. On the contrary, the analysis of the Ak3

F
dependence (right panel) only produces

similar results for high ψ′
M EC

values which corresponds to high energy transfers.
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Figure 4.17: The scaled 2p-2h MEC response F̃ M EC
T

plotted versus the scaling variable ψ′
M EC

for
different values of q varying from 500 to 2000 MeV/c and Fermi momentum kF between 200 and
300 MeV/c. The particular cases of 12C and 40Ca are shown.
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Figure 4.18: The scaled 2p-2h MEC response F̃ M EC
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and Fermi momentum kF varying between 200 and 300 MeV/c.
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After analyzing the k2
F

dependence of the MEC responses as well as the 1/kF dependence for
the QE regime in terms of the superscaling behavior, we can draw out some conclusions about
the relative importance of both contributions. Regarding the kF dependence for different nuclei
shown in Table 3.1, we can deduce that for lighter nuclei, where kF is changing more rapidly with
increasing A, the size of the MEC relative to the QE peak changes noticeably as A becomes larger.
As A increases toward heavier nuclei, the nuclear density saturates, causing kF to slowly approach
the nuclear matter value of kF ∼ 250 − 260 MeV/c. This implies that for heavier nuclei all con-
tributions will scale approximately as A. Therefore, while the relative MEC contribution will be
largest for heavy nuclei, it changes most rapidly when comparing cross sections for light nuclei.
This is also observed in the analysis of (e,e′) inclusive data shown in Chapter 6 for different nuclei.

4.5.2 Neutrino-Oxygen 2p-2h MEC responses

Finally, we focus on the 2p-2h MEC responses for 16O, which is relevant for recent neutrino ex-
periments [122]. In particular, in the T2K experiment the far detector may have different nuclear
targets, mineral oil and water, and it is then crucial to understand how to extrapolate the results
from one target to another.

In Fig. 4.19 we analyze the 2p-2h MEC responses for neutrino interactions on 16O compared
with 12C for two of the most relevant contributions (TVV and T ′

V A
), based on microscopic calcu-

lations by Amaro et al. [105]. As previously mentioned, the 2p-2h MEC responses are evaluated
within the RFG model in a fully relativistic framework, for which the values of the Fermi momen-
tum and energy shift used are, kF = 228 MeV/c, Eshi f t = 20 MeV for 12C and kF = 230 MeV/c,
Eshi f t = 16 MeV for 16O. The kF and Eshi f t values corresponding to 16O are consistent with the
analysis of electron scattering data, as detailed in Chapter 6.

We observe in Fig. 4.19 (upper panels) that the results for 16O are larger than the 12C ones,
which is mainly due to the different A numbers as the kF values are very similar. At the same
time, the 16O responses are slightly shifted to lower ω values with respect to the 12C ones as a
consequence of the smaller Eshi f t for oxygen. Using now the previous result that the 2p-2h MEC
contributions scale as Ak2

F
we can multiply the 12C results (which are parametrized) by the ratio

between the A numbers and the k2
F

values for both nuclei,

A(16O)k2
F

(16O)

A(12C)k2
F

(12C)
≈ 1.35 , (4.11)

in order to reproduce the 16O ones. This is presented in the lower panels of Fig. 4.19 for the TVV

and T ′
V A

channels, showing the high degree of accuracy of the scaling law for extrapolating the 2p-
2h responses from carbon to oxygen for all values of q and leading to the conclusion that the Ak2

F

dependence is also widely fulfilled by the 2p-2h weak reactions. Note also that the different energy
shifts have been corrected by shifting the carbon results 8 MeV to the left.3. Similar comments
also apply to all the remaining weak 2p-2h MEC responses. The comparison of our theoretical
prescription with 16O (e,e′) and (νµ, µ−) data will be addresed in Chapters 6 and 7.

3Although the shift difference between 12C and 16O is, ∆Eshi f t = Eshi f t (12C) − Eshi f t (16O) = 4 MeV, we have
to double this value when considering two-nucleon emission.
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Figure 4.19: 2p-2h MEC vector-vector transverse (TVV ) response and the axial-vector interference
(T ′

V A
) one. Upper panels: Comparison between the results for 12C (dots) and 16O (solid). Bottom

panels: comparison by re-scaling the 12C results with a factor 1.35 (see text). The curves are
displayed from left to right in steps of q = 200 MeV/c from q = 200 MeV/c up to 2000 MeV/c.

Summarizing, we have shown that the 2p-2h electromagnetic and weak MEC response func-
tions roughly grow as Ak2

F
for Fermi momentum varying from 200 to 300 MeV/c. This scaling

law is excellent around the MEC peak for intermediate and high values of q whereas it starts to
break down around the Pauli-blocking region (q = 2kF), where 2p-2h MEC do not contribute sig-
nificanly to the neutrino cross sections. Compared to the behavior of the 1-body response, which
scales as A/kF , the relative importance of the 2p-2h contribution grows as k3

F
. This result allows

one to get an estimate of the relevance of these contributions for a variety of nuclei, of interest
in ongoing and future neutrino scattering experiments, and should facilitate the implementation of
2p-2h effects in Monte Carlo generators.





Chapter 5

Deep Inelastic Scattering in

electron-nucleus reactions and its extension

to neutrino reactions

In this Chapter we analyze the inelastic regime for electrons and neutrinos extending the previous
SuSAv2-formalism for the QE regime to the complete inelastic spectrum – resonant, nonresonant
and deep inelastic scattering (DIS). This description is achieved in terms of the inelastic single-
nucleon structure functions for protons and neutrons whereas the nuclear medium effects are im-
plemented by means of the SuSAv2 approach.

5.1 Introduction

Nuclear effects for the case of Deep Inelastic Scattering with neutrinos have not been studied at
depth in the past. A first step is to make use of the results of DIS with electrons that can be
extremely useful for neutrino scattering. Thus, we have taken advantage of high precision mea-
surements for electromagnetic DIS on protons, deuteron and light nuclei to test our model, with
the final goal of extending it to (anti)neutrino scattering. The inelastic structure functions arising
from DIS with electrons are of interest and can be used to extend the electromagnetic descrip-
tion of the inelastic spectrum to the weak sector. Moreover, the analysis of inelastic processes on
lepton-nucleus reactions is an important tool in the study of nucleon structure. At the same time
an accurate description of neutrino inelastic cross sections at low energies is essential for precise
neutrino oscillations experiments. In the analysis that follows we assume the Impulse Approxima-
tion as already done within the QE regime, where only one nucleon interacts with the lepton. An
schematic view of the process is shown in Fig. 5.1.

Figure 5.1: Schematic view of the DIS process for electromagnetic e-p reactions.
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This interacting nucleon must be off the mass shell in order to conserve energy and momentum
in the scattering process. The mass of the final state hadronic system is no longer the proton mass,
M . The final state hadronic system must contain at least one baryon which implies the final state
invariant mass WX > M .

The inelastic structure functions for protons and neutrons are described in terms of phenomeno-
logical fits for electron-proton and electron-deuteron reactions. The extension of this formalism to
the nuclear regime is addressed by means of the superscaling functions arising from the SuSAv2
model.

5.2 General formalism for (e,e′) and (νl , l
−) DIS reactions

Following the notation employed for the kinematical description in Chapter 2, the double differ-
ential cross section for the reaction of deep inelastic scattering of a lepton from an unpolarized
nucleon in the Born approximation,

l + N → l′ + X (l = e, µ, τ) EM interaction (5.1)

νl (νl ) + N → l−(l+) + X CC weak interaction (5.2)

is given, in terms of the Bjorken variables x and y [123], by

d2σEM

dxdy
=

8Mε f πα
2

Q4

[ *,y
2x +

m2
l
y

2ε f MN

+- FeN
1 (x,Q2)

+


*,1 −

m2
l

4ε2
f

+- −
(

1 +
MN x

2ε f

)

y
 FeN

2 (x,Q2)

]
, (5.3)

d2σνl (νl )

dxdy
=

G2
F

MN Eν(ν)

π(1 +Q2/M2
W

)2

[ *,y
2x +

m2
l
y

2Eν(ν) MN

+- FνN
1 (x,Q2)

+


*,1 −

m2
l

4E2
ν(ν)

+- −
(

1 +
MN x

2Eν(ν)

)

y
 FνN

2 (x,Q2)

±
xy

(

1 − y

2

)

−
m2

l
y

4MN Eν(ν)

 FνN
3 (x,Q2)

]
, (5.4)

where FeN
i

are the inelastic structure functions associated to the EM interaction and FνN
i

are the
ones related to CC weak interactions. In the latter, the +(−) sign related to FνN

3 corresponds to the
neutrino (antineutrino) case. The x and y Bjorken variables are Lorentz invariant and are defined
as

x ≡
���Q2���

2H · Q , (5.5)

hence x = 1 corresponds to elastic scattering and 0 < x < 1 to inelastic processes, and

y ≡ H · Q
H · ki

−−−−−−−−−−−−→
in the lab. frame

y = 1 −
ε f

εi

(EM interaction) (5.6)
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y ≡ H · Q
H · kν(ν)

−−−−−−−−−−−−→
in the lab. frame

y = 1 − El

Eν(ν)
(weak interaction) , (5.7)

being εi (Eν(ν)) and ε f (El ) the initial and final lepton energies for the electromagnetic (weak)
case and y the fractional energy loss of the incoming particle (0 < y < 1). The 4-momentum
H µ
= (Eh,h) is referred to the on-shell nucleon, where Eh and h are the on-shell energy and mo-

mentum.

With the aim of expressing the nuclear responses in terms of the longitudinal and transverse
channels, the inelastic double differential cross section can also be expressed for the electromag-
netic and weak interactions as

dσEM

dΩ f dε f

=

2α2

Q4

ε f

εi

ηµνW
µν , (5.8)

dσνl (νl )

dΩl dEl

=

kl

Eν(ν)

G2
F

4π2
η̃µνW̃

µν , (5.9)

where α is the fine structure constant, η̃µν(ηµν) is the leptonic tensor for the weak (electromag-
netic) case as for the QE regime, and W̃ µν (W µν) is the inelastic hadronic tensor containing all of
the nuclear structure and dynamics information.

Within the context of the RFG model, the inelastic nuclear tensor, integrating over the Fermi
sea, can be written in the form

W µν (q,ω) =
3N

4πk3
F

∫

dEX

∫

F

dh
MN

Eh

U µν(H,Q,EX )δ(ω + Eh − EX ) , (5.10)

where N is the number of nucleons and
∫

F
dh ≡

∫

dhθ (kF − h), kF being the Fermi mo-

mentum. The symbol
∫

dEX stands for the integral over the energy of the inelastic final state

(EX =

√

p2
X
+W 2

X
), having a total momentum pX = h + q. The most general expression for the

inelastic single-nucleon hadronic tensor (U µν) can be written as:

U µν
= −

(

gµν +
κµκν

κ2

)

W1 +

(

ηµ − η · κ
κ2

κµ
) (

ην − η · κ
κ2

κν
)

W2 ∓ iεµναβηακ βW3 , (5.11)

where we have employed the dimensionless variables

κµ =
Qµ

2MN

= (λ,κ) =

(

ω

2MN

,
q

2MN

)

, τ = q2 − λ2

ηµ = (ǫ ,η) = *,
Eh

MN

,
h

MN

+- (5.12)

and Wi are related to the generic inelastic structure functions Fi as:

MNW1 = F1 ; νW2 = F2 ; xνW3 = F3 , (5.13)

where ν is a Lorentz invariant related to the energy lost by the incoming particle in the laboratory
frame,

ν =
H · Q
MN

−−−−−−−−−−−−→
in the lab. frame

ε f − εi ≡ ω . (5.14)



96 5. DEEP INELASTIC SCATTERING FORMALISM

We also define the dimensionless invariant mass as µX =
WX

MN

. So we can express (5.10) as

W µν (κ, λ) =
3N

4πη3
F

∫

dµX

∫

dη
µX

ǫǫX

U µν (η, µX ; κ, λ)δ(2λ + ǫ − ǫX )θ (ηF − η) . (5.15)

For on-shell nucleons, the structure functions Wi depend on two variables, the four-momentum
transfer Q2 and the invariant mass WX of the final state reached by the nucleon, or, equivalently,
the single-nucleon Bjorken variable

x =
|Q2 |

2H · Q =
|Q2 |

W 2
X
− M2

N
−Q2

=

τ

η · κ . (5.16)

In the formalism employed, it is necessary to introduce the inelasticity parameter ρ

ρ ≡ 1 +
1

4τ
(µ2

X − 1) , (5.17)

where ρ = 1 corresponds to elastic scattering. Note that this parameter is related to the Bjorken
scaling variable by the relation ρ = 1/x. In the following we will use ρ as argument of the inelastic
structure functions.

Coming back to the expression (5.15) and performing the polar angular integration by means
of the energy conserving δ function one gets

W µν (κ, λ) =
3N τ
2η3

F
κ

∫ 2π

0

dφ

2π

∫ ρ2(κ,λ)

ρ1(κ,λ)
dρ

∫ ǫF

ǫ0 (ρ)
dǫU µν(ǫ , θ0, ρ; κ, λ) , (5.18)

where

cos θ0 =
1
κη

(λǫ − τρ) . (5.19)

The condition | cos θ0 | ≤ 1 fixes the integration limit over ǫ ,

ǫ ≥ ǫ0(ρ) ≡ κ
√

1
τ
+ ρ2 − λρ. (5.20)

To evaluate the above integral is convenient to expand the four-vector ηµ (which is normalized to
ηµη

µ
= 1) in the basis aµ = (κ,0,0, λ), κµ = (λ,0,0, κ), t

µ
x = (0,1,0,0) and t

µ
y = (0,0,1,0),

namely

ηµ = ηk κ
µ
+ ηaaµ + ηxt

µ
x + ηyt

µ
y , (5.21)

with

ηk = η cos θ0 = −ρ , (5.22)

ηa =
1
κ

(ǫ + λρ) , (5.23)

ηx = η sin θ0 cos φ , (5.24)

ηy = η sin θ0 sin φ , (5.25)

where the hadronic tensor can be written as follows:

W µν (κ, λ) =
3N τ

2πη3
F
κ

∫ 2π

0

dφ

2π

∫ ρ2(κ,λ)

ρ1(κ,λ)
dρ

∫ ǫF

ǫ0 (ρ)
dǫ

[
−W1(τ, ρ)

(

gµν +
κµκν

κ2

)

+ W2(τ, ρ)(κµκν ρ2
+ X µν) ∓W3(τ, ρ)iεµναβηακ β

]
. (5.26)



5.2. GENERAL FORMALISM FOR (e,e′) AND (νl , l
−) DIS REACTIONS 97

Moreover, by requiring that ǫ0(ρ) ≤ ǫF and that the resonance mass WX is above the pion-
production threshold, we obtain the following limits for the integration on µX and, subsequently,
on ρ:

MN + mπ ≤ WX ≤ MN +ω − ES , (5.27)

µmin
X = 1 +

mπ

MN

, (5.28)

µmax
X = 1 + 2λ − ES

MN

, (5.29)

where ES is the separation energy, that coincides with the previously defined energy shift (Eshi f t).
Next, after integrating the tensor in Eq. (5.26) over φ and ǫ , we obtain

W
µν

inel
(κ, λ) =

3N τ
2η3

F
κ

∫ ρ2 (κ,λ)

ρ1(κ,λ)
dρ (ǫF − ǫ0) θ (ǫF − ǫ0) U µν (κ, τ, ρ) (5.30)

with

U µν (κ, τ, ρ) = −
[
W1(τ, ρ) +

1
2

W2(τ, ρ)D (κ, τ, ρ)

] (

gµν +
κµκν

τ

)

+ W2(τ, ρ)

[
1 + τρ2

+

3
2
D (κ, τ, ρ)

]
aµaν

τ

∓ W3(τ, ρ)ǫ µναβ
[(

1
2

(ǫF + ǫ0) + λρ

)
aακ β

κ
− ρκακ β

]
. (5.31)

Similarly to the QE case, we can also define an inelastic scaling variable dependent on the
value of ρ (and hence µX )

ψX ≡
1
√
ξF

λ − τρ
√

(1 + λρ)τ + κ
√

τ(τρ2
+ 1)

, (5.32)

or, equivalently,

ψ
X
≡ (λ − τρ)

√

ǫ0(ρ) − 1
ǫF − 1

. (5.33)

In the previous expression we can introduce the relation

ǫF − ǫ0 = ξF

(

1 − ψ
X

)2 (5.34)

and express the inelastic hadronic tensor as

W
µν

inel
(κ, λ) =

3N τ
2η3

F
κ
ξF

∫ ρ2(κ,λ)

ρ1(κ,λ)
dρ

(

1 − ψ2
X

)

θ
(

1 − ψ2
X

)

U µν (κ, τ, ρ) . (5.35)

Therefore, we can also estimate the different inelastic nuclear responses for electromagnetic (L
and T) and weak interactions (CC,CL,LL,T and T ′) using the following relation

RK
inel (κ, τ) =

3N τ
2η3

F
κ
ξF

∫ ρ2 (κ,λ)

ρ1(κ,λ)
dρ

(

1 − ψ2
X

)

θ
(

1 − ψ2
X

)

UK (κ, τ, ρ(ψX )) ,

(5.36)
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where, similarly to the QE regime, we can define:

U L
= UCC

= U00
=

κ2

τ

[(
1 + τρ2

)

W2(τ, ρ) −W1(τ, ρ) +W2(τ, ρ)D (κ, τ, ρ)
]

(5.37)

U LL
= U33

=

λ2

κ2
U00 (5.38)

UCL
= −1

2

(

U03
+U30

)

= −λκ
κ2

U00 (5.39)

UT
= U11

+U22
= 2W1(τ, ρ) +W2(τ, ρ)D (κ, τ, ρ) (5.40)

UT ′
= − i

2

(

U12 −U21
)

= ±τ
κ

[
1
2

(ǫF + ǫ0) + λρ

]
W3(τ, ρ) , (5.41)

where D is defined as:

D (κ, τ, ρ) =
1

ǫF − ǫ0(ρ)

∫ ǫF

ǫ0(ρ)
dǫ

∫ 2π

0

dΦ

2π
(

η × κ̂)2

=

τ

κ2

{

1
3

[
ǫ2

F + ǫFǫ0(ρ) + ǫ0(ρ)2
]
+ λ

[

ǫF + ǫ0(ρ)
]

+ λ2
}

− (1 + τ)

+ (ρ − 1)
τ

κ2

{

λ
[

ǫF + ǫ0(ρ)
] − τ(ρ + 1)

}

= ξF

(

1 − ψ2
X

)
[
1 + ξFψ

2
X −

λ

κ
ψX

√

ξF

(

2 + ξFψ
2
X

)

+

τ

3κ2
ξF

(

1 − ψ2
X

)
]
.

(5.42)

As previously discussed, and for a fixed value of the invariant mass µX , the RFG yields a
scaling function

f RFG (ψ′X ) = f RFG
L (ψ′X ) = f RFG

T (ψ′X ) =
3
4

(1 − ψ′2X )θ (1 − ψ′2X ) . (5.43)

where ψ′
X

also contains the corresponding energy shift, Eshi f t , as for the QE regime,

ψ′X ≡
1
√
ξF

λ′ − τ′ρ′
√

(1 + λ′ρ′)τ′ + κ
√

τ′(τ′ρ′2 + 1)
, (5.44)

with ρ′ defined as

ρ′ ≡ 2H · Q��Q2�� = 1 +
1

4τ′
(

µ′X
2 − 1

)

; µ′X =
W ′

X

MN

=

1
MN

(

ω′ + Eh

)2 − p2
X . (5.45)

Then, we can indentify in Eq. (5.36), the term which englobes all the nuclear dependence of the
interaction, f RFG, and replace it by the one arising from the SuSA or SuSAv2 models ( f model), in
a similar way as done for the QE regime in Chapter 3. Therefore, we calculate the inelastic nuclear
responses for each specific model (RFG, SuSA or SuSAv2) as

RK
inel (κ, τ) =

N
η3

F
κ
ξF

∫ µmax
X

µmin
X

dµX µX f model (ψ′X )UK . (5.46)

The previous formalism allows for a complete description of the inelastic cross sections on
lepton-nucleus interactions where the nuclear effects are included by means of the SuSAv2 model.
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The procedure is similar to that applied for the QE regime (see Chapter 3), keeping the same func-
tional form for the RMF and RPWIA scaling functions (3.89) but using a different scaling variable
(ψ′

X
) and a different q0 transition parameter for the blending function (3.91). The specific details

about the application of the SuSAv2 model for the inelastic spectrum as well as the estimation of
the q0 transition parameter between the RMF and RPWIA prescriptions for both quasielastic and
inelastic regimes will be presented in Chapter 6, where a detailed analysis of the existing (e,e′)
data and the 2p-2h MEC contributions is also provided.

5.3 Inelastic structure functions

In this Section, the properties of single-nucleon inelastic structure functions for protons and neu-
trons are analyzed. The specific details about the existing parametrizations and empirical models
are detailed in Section 5.4.

As defined in Section 5.2, the inelastic structure functions F1,F2 and F3 depend on two vari-
ables Q2 and x, or, equivalently, τ and ρ. To determine these inelastic functions for given Q2 and x,
measurements of the differential cross section at different scattering angles and incoming electron
beam energies are needed. This will help in obtaining phenomenological fits of the single-nucleon
inelastic structure functions for protons and neutrons. Specific information on the proton inelastic
form factors can be obtained from the analysis of electron-proton (ep) and electron-deuteron (eD)
scattering processes. On the contrary, the neutron case is much harder as no spedific electron-
neutron (en) processes are available. Thus, information on neutron inelastic form factors relies
directly on the joint analysis of the two scattering processes mentioned above, namely, ep and eD.
Experimentally it is observed that both F1 and F2 are almost independent of Q2 in the limit of high
Q2 and ν. This is known as Bjorken x-scaling [123]

F1,2(x,Q2) → F1,2(x) . (5.47)

Under the previous kinematical conditions, a relationship between F1 and F2 is given by the Callan-
Gross relation [124]

F2(x) = 2xF1(x) , (5.48)

originally based on the parton model. Some violation effects on the Callan-Gross relation are re-
lated to second order QCD corrections [125, 126], which appear at x approaching zero, i.e. in the
highly deep-inelastic region, as well as to mesonic contributions in the nuclear medium. The vio-
lation due to mesonic and other nuclear effects are shown to be noticeable only in the region of low
x and Q2 [127] where the inelastic structure functions are very reduced. Violation of Callan-Gross
relation in nuclei is of current interest in ongoing experiments at JLab [128, 129], where the mea-
surements of F1 and F2 on nuclear targets will provide important information on this subject [130].
Both the Bjorken Scaling and the Callan-Gross relationship can be explained assuming that DIS is
dominated by the scattering of a single virtual photon (boson) from a point-like quark within the
proton (see Fig. 5.2).

At very high kinematics where nucleon resonance structures are not substantially relevant, the
parton distribution functions arising from pQCD (perturbative QCD) provide a proper representa-
tion of the inelastic structure functions. The range of validity of this approach will be discussed in
Section 5.4.4.
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Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)

F3 = xνW3 = Q − Q (5.50)

and, hence,

xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
by

FeN
2 =

1
2

(

F
ep

2 + Fen
2

)

=

5x

18

(

u + u + d + d
)

+

x

9
(s + s) , (5.52)

where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2

structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,

FeN
2 ≈ 5x

18

(

u + u + d + d
)

≈ 5
18

FνN
2 . (5.54)

Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.
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5.4 Parametrization of the inelastic structure functions

In this section, we analyze two different parametrizations of the inelastic structure functions and
a Parton Distribution Function (PDF) model, showing their capability to reproduce (e,e′) data at
intermediate kinematics for the inelastic regime.

5.4.1 Bodek-Ritchie parametrization

This approach is based on phenomenological fits of the single-nucleon inelastic structure func-
tions W1 and W2 for ep and en, being the latter extracted from deuteron data. The Bodek-Ritchie
parametrization is a general fit of Refs. [133, 134, 140, 141], which describes both the deep in-
elastic and resonance regions, covering the entire inelastic spectrum. The parametrization fits the
SLAC data published in [140], covering a |Q2 | range from 0.1 to 30 GeV2, and including scaling
violations in terms of a modified scaling variable ωw. The structure function W2 is described by

νW
ep(en)
2 (ν,Q2) = B(WX ,Q

2)g(ωw)ωw/ω , (5.55)

g(ωw) =
7∑

n=3

Cn(1 − 1/ωw)n , (5.56)

ωw =

2MNν + a2

Q2
+ b2

. (5.57)

The modulating function B(WX ,Q) contains 12 parameters representing the masses, widths, and
amplitudes of the cross section for electroproduction of the four most prominent nucleon reso-
nances, and eight parameters representing the WX dependence of the low-WX nonresonant con-
tribution and single-pion production threshold. The modulating function is close to unity in the
deep-inelastic region (WX > 2 GeV). The rest of parameters are defined in [133] where a and b

are the same for proton (W ep

2 ) and neutron (W en
2 ) and the Cn coefficients are different for protons

and neutrons. The W
ep

1 and W en
1 structure functions can be deduced from the Callan-Gross rela-

tion (5.48). The W3 functions, related to V A interference, are obtained using the relation (5.51)
with the antiquark distribution, Q, given by

Q (x,Q2) =
1
2

(

1 − 1
ωw

)7

B(WX ,Q
2)g(0)

ωw

ω
. (5.58)

The different Wi functions for protons and neutrons within the Bodek-Ritchie parametrization will
be shown in 5.4.4 in comparison with other parametrizations.

5.4.2 Bosted-Christy parametrization

Although the Bodek-Ritchie [133] parametrization has been widely used for the analysis of the
highly-inelastic scattering region [142], in recent years new studies, both theoretical and exper-
imental, of the nucleon structure functions in the resonance region have been performed, indi-
cating the need for more sophisticated parametrizations. The kinematical region where nucleon
resonances contribute is essential for the analysis of (e,e′) data and pion production results from
inclusive neutrino measurements. Therefore, it is more convenient to employ more actual expres-
sions for W

ep(en)
1,2 . In this sense, the Bosted-Christy (B-C) parametrization for the proton [143] and

neutron [144] structure functions seems to reproduce better the electromagnetic behavior in the
resonance region.
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This approach is based on an empirical fit to describe the measurements of inclusive inelastic
electron-proton and electron-deuteron cross sections in the kinematic range of four-momentum
transfer 0 ≤ |Q2 | < 8 GeV2 and final state invariant mass 1.1 < WX < 3.1 GeV, thus starting
roughly from the pion production region to the highly-inelastic region. The fit is constrained by
the high precision longitudinal and transverse (L/T) separated cross section measurements from
JLab Hall C [145].

Compared to previous fits, it covers a wider kinematic range, fits both transverse and longitu-
dinal cross sections, and features smooth transitions to the photoproduction data at Q2

= 0 and
DIS data at high |Q2 | and WX . At the same time, it provides an excellent description of the reso-
nant structures seen in inclusive (e,e′) cross sections. As it will be shown in 5.4.4, its agreement
with data in the region of the ∆-peak within the SuSAv2 model is better than using the previous
Bodek-Ritchie parametrization.

5.4.3 PDF model: GRV98

The Glück-Reya-Vogt GRV98 model [146] employs effective leading order (LO) Parton Distribu-
tion Functions for quarks and antiquarks to get the inelastic structure functions F1,F2 and F3. In
this thesis, we use a recent update [147] designed for both inelastic neutrino- and electron-nucleon
scattering cross sections. The model describes existing inelastic neutrino-nucleon scattering mea-
surements and has been developed to analyze neutrino oscillation experiments in the few GeV
region. The PDFs are extracted from global fits to various sets of deep inelastic scattering data at
high energies and high |Q2 |, where non-perturbative QCD effects are negligible. These effects are
relevant for lower kinematic regions. In this sense, an scaling variable (ξw (x,Q2)) is employed
to construct effective LO PDFs that account for the contributions from target mass corrections,
non-perturbative QCD effects, and higher order QCD terms. The non-perturbative effects from
spectator quarks are required to be considered for |Q2 | < 1 GeV2. These corrections together
with effects from low energy scattering data are parametrized and included in the description.
This model also accounts for nucleonic resonances and includes photoproducion data above the
∆(1232).

In general, the model gives a reasonable average cross section in the resonance region and
beyond as shown in [147] but it seems to be inadequate to describe inelastic (e,e′) data at low-
intermediate kinematics, below |Q2 | < 1 GeV2. Regarding this, we show in Section 5.4.4 that
the GRV98 prescription only matches the empirical Bosted-Christy and Bodek-Ritchie structure
functions, based on fits of electron scattering data, at |Q2 | & 5 GeV2.

5.4.4 Comparison of the different parametrizations

Next, we present a comparison of the different parametrizations for the single-nucleon inelastic
structure functions described above, also confronting them with (e,e′) experimental data in the
inelastic regime.

The electromagnetic inelastic structure functions for protons and neutrons W
ep(en)
1,2 are dis-

played versus the Bjorken scaling variable x in Figure 5.3. The comparison is carried out for the
Bodek-Ritchie and Bosted-Christy parametrizations as well as for the GRV98 PDFs prescription
from low to high-Q2 values. As observed, the GRV98 PDFs produces an average of the inelas-
tic structure functions through the parton distribution functions whereas the Bodek-Ritchie and
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Bosted-Christy parametrizations, based on phenomenological fits of the structure functions, repro-
duce in a more realistic way the resonance structures observed in ep and ed reactions.

The three models appear to be similar at |Q2 | above 5 GeV2 for low x values where DIS pro-
cesses dominate whereas some minor differences appear as x gets closer to 1, i.e., where resonance
effects are more significant. On the contrary, the differences among these parametrizations increase
when moving to lower |Q2 | values where resonant contributions are more relevant in the entire x

range, even at low x values. Indeed, at |Q2 | = 1 GeV2, the GRV98 is roughly an average of the
empirical Bodek-Ritchie and Bosted-Christy fits but does not reproduce the resonant structures at
all. The comparison at the lowest |Q2 | values produces the most diverging picture between the
empirical fits and the GRV98 PDFs model. Therefore, its applicability at energies of relevance for
current neutrino experiments is rather questionable.

Focusing on the empirical fits, we can observe small differences between the proton structure
functions W

ep

1,2 for the Bodek-Ritchie and Bosted-Christy parametrizations (see Fig. 5.3), being the

latter a bit larger at low |Q2 | and high x. Concerning the neutron structure functions, W en
1,2, they

are significantly greater at lower |Q2 | and large x for the Bosted-Christy fit. Although, in general,
the neutron structure functions remain below the proton ones, the opposite occurs for the Bosted-
Christy parametrization at the lowest |Q2 | values. All these differences between both parametriza-
tions may be due to the more accurate analysis of the resonances included in the Bosted-Christy fit
as well as to the different procedures to disentangle the neutron structure functions from the proton
and deuteron ones.

Similar comments also apply to Fig. 5.4, where the sum of proton and neutron contributions
are shown for FeN

2 and FeN
3 within the Bosted-Christy and Bodek-Ritchie fits. The antiquark dis-

tribution (Q) obtained through the procedure described in Section 5.4.1 (see also Ref. [133]), is
also displayed. As can be noticed, the antiquark distribution is more relevant at |Q2 |<1 GeV2 and
low x values, thus implying that the main differences between the F3 and F2 functions appear at
these kinematics. In Fig. 5.4, the ω dependence with x is also displayed, showing how ω increases
as x tends to lower values. Regarding the Bosted-Christy approach, some divergences appear at
very low x for higher |Q2 | values. Nevertheless, they correspond to the highly-inelastic regime and
extremely high ω, which, in general, corresponds to kinematically forbidden regions.

The comparison of the three parametrizations with (e,e′) data is shown in Fig. 5.5 for two rep-
resentative cases at intermediate kinematics where the QE and ∆ peaks are easily recognizable. At
the beginning of the highly-inelastic region, i.e. large ω values, where inelastic structure functions
are more similar (see Fig. 5.3), the three models tend to be closer. It can be also noticed that the
GRV98 PDFs overstimate the experimental data in the ∆-resonance region. At the same time, its
contribution in the “dip” region between the QE and the ∆ peaks is too large in such a way that
the total result, after considering QE and 2p-2h MEC contributions, would clearly overestimate the
data. On the contrary, the Bodek-Ritchie parametrization underestimates the ∆ region as well as
the beginning of the highly-inelastic regime which may be in connection with its poorer description
of the resonance structures with respect to the Bosted-Christy one. As commented for Figs. 5.3
and 5.4, the larger Bosted-Christy structure functions result here in an increased inelastic cross
section. At the same time, the accurate inclusion of resonances in this parametrization allows for
a better description of the (e,e′) data in the ∆-peak region without contributing remarkably to the
“dip” region. As can be deduced from Fig. 5.4, the differences between the empirical fits decrease
as going deeper into the inelastic regime, i.e., larger ω values.
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Therefore, on the basis of the previous analysis, the Bosted-Christy parametrization emerges as
the most appropriate approach for the analysis of the inelastic regime. In this sense, the reference
inelastic structure functions Fi to be employed in our theoretical description are shown in Fig. 5.6.
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Chapter 6

Analysis of inclusive electron scattering

within the SuSAv2-MEC model

Although the focus in this PhD thesis concerns the study of CC neutrno-nucleus scattering pro-
cesses, it is essential first to test our theoretical predictions against the available inclusive electron
scattering data. This was already shown in Chapter 3 but restricting ourselves to the pure QE
regime. In this chapter the SuSAv2 model is extended to include the complete inelastic spectrum
— resonant, nonresonant and deep inelastic scattering — described in Chapter 5. We also consider
the impact of 2p-2h meson-exchange currents following the procedure detailed in Chapter 4. The
predictions of the full SuSAv2-MEC model are first compared with the existing inclusive 12C(e,e′)
data and later also applied to other nuclei. The capability of the model to describe electron scatter-
ing data with accuracy gives us confidence in its subsequent extension, and validity, when applied
to recent neutrino oscillation experiments. This subject will be addressed in Chapter ??.

6.1 SuSAv2 model for quasielastic and inelastic regimes

In Chapter 3 a very detailed description of the SuSAv2 model was given, that, as known, incor-
porates the predictions from the RMF theory and a transition to the RPWIA model at high values
of the momentum transfer. This transition between both RMF and RPWIA regimes is governed
by a blending function whose explicit expression is also given in Chapter 3 (see Eqs. 3.89—3.91
for details). Here our interest is to extend the SuSAv2 model to the inelastic regime so its pre-
dictions can be compared with data covering the entire energy spectrum. This requires to have a
good control of the transition parameters (q0,ω0) that determine the relative strength of the RMF
and RPWIA responses, and how the transition between them evolves as the transfer momentum
varies. Accordingly, the transition parameter, q0, is expected to increase with q in such a way
that the RMF contribution will be dominant at low kinematics whereas the RPWIA one starts to
be relevant at higher energies. Therefore we introduce a dependence of the parameter q0 on the
momentum transfer q that determines the relative RMF and RPWIA contributions at different kine-
matics. Moreover, this transition occurs in a region of width ω0, which is fixed at 200 MeV.

The particular procedure to determine the q0-behavior with q is in accordance to the best fit to
a large amount of (e,e′) experimental data on 12C in a wide kinematical region, covering from low
to high q-values (q: 239 − 3432 MeV/c). For this analysis, 12C is employed as target reference
due to the ample variety of existing data for electron scattering as well as its relevance for neu-
trino oscillation experiments. The method applied to determine the RMF/RPWIA transition in the
SuSAv2 model in both QE and inelastic regimes is based on a reduced-χ2 analysis of the data sets.

107



1086. ANALYSIS OF INCLUSIVE ELECTRON SCATTERING WITHIN THE SUSAV2-MEC MODEL

As previously mentioned, the transition parameter, q0, must exhibit a dependence on the par-
ticular kinematics involved in such a way that at higher energies, which imply higher momentum
transfers, the RPWIA contribution is more relevant than the RMF one, whereas the opposite occurs
at lower energies. With these assumptions, we perform a χ2 analysis of the electron-nucleus exper-
imental data which is first focused on the QE region (qQE

0 ) and after that extended to the inelastic
domain (qinel

0 ). In the whole analysis we take into account the so-called “SuSAv2-MEC” model
for both QE and inelastic regimes as well as the 2p-2h MEC calculations. After analyzing the ex-
perimental data set, we get the q

QE

0 and qinel
0 parameters as functions of q. Figure 6.1 illustrates the

behavior of both parameters, q
QE

0 (top and middle panels) and qinel
0 (bottom). The data points and

their error bands represent the values of the parameters that best fit the data at different kinematics
(within a ∼ 20% in the χ2 minimum). Each data point is referred to a particular set of data for a
fixed incident energy (Ei) and scattering angle (θe) and is characterized in terms of the respective
momentum transfer at the QE peak (qQE) and an averaged value of q in the inelastic region. As
shown, q

QE

0 increases moderately with q at low to intermediate values whereas the slope goes up
significantly at higher kinematics (q & 700 MeV/c). This implies that the RMF contribution, even
being reduced at these high kinematics, is still necessary to describe data satisfactorily.

This suggests the following parametrization:

q
QE

0 (q) =

{

A + Bq, q < q1

C + Dq, q > q1
(6.1)

with q1 = 700 MeV/c, A = 377.629 MeV/c, B = 0.407, C = −5.322 MeV/c and D = 0.968.
Imposing continuity of the above function we are left with three free parameters, A,B and C.

A similar parametrization is found for qinel
0 (q), but in this case only one linear function is used

for the whole region of q explored,

qinel
0 (q) = A′ + B′q (6.2)

with A′ = 494.439 MeV/c and B′ = 0.706.

Finally, it is also worth mentioning that an even better agreement with the (e,e′) data could be
achieved by employing a non-linear fit of the q0 parameters as well as including a dependence on
the incident energy (Ei) or the scattering angle (θe) in the transition parameters (q0,ω0); however,
the simpler assumptions made in this work are felt to be adequate for our purposes.

6.2 Analysis of (e,e′) experimental data

In this section we present the SuSAv2-MEC results for 12C(e,e′) cross sections. We adopt the
Bosted and Christy parametrization for the single-nucleon inelastic structure functions [143, 144]
which describes DIS, resonant and non-resonant regions as detailed in Chapter 5. For the QE
regime, we employ the electromagnetic form factors of the extended Gari-Krumpelmann (GKex)
model [148–150] which improves the commonly used Galster parametrization for |Q2 | > 1 GeV2

(see Chapter 2 for details). The sensitivity of the QE results to the different parametrizations of the
nucleon form factors has been discussed in [19] and it will be addressed in Chapter 7. Additionally,
for the Fermi momentum we employ the values shown in Table 3.1, namely kF = 228 MeV/c for
12C.
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6.2.1 Experimental (e,e′) cross sections on 12C

In this section we present the double differential inclusive 12C(e,e′) cross section versus the en-
ergy transferred to the nucleus (ω), confronting our predictions with the available experimental
data [100, 101]. Results are shown in Figs. 6.2, 6.3 and 6.4: in each panel we show the three sepa-
rate contributions to the inclusive cross section, namely, QE, 2p-2h MEC and inelastic.

The comparisons are carried out for a very wide range of kinematics from low-intermediate
energies to the highly-inelastic regime. Each panel corresponds to fixed values of the incident
electron energy (Ei) and the scattering angle (θe): Ei : 280 − 4045 MeV and θe : 12o − 145o. To
make it easier to discuss the results to follow, the ordering of the panels has been done according
to the corresponding value for the momentum transfer at the quasielastic peak, denoted as qQE .
This gives us the value of q where the maximum in the QE peak appears. However, it is impor-
tant to point out that as ω varies, q also varies. This is of relevance to estimate the value of the
RMF/RPWIA transition parameter q0 in both regimes, QE and inelastic. Hence we also include in
each panel a curve that shows how the momentum transfer changes with ω. Results illustrate that
at very forward angles the value of q increases with the energy transfer, whereas this trend tends
to reverse at backward angles. Thus for electrons scattered backwards, the q-values correspond-
ing to the inelastic process are smaller than those ascribed to the QE regime. However, in this
situation the cross section is clearly dominated by the QE peak. On the contrary, at very forward
kinematics the inelastic process takes place at larger values of q. Thus, the two regimes, QE and
inelastic, overlap strongly, the inelastic processes being the main ones responsible for the large
cross sections observed at increasing values of ω. Finally, for intermediate scattering angles the
behavior of q exhibits a region where it decreases (QE-dominated process), whereas for higher ω
(inelastic regime) the behavior of q reverses and starts to go up. In these situations the QE peak,
although significantly overlapped with the inelastic contributions, is clearly visible even for very
high electron energies.

The systematic analysis presented in Figs. 6.2, 6.3 and 6.4 demonstrates that the present SuSAv2-
MEC model provides a very successful description of the whole set of (e,e′) data, validating the
reliability of our predictions. The positions, widths and heights of the QE peak are nicely repro-
duced by the model taking into account not only the QE domain but also the contributions given
by the 2p-2h MEC terms (around ∼ 10 − 15%). Only at very particular kinematics, i.e., θe = 145o

and Ei = 320 (360) MeV (Fig. 6.3) and 440 MeV (Fig. 6.4), does the model clearly underpredict
data at the QE peak as also observed in [151]. However, notice that the dip region is successfully
reproduced by the theory. Moreover, the remaining kinematics corresponding to very backward
angles, Ei = 560 MeV, θe = 145o (Fig. 6.4), is well described by the model with a very high
tail ascribed to the inelastic processes. Another kinematical situation whose discussion can be of
interest concerns the scattering angle θe = 37.5o. Four cases are shown, one in Fig. 6.3 and three
in Fig. 6.4. As noted, the model does very well for the lower values of qQE starting to depart from
data as qQE goes up. Note that this is the case at qQE = 792 MeV/c and, particularly, at qQE = 917
MeV/c where the theoretical predictions overestimate data by 5% and 10%, respectively, at the
QE peak as well as in the dip region where the QE and inelastic contributions overlap and 2p-2h
MEC are sizeable. This overestimation of cross section occurs only for the set of data of [152],
while a good agreement is observed at similar scattering angles, but for lower momentum trans-
fers, namely, qQE = 402.5 MeV/c (Fig. 6.2) and qQE = 443 MeV/c (Fig. 6.3), which correspond
to different experimental setups.
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Figure 6.2: Comparison of inclusive 12C(e,e’) cross sections and predictions of the QE-SuSAv2
model (long-dashed red line), 2p-2h MEC model (dot-dashed brown line) and inelastic-SuSAv2
model (long dot-dashed orange line). The sum of the three contributions is represented with a solid
blue line. The q-dependence with ω is also shown (short-dashed black line). The y-axis on the
left represents d2σ/dΩ/dω in nb/GeV/sr, whereas the one on the right represents the q value in
GeV/c.
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Figure 6.3: As for Fig. 6.2, but now for kinematics corresponding to higher qQE-values.
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Figure 6.4: As for Fig. 6.2, but now for kinematics corresponding to the highest qQE-values
considered.
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Some comments concerning the “dip” region between the QE and the ∆ peaks are also in order.
This is the region where the QE and the inelastic contributions overlap the most and where FSI
effects that modify in a significant way the tail of the QE curve at large ω-values can introduce an
important impact. Moreover, the role of the 2p-2h MEC effects is essential because its maximum
contribution occurs in this region. Thus, only a realistic calculation of these ingredients beyond
the IA can describe successfully the behavior of the cross section.

To conclude, the accordance between theory and data in the inelastic regime, where a wide
variety of effects are taken into account, also gives us a great confidence in the reliability of our
calculations. The inelastic part of the cross section is dominated by the ∆-peak that mainly con-
tributes to the transverse response function. At low electron scattering angles the longitudinal QE
response function dominates the cross section and the inelastic contribution is smaller (as will be
shown in Section 6.2.4). The opposite holds at large scattering angles, where the ∆-peak contribu-
tion is important. On the other hand, for increasing values of the transferred momentum the peaks
corresponding to the ∆ and QE domains become closer, and their overlap increases significantly.
This general behaviour is clearly shown by our predictions compared with data. In those kine-
matical situations where inelastic processes are expected to be important, our results for the QE
peak are clearly below the data which is compensated by the larger inelastic contribution. On the
contrary, when the inelastic contributions are expected to be small, the QE theoretical predictions
get closer to data. Note also the excellent agreement in some situations (bottom panels on Fig. 6.4)
even being aware of the limitations and particular difficulties in order to obtain phenomenological
fits of the inelastic structure functions, and the reduced cross sections at these kinematics.

6.2.2 Sensitivity of the model

It is important to point out the novelties introduced in this PhD thesis compared with some previ-
ous studies. With regards to the original “SuSA” results shown in [84], that were based only on the
superscaling function extracted from the analysis of the longitudinal (e,e′) data and assuming the
transverse function to be equal (scaling of zeroth kind), in the SuSAv2 approach the enhancement
in the transverse channel introduced by the RMF model is incorporated. Moreover, the role of
FSI is carefully examined by making use of the evolution of the scaling function from the RMF
responses to the RPWIA ones as the momentum transfer goes up. This explains why the present
analysis provides a much more accurate description of the data. Notice that the SuSAv2 model
makes both QE and inelastic results higher than the SuSA ones. A similar outcome can be also ob-
served in Sections 3.5.2 and 3.5.1 (see also [153]) where the study was restricted to the QE region
and a fixed value of q0 that can be appropriate for the specific kinematics considered was used. On
the contrary, here the aim is to provide a model capable of reproducing (e,e′) cross sections for
a very wide selection of kinematics and including in each case the whole energy spectrum. This
is consistent with the q-dependence shown by q0 in both regimes, QE and inelastic. We have also
tested the sensitivity of our results to different choices in the values of ω0, q0 and Eshi f t for two
representative kinematical situations (see Fig. 6.5).

Concerning the ω0 parameter, a variation of ±100 MeV leads to negligible effects, hence the
value of χ2 is basically the same (upper panels in Fig. 6.5). In the case of q0 and Eshi f t , variations
of the order of ±100 MeV/c (in q0) and ±5 MeV (Eshi f t) lead to differences within ∼ 20% on χ2,
but still providing a very good representation of the data (see results presented in the middle and
bottom panels of Fig. 6.5). Note however that q0 is a dynamical parameter running with q, whereas
the value of Eshi f t is determined by the right location of the maxima in the scaling functions. Hence
a significant variation of these three values does not imply a worsening in the agreement with data.
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Figure 6.5: Comparison of inclusive 12C(e,e′) cross sections and predictions of the QE-SuSAv2
model (long-dashed red line), 2p-2h MEC model (dot-dashed brown line) and inelastic-SuSAv2
model (long dot-dashed orange line). The sum of the three contributions is represented with a
solid blue line. It is also shown the total contribution by shifting ω0 (top panels), q0 (middle
panels) and Eshi f t (bottom panels). The y-axis represents d2σ/dΩ/dω in nb/GeV/sr, whereas the
x-axis represents ω in GeV.
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6.2.3 Relevance of the RMF/RPWIA effects

Next, we discuss the relevance of the RMF and RPWIA approaches in the SuSAv2 model. Whereas
the RMF provides an excellent description of the experimental longitudinal scaling function ex-
tracted from data taken at intermediate q-values, producing the required asymmetry and the en-
hancement of the transverse response, the RPWIA approach yields much more suitable results at
higher values of the momentum transfer where FSI effects are significantly reduced. In Fig. 6.6
we present the cross sections for a set of kinematical situations showing the isolated contributions
emerging from the two models in the case of the QE regime. Notice that we consider the effects
introduced by the blending function and the q0 parameters in the RMF and RPWIA results. The
percentage of the two contributions is given in each panel. As shown, for those kinematics that
correspond to the lower values of qQE (top panels) the RMF response contributes the most. As qQE

increases, the RPWIA contribution becomes relatively more important, approaching the RMF one
(see panels in the middle). Finally, for the higher qQE-values (bottom panels) the behavior reverses
with the RPWIA result being the main one responsible for the QE response.
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Figure 6.6: Comparison of RMF and RPWIA contributions in the QE regime. Also shown for ref-
erence the predictions of the total QE-SuSAv2 model (long-dashed red line) and the total inclusive
contribution (solid blue line). The y-axis represents d2σ/dΩ/dω in nb/GeV/sr.

To make clearer how both RMF and RPWIA approaches contribute within the SuSAv2 model,
in Fig. 6.7 we present the specific percentages ascribed to the two contributions and how they
vary with qQE . The main variation in the two cases is produced in the region of intermediate
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qQE-values, namely, 250 . qQE . 700 MeV/c. Here, the relative RMF contribution quickly
diminishes as qQE increases whereas the opposite occurs for the RPWIA. Note that at qQE ∼ 700
MeV/c both models produce basically the same answer (∼ 50%) crossing each other, whereas for
qQE . 500 MeV/c RPWIA gives a very minor contribution, that is, FSI are essential to describe
data at these kinematics. Finally, at higher qQE the RPWIA increases slowly, whereas the RMF
decreases, although in both cases some kind of saturation seems to emerge approaching the RPWIA
percentage to ∼ 60 − 70% (∼ 30 − 40% for the RMF). Although not presented here for simplicity,
similar conclusions arise for the RMF and RPWIA contributions in the inelastic regime.
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Figure 6.7: Comparison of percentages corresponding to the RMF and RPWIA contributions in
the QE regime as a function of qQE .

6.2.4 Separate L/T analysis

The separate analysis of the longitudinal and transverse response functions of 12C is presented in
Fig. 6.8. We compare our predictions with data taken from Jourdan [82] based on a Rosenbluth
separation of the (e,e′) world data. In each case we isolate the contributions corresponding to the
QE, inelastic and 2p-2h MEC sectors. Three kinematical situations corresponding to fixed values
of the momentum transfer have been considered in Fig. 6.8: q = 300 MeV/c (top panel), 380
MeV/c (middle) and 570 MeV/c (bottom). As observed, the longitudinal channel is totally domi-
nated by the QE contribution. Only at very large values of ω does the inelastic process enter giving
rise to a minor response, whereas the effects due to 2p-2h MEC are negligible. This result is in ac-
cordance with previous work [82, 93, 151, 154], and it clearly shows that the longitudinal response
is basically due to the IA. On the contrary, the transverse sector shows an important sensitivity to
MEC and inelastic processes. Note that the inelastic transverse response gives rise to the high tail
shown by data at large ω-values, whereas the 2p-2h MEC can modify significantly the transverse
response in the dip region as well as in the maximum of the QE peak. It is also worth mentioning
that the natural enhancement in the transverse response arising from the RMF model is necessary
in order to reproduce the separate L/T data, rejecting the idea of 0-th kind scaling.
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Figure 6.8: Analysis of the longitudinal (solid lines) and transverse responses (dashed lines) in
(e,e′) scaterring at q = 300 MeV/c (top panel), q = 380 MeV/c (middle panel) and q = 570
MeV/c (bottom panel). QE, MEC and inelastic contributions are shown, respectively, as green,
blue and orange lines. The total response is shown by the black lines. Data taken from [82].
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From results in Fig. 6.8 we observe that the model leads to a reasonable agreement with data in
both channels, although some discrepancies also emerge. Notice that the longitudinal prediction
at q = 300 MeV/c (q = 380 MeV/c) overstimates data by ∼ 12% (∼ 15%). It is important to
point out that SuSAv2 is based on the existence of the scaling phenomenon for (e,e′) data, and
this is completely fulfilled when the value of q is large enough (q ≥ 400 MeV/c). Therefore,
the extension of the superscaling approach to low q-values is not well established even though a
good agreement at low kinematics has been achieved in the previous section. Furthermore, the
minor discrepancies observed may also be due to the specific Rosenbluth separation method used
in [82], which introduces some level of model dependence through y-scaling assumptions and the
treatment of radiative corrections.

6.3 Extension of the SuSAv2-MEC model to other nuclei

Once analyzed the capability of the SuSAv2 model to reproduce the 12C(e,e′) data, we extend the
previous formalism to the analysis of electron scattering data on other nuclei. For this purpose, no
differences in the scaling functions are assumed for the different nuclei except for the values used
for the Fermi momentum and energy shift (see Table 3.1 for details). The use of the same scaling
functions for different nuclear systems is consistent with the property of scaling of second type,
i.e, independence of the scaling function with the nucleus, and it also follows from the theoretical
predictions provided by the RMF and RPWIA models on which SuSAv2 relies. This has been
studied in detail in previous works (see [32, 86–88, 155]) where the electromagnetic and weak
scaling functions evaluated with the RMF and RPWIA approaches have been compared for 12C,
16O and 40Ca. In Figure 6.9 we compare the general RMF scaling functions for these nuclei, which
exhibit no remarkable differences in terms of the nuclear species. In this sense, we apply the
reference scaling functions for 12C to the analysis of QE and inelastic regimes in other nuclei. The
extension of the 2p-2h MEC contributions to other targets was previously described in Section 4.5.
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Figure 6.9: Analysis of second kind scaling within the RMF model for 12C, 16O and 40Ca.

In the case of 16O, the kF and Eshi f t-values selected (kF = 230 MeV/c, Eshi f t = 16 MeV/c) are
also consistent with the general trend observed in [37], i.e., an increase of the Fermi momentum
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with the nuclear density. This is at variance with some previous works [85–87, 91] where 16O was
described by using kF = 216 MeV/c and Eshi f t = 25 MeV. Although both sets of values lead to
small differences in the cross sections, the present choice does provide a more consistent analysis
of the superscaling behavior in the deep scaling region, and more importantly, it also improves the
comparison with electron scattering data. In particular, the analysis of the scaling behavior of the
16O(e,e′) data in the deep scaling region below the QE peak (ψ′ = 0), where no scaling violations
are expected, leads to the conclusion that the present choice of kF and Eshi f t-values works better
when comparing with other nuclei (see Figure 6.10).
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Figure 6.10: Experimental scaling data for various nuclei and for different values of the incident
energy (Ei) and scattering angle (θe). The 16O data are show for two different values of kF . The
kF-values for other nuclei are described in Table 3.1.

In accordance with the previous analysis, we show in Fig. 6.11 the predictions of the SuSAv2-
MEC model for six different kinematical situations, corresponding to the available (e,e′) data on
16O. In all the cases we present the separate contributions for the QE, 2p-2h MEC and inelastic
regimes. The 2p-2h MEC responses are extrapolated from the exact calculation performed for
12C assuming the scaling law R2p2h ∼ Ak2

F
deduced in Ref. [156] as well as in Section 4.5. The

inclusive cross sections are given versus the transferred energy (ω), and each panel corresponds to
fixed values of the incident electron energy (Ei) and the scattering angle (θ). Whereas the latter is
fixed to 320 [157] except for one case (center panel on the top, i.e, θ = 37.10) [158], the electron
energy values run from 700 MeV (left-top panel), where the QE peak dominates, to 1500 MeV
(right-bottom) with the inelastic channel giving a very significant contribution. This is due to the
values of the transferred momentum q involved in each situation. Although q is not fixed in each of
the panels, i.e., it varies as ω also varies, the range of q-values allowed by the kinematics increases
very significantly as the electron energy grows up (for fixed scattering angles). Thus, for higher Ei

the two regimes, QE and inelastic, overlap strongly, the inelastic processes being responsible for
the large cross sections at increasing values of ω. This different range of q-values spanned in each
panel also explains the relative role played by the RMF versus the RPWIA approaches.
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Figure 6.11: Comparison of inclusive 16O(e,e′) cross sections and predictions of the SuSAv2-
MEC model. The separate contributions of the pure QE response (dashed line), the 2p-2h MEC
(dot-dashed), inelastic (double-dot dashed) are displayed. The sum of the three contributions is
represented with a solid blue line. The y axis represents d2σ/dΩ/dω in nb/GeV/sr. Data from
Refs. [157] and [158].

Although not shown in the figure for simplicity, whereas the RMF response dominates at lower
Ei-values (panels from left to right on the top), the reverse occurs, that is, the scaling function is
essentially given by the RPWIA prediction, as Ei increases together with q (panels on the bottom).

As observed, the SuSAv2-MEC predictions are in very good accordance with data for all kine-
matical situations. Although the relative role of the 2p2h-MEC effects is rather modest compared
with the QE and inelastic contributions, at the peak of the 2p2h response the three contributions
are comparable in size, as also observed for 12C.

For completeness, we also present in Figure 6.12 the calculations for the heavier target 40Ca
(kF = 241 MeV/c, Eshi f t = 28 MeV) where the comparison with data is again very precise from
forward to very backward angles. The analysis of these results is relevant because of the similarity
with 40Ar, a target of interest for recent and forthcoming neutrino oscillation experiments. Note
also that the 2p-2h MEC contributions are more prominent for 40Ca than for 12C and 16O with
respect to the QE regime due to the different kF dependence of the QE and 2p-2h MEC contribu-
tions, A/kF and Ak2

F
, respectively [156].

To conclude, the comparison with a very light nucleus as 4He (kF = 200 MeV/c, Eshi f t = 15
MeV) is displayed in Fig. 6.13. In this situation, the SuSAv2 model underestimates the QE peak
which may be a consequence of the strong vector and scalar potentials arising from the RMF
prescription. Therefore, the applicability of the SuSAv2 model and, specifically, the 12C RMF
scaling functions and their associated FSI effects may be questionable for very light nuclei, i.e.

for very low Fermi momentum. We can also observe, in accordance with the density dependence
shown in Section 4.5, that the 2p-2h MEC relative contribution is significantly smaller than the one
observed for heavier nuclei.
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Figure 6.12: Comparison of inclusive 40Ca(e,e′) cross sections and predictions of the SuSAv2-
MEC model. The separate contributions of the pure QE response (dashed line), the 2p-2h MEC
(dot-dashed), inelastic (double-dot dashed) are displayed. The sum of the three contributions is
represented with a solid blue line. The y axis represents d2σ/dΩ/dω in nb/GeV/sr. Data from
Refs. [159] and [160].
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Figure 6.13: Comparison of inclusive 4He(e,e′) cross sections and predictions of the SuSAv2-
MEC model (solid blue line). The separate contributions of the pure QE response (dashed line),
the 2p-2h MEC (dot-dashed), inelastic (double-dot dashed) are displayed. The y axis represents
d2σ/dΩ/dω in nb/GeV/sr. Data from Refs. [158] and [161].
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6.4 Conclusions

In this Chapter the SuSAv2-MEC model applied to electron scattering is extended to the whole
energy spectrum, incorporating the contributions coming from the QE, inelastic and two-body me-
son exchange currents. Within this framework a general “blending” function is introduced to make
the transition between the RMF and RPWIA responses. This function is constructed in terms of
a parametrization of the optimized blending region given by a transition parameter, q0, and it has
been applied consistently to the QE as well as to the inelastic regimes, using the same scaling func-
tions with an analogous RMF-RPWIA transition. Although the use of more free parameters, as ω0

and/or the shift energy, leads to an even better agreement with data in some particular cases, the
specific parametrization assumed is not critical, and indeed, the present model is capable of repro-
ducing very successfully the whole energy spectrum of 12C(e,e′) data at very different kinematics.
In particular, the SuSAv2 model reproduces accurately the position, width and maximum of the QE
peak for all kinematics, whereas the use of the single-nucleon inelastic structure functions together
with the SuSAv2 scaling functions has led to a precise description of the ∆-resonance region and
the entire inelastic regime. Accordingly, the application of the phenomenological SuSA approach
to the inclusive (e,e′) reactions would clearly result in an underprediction of the data, as it was
previously suggested in Section 3.5.2.

Remarkably, we have also shown that the SuSAv2-MEC model gives a reasonably good de-
scription not only of the cross sections but also of the separate longitudinal and transverse response
functions. This is a very important test for models used in neutrino scattering studies, since in this
case the balance between the L and T channels is different from the (e,e′) case. All this gives us a
great confidence in the reliability of the model, providing a solid benchmark to assess its validity
when extended to the description of neutrino- nucleus scattering. In this case, not only new re-
sponses contribute, but also the wide neutrino energy band implied by the typical accelerator-based
neutrino fluxes makes it difficult to reconstruct the neutrino energy. Thus, ingredients beyond the
ones usually assumed within the IA can have a significant impact on the analysis of data.

A basic feature of our present study, apart from the appliance of the SuSAv2 model to the QE
and inelastic regions, concerns the evaluation of the two-body meson exchange currents in both
longitudinal and transverse channels. This fully relativistic calculation has allowed for a consistent
evaluation of high energies/momenta experimental data. Furthermore, the parametrization of the
exact results for the 2p-2h MEC responses has allowed us to avoid the computationally demanding
microscopic calculation for the entire set of kinematics required for the experimental data pre-
sented here.

Additionally, this analysis has been extended to other nuclear species leading to an accurate
description of the experimental data for nuclei of relevance in forthcoming neutrino experiments.
Despite the smaller amount of available (e,e′) experimental data for some nuclei with respect to
12C, the growing interest of experimental collaborations on (e,e′) measurements, together with
the extension of neutrino experiments to other nuclear targets, is expected to shed light on their
nuclear effects and the associated parameters that play a role in most theoretical description for
both electron and neutrino reactions.

To conclude, we emphasize the importance of scaling arguments that provide a proper de-
scription of electron scattering data before the analysis be extended to neutrino reactions. In this
sense, the fully relativistic analysis presented in this chapter for the entire energy spectrum and the
different nuclear responses is of crucial importance for the analysis of neutrino reactions.





Chapter 7

Analysis of charged-current neutrino

induced reactions

In this Chapter we present our theoretical predictions compared with CC neutrino scattering data
from different collaborations: MiniBooNE, NOMAD, MINERνA, T2K and SciBooNE, whose
main features were analyzed in Chapter 1. The SuSAv2-MEC model, that has already proven to
describe accurately (e,e′) data in Chapter 6, is now applied to the analysis of neutrino experiments.
Our study is mainly restricted to the “quasielastic-like” regime where the impulse approximation
used to describe the one-nucleon knockout process in addition to the effects linked to the 2p-2h
meson-exchange currents play a major role. However, some results that incorporate the contribu-
tion of the ∆-excitation are also compared with data.

In the case of the QE regime, our study includes the analysis of muonic neutrino and an-
tineutrino scattering reactions on carbon corresponding to MiniBooNE, NOMAD and MINERνA
experiments. In the latter we also consider electron neutrinos. Furthermore, results for the T2K
Collaboration are analyzed in detail, also accounting for the recent measurements on 16O. In this
case, we first restrict ourselves to the QE domain, and we extend the discussion later to the T2K
inclusive charged-current neutrino reactions where high inelasticities are of significance. Other
studies regarding low-energy effects as well as the relevance of the different reaction channels to
neutrino reactions are also addressed. Therefore, our main interest is to show the capability of
the present model, SuSAv2-MEC, to analyze and describe successfully a large variety of neutrino
scattering data corresponding to different experiments with a wide range of kinematics explored.

7.1 CCQE neutrino and antineutrino reactions at MiniBooNE

and NOMAD kinematics

In recent years a significant amount of charge-changing quasielastic (CCQE) neutrino and antineu-
trino cross section data have been presented in the literature. In this section we compare the results
of the SuSAv2-MEC model with the measurements of CCQE νµ and νµ reactions on 12C from the
MiniBooNE [20, 21] and NOMAD [24] experiments.

The MiniBooNE Collaboration has measured CCQE muonic neutrino and antineutrino cross
sections on 12C for neutrino energies in the 1 GeV region, the neutrino and antineutrino fluxes
peaking at 0.79 GeV and 0.66 GeV, respectively, and going from 0 to about 7 GeV with the most
important contributions coming from below 3 GeV. These measurements have provided CCQE
cross sections that are higher than most predictions based on IA. This excess, at relatively low
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energy (〈Eν〉 ∼ 0.7 GeV), has been interpreted as an evidence that non-QE processes may play an
important role at that kinematics (see Section 1.5 in Chapter 1 for further details). It is important
to point out that in the experimental context of MiniBooNE as well as in other experiments such
as MINERνA or T2K, “quasielastic” or, equivalently, CCQE-like events are defined as those from
processes or channels containing no mesons in the final state. This is a direct consequence of the
lack of experimental sensitivity to the outgoing hadrons in the final state. Thus, in addition to
the purely QE process, which in this work refers exclusively to processes induced by one-body
currents (IA), multi-nucleon excitations and, in particular, two-particle emission induced by MEC
should also be taken into account for a proper interpretation of data. These have been evaluated
in [30,31,39] provinding a very good agreement with the MiniBooNE data in spite of being rather
different in their basic ingredients. On the contrary, the NOMAD experiment involves an inci-
dent neutrino (antineutrino) beam energy much larger, with a flux extending from Eν = 3 to 100
GeV. In this case, one finds that data are in reasonable agreement with predictions from IA mod-
els [19, 39, 83, 115].

On this basis, it is worth mentioning that the unfolding procedure to obtain the total integrated
cross sections from the measured differential ones largely depends on model assumptions, being
detailed in [20, 21]. Within this procedure, the true (anti)neutrino energy Eν(ν) is obtained in
terms of the reconstructed four-momentum Q2

QE
and neutrino energy E

QE
ν . These reconstructed

magnitudes are obtained assuming an initial-state nucleon at rest with a constant binding energy,
Eb, set to 34 MeV (30 MeV) in the neutrino (antineutrino) case,

E
QE
ν =

M2
p − (Mn − Eb)2 − m2

µ + 2(Mn − Eb)Eµ

2(Mn − Eb − Eµ + kµ cos θµ)
(7.1)

E
QE

ν
=

M2
n − (Mp − Eb)2 − m2

µ + 2(Mp − Eb)Eµ

2(Mp − Eb − Eµ + kµ cos θµ)
(7.2)

Q2
QE = 2E

QE

ν,ν
(Eµ − kµ cos θµ) − m2

µ, (7.3)

where Eµ, kµ and θµ are the corresponding muon energy, momentum and angle, and mn, mp and
mµ are the masses of the neutron, proton and muon, respectively. While these quantities certainly
differ from the underlying true quantities, they are unambiguously defined and and easily repro-
ducible by other experiments. In this regard, we include in Appendix F some preliminary results
for the analysis of the energy reconstruction effects in neutrino oscillation experiments which are
essential for determining the oscillation parameters.

Thus, in Fig. 7.1 we present the total flux-unfolded integrated cross section per nucleon for
muonic neutrino (top panel) and antineutrino (bottom panel) reactions within the SuSAv2-MEC
model. The energy range has been extended to 100 GeV and data are shown for the MiniBooNE
and NOMAD experiments. Whereas 2p-2h MEC contributions are needed in order to reproduce
MiniBooNE data (in consistency with the previous discussion), the NOMAD experiment seems to
be in accordance with the pure QE response. As observed, the role of 2p-2h MEC is very signif-
icant at all neutrino (antineutrino) energies, getting an almost constant value for Eν (Eν) greater
than 1− 2 GeV. At these values the pure QE cross section is increased by ∼ 30− 35% due to 2p-2h
MEC. Moreover, the large error bars of the MiniBooNE and NOMAD data do not allow to draw
definite conclusions.

It is also important to point out that, in spite of the very large neutrino (antineutrino) energies
involved in NOMAD experiment, the main contribution to the cross section, about ∼ 90%, comes
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from momentum and energy transfers below ∼ 1 GeV/c and ∼ 0.5 GeV, respectively. An analysis
of the relevant kinematic regions for neutrino reactions will be addressed in Section 7.3.
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Figure 7.1: MiniBooNE CCQE νµ-12C (νµ-12C) total cross section per nucleon as a function of
the neutrino energy. The top panel corresponds to neutrino cross sections and the bottom one to
antineutrino reactions. Data are from [20, 21, 24].

The difference between MiniBooNE and NOMAD measurements can roughly be explained
by different definitions of the CCQE signal. In the case of MiniBooNE a sample of 2-subevents
(Cherenkov light from muon and from decay electron) is analyzed and ejected protons are not de-
tected. In the case of NOMAD 1-track (muon) and 2-tracks (muon and proton) samples of events
are analyzed simulateously. This can prevent one from including multi-nucleon emission events in
the NOMAD results, thus leading to an agreement with the purely QE response without the need
of significant contributions from multi-nucleon excitations.

For completeness, we also show the comparison with the phenomenological SuSA approach in
Fig. 7.1. As commented in Chapter 3, the SuSA model assumes that the longitudinal and transverse
scaling function are identical. On the contrary, the SuSAv2 model, based on the RMF predictions
leads to a natural enhancement on the transverse response. As also noticed in the analysis of elec-
tron scattering data in Chapter 3, the SuSAv2 improves the agreement with the experimental data
in comparison with the SuSA model, being the former closer to the center of the NOMAD bins.
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At MiniBooNE kinematics, the addition of MEC effects to the SuSA approach would also under-
estimate the data. Although not shown here for brevity/simplicity, the same conclusions can be
drawn for the comparison of the SuSA model with the MiniBooNE double differential cross sec-
tions. This comparison is shown in Ref. [153] where a clear underestimation of data is observed.
Moreover, the difference between SuSA and SuSAv2 is larger for neutrino than for antineutrino
results. This occurs because of the cancellation between RT (positive) and RT ′ (negative) responses
in antineutrino cross sections. Notice that the transverse responses are substantially enhanced in
SuSAv2 compared with SuSA. This cancellation due to the different sign on the T ′

V A
responses

also affects the total 2p-2h MEC cross section.

At this point, it is worth mentioning that, as for the (e,e′) case, we adopt the electromagnetic
nucleon form factors of the extended Gari-Krumpelmann (GKeX) model [148–150] for the vector
CC current entering into neutrino cross sections. As described in Chapter 2, this prescription
improves the commonly used Galster parametrization at |Q2 | > 1 GeV2. For completeness, we
show in Figure 7.2 the sensitivity of the total CCQE neutrino cross section within the SuSA model
for the different up-to-date parametrizations of the nucleon form factors (see Refs. [19, 71] for
details) where all of them are essentially equivalent for the kinematics that are relevant for neutrino
scattering experiments. Similar comments also apply to the SuSAv2 model.
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Figure 7.2: CCQE νµ−12C cross section per nucleon evaluated in the SuSA model for various
parametrizations of the nucleon electromagnetic form factors [19]. A sub-panel zooming in on the
region near the maximum is inserted on the top.

Regarding the axial contributions, we employ the commonly used dipole axial nucleon form
factor described in Chapter 2. A comparison between dipole and monopole axial form factor is
shown in Appendix D together with a discussion on the quenching of the axial coupling gA param-
eter in Appendix E.

In what follows, we mainly focus on the directly-measured differential cross sections for the
MiniBooNE experiment. This, in contrast, with the total flux-unfolded total cross section leads to
a more meaningful analysis of the experimental results.
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7.1.1 MiniBooNE flux-integrated cross sections

In this section, we apply the SuSAv2-MEC model to the study of neutrino and antineutrino CCQE
MiniBooNE double-differential cross sections. Unlike the total flux-unfolded cross section that
is not measured directly and largely depends on model assumptions, the flux-integrated double
differential cross section implies minimal model dependence although requires the convolution
of the cross section over the energy spectrum of the neutrino flux. This is obtained through the
following procedure:

d2σ

dTµd cos θµ
=

1
Φtot

∫ [
d2σ

dTµd cos θµ

]
Eν

Φ(Eν)dEν , (7.4)

where

[
d2σ

dTµd cos θµ

]
Eν

is the double differential cross section for a given neutrino energy Eν and

Φtot is the neutrino flux integrated over all neutrino energies. A similar expression also applies to
the antineutrino case.

In Figs. 7.3 – 7.5 we show the double differential cross section averaged over the neutrino (an-
tineutrino) energy flux against the kinetic energy of the final muon. We represent a large variety
of kinematical situations where each panel refers to results averaged over a particular muon an-
gular bin. Notice that the mean energy of the MiniBooNE νµ (νµ) flux is 788 (665) MeV which
requires a relativistic treatment of the process. In Figs. 7.3 – 7.5 we show results for the pure QE
response (red dot-dashed line) and the total contribution of the 2p-2h MEC (orange dashed line),
i.e., including vector and axial terms in the three responses, L,T and T ′. Finally, the total response
(QE+2p-2h MEC) is represented by the solid blue line.

As observed, the model tends to overpredict the data for the most forward angles, i.e., 0.9 ≤
cos θµ ≤ 1. This corresponds to very small energy and momentum transfers, a kinematic situa-
tion where “quasi-free" scattering is highly questionable. However, note how well the pure QE
response fits the data, in particular, for neutrinos. As the scattering angle increases, the theoretical
prediction including both the QE and the 2p-2h MEC effects agrees well with the data. This is the
case for neutrinos and antineutrinos (Fig. 7.3 and Fig. 7.5) at angles below 90◦. On the contrary, the
discrepancy between theory and data tends to increase as θµ gets larger (Fig. 7.4 and bottom panels
in Fig. 7.5). Notice, however, that in these situations only a small number of data points with large
uncertainties exist and the cross section is much smaller. A possible explanation for these results
at very backward kinematics, i.e higher q values, particularly for neutrino scattering, might be due
to the lack of MEC-correlations interference in our description. Nevertheless, similar results can
also be found in [162] where MEC-correlation interferences are considered but including some
approximations in the relativistic treatment of the 2p-2h MEC contributions. In this sense, effects
of relevance at backward kinematics beyond IA and 2p-2h MEC contributions in the analysis of
the MiniBooNE experimental data are not excluded.

Results in Figs. 7.3 – 7.5 clearly show the relevant role played by effects beyond the impulse
approximation. In particular, 2p-2h MEC contributions are essential to describe data. Their relative
percentage at the maximum, compared with the pure QE response, being of order 25 − 35%.
The relative strength associated with 2p-2h MEC gets larger for increasing values of the angle,
particularly, in the case of antineutrinos. Note that, in spite of the quite different neutrino and
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antineutrino energy fluxes, the quality of the agreement with data is rather similar in the two cases.
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Figure 7.3: MiniBoone flux-folded double differential cross section per target nucleon for the νµ
CCQE process on 12C. Results are given in 10−39 cm2/GeV and displayed versus the µ− kinetic
energy Tµ for various bins of cos θµ obtained within the SuSAv2-MEC approach. QE and 2p-2h
MEC results are also shown separately. Data are from [20].
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Figure 7.4: As for Fig. 7.3 but considering more backward kinematics. Data are from [20].
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Figure 7.5: As for Fig. 7.3 but considering now the νµ CCQE process on 12C. Data are from [21].

A further general comment on the previous results from Figs. 7.3—7.5 is in order: the RMF
predictions (shown in [163]) produce almost identical results to the ones from the SuSAv2 model
at MiniBooNE kinematics. A similar comparison was also shown in Chapter 3 for the analysis of
(e,e′) data at intermediate q-values.

To complete the previous discussion on the double differential cross sections, we present in
Figs. 7.6 and 7.7 the results averaged over the muon kinetic energy bins as functions of the muon
scattering angle for neutrinos and antineutrinos, respectively. These graphs complement the pre-
vious ones, and prove the capability of the model to reproduce the data for a large variety of
kinematic situations. The 2p-2h MEC contributions increase the pure QE response by ∼ 25− 35%
(depending on the particular region explored) and are shown to be essential in order to describe
the data. As observed, the total model tends to overpredict the data measured at angles close to
zero and Tµ in the vicinity of ∼ 0.8 − 1 GeV. This is consistent with results in previous figures
and the inability of the model to describe properly data at very small angles. However, the largest
discrepancy between theory and data occurs at the smallest muon kinetic energy bins considered,
i.e., 0.2 < Tµ < 0.4, in particular, for neutrinos (Fig. 7.6) and angles bigger than 900 (cos θµ < 0).
As seen, the data are higher by ∼ 25−30% than theoretical predictions. This outcome is consistent
with the results shown in the panels on the bottom in Figs. 7.3-7.5.
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Figure 7.6: MiniBoone flux-folded double differential cross section per target nucleon for the
νµ-12C CCQE process displayed versus cos θµ for various bins of Tµ obtained within the SuSAv2-
MEC approach. QE and 2p-2h MEC results are also shown separately. Data are from [20].
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Figure 7.7: As for Fig. 7.6, but now for the νµ CCQE process on 12C. Data are from [21].
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Figure 7.8: MiniBooNE flux-averaged CCQE νµ-12C (νµ-12C) differential cross section per nu-
cleon as a function of the muon scattering angle (top panels) and of the muon kinetic energy (bot-
tom panels). The left panels correspond to neutrino cross sections and the right ones to antineutrino
reactions. Data are from [20, 21].

In Fig. 7.8 results are presented for the MiniBooNE flux averaged CCQE νµ(νµ)−12C differen-
tial cross section per nucleon as a function of the muon scattering angle (top panels) and the muon
kinetic energy (bottom panels). The integration over the muon kinetic energy has been performed
in the range 0.2 GeV < Tµ < 2.0 GeV. Panels on the left (right) correspond to neutrinos (antineu-
trinos). As shown, and in consistency with previous results, the SuSAv2-MEC model is capable
of reproducing the magnitude as well as the shape of the experimental cross section in all of the
cases.

7.1.2 Analysis of longitudinal/transverse channels for neutrino reactions

In this section we study in detail the relevance of the different longitudinal and transverse channels
that contribute to the QE and 2p-2h MEC MiniBooNE cross sections, also accounting for the cor-
responding axial and vector contributions which arise from the hadronic currents.

An analysis on the different channels for the 2p-2h MEC nuclear responses and the total cross
section was addressed in Chapter 4 (see Figs. 4.9, 4.10 and 4.11), showing a predominance of the
transverse over the longitudinal ones, whereas for the latter the contributions arising from vector
currents were negligible in comparison with the axial ones. Moreover, the separate transverse
channels, TVV ,TAA and T ′

V A
, whereas showing some remarkable differences for different q values,

contribute in a similar way to the total cross section. This is due to the relevant kinematic regions
(see Section 7.3 for details). Here we explore the relevance of the different channels in the specific
kinematics of the MiniBooNE experiment. In Fig. 7.9 the separate 2p-2h MEC contributions to
the different channels (L,TVV , TAA and T ′

V A
) corresponding to the MiniBooNE double differential

cross section at different bins of the muon scattering angle.
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Figure 7.9: Comparison of the different 2p-2h MEC channels for the νµ (left panels) and νµ (right
panels) MiniBooNE double differential cross section.

Results in Fig. 7.9 show the differences between the TAA and TVV contributions, the latter being
shifted to higher Tµ values by about 50 MeV for all angular bins. At very forward angles, i.e., lower
q-values, the global magnitude of the AA channel is greater than the VV one, in accordance with
the results observed in Fig. 4.11. This figure also shows clearly that at q of the order of 400
MeV/c the TVV and TAA responses differ roughly by a factor 2 at the maximum. This difference
decreases for higher q-values. Concerning the interference T ′

V A
component, its magnitude is not so

different from the VV and AA ones at very forward angles, being on the contrary the most relevant
contribution at larger angles. Finally, although the longitudinal channel gives the smallest global
contribution, its role is essential in order to interpret antineutrino scattering at backward angles.
This is a consequence of the negative T ′

V A
term for antineutrino reactions that almost cancels out

the TVV + TAA contribution.
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The conclusions extracted from the previous analysis on the 2p-2h MEC cross section also
apply for the separate QE contributions to neutrino and antineutrino cross sections. The different
QE channels are analyzed for the MiniBooNE double differential cross sections in Fig. 7.10, where
the transverse contribution predominate at all kinematics whilst the net longitudinal channel, even
being a very small contribution, is essential to describe antineutrino data at backward kinematics
together with the 2p-2h longitudinal one.
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Figure 7.10: Separation into components of the MiniBooNE CCQE νµ (top panel) and νµ (botoom
panel) double-differential cross section per nucleon displayed versus Tµ for various bins of cos θµ
within the SuSAv2 approach. The MiniBooNE data [20, 21] are also shown for reference.

In Fig. 7.11 we show the breakdown of the total neutrino cross sections into individual L(=
LVV + LAA), T (= TVV +TAA), TVV , TAA and T ′

V A
contributions, with the last occurring as a positive

(constructive) term in the neutrino cross section and a negative (destructive) term in the antineu-
trino one. The sign of the T ′

V A
channel represents the main difference between the total neutrino

and antineutrino cross sections (see also Fig. 7.1). Apart from the opposite sign in the V A response,
some minor differences between neutrino and antineutrino cross sections arise from the different
Coulomb distortions of the emitted lepton (see Section 7.3.2 for details) and the final nuclei in-
volved in the CC neutrino (nitrogen) and antineutrino (boron) scattering processes on carbon. We
also notice that below 1 GeV the T ′

V A
response is higher than the TVV one and of the same order as

the TAA one. Note that the maximum of the V A contribution is around the peak of the MiniBooNE
neutrino flux. On the contrary, the effects of V A contributions to the cross sections are negligible at
energies above 10 GeV as a consequence of the small axial form factor GA and leptonic factor VT ′

at high Eν and Q2 values (see Chapter 2 for details). This is also in agreement with some previous
QE results [19]. As a consequence, for very high νµ (νµ) energies (above ∼ 10 GeV) the total cross
section for neutrinos and antineutrinos is very similar. Only the L and T channels contribute for
the higher values explored by NOMAD experiment. On the contrary, in the region explored by the
MiniBooNE collaboration, the main contributions come from the two transverse T , T ′ channels.



136 7. ANALYSIS OF CHARGED-CURRENT NEUTRINO INDUCED REACTIONS

0.1 1 10 100
Eν (GeV)

0

2

4

6

8

10

12

14

16

σ ν (
1
0

-3
9
cm

2
)

SuSAv2
SuSAv2, T

VV

SuSAv2, T
AA

0.1 1 10 100
0

2

4

6

8

10

12

14

16
SuSAv2, T’

VA

SuSAv2, T

SuSAv2, L

Figure 7.11: Separation into components of the CCQE νµ cross section per nucleon on 12C dis-
played versus neutrino energy Eν within the SuSAv2 approach. The MiniBooNE [20] and NO-
MAD [24] data are also shown for reference.

The asymmetry between neutrino and antineutrino cross sections introduced by the V A in-
terference is analyzed in Fig. 7.12 where we show the experimental difference (σνµ − σνµ )exp

from MiniBooNE, together with the corresponding theoretical prediction from the SuSAv2-MEC
model. This difference is approximately equal to 2 (σνµ )SuSAv2

T ′
V A

+ 2 (σνµ )M EC
T ′
V A

, apart from the mi-

nor differences between neutrino and antineutrino reactions described above. The result from the
purely QE responses is also shown, reinforcing the importance of the 2p-2h MEC contributions for
the analysis of the MiniBooNE experiment and their relevance in the interference channel.
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The asymmetry of the nuclear effects for neutrino and antineutrino is important for CP vio-
lation studies and it has been analyzed in previous works [3, 115, 164]. However, the inherent
difficulties related to the different neutrino and antineutrino fluxes result in a potential obstacle
for the interpretation of experiments aimed at the measurement of the CP violation angle. In this
context, some preliminary studies on the CP asymmetry from the MINERνA Collaboration have
been recently published [165]. Moreover, CP violation effects in the lepton sector related to the νµ
and νe cross sections will be addressed in following sections.

7.2 CCQE-like scattering in the MINERνA experiment

In this section we apply the SuSAv2-MEC model to the analysis of the MINERνA experiment.
The MINERνA Collaboration has recently measured differential cross sections for muonic and
electron neutrino and antineutrino charged-current quasielastic scattering on a hydrocarbon tar-
get [46, 47]. The “quasielastic” events are defined, in this case, as containing no mesons in the
final state (CCQE-like) thus also including contributions from multi-nucleon excitations. The en-
ergy flux extends up to 10 GeV and is peaked at Eν ∼ 3 GeV for both neutrinos and antineutrinos,
i.e., in between MiniBooNE and NOMAD energy ranges. Therefore, its analysis can provide
valuable information on the role played by 2p-2h meson-exchange currents in the nuclear dynam-
ics [110, 166, 167].

7.2.1 Analysis of charged-current muonic neutrino results

In previous studies of the MINERνA Collaboration [46, 47], the RMF, SuSA and SuSAv2 mod-
els [97,153] as well as other theoretical approaches [168–170] were able to reproduce the MINERνA
data without the inclusion of np-nh excitations, unlike the MiniBooNE results. It is important to
point out that the MINERνA kinematics, larger than the MiniBooNE one, extends into the pion
production region and hence the experimental subtraction of these effects to isolate CCQE-like
events is more critical. Note that in these experiments only the information related to muon vari-
ables is considered. Moreover, the recently improved analysis of the MINERνA flux results [171]
leads to an increase of the MINERνA CCQE-like experimental cross sections.

Considering the reevaluation of the MINERνA flux [171,172], we present in Fig. 7.13 the flux
averaged CCQE νµ(νµ) differential cross section per nucleon as a function of the reconstructed
four-momentum Q2

QE
. This reconstructed magnitude is obtained following the procedure intro-

duced in Section 7.1 and also detailed in [46, 47].

The top panel in Fig. 7.13 refers to νµ−12C whereas the bottom panel contains predictions and
data for νµ−CH. The mean energy of the MINERνA muonic flux is much higher than the Mini-
BooNE one, about 3.5 GeV for both νµ and νµ. As observed, significant contributions of the 2p-2h
MEC, of the order of ∼ 35 − 40% (∼ 25%) at the maxima for νµ (νµ), are needed in order to
reproduce the experimental data that correspond to a new analysis performed by the MINERνA
collaboration [171,172]. These data exceed by ∼ 20% the ones already presented in previous pub-
lications [46, 47] (using the uncorrected MINERνA flux) that, on the other hand, were consistent
with calculations based exclusively on the impulse approximation (see [97]).

Thus, the new MINERνA analysis shows major consistency with the MiniBooNE data and
invalidates the previous conclusion [97] that the MINERνA results can be reproduced without the



138 7. ANALYSIS OF CHARGED-CURRENT NEUTRINO INDUCED REACTIONS

inclusion of 2p-2h contributions. In spite of the very different muon neutrino (antineutrino) energy
fluxes between MiniBooNE and MINERνA, 2p-2h MEC effects remain very significant (on aver-
age, 25 − 35%) being their contribution essential in order to reproduce the data.

For completeness, it is worth mentioning that in the specific conditions of MINERνA, it clearly
appears that, even if the neutrino energy is as large as 3 GeV, the process is largely dominated by
relatively small energy and momentum transfer, namely, ω < 500 MeV, q < 1000 MeV, whereas
contributions below ω < 50 MeV, q < 200 MeV govern the lowest Q2

QE
region. More specific

details can be found in Section 7.3 and, additionally, in Ref. [97].
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7.2.2 Analysis of charged-current electron neutrino results

The previous conclusion holds also for the νe CCQE-like differential cross sections on hydrocar-
bon published by MINERνA in [53]. These results are presented in Fig. 7.14 as a function of
the electron energy (top-left panel), electron angle (top-right) and reconstructed four-momentum
(bottom-left). Compared to the νµ (νµ) fluxes, the νe and νe ones have roughly the same shape in
the region of the peak but the tail region at large energies is significantly higher in the electronic
case which softly increases the average νe energy up to 3.6 GeV. A detailed comparison of the νe

versus νµ cross sections is addressed in Section 7.4.
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Figure 7.14: MINERνA flux-integrated differential νe-12C CCQE-like cross section per nucleon
vs. electron energy (top left) and electron angle (top right). The bottom panels show the νe differ-
ential cross section vs. Q2

QE
(bottom left) and the ratio between the flux averaged CCQE νe+νe and

νµ cross sections versus Q2
QE

(bottom right) compared with the SuSAv2-MEC prediction (solid red
line). Data are from [53].

In Fig. 7.14, results are shown for the pure QE response based on the IA, the 2p-2h MEC
contribution and the total response. In all the cases the contribution at the maximum coming
from the 2p-2h MEC is roughly 30 − 35% compared with the pure QE response. These results
are similar to the ones already presented for muon neutrinos (antineutrinos), and they show the
importance of 2p-2h effects in order to explain the behavior of data. As observed, the model is
capable of reproducing successfully the data. For completeness, we present in the right-bottom
panel the results corresponding to the ratio between the flux averaged CCQE νe + νe and νµ cross
sections versus the reconstructed four-momentum. We compare the predictions of the model (red
curve) with the data, leading to a similar result as when compared with GENIE predictions [53],
i.e., the SuSAv2-model predicts a rather flat ratio while the experimental data seem to grow up
to Q2

QE
≈ 1 GeV2. Taking into account that the νe flux is negligible in comparison with the νe
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one, the main differences in the ratio comes mainly from the shape differences between the νe

and νµ fluxes. In addition, some differences also emerge from the diverse phase-space of the νe-
νµ-12C interactions which is due to the different final-lepton masses, being more prominent at low
kinematics (see Section 7.4 for further discussions). However, the large error bars presented by the
data make it hard to extract definite conclusions.

7.3 Relevant kinematical regions

In this section, the relevant kinematical regions for the description of neutrino-nucleus reactions
are analyzed within the SuSAv2-MEC model at kinematics of relevance for the MiniBooNE, T2K
and MINERνA experiments. We also inspect other contributions that may play a significant role
at low kinematics such as the mass of the residual nuclei or the influence of Pauli-blocking effects.

For a proper understanding of the neutrino experimental results as well as to assess the ap-
propriate description of the nuclear dynamics in theoretical models, it is important to identify
the kinematical region where the QE and 2p-2h MEC responses attain their maximum values.
This is clearly illustrated in the density plot of Fig. 7.15, which represents the double differen-
tial cross section in terms of ω and q at Eν = 3.0 GeV, that corresponds to the peak energy flux
of MINERνA [171]; here the left (right) panel corresponds to the 2p-2h MEC (pure QE) con-
tributions. As shown in the figure, the main contribution to the MEC cross section comes from
q ∈ (0.3,1.0) GeV/c and ω ∈ (0.3,0.8) GeV. On the contrary, the QE peak is moved to lower
values of ω. Both the one-body and two-body responses decrease with the momentum transfer q,
but their ratio is rather constant (see [105] for details). Although results in Fig. 7.15 correspond
to a fixed incident neutrino energy, 3 GeV, similar results are obtained for larger Eν values. It is
important to point out the differences between our predictions and those based on the model of
Nieves [168] that show the 2p-2h MEC contribution to be shifted to slightly bigger values of the
energy and momentum transfer.

Figure 7.15: 2p-2h MEC (left panel) and QE (right panel) density plots of the double-differential
cross section per neutron of 12C versus ω and q at Eν = 3 GeV.

For completeness, we also show in Fig. 7.16 the density plots for the 2p-2h MEC contributions
in terms of the values of the muon kinetic energy and the scattering angle for three values of
neutrino energy: 1 GeV (top panel), 3 GeV (middle) and 10 GeV (bottom). It is worth mentioning
that Eν = 1 GeV and Eν = 3 GeV are reference values, respectively, to the mean neutrino energies
for MiniBooNE and MINERνA experiments. As observed, the main contribution resides in the
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region of very small angles, close to zero, and large Tµ, which correspond to low-intermediate ω
values. These effects are maximized as Eν increases.

Figure 7.16: 2p-2h MEC density plots of the double-differential cross section per neutron of 12C
at three different neutrino energies Eν versus Tµ and cos θµ.
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Moreover, an analysis of the relevant kinematical regions for the total QE cross section is
shown in Fig. 7.17, where it is observed that the main contribution comes from ω < 500 MeV
and q . 1000 MeV/c whereas the region of small ω < 50 MeV and q < 250 MeV/c, which
contributes substantially at very forward angles, is not too significant for the total neutrino cross
section (∼ 8%). This is in accordance with some previous works [19, 97]. The same conclusion
can be drawn by analyzing the different kinematics in the total MEC cross section (Fig. 7.18),
where the low kinematic region (ω < 50 MeV, q < 250 MeV/c) is even less important (< 2%)
for the 2p-2h channel. We can also notice in Fig. 7.18 that no significant MEC contributions
emerge for q >2000 MeV/c and the same is true for large ω > 1000 MeV. This analysis leads to
the conclusion that relativistic effects cannot be ignored in theoretical models aimed at describing
neutrino oscillation experiments.
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7.3.1 Low-energy effects

Next, it is also important to analyze the relevance of the low-energy effects in our description which
englobe Pauli-blocking effects, mass excess of the residual nucleus and the Coulomb distortions
of the emitted lepton.

As introduced for (e,e′) reactions in Section 3.5.1, the effect of Pauli Blocking (PB) is also
of relevance for the analysis of CCQE neutrino cross sections. We concluded from Figs. 3.15—
3.17 that these effects are noticeable for q < 250 MeV/c and ω . 50 MeV. Nevertheless, when
analyzing flux-folded cross sections, the convolution over a wide range of energy can make these
effects being irrelevant in some cases where low-kinematics do not play a major role. In Fig. 7.19,
we notice the small contribution of PB effects on the MiniBooNE double differential cross section
at forward kinematics. On the contrary, if we focus on the smallest values of Q2, which are directly
related to the low q and ω kinematic region, we would observe a significant increase of the cross
section when neglecting Pauli blocking. This is clearly illustrated in Fig. 7.20, where the omission
of PB effects would result in an overstimation of the MINERνA data at low Q2

QE
, after considering

2p-2h contributions.
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Figure 7.19: Analysis of Pauli-blocking effects (QEno PB) on the MiniBoone νµ−12C flux-folded
double differential cross section. The results are displayed versus the µ− kinetic energy Tµ for
various bins of cos θµ. The QE+MEC results as well as the separated QE and 2p-2h MEC ones are
also shown for reference. Data are from [20].

Moreover, there are also other contributions which may play an important role in the low-
kinematic region. In Chapter 3, we define a sort of excitation energy ω0, related to the mass excess
of the residual nucleus, which sets a minimum neutrino energy necessary for the interaction (see
Eq. 3.6 for details). In the case of neutrino and antineutrino reactions on 12C, the mass excess
of the final nuclear system is ∆N = 13.88 MeV (nitrogen) for neutrinos and ∆B = 16.83 MeV
(boron) for antineutrinos, which turns into a restriction of a few MeV in the allowed ω values.
This apparently minor effect has a large relevance at very forward kinematics, i.e., low ω region.
This can be observed in Fig. 7.21 for the MiniBooNE double differential cross section where it is
assumed ∆N = 0. This effect at cos θµ ∼ 0.95 would increase the cross section around 15%.

We also show in Fig. 7.21 the cross section computed excluding contributions coming fromω <

50 MeV to assess the importance of low-energy excitations in the total cross section. Likewise,
the most sensitive region corresponds to very forward kinematics. As it was observed in Fig. 7.17,
this low-ω region is quite important even for very high neutrino energies (typically amounting to
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about 10% of the total cross section). Similar results can also be observed in [173, 174]. In [175]
the contribution of the discrete excitations of the final nucleus 12N in CC neutrino scattering from
12C was evaluated in a semi-relativistic shell model. This contribution turned out to be below 2%
for potential parameters fitted to reproduce the Q-value of the reaction.
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Figure 7.21: Analysis of low-energy effects on the MiniBoone νµ−12C flux-folded double differ-
ential cross section. The SuSAv2 results for ω > 50 MeV and ∆N = 0 are displayed separatedly
versus the µ− kinetic energy Tµ for various bins of cos θµ. The QE+MEC results as well as the
separated QE and 2p-2h MEC ones are also shown for reference. Data are from [20].

7.3.2 Coulomb corrections on the emitted lepton

Finally, one additional issue arises in computing charged-current neutrino cross sections where
charged leptons in the final state are not strictly described by plane waves as they are influenced
by the Coulomb potential of the nucleus. These Coulomb distortions of the emitted lepton are ac-
counted for in our theoretical prescription and can significantly alter the momentum and direction
of the final-state particles. These effects are present in all neutrino-nucleus interactions, but can
largely be ignored at high Eν where most final-state particles are produced with high momenta.
Nevertheless, they can be more important at lower Eν, where the momentum of the target is of
similar magnitude to the neutrino one and, hence, the outgoing lepton can be largely affected by
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the nuclear potential. It is important therefore that neutrino interaction experiments are aware of
the consequences of these low-energy effects for their analysis.

Following standard procedures (see, for instance, [64, 176]) the Coulomb interaction can be
incorporated in our prescription, at least approximately, by shifting from the local lepton variables
(El ,~kl ) to asymptotic energy-momentum ones (E∞

l
,~k∞

l
):

~k∞l = D(kl )~kl (7.5)

E∞l =

√

m2
l
+

(

~k∞
l

)2
, (7.6)

where

D(kl ) = 1 − χ 3Zα

2R|~kl |
(7.7)

with χ = +1(−1) for neutrinos (antineutrinos) and R � 1.2A1/3 the effective charge radius of the
nucleus considered. Thus, the local calculations must be multiplied by the density-of-states factor
[D(kl )]−1 to include these distortion effects.

Therefore, these Coulomb effects depend on the charge properties of the nucleus as well as
on the charge of the final lepton, which is negative (positive) for neutrinos (antineutrinos), thus
increasing (decreasing) the resulting cross section. Thus, these effects increase slightly the cross
section for neutrino reactions whereas the opposite occurs for antineutrinos as shown in Fig. 7.22
for the total cross section within the SuSAv2 model. We also notice that the relevance of this
corrections are smaller than 2% for Eν ∼ 0.4 GeV whereas differences of ∼ 10% can be found at
the lowest energies where the cross sections are also minor. For completeness, the Coulomb effects
are also analyzed at low energies (Eν) for the double-differential CCQE νµ-12C cross section in
Fig. 7.23. In this case, Coulomb distortions modify the cross section by a ∼ 2% at the lowest
ω values. These effects are largely increased for high-ω values where the energy of the emitted
lepton is very small. Nevertheless, this kinematic region does not contribute significantly to the
cross section.
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Figure 7.22: Ratio of the CCQE on (νµ)νµ-12C total cross section with and without considering
Coulomb distortions of the emitted letpon. Results are shown for neutrino and antineutrino reac-
tions.
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Figure 7.23: Top panels: CCQE νµ-12C double differential cross section with and without consid-
ering Coulomb distortions of the emitted letpon for two different scattering angles at Eν = 250
MeV. Results are given in nb/GeV. Bottom panels: Ratio of the CCQE νµ-12C double differential
cross section with and without considering Coulomb distortions for the above kinematics.

7.4 Electron neutrino versus muon neutrino cross sections

Most of the current neutrino oscillation experiments as well as the theoretical approaches that deal
with their description focus on the analysis of νµ cross sections in contrast with the few published
measurements on νe cross sections. The relatively small components of νe and νe flux in neutrino
beams coupled with significant backgrounds arising from the dominant νµ interactions have led to
a shortage of νe and νe measurements in the energy range from 0.5 to a few GeV. This turns into
a small-statistics measurements for νe reactions. Gargamelle [177], NOνA [178] and T2K [45]
have published νe inclusive cross section results at these energies, but small statistics and the in-
clusive nature of these measurements limit their usefulness for model comparisons. Nevertheless,
a detailed and simultaneous knowledge of νµ and νe cross sections is decisive in connection to the
νµ → νe oscillation experiments aiming at the determination of the neutrino mass hierarchy and
the search for CP violation in the leptonic sector. In this sense, the recent measurements of νe

and νe CCQE-like interactions from MINERνA [53] at energies around ∼ 3.6 GeV, overlapping
the energy range of NOνA [178] and DUNE [60], represent an outstanding exception. As shown
in Section 7.2.2, their relatively high statistics allows for a detailed analysis of the flux-integrated
differential cross-section measurements for the νe CCQE-like process as well as for a comparison
of the νe and νµ quasielastic cross sections as a function of Q2

QE. Furthermore, the ArgoNEUT
Collaboration has recently presented the first experimental observation of νe and νe on argon in
the energy region of ∼ 4 GeV [179].
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In this connection, we present here a comparison of νe and νµ cross sections and their cor-
responding ratios. These are interesting quantities to analyze the differences between νe and νµ
scattering which are influenced by the kinematical restrictions due to the different final-lepton
masses, radiative corrections, Coulomb distortions and to uncertainties in the nucleon form fac-
tors. In Fig. 7.24 we compare the νe (νe) and νµ (νµ) total cross sections in the SuSAv2 model for
the kinematics relevant for different νe experiments (T2K, NOνA, DUNE or MINERνA) as well
as for the proposed facility νSTORM [58, 59], which will provide high quality electron neutrino
beams in the energy range E < 4 GeV. Although the hadronic interaction is the same for νµ and νe,
the different mass of the outgoing leptons produces a different energy transfer to the nucleus for
the same incident neutrino energy. As seen in Fig. 7.24, this results in a small shift for low neutrino
energy. For higher energies the small differences due to the lepton mass tend to disappear, yielding
a universal curve for the total cross section, independent of the neutrino flavour. This is empha-
sized in Fig. 7.25, where the ratios νe/νµ and νe/νµ for the total CCQE cross sections are shown,
reaching both unity at energies above 1 GeV. For small energies one expects that the different nu-
clear excitation energy involved and the energy-dependence of the nuclear response functions will
emphasize differences between the two cross sections, or between either of these and more sophis-
ticated modeling of the low-lying nuclear excitations. Some theoretical calculations on this line
can be found in [180]. A precise measurement of the cross sections in this region might therefore
allow one to extract new information concerning the electroweak nuclear matrix elements.

We note that the difference between the two cases is also linked to the Coulomb corrections,
i.e., distortions of the final-state charged lepton wave functions in the Coulomb field of the nu-
cleus. These are taken into account using the effective momentum approximation described in
Section 7.3.2 (see also [64]). Their effects were found to be negligible in the energy range con-
sidered (up to 1 GeV), becoming important only at neutrino energies below 250 MeV, where the
cross sections are substantially smaller.
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Figure 7.24: SuSAv2 predictions for muon- (solid curves) and electron- (dot-dashed curves) neu-
trino and antineutrino CCQE cross section per nucleon on 12C.
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Figure 7.25: Ratio of the SuSAv2 predictions for muon- and electron- neutrino (solid line) and
antineutrino (dot-dashed line) CCQE cross section per nucleon on 12C.

For completeness, we present in Fig. 7.26 the νe and νµ double-differential cross section on 12C
within the SuSav2 model at different kinematics, where the effects due to the final-lepton masses
are clearly prominent at lower energies (Eν = 250 MeV), leading to a reduction of ∼ 30% for νµ at
the peak position. Additionally, a small shift to lower ω is observed. These effects roughly disap-
pear at Eν ≥ 750 MeV. Similar results for the νe cross section are found in [180] within the RPA
(random phase approximation) and CRPA (continuum random phase approximation) approaches.
On the contrary, the RPA and SuSAv2 models are not capable of reproducing the low-lying nuclear
excitations below ω = 50 MeV shown by the CRPA calculations.
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Figure 7.26: SuSAv2 predictions for muon- and electron- neutrino CCQE double-differential cross
section per nucleon on 12C for the fixed values of Eν and θ displayed in the figures.
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Finally, in Fig. 7.27 we compare the νe and νµ single-differential cross sections in terms of the
scattering angle for Eν = 250,500 and 750 MeV where, apart from the larger results for νe, we
notice that νe and νµ cross sections get closer at very forward angles. This is observed in detail

in the bottom right panel of Fig. 7.27, where the ratio dσνe
d cos θ/

dσνµ
d cos θ is shown for the previous Eν

values. As also deduced from Fig. 7.25, the νe/νµ ratio increases at the lowest energies, while at
higher kinematics (Eν = 750 MeV) it gets closer to 1. Similar results are also obtained within the

context of the CRPA approach [180] in the energy range from 200 to 750 MeV. This dσνe
d cos θ/

dσνµ
d cos θ

ratio, expected to be larger than 1 due to the different kinematical limits arising from the different
final-lepton masses, experiments a sharp decrease at very forward angles, where differential cross
sections approach zero. This a direct consequence of the different phase-space for each case, more
pronounced at lower kinematics.
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7.5 T2K results for νµ CC0π interactions

In the previous sections, our analysis has been mainly focused on the scattering of neutrinos and
antineutrinos on mineral oil, CH2 and CH, which has been the most commonly used target in ex-
perimental facilities up to now. However, there is an increasing experimental interest in theoretical
predictions for cross sections on different targets, specifically 40Ar and 16O, which could shed light
on the uncertainties arising from both initial state nuclear effects and final state interactions. In par-
ticular, in the T2K experiment the far detector may have different nuclear targets, a polystyrene
(C8H8) and water (H2O), and it is then crucial to understand how to extrapolate the results from
one target to another.

Therefore, in this section we explore, in the framework of the SuSAv2-MEC model [38, 39,
153], the similarities and differences between the T2K CC0π (anti)neutrino scattering on 16O and
12C. The CC0π scattering is defined, equivalently to the CCQE-like one, as the process where no
pions are detected in the final state. This process receives contribution from two different reac-
tion mechanisms: quasielastic (QE) scattering and multi-nucleon excitations dominated by 2p-2h
MEC contributions. These two mechanisms have in general a different dependence upon the nu-
clear species, namely they scale differently with the nuclear density [156], as previously analyzed
in Chapters 4 and 6.

In what follows we apply our SuSAv2-MEC model to CC0π νµ scattering reactions on 12C
and 16O and compare the theoretical predictions with data taken at different kinematics given by
the T2K collaboration [56, 122]. The discussion follows closely the analysis already presented in
Chapter 6 for (e,e′) reactions on 12C and 16O.

7.5.1 T2K νµ-
12C reactions

In Fig. 7.28 we present the flux-averaged double differential cross sections corresponding to the
T2K experiment [56]. The graphs are plotted against the muon momentum, and each panel corre-
sponds to a bin in the scattering angle. As in previous cases, we show the separate contributions
of the pure QE, the 2p-2h MEC and the sum of both. Contrary to the MiniBooNE and MINERνA
experiments, the T2K data show a larger dispersion with significant error bands. Concerning the
theoretical predictions, in the present case the relative contribution of the 2p-2h MEC compared
with the pure QE is significantly smaller than in the previous cases; of the order of ∼ 10% at
the maximum of the peak compared with the ∼ 25 − 35% in the MiniBooNE case. This can be
connected with the T2K neutrino flux [181] that, although averaged at ∼ 0.8 GeV similar to Mini-
BooNE, shows a much narrower distribution around the peak. Hence 2p-2h MEC contribute less
to the differential cross section.

As observed, the theoretical model is capable of reproducing the data although, contrary to
the MiniBooNE and MINERνA data, the addition of the 2p-2h MEC does not seem to improve
significantly the description of the experimental data, except at backward kinematics. Notice that
the relative contribution of the 2p-2h channel compared with the QE one is less relevant as for
the MiniBooNE case due to the narrower T2K flux. Similar comparisons have also been achieved
within the Martini et al. and Nieves et al. models shown in [56].

Moreover, due to the present level of experimental accuracy and the large error bands shown
by T2K data in most of the kinematical situations, both the pure QE as well as the total, QE+2p-2h
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MEC, predictions are in accordance with the experiment. It is interesting to point out the results for
the most forward angles, i.e., the panel on the right-bottom corner. Notice that the QE and 2p-2h
MEC contributions are stabilized to values different from zero for increasing muon momenta as a
consequence of the high energy tail of the T2K neutrino flux. This is at variance with all remaining
situations where the cross sections decrease significantly as the muon momentum pµ goes up.
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Figure 7.28: T2K flux-folded double differential cross section per target nucleon for the νµ
CCQE process on 12C displayed versus the muon momentum pµ for various bins of cos θµ ob-
tained within the SuSAv2-MEC model. QE and 2p-2h MEC results are also shown separately.
Data are from [56].

7.5.2 T2K νµ-
16O reactions

In the following, we assume the procedure described in Sections 6.3 and 4.5 for the extension of
the SuSAv2-MEC model to other nuclei. In the case of 16O, the kF and Eshi f t-values used are the
ones defined for electron scattering (kF = 230 MeV/c and Eshi f t = 16 MeV) in Chapter 6, being
consistent with the general trend observed in [37]. In previous works [85–87, 91, 182], a different
choice (kF = 216 MeV/c and Eshi f t = 25 MeV) of these parameters was employed. Although
both sets of values lead to small differences in the cross sections, the present choice does provide
a more consistent analysis, and more importantly, it also improves the comparison with electron
scattering data (see Fig. 6.11), thus ensuring its validity to analyze neutrino experimental data on
16O.



152 7. ANALYSIS OF CHARGED-CURRENT NEUTRINO INDUCED REACTIONS

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20

T2K (
16

O)
MEC
QE
QE+MEC 

0.000 < cosθµ < 0.600

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20

25

30

35
0.600 < cosθµ < 0.700

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20

25
0.700 < cosθµ < 0.800

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20

25
0.800 < cosθµ < 0.850

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20

0.850 < cosθµ < 0.900

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20

25
0.900 < cosθµ < 0.925

0.90 < cos θµ < 0.94  for 
12

C

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

5

10

15

20
0.925 < cosθµ < 0.975

0.94 < cos θµ < 0.98  for 
12

C

0 0.5 1 1.5 2 2.5
pµ (GeV)

0

2

4

6

8

10
0.975 < cosθµ < 1.000

0.98 < cos θµ < 1.00  for 
12

C

Figure 7.29: T2K flux-folded double differential cross section per target nucleon for the νµ CCQE
process on 16O displayed versus the muon momentum pµ for various bins of cos θµ obtained within
the SuSAv2-MEC model. QE and 2p-2h MEC results are also shown separately. Preliminary T2K
data are from [122]. The y-axis represents d2σ/dpµ/d cos θµ in 10−39 cm2/GeV/nucleon.

Results for CC0π νµ-16O reactions within the SuSAv2-MEC model are shown in Fig. 7.29.
Each panel presents the double differential cross section averaged over the T2K νµ flux versus the
muon momentum for fixed bins of the muon scattering angle. We show the separate contributions
of the pure QE, the 2p-2h MEC and the sum of both. As for the 12C case, a good agreement with
data is achieved in most of the situations, although due to the present level of experimental accu-
racy it is hard to draw further conclusions. As well, a minor role of the MEC effects compared with
the pure QE ones is observed. Furthermore, the MEC peak compared with the QE one is shifted to
smaller pµ-values.

These results, also present in the case of T2K-12C, are in contrast with the analysis of the
MiniBooNE and MINERνA experiments, that show 2p-2h MEC relative effects to be larger and
the peak location more in accordance with the QE maximum. This is connected with the much
narrower distribution of the T2K flux, of little relevance above 1 GeV. Similar comments also
apply to the results for CC0π νµ-16O reactions shown for completeness in Fig. 7.30. Although the
average νµ is sligthly lower (∼ 0.6 GeV), the relative contribution of the 2p-2h MEC compared
with the QE one is very similar to the case of neutrinos, also showing the same general shape
versus the muon momentum.
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Figure 7.30: As for Fig. 7.29, but now for the νµ CCQE process on 16O.

7.5.3 Oxygen versus Carbon CC0π results

In order to disentangle how nuclear effects enter in the analysis of the T2K experiment, we show
in Fig. 7.31 the predictions provided by SuSAv2-MEC for the neutrino-averaged double differen-
tial cross sections per nucleon in the cases of 12C (red lines) and 16O (blue lines). The separate
contributions of the pure QE (dot-dashed), the 2p-2h MEC (dashed) and the total responses (solid)
are presented.

Although the scaling behavior of the QE and the 2p-2h cross section per nucleon is different:
while the former goes like k−1

F
(scaling of the second kind), the latter increases as k2

F
, the results

in Fig. 7.31 are very similar for the two nuclei in most of the kinematical situations. This is a
consequence of the very close values of kF assumed in both cases: 228 MeV/c (230) for 12C
(16O). Only at forward angles some discrepancy between the results for 12C and 16O emerges
being the latter cross sections larger. The amount of this difference gets higher as the scattering
angle approaches zero. This is clearly observed in the bottom panels of Fig. 7.31, where the total
cross section for 16O is significantly larger than the one for 12C. Notice that this discrepancy comes
essentially from the pure QE response, being the relative difference in the 2p-2h MEC contributions
much smaller. This is consistent with the fact that at very forward angles the transferred energy
in the process is very small and low-energy effects and Coulomb distortions are of relevance (see
Sections 7.3.1 and 7.3.2). However, in spite of these discrepancies, it is important to point out that
the model is capable of reproducing the data for 12C and 16O within their error dispersion.
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Figure 7.31: The same as Fig. 7.29, but now including also the results corresponding to the T2K-νµ
CCQE process on 12C.

Next we explore the dependence of the C/O differences upon the neutrino energy. To this scope,
we show in Fig. 7.32 the total integrated cross section per nucleon versus the neutrino energy.

Results from the left panel in Fig. 7.32 show that nuclear effects in the total cross section,
including both QE and 2p-2h MEC contributions, are very reduced. This minor discrepancy comes
from the partial cancellation between the results obtained for the pure QE response (slightly lower
for oxygen) and the 2p-2h MEC (a bit larger for oxygen). This is connected with the different
scaling behavior shown by the QE and 2p-2h MEC responses with the Fermi momentum, and
the very close values of kF selected for the two nuclei. Although not shown in the left panel of
Fig. 7.32, as almost no visible difference appears, the use of a smaller value of kF for 16O, as
the one kF = 216 MeV/c considered in some previous works [85–87], leads to more significant
differences in the QE (being larger) and 2p-2h MEC (smaller) contributions. Nevertheless, the
total response remains rather similar to the result for 12C. It is important to point out that the use
of different kF-values only leads to significant discrepancies for low energy transfer, i.e., ω ≤ 50
MeV, where other ingredients, not explicitly included in the SuSAv2-MEC model, can be relevant.
Moreover, the relative contributions coming from transfer energies below 50 MeV are larger as
the neutrino energy decreases. This is clearly observed in the right panel of Fig. 7.32 for the ratio
16O/12C corresponding to the two values of the Fermi momentum selected for oxygen, 230 MeV/c



7.5. T2K RESULTS FOR νµ CC0π INTERACTIONS 155

and 216 MeV/c. As shown, for neutrino energies above 500 MeV the cross sections for the two
nuclei are almost identical (ratio equal to 1), independently of the particular kF-value selected for
oxygen. On the contrary, the situation clearly differs for smaller neutrino energies, Eν . 500 MeV.
Here the ratio grows up (goes down) very quickly as Eν diminishes, leading to differences of the
order of ∼ 5 − 10% at Eν ∼ 0.2 GeV. Notice that in this region 2p-2h MEC contributions (dashed
lines in the left panel) are negligible, so the total cross section (solid lines) coincides with the pure
QE contributions (dot-dashed) that determine the behavior of the ratio. As already commented,
the oxygen response evaluated for kF = 216 MeV/c is significantly larger than the carbon one
because of its smaller value for the Fermi momentum. This is in contrast with the oxygen response
corresponding to kF = 230 MeV/c. Furthermore, it has been found that both 12C and 16O QE
total cross sections collapse into the same result when neglecting ω < 50 MeV (see right panel
on Fig. 7.32). Therefore, in this case the ratio would be closer to unity even at very low neutrino
energies.
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Figure 7.32: Left panel: Total νµ cross section per nucleon as a function of the neutrino energy
evaluated for 12C and 16O nuclei. Separate contributions of the pure QE (dot-dashed) and 2p-2h
MEC (dashed). Right panel: Ratio of total cross sections corresponding to Oxygen and Carbon.
Results are presented for two values of the Fermi momentum in 16O: kF = 230 MeV/c (solid line)
and kF = 216 MeV/c (dashed line). The Fermi momentum for 12C is fixed to 228 MeV/c.

Another ingredient in the calculation that also affects the O/C results within this low-neutrino
energy region concerns the energy shift. As already mentioned, the careful analysis of (e,e′) data
for both nuclei leads to the use of kF = 230 MeV/c for 16O with an energy shift 4 MeV smaller
than the 12C one (see discussion in Section 6.3).

For completeness, the results for the flux-averaged single-differential cross sections per nu-
cleon corresponding to the T2K experiment are presented in the left panels of Fig. 7.33. We show
the cross sections versus the scattering angle (top panel) and against the muon momentum (bot-
tom). In both cases a comparison between the carbon and oxygen results is provided using the
values of the Fermi momentum given above, namely, 228 MeV/c (12C) and 230 MeV/c (16O). The
separate contributions of the pure QE (dot-dashed), 2p-2h MEC (dashed) and the total result (solid)
are shown. As noted, the discrepancy between the two nuclei is very small.

In order to provide a more detailed analysis on the role played by the nuclear effects, we present
in the right panels of Fig. 7.33 the corresponding ratios between the differential cross sections for
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both nuclei. Here, in addition to the two Fermi momenta selected for the cross sections (left pan-
els), we also include the results obtained for 16O with kF = 216 MeV/c. The shadowed region
represents the uncertainty in the total response (QE+MEC) linked to the use of the two values of
the Fermi momentum for oxygen: 230 MeV/c (lower limit) and 216 MeV/c (upper limit). In the
case of the cross section versus the muon angle (right-top panel) the uncertainty spread is of the
order of ∼ 2 − 3%. Notice that only for very forward angles the curves cross each other. This
corresponds to very small values of the energy transfer (see discussion above). The tiny ∼ 2 − 3%
uncertainty comes from the significant cancellation between the isolated QE and 2p-2h MEC con-
tributions that show a much wider spread, of the order of ∼ 7 − 8% (QE) and ∼ 16 − 18% (MEC),
roughly connected with their corresponding kF dependence.

The results for the ratios of the differential cross section versus the muon momentum are pre-
sented in the right-bottom panel. Again, the shadowed region represents the uncertainty linked to
the total cross sections. Notice the significant fluctuation of the results at low values of the muon
momentum. This is a region where the cross sections increase very quickly with pµ until reaching
their maxima. In fact, the value of the muon momentum where the two curves for the global ratios
cross each other is close to the values where the maxima in the cross sections are located. For
higher muon momentum pµ the uncertainty in the total ratios is at most of the order of ∼ 5 − 6%
being reduced to ∼ 2 − 3% for pµ ≥ 1 GeV/c.
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7.6 Inclusive νµ-
12C cross sections

In this section, the analysis is extended to the inclusive charged current neutrino-nucleus cross
sections which, in this context, requires the addition of resonance production and deep inelastic
scattering processes to the QE and MEC multinucleon contributions previously considered. As a
consequence of these competing mechanisms, the products of neutrino interactions include a va-
riety of final states from the emission of nucleons to more complex results including pions, kaons
and collections of mesons. The CC inclusive cross sections are evaluated within the SuSAv2-MEC
model and its extension to the pion production region associated to the ∆-resonance. Note that this
implies some limitation for the analysis of very high-energy neutrino experiments where higher
inelasticities and DIS contributions can play the main role.

We compare our predictions with the inclusive measurements carried out by the T2K [44, 45,
183] and SciBooNE [41] Collaborations, where only the outgoing lepton is detected. For neutrino
energies around 1 GeV (T2K and SciBooNE) the main contributions to the cross sections are as-
sociated with quasielastic (QE) scattering, one pion (1π) production and, to a lesser extent, 2p-2h
MEC, while at higher neutrino energies (such as the ones from the ArgoNeuT experiment [48,49])
multiple pion and kaon production, excitation of resonances other than the ∆ and deep inelastic
channels are necessary to describe the data. In what follows we attempt to provide some insights
into how important these last effects may become as the neutrino energy increases.

7.6.1 ∆-scaling in lepton-nucleus interactions

Next, we briefly introduce the extension of the SuSAv2 formalism to the ∆ regime for neutrino-
nucleus scattering. This approach allows for a description of the QE and ∆ resonance regions in a
unified framework and can also be applied to high energies due to its relativistic nature.

In previous works [64,84], it has been shown that the residual strength in the resonance region,
obtained by subtracting the QE+MEC contribution from the total cross section, can be accounted
for by introducing a new scaling function f ∆ dominated by the N → ∆ and employing a new scal-
ing variable, ψ∆, which is suited to the resonance region, resembling the inelastic scaling variable
introduced in Chapter 5 for (e,e′) reactions (see Eq. 5.32),

ψ∆ =
1
√
ξF

λ − τρ∆
√

(1 + λρ∆) τ + κ
√

τ
(

1 + τρ2
∆

)

(7.8)

with ρ∆ defined in terms of the ∆-resonance mass, m∆,

ρ∆ = 1 +
µ2
∆
− 4τ

4τ
; µ∆ =

m∆

MN

. (7.9)

It is also important to stress that this ∆-scaling approach is expected to be valid only for those
kinematical situations where the ∆-resonance excitation is the dominant inelastic process. In this
sense, the extension of the SuSAv2-inelastic model (succesfully applied to the analysis of (e,e′)
data in Chapter 6) to the analysis of CC neutrino interactions would be more suitable to describe
the inclusive cross section at higher energies.1

1The extension of the SuSAv2-inelastic model to CC neutrino reactions is still in progress and will be presented in
further works.
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Thus, the phenomenological ∆-scaling function employed here for the analysis of the non-
quasielastic (non-QE) region, assuming that this is dominated by the ∆-resonance, follows the
procedure described in [84, 184]. We first define a non-QE experimental scaling function in this
region, f non−QE ≡ f∆. This entails subtracting from the experimental (e,e′) double-differential
cross section the SuSAv2-QE predictions and the 2p-2h MEC contributions:

(

d2σ

dΩdω

)non−QE

=

(

d2σ

dΩdω

)exp

−
(

d2σ

dΩdω

)QE,SuSAv2

1p1h
−

(

d2σ

dΩdω

)MEC

2p2h
. (7.10)

Then we define a superscaling function in the region of the ∆ peak as follows:

f non−QE(ψ∆) = kF

(
d2σ

dΩdω

)non−QE

σMott(VLG∆
L
+ VT G∆

T
)
, (7.11)

where G∆
L
, G∆

T
are the single-hadron functions referred to the N → ∆ transition (see [64, 84, 184]

for explicit expressions and details on the form factors employed).

The behavior of f non−QE is determined by analyzing a large set of high quality (e,e′) data for
12C, using similar procedures to those discussed in [64]. The data used are chosen to match, at
least roughly, the relevant kinematics for the neutrino experiments under discussion.

From this analysis, illustrated in Fig. 7.34, it appears that scaling in the ∆ region works reason-
ably well up to the center of the ∆ peak, ψ∆ = 0, while it breaks, as expected, at higher energies
where other inelastic processes come into play. Nevertheless the quality of scaling is not as good
as in the QE-peak region. For this reason the non-QE scaling function is represented with a band,
rather than with a function, which accounts for the spread of pseudo-data seen in Fig. 7.34. This
band, together with the SuSAv2-MEC model, can now be used to validate the model against elec-
tron scattering data and, hence, to extend it to neutrino and antineutrino cross sections.

Figure 7.34: Averaged experimental values of f non−QE(ψ∆) together with a phenomenological
fit of the non-QE scaling function. The colored band represents an estimation of the theoretical
uncertainty. Data taken from [100, 101].
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In Fig. 7.35 we compare the model predictions with inclusive electron scattering data on 12C.
Although many high quality electron scattering data exist, here we only show results for a few
representative choices of kinematics that are of interest in the neutrino experiments addressed in
the following sections.
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Figure 7.35: Double-differential inclusive electron-carbon cross sections, dσ/dωdΩ. The panels
are labeled according to beam energy, scattering angle, and value of qQE at the quasielastic peak.
The results are compared with the experimental data from [185] at the selected kinematics.

As observed, the model gives a good description of the (e,e′) data. The band in the final
cross section (green region) comes from the uncertainty in the determination of the ∆ superscaling
function. This explains that the data located in the region close to the ∆-peak are contained within
the limits of the above band. Note also the compatibility between the 1π contribution and the
SuSAv2-inelastic model except for the highly-inelastic regime, i.e. very largeω. More importantly,
the model (with its associated uncertainty) is capable of reproducing successfully all data with
particular emphasis on the dip region. This result gives us confidence in the reliability of the
model and its application to the analysis of neutrino-nucleus scattering reactions.

7.6.2 Analysis of inclusive T2K and SciBooNE cross sections

First, we analyze the predictions corresponding to the T2K flux-averaged inclusive double dif-
ferential cross sections for muon neutrinos [44]. Results are shown in Fig. 7.36 as function of
the muon momentum and averaged over particular muon angular bins (each panel). The separate
contribution of the QE, 2p-2h MEC and the ∆ resonance (brown band) are presented. The global
response is shown by the green band. In spite of the large experimental uncertainties, the model
provides a very nice description of data once all contributions are included, i.e., QE, 2p-2h MEC
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and pion production. This is consistent with the kinematics implied by the present T2K experi-
ment (〈Eνµ〉 ∼ 0.8 GeV) being the ∆ resonance the main response (almost the only one) within the
inelastic region. It is also worth mentioning that the effects associated to the ∆-scaling function
above ψ∆ = 0.5, where effects beyond the ∆-resonance are particularly relevant (see Fig. 7.34), are
less than 10 − 12% at T2K kinematics. This supports the reliability of our model to be applied to
the description ot the T2K µν data at 〈Eνµ〉 ∼ 0.8 GeV.

The previous comparison with T2K νµ inclusive data has been also addressed in other works
[184, 186, 187] where similar results were obtained in the framework of the SuSAv2+vectorMEC,
RPA and GiBUU models. On the contrary, some underprediction were found in [173, 188] for
the CRPA and RGF approaches, respectively. When comparing with results from [184], the main
difference between the two calculations is the inclusion, in the present, of the axial and interfer-
ence vector-axial 2p-2h contributions. Whereas in [184] the purely vector MEC were found to be
negligible at these kinematics, in Fig. 7.36 it is shown that the axial+vector two-body currents give
a contribution closer to the one associated with the ∆ resonance.
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Figure 7.36: The CC-inclusive T2K flux-folded νµ−12C double-differential cross section per
nucleon evaluated in the SuSAv2+MEC model is displayed as a function of the muon momentum
for different bins in the muon angle. The separate contributions of the QE, 1π and 2p-2h MEC are
displayed. The data are from [44].

Similar conclusions apply to the inclusive T2K results for electron neutrinos analyzed in Fig. 7.37,
where the flux-averaged single differential cross sections are shown. Results are presented against
the electron scattering angle (top panel), the electron momentum (middle) and the reconstructed
four-momentum (bottom). In the three cases we show the separate contributions corresponding to
the QE response, the 2p-2h MEC, pionic and the total response.
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Figure 7.37: The CC-inclusive T2K flux-folded νe−12C differential cross section per nucleon
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(bottom). The separate contributions of the QE, 1π and 2p-2h MEC are

displayed. The data are from [45].
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Although, as noted, the role associated with the ∆ resonance is essential, the data in Fig. 7.37
are underpredicted by the model predictions. This implies that other higher nucleon resonances,
not taken into account in the present description, may also have a significant role in explaining
T2K νe data. Note that the averaged νe flux is placed at ∼ 1.3 GeV, significantly larger than the νµ
one (∼ 0.8 GeV) and, at the same time, the role ascribed to the 2p-2h MEC effects is of the order
of ∼ 20% (∼ 15%) for νe (νµ). The need for higher inelasticities in the theoretical description are
clearer for increasing values of the electron momentum (see results in the middle panel) and/or
the reconstructed four-momentum transfer (bottom panel). The DIS cross section shown in [187],
which is intended to be included in further works, could reduce the underestimation on the T2K-νe

results displayed here as well as in the ones from Martini et al. [180].

To conclude, we present in Fig. 7.38 the results for the SciBooNE experiment [41]. These
correspond to CC νµ (νµ) scattering on a polystyrene target (C8H8). The data are presented as a
total unfolded integrated cross section as a function of the neutrino energy. Because of the model-
dependent unfolding procedure to reconstruct the neutrino energy, one should be very cautious in
the comparison between data and theoretical predictions (see discussion in [41]). The case of neu-
trinos is presented in the left panel of Fig. 7.38 in comparison with available data, including also
as reference the T2K total inclusive cross section measurements for νµ [183] and νe [45] as well as
the recent MINERνA inclusive measurements for νµ and νµ [165]. The theoretical predictions for
antineutrinos are referred to the right panel. Contrary to the analysis in [184] where only vector
2p-2h contributions were considered, here the model reproduces the neutrino data up to 1 GeV.
Nevertheless, for higher energies the model still underpredicts the data by a significant amount.
This result clearly indicates that new channels and higher nucleon resonances, in addition to the
resonant pion production, should be added to the model for the analysis of measurements beyond
Eν ∼ 1 GeV.
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7.7 Conclusions

In this Chapter, the SuSAv2-MEC model has been succesfully applied to the analysis of charged-
current neutrino interactions at intermediate energies, dealing with several aspects of neutrino in-
teractions with nuclei. This has been performed by means of a joint calculation of QE and 2p-2h
contribution using the SuSAv2 model for the quasielastic responses and a relativistic Fermi gas
model for the 2p-2h meson exchange currents in the weak sector. We have analyzed the published
data from the MiniBooNE, T2K, MINERνA, NOMAD and SciBooNE experiments on 12C, span-
ning an energy range from a few MeV to hundreds of GeV. We have found an overall good agree-
ment with data when considering the QE and 2p-2h contributions. When extended to the analysis
of inclusive neutrino reactions, the SuSAv2-MEC approach considering the ∆ production region to
model resonant pion production leads to an accurate description of the T2K and SciBooNE inclu-
sive data in the region where higher inelasticities are not prominent ( Eν < 1 GeV). On the other
hand, the inclusion of the complete inelastic spectrum into the SuSAv2 model for weak interac-
tions will be necessary to account for the higher energies involved in the ArgoNeuT [48, 49] or
MINERνA [165] inclusive measurements. We have also concluded that the 2p-2h MEC channel
is essential to describe a great amount of CCQE-like and inclusive experimental data, with a con-
tribution relative to the QE response ranging from 15 − 35% depending on the kinematics.

Regarding the analysis of the different L/T and vector/axial channels that contribute to the
neutrino-nucleus interactions, we have confirmed a dominance of the traverse channel over the
longitudinal one in both the QE and 2p-2h contributions, being the transverse axial and vector
terms of similar magnitude. On the contrary, the longitudinal axial contribution has been proved
to be essential to interpret properly antineutrino reactions due to the interference V-A cancellation.
Moreover, the analysis of the relevant kinematics for CC weak processes has led to the conclusion
that the major contribution to both QE and MEC regimes comes from ω < 500 MeV and q < 1000
MeV/c even at very high neutrino energies. In addition, a proper description of low-energy effects
is essential for the analysis of forward kinematics and the low-|Q2 | region. This low-kinematical
region is also responsible for the main differences between νe and νµ cross sections.

Additionally, the SuSAv2-MEC model has also been extended to the analysis of neutrino-
oxygen cross sections, yielding a good representation of the experimental data within the present
experimental accuracy. In this connection, the scaling behavior of the RMF scaling functions
together with the nuclear dependence of the 2p-2h contributions will allow for a consistent de-
scription of forthcoming neutrino experiments on heavier nuclear targets, such as DUNE [60],
ArgoNeuT [48, 49] or MINERνA [54]. On this basis, an appropriate analysis of asymmetric nu-
clei (Z , N ) of interest for these experiments, such as 40Ar or 56Fe, will be provided in further
works by the inclusion of the separate neutron and proton scaling functions arising from the RMF
theory [86, 87] into the SuSAv2 model as well as supplying the separate 2p-2h charge channel
contributions, pn, pp and nn emission [189].

To conclude, the SuSAv2 model as well as the 2p-2h MEC parametrization can be described
in a simple way for different nuclei, translating sophisticated and computationally demanding mi-
croscopic calculations into a straightforward description and, hence, easing its implementation in
MonteCarlo event generators employed in the analysis of neutrino oscillation experiments. Ac-
cordingly, the SuSAv2-MEC model constitutes a satisfactory approach for analyzing current and
forthcoming neutrino experiments.





Chapter 8

Summary and Conclusions

In this PhD thesis we have explored the charged-current weak interaction on hadronic systems at
intermediate energies, spanning from a few MeV to hundreds of GeV. We have focused on differ-
ent processes of relevance for neutrino oscillation experiments and have compared our predictions
with a large variety of experimental results.

Beginning with neutrino reactions off free nucleons, we have described the inner structure
of the hadrons and have introduced the general formalism necessary to describe charged-current
neutrino-nucleus scattering processes for the different regimes, namely, quasielastic, 2p-2h MEC
contributions and inelastic spectrum.

With the aim of achieving a complete theoretical description of the CCQE neutrino-nucleus
interaction, we have developed the so-called SuSAv2 model. This model makes use of the pre-
dictions given by the relativistic mean field theory and is based on the SuperScaling Approach,
which assumes the existence of universal scaling functions for both electromagnetic and weak in-
teractions. The scaling functions implicitly contain the nuclear dynamics of the process, namely,
mean-field effects, final-state interactions, nucleon correlations, etc. These nuclear effects can be
studied using different approaches. In this thesis, we have offered a possible explanation in terms
of the relativistic mean field theory which accounts for the FSI between the outgoing nucleon and
the residual nucleus. This model is also consistent with the observed superscaling properties of
(e,e′) data and includes a natural enhancement of the transverse nuclear response as a genuine rel-
ativistic effect, where the latter has shown to be in accordance with the L/T differences suggested
by the experimental data.

We have considered in the SuSAv2 model the difference between isoscalar and isovector con-
tributions coming from the RMF theory, as well as the separate vector-vector, axial-axial and
vector-axial channels. We have also noticed that whereas the RMF approach works properly at
low to intermediate values of the transfer momentum, also providing an accurate description of
FSI, results in the high-q regime, where FSI are negligible, are better described by RPWIA. This is
a consequence of the strong energy independent scalar and vector potentials involved in the RMF
model which, at high values of q, imply a strong energy shift and a long high-energy tail in the
scaling functions. Accordingly, a general “blending” function has been introduced in the SuSAv2
model to make a transition between the RMF and RPWIA responses.

Furthermore, we have extended the SuSAv2 model to the whole energy spectrum, incorporat-
ing to the QE contributions the ones coming from 2p-2h excitations and the entire inelastic regime.
In this connection, a detailed analysis of the inelastic structure functions for protons and neutrons
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has been addressed. The present model has shown to be capable of describing very successfully
the whole energy spectrum of 12C(e,e′) data at very different kinematics. In particular, SuSAv2
has accurately reproduced the position, width and maximum of the QE peak for all kinematics,
whereas the use of the single-nucleon inelastic structure functions together with the SuSAv2 scal-
ing functions has led to a precise description of the ∆-resonance region and the complete inelastic
regime. The addition of 2p-2h MEC effects has also allowed for a proper interpretation of the “dip”
region. Remarkably, the SuSAv2-MEC model has provided a reasonably good description not only
of the cross sections but also of the separate longitudinal and transverse response functions. This
is a very important test for models used in neutrino scattering studies, since the balance between
the L and T channels is different from the (e,e′) case.

Accordingly, a basic feature in the present study, apart from the SuSAv2 model applied to the
QE and inelastic regimes, has concerned the evaluation of the two-body meson exchange currents
that have proven to be essential to describe recent neutrino experiments as well as the “dip” region
in (e,e′) data. The prescription employed here is based on a fully relativistic model in which a
fully Lorentz and translational invariant calculation can be developed and, hence, applied to very
high energies/momenta. This is crucial in order to analyze neutrino oscillation experiments. In
the present study we have used a fixed, highly accurate parameterization of the 2p-2h MEC vector
and axial nuclear responses that allows us to avoid the computationally demanding microscopic
calculation for the entire set of kinematics involved in the experimental data. It is also important to
remark that whereas the SuSAv2 model has been developed from the original calculations based
on the RMF theory, the 2p-2h MEC calculations are linked to the RFG model. The main justifica-
tion for this hybrid approach resides in the technical difficulties inherent to the calculation of such
contributions, which is extremely complex even in the simple RFG basis.

Additionally, the analysis has been extended to other nuclear species in terms of the scaling
properties and nuclear density dependence, thus leading to an accurate description of the exper-
imental data for nuclei of relevance in forthcoming neutrino experiments. Despite the smaller
amount of available (e,e′) data for other nuclei compared to 12C, the growing interest of experi-
mental collaborations on (e,e′) measurements, together with the extension of neutrino experiments
to other nuclear targets, is expected to shed light on the nuclear effects that play a role in the ex-
perimental measurements for both electron and neutrino reactions.

All this complete analysis has given us a great confidence in the reliability of the model, pro-
viding a solid benchmark to assess its validity when extended to the description of CCQE neutrino-
nucleus scattering. In this case, not only new responses contribute, but also the wide neutrino flux
energy spectrum implies that ingredients, such as multinucleon excitations, beyond the ones as-
sumed within the IA can have a significant impact on the data analysis. In this sense, the fully
relativistic description presented in electron scattering processes for the entire energy spectrum
and the different nuclear regimes is of crucial importance for the study of neutrino reactions.

From this baseline, the SuSAv2-MEC model has been succesfully applied to the analysis of
charged-current neutrino interactions at intermediate energies. We have compared our predictions
with recent experimental results from different collaborations: MiniBooNE, T2K, MINERνA,
NOMAD and SciBooNE, covering an ample energy range from a few MeV to hundreds of GeV.
Accordingly, these measurements on CCQE neutrino and antineutrino reactions on 12C have con-
stituted an extensive guide to assess the reliability of our model. In this context, we have found an
overall good agreement with data when considering both the QE and 2p-2h MEC contributions,
thus verifying the relevance of the 2p-2h excitations for a proper interpretation of the CCQE-like
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measurements. When extended to the analysis of inclusive neutrino reactions, the SuSAv2-MEC
approach, considering the ∆ production region to model resonant pion production, has led to an
accurate description of the T2K and SciBooNE inclusive data in the region where higher inelastic-
ities are not prominent (Eν < 1 GeV). In this connection, the inclusion of the complete inelastic
spectrum into the SuSAv2 model for weak interactions, still in phase of analysis, will be necessary
to account for the higher energies involved in the ArgoNeuT and MINERνA inclusive measure-
ments.

The conclusions extracted from the analysis of the different L/T and vector/axial channels that
contribute to the neutrino-nucleus interactions, have confirmed a dominance of the tranverse chan-
nel in both QE and 2p-2h regions, being the transverse axial and vector terms of similar magnitude.
On the contrary, the longitudinal axial contribution has been proved to be essential in both QE and
2p-2h MEC regimes in order to interpret properly antineutrino reactions. This is a consequence
of the interference V -A cancellation. Moreover, the analysis of the relevant kinematics for CC
weak processes has led to the conclusion that the major contribution to both QE and MEC regimes
comes from ω < 500 MeV and q < 1000 MeV/c even at very high neutrino energies. In addition,
a proper description of low-energy effects, including the influence of Pauli blocking and consid-
ering the residual nucleus mass, is necessary for the analysis at forward kinematics and low-|Q2 |
values. This kinematical region is also responsible for the main differences between νe and νµ
cross sections, mainly related to the final-lepton mass dependence of the momentum transfer and
the Coulomb distortions of the emitted lepton.

Concerning the growing interest in neutrino reactions on different targets as a method to dis-
entangle the experimental uncertainties arising from nuclear effects in both initial and final states,
the SuSAv2-MEC model has been extended to the analysis of neutrino interactions on water. The
comparison within the preliminary T2K CCOπ νµ-16O results has evidenced a good description of
the data within the present experimental accuracy. In this sense, the scaling behavior of the RMF
scaling functions together with the nuclear dependence of the 2p-2h contributions analyzed in this
thesis will allow for a consistent description of forthcoming neutrino experiments on heavier nu-
clear targets, such as DUNE, ArgoNeuT or MINERνA. In this connection, an appropriate analysis
of asymmetric nuclei (Z , N ) of interest for these experiments, such as 40Ar or 56Fe, will be
provided in further works. This will be accounted for by including, into the SuSAv2-MEC model,
the individual neutron and proton scaling functions arising from the RMF theory as well as the
separate 2p-2h charge channel contributions, pn, pp and nn emission.

Finally, in the ongoing effort to model neutrino-nucleus interactions for precise measurements
of neutrino oscillations, the results presented in this thesis within the SuSAv2-MEC model can
provide a deeper understanding of these processes. On this basis, the SuSAv2 model as well as
the 2p-2h MEC contributions can be described in a simple way for different nuclei, translating
sophisticated and demanding microscopic calculations into a straightforward description of the in-
teracting nucleons and, hence, easing its implementation in the MonteCarlo simulations employed
in the analysis of neutrino oscillation experiments. All this makes the SuSAv2-MEC model a
promising candidate for analyzing current and forthcoming neutrino experiments.





Appendix A

Electromagnetic electron-nucleon elastic

scattering

Following the procedure described in Chapter 2 for CC elastic neutrino-nucleon interaction, we
introduce in this appendix some remarks on the formalism employed to describe elastic electron-
nucleon scattering processes. These interactions are schematically shown in Fig. A.1, where the
electromagnetic interaction (e− + N → e− + N) via the exchange of a γ photon is represented.
Analogously to Chapter 2, the frame of reference is selected so that the initial and final electrons
are contained in the X Z plane. The kinematics of the elastic e-N scattering process is summarized
as follows:

➲ Incident electron e−:

– 4-momentum: ki = (εi,~ki)

– Mass: me , 0→ εi =

√

~k2
i
+ m2

e

➲ Final electron e−:

– 4-momentum: k f = (ε f ,~k f )

– Mass: me

– Scattering angle: θe

➲ Initial nucleon N :

– 4-momentum: Pi = (MN ,0)

– Mass: MN

➲ Final nucleon N :

– 4-momentum: P f = (E f ,~q)

– Mass: MN

➲ Exchanged boson γ:

– 4-momentum: Qe = (ω,~q ≡ q)

The energy-momentum conservation law in the leptonic and hadronic vertexes implies the
following relations:

Leptonic vertex

➦ Energy conservation: εi − ε f = ω

➦ Momentum conservation: ~ki − ~k f = ~q ⇒ q2
= |~ki |2 + |~k f |2 − 2|~ki | |~k f | cos θe
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Figure A.1: Feynman diagram for the electromagnetic electron-proton scattering via
the exchange of a virtual photon.

Hadronic vertex

➦ Energy conservation: E f = ω + MN ⇒ ω2
+ 2MNω = q2⇒−Q2 ≡ |Q2 | = 2MNω

➦ Momentum conservation: ~q = ~Pi +
~P f ⇒ ~q = ~P f

As shown in the previous equations, the kinematical variables εi, ε f and θe are not independent
so the kinematic of the process are completely defined by determining two of them.

Interaction hamiltonian

The transition ampplitude S f i of the scattering process is obtained from the electromagnetic hamil-
tonian (HEM ):

S f i = −i

∫

d4X HEM (X ) , (A.1)

HEM (X ) = eJ
(e)†
µ (X )A

µ

(N ) (X ) = eJ
(e)†
µ (X )DEM (Q)J

(N )
ν (X ) , (A.2)

where e is the electron charge. The 4-potential A
µ

(N ) (X ), i.e., the field generated by the nucleon
in the interaction with the corresponding lepton can be related to the hadronic current through the
electromagnetic propagator, D

µν

EM
:

A
µ

(N ) (X ) =
∫

d4Y

DEM
︷                                 ︸︸                                 ︷
∫

d4Q

(2π)4

(

−1

Q2
+ iε

)

eiQ·(X−Y ) J
µ

(N ) (Y ) . (A.3)

Next we introduce the leptonic and hadronic currents, used to obtain the electron-nucleon cross
section.

Leptonic and hadronic currents

Unlike weak processes where an axial term (γµγ5) is also considered for the leptonic current, the
analysis of the electromagnetic leptonic current ( j

(e)
µ ) only involves the vector component (γµ),

j
(e)
µ = ψe(k f , s f )γµψe(ki , si) . (A.4)
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Likewise, only the vector part remains for the hadronic currents,

J
µ

(N ) = ψPf
(P f ,S f )Γ̃µψPi

(Pi,Si) (A.5)

Γ̃
µ
= F N

1 γ
µ
+

iF N
2

2M
σµνQν . (A.6)

Electromagnetic electron-nucleon cross section

Using the previous definitions and proceeding in a similar way as described in Chapter 2 for CC
weak processes (2.21), we obtain the so-called Rosenbluth formula [66] for electromagnetic (e,e′)
reactions:

dσ

dΩ f

= σMott f −1
rec


G2

E
+ τG2

M

1 + τ
+ 2τG2

M tan2 θe/2
 , (A.7)

where frec =
εi

ε f

is the recoil factor, τ =
|Q2 |

4MN
2
=

q2 − ω2

4MN
2

, and the electric and magnetic Sachs

form factors are defined, respectively, as GE (Q2) = F N
1 − τF N

2 and GM (Q2) = F N
1 + F N

2 . The
σMott term is the Mott cross section, which is given by

σMott =
α2 cos2 θe/2

4ε2
i

sin4 θ/2
. (A.8)

Notice that for electromagnetic interactions, the nucleon responses only contain the purely
vector terms, that is, RVV

L
and RVV

T
. Thus the single differential cross section can be expressed as:

dσ

dΩ f

= σMott f −1
recF 2

EM , with F 2
EM = XVV

L + XVV
T (A.9)

and XVV
L = vL RVV

L ; XVV
T = vT RVV

T , (A.10)

where the leptonic factors vL,vT are given by

vL = ρ
2
=

|Q2 |
q2

(A.11)

vT =
1
2
ρ + tan2 θe/2 . (A.12)

The nucleon responses (RVV
L
,RVV

T
) are defined as for the CC weak processes (see Eqs. 2.60 and 2.66

in Chapter 2) but considering the purely electric and magnetic Sachs form factors, GE and GM ,
given above.

More information about the formalism of electron-nucleon (e + N → e′ + N) and electron-
nucleus (e + A→ e′ + N + (A − 1)) reactions can be found in previous works [63, 64, 75].





Appendix B

Parametrization of the reference scaling

functions within the SuSAv2 model

In this Appendix we summarize the parameterization of the reference SuSAv2 scaling functions.
The RMF scaling functions are given in terms of a skewed-Gumbel (sG) function [190], defined as

f̃ sG = S(ν0;ψ) fG (ψ0,σ, β;ψ) , (B.1)

where

S(ν0;ψ) =
2

1 + eν/ν0
(B.2)

fG (ψ0,σ, β;ψ) =
β

σ
eν exp[−eν] (B.3)

ν = −
(
ψ − ψ0

σ

)

. (B.4)

In Table B.1, the values of the free parameters that fit the corresponding longitudinal (L) and
transverse (T) RMF scaling functions are shown. The differences linked to the isospin effects (τ)
are also taken into acccount.

f̃ L,T=1 f̃ L,T=0 f̃T

β 0.8923 1.0361 0.9425
σ 0.6572 0.5817 0.7573
ψ0 0.1708 0.02217 −0.4675

1/ν0 −0.7501 −0.1163 2.9381

Table B.1: Values of the parameters that characterize the RMF scaling functions.

Moreover, the reference RPWIA scaling functions are described as

f̃ RPW I A
L,T =

2(a3)L,T

1 + exp
(
ψ−a1

a2

) exp

(

− (ψ − a4)2

a5

)

, (B.5)

with a1 = −0.892196, a2 = 0.1792, (a3)L = 6070.85, (a3)T = 6475.57, a4 = 1.74049, a5 =

0.64559. There are no significant differences associated to isospin effects (isovector, isoscalar) on
the RPWIA scaling functions.
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In order to reproduce the peak position of RMF and RPWIA scaling functions within SuSAv2
we consider a q-dependent energy shift, namely, Eshi f t (q). This quantity modifies the scaling
variable ψ(q,ω) −→ ψ′(q,ω,Eshi f t) as

ψ′ =
1
√
ξF

λ′ − τ′
√

(1 + λ′)τ′ + κ
√
τ′(τ′ + 1)

(B.6)

where ξF =

√

1 + (kF/MN )2 − 1, κ = q/(2MN ), λ′ = ω′/(2MN ) and τ = κ2 − λ′2. MN is
the nucleon mass and kF is the Fermi momentum. Additionally, we have introduced the variable
ω′ = ω − Eshi f t .

In particular, we build this function Eshi f t (q) from the results of the RMF and RPWIA models
presented in Chapter 3 (see also [153]). In the particular case of 12C, the energy shift for the
longitudinal and transverse RMF/RPWIA scaling functions is defined (in GeV) as

ERMF
shi f t,L = −0.005506 + 0.0548 ∗ q

ERMF
shi f t,T = −0.007687 + 0.0564 ∗ q

ERPW I A
shi f t,L = 0.035164 + 0.0112 ∗ q

ERPW I A
shi f t,T = −0.007687 + 0.0564 ∗ 0.827 (B.7)

The resulting reference-SuSAv2 scaling functions defined above are displayed versus the scal-
ing variable in Fig. B.1.
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Figure B.1: Reference scaling functions in the SuSAv2 model displayed versus ψ′.



Appendix C

MEC scaling variable

In this Appendix, we describe in detail the 2p-2h MEC scaling variable ψ′
M EC

(q,ω, kF ) which
bears a resemblance with the usual QE scaling variable ψ′ ≡ ψ′

QE
(q,ω), and adjusts the maximum

of the 2p-2h MEC results at ψ′
M EC

≈ 0. This MEC scaling variable is given by

ψ′MEC(q,ω, kF ) ≡ 1
√

ξ
e f f

F
(q)

λ′MEC − τ
′
MECρ

′
MEC

√

(1 + λ′MECρ
′
MEC)τ′MEC + κ

√

τ′MEC

(

1 + τ′MECρ
′ 2
MEC

)

, (C.1)

where

λ′MEC ≡
ω′MEC

2MN

, κ ≡ q

2MN

, τ′MEC ≡ κ
2 − (λ′MEC)2 , (C.2)

ω′MEC ≡ ω − E
shi f t

MEC (q) , ρ′MEC ≡ 1 +
1

4τ′MEC

*,
m2
∗

M2
N

− 1+- . (C.3)

The functions

ξ
e f f

F
(q) =

√

1 +
[

α (1 + βe−wγ ) ηF

]2 − 1 (C.4)

and
E

shi f t

MEC (q) = E0 + E1t + E2t2 , (C.5)

where w = q/1000 and t = (q − 500)/1000 with q in MeV/c are chosen in such a way that the
maxima of the 2p-2h responses at different values of q align at ψ′MEC = 0. The values of the pa-
rameters for the case of 12C are given in Table 1.The same values are used for all the choices of kF

and the results shown in Figs. 4.16 and 4.17 indicate that this procedure is successful.

m∗(MeV/c2) α β γ E0(MeV) E1(MeV) E2(MeV)
1170 1.3345 30.73 0.85 42.718 -70.0 37.0

Table C.1: The parameters entering the definition of ψ′MEC for 12C.

The usual definition of ψ′QE can be recovered from the above equations by setting m∗ = mN

(hence ρ′ = 1) and replacing ξe f f

F
(q) by ξF .
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Appendix D

Monopole and dipole axial form factor

With the assumptions of conserved vector current and partially conserved axial current, the only
undetermined form factor in the analysis of CCQE neutrino scattering is the axial nucleon form
factor, GA(Q2). In this appendix, we explore the sensitivity of the neutrino and antineutrino cross
sections to the description of GA(Q2). As introduced in Chapters 1 and 2, neutrino experiments do
not have, up to date, the precision required to test explictly the Q2 dependence of the weak form
factors. Although without a strict theoretical basis, a dipole functional form, similar to the Galster
one for the vector form factors [18], is assumed in most theoretical models. The assumption of the
dipole ansatz is a crucial element in many of the recent neutrino experiments [20, 21, 46, 47, 191].
A reasonable description of GA(Q2) by dipole approximation with MA ≃ 1 GeV/c2 was found in
the analysis of electroproduction data on free proton [17] and from dσ/dQ2 neutrino-deuterium
data cite Bodek:axial2008.
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Figure D.1: CCQE νµ−12C (left panel) and νµ−12C (right panel) cross section per nucleon evalu-
ated in the SuSA model for monopole (blue outer band) and dipole (red inner band) parametriza-
tions of the nucleon axial-vector form factor. A larger axial mass yields a higher cross section. The
results for M̃A = 0.75 GeV/c2 are also shown as reference.

When employing a dipole parametrization for the above processes the “standard” value of the
axial-vector dipole mass is MA =1.032 GeV/c2, whereas in analyzing the MiniBooNE data a larger
value of MA =1.35 GeV/c2 was proposed [20] without considering the effects of multi-nucleon
excitations. The range spanned by these two MA-values is shown in Fig. D.1 for neutrino and
antineutrino scattering on 12C within the semiphenomelogical SuSA approach. Similar effects can
be also found in the SuSAv2 model. Clearly the modified axial-vector mass (MA = 1.35 GeV/c2)
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produces an increase of the cross section improving the agreement at MiniBoone kinematics with-
out considering 2p-2h effects. However, the addition of the 2p-2h contributions, which has been
proved as essential to interpret properly the MiniBooNe data, would result in an overstimation of
the MiniBooNE data for MA = 1.35 GeV/c2. Furthermore, the increase due to the enlarged axial
mass is excessive to explain the NOMAD data. This reinforces the idea that the world-averaged
axial mass (MA = 1.032 GeV/c2) is the appropriate value for the dipole ansatz.

Although phenomenologically successful, the dipole parametrization has not been justified
from a field-theoretical point of view [72] and it is well-known that, for instance, in vector-meson
dominance (VMD) models [192], the fact that at moderate momentum transfers the EM form
factors are roughly dipole-like is a conspiracy involving the (monopole) ρ and ω poles leading
to an effective dipole behaviour (see also the discussions in [70]). Therefore, in addition to the
standard dipole form, we also consider here a monopole form G

(M)
A

(Q2) = gA/(1 + |Q2 |/M̃2
A
)

motivated by VMD-based analyses such as those in [148, 149]. Using the monopole axial-vector
masses M̃A =0.5 GeV/c2 and M̃A =1 GeV/c2 (the range considered in [71]) and employing the
SuSA model, we obtain the band also shown in Fig. D.1. Note that increasing the axial-vector
mass produces an increment of the cross sections with both parametrizations and a monopole
axial-vector form factor with M̃A ≃ 1 GeV/c2 gives similar results at MiniBooNE kinematics as
using MA = 1.35 GeV/c2, but overstimating significantly the higher-energy NOMAD data. In fact,
the band width linked to the two M̃A-values used with the monopole axial-vector form factor is
much larger than the one corresponding to the dipole parametrization. This is in accordance with
previous results shown within the framework of parity-violating electron scattering [71].
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Figure D.2: Elastic neutrino-nucleon dσ/dΩ cross section versus |Q2 |. Upper lines: Monopole
form factor (M̃A = 1 GeV/c2). Lower lines: Dipole form factor (MA = 1.03 GeV/c2). The cross
section rises slightly with Eν for the monopole form factor at higher energies whereas the opposite
occurs for the dipole ansatz. This effect is noticed, after integrating, in the total cross section.

We should notice that a dipole axial-vector form factor with MA = 1.35 GeV/c2 (in the SuSA
model) produces a cross section that is slightly lower in the MiniBooNE energy region than that
obtained using M̃A = 1 GeV/c2, but gives a “reasonable (or a better)” explanation of the NOMAD
data. On the other hand, M̃A = 1 GeV/c2 is probably not a good choice because the neutrino cross
section keeps rising even at high energies. Indeed if one were to accept the monopole parametriza-
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tion and fit the NOMAD data one would find that M̃A = 0.70±0.06 (0.72±0.14) GeV/c2 for neutri-
nos (antineutrinos). For completeness, we also show in Fig. D.1 the results for M̃A = 0.75 GeV/c2.
It is noteworthy to mention that old experiments with deuterium bubble chambers also performed
fits of the data using a monopole axial form factor, obtaining M̃A = 0.57 ± 0.05 GeV/c2 [25] and
M̃A = 0.54 ± 0.05 GeV/c2 [193].

As generally observed, the monopole form factor descreases slower than the dipole one as |Q2 |
rises, which is linked to the different (1 + |Q2 |/M2

A
)n dependence. This is also observed for elastic

neutrino-nucleon reactions (see Fig. D.2 for details) where for M̃A = 1 GeV/c2 the differential
cross section keeps rising with Eν even at high |Q2 |. In contrast, the analysis of the dipole form
(MA = 1.032 GeV/c2) shows a slight reduction of the results as Eν increases.

In summary, while these and previous studies suggest that a dipole axial-vector form factor
with the standard value of the dipole mass is preferred, given the modern interest in a potentially
different behaviour, especially at high momentum transfers, new studies of neutrino desintegration
of deuterium as well as VMD-based theoretical analysis would be very valuable in clarifying this
issue before drawing further conclusions.





Appendix E

Quenching of the axial coupling constant

One of the uncertainties in the modeling of weak interactions is the axial-vector coupling constant
of the nucleon which has been widely studied theoretically as well as experimentally for many
years. This parameter can be defined as the value of the axial form factor of the nucleon in the
elastic limit Q2 → 0, i.e., gA = GA(0). As previously introduced in Chapters 2 and 7, the accurately
measured beta decay lifetime of the neutron in vacuum, n → p+ e− + νe, has allowed to determine
the ratio of the axial and vector couplings of the neutron as |gA/gV | = 1.2671 ± 0.0025 [73], as-
suming gV � 1.

On the contrary, the analysis of beta-decay in nuclei have suggested that a lower value of
|gA/gV | ≃ 1 would fit better the observed systematics [194]. This quenched value also seems to be
consistent with pion-nucleus optical potentials [195, 196] and the analysis of Gamow-Teller reso-
nances in nuclei [197]. Nevertheless, studies of muon capture on nuclei, including detailed nuclear
structure effects [198], have concluded that a quenched gA is not necessary to account for the data.
Similar results have also been obtained from lattice QCD [199].

Accordingly, in theoretical calculations related to very low-energy calculations of the axial part
of the weak interaction, such as Gamow Teller transitions, a quenching of the axial form-factor is
often introduced in order to reproduce the experimental data. This quenching can incorporate
many-body effects that are not explicitly introduced in the calculation. This is analogous to what
is sometimes done with charges and magnetic moments in electromagnetic studies (e.g., effec-
tive charges and moments, core polarization effects, etc.). However, at the energies and momenta
of interest for neutrino oscillation experiments, and for kinematical conditions that highly favour
scattering under quasielastic conditions, there is little evidence of the need for such a quenching.
A similar situation is seen for electron scattering, for which no effective charges are needed to
reproduce electron-nucleus scattering under quasielastic conditions and moderately large values of
momentum and energy transfer.

Although the neutrino case may be different, due to the axial form factor, quenching of gA

does not appear to be supported by any experiment performed at quasielastic kinematics. Impulse
approximation calculations, for which the weak interaction of bound nucleons is taken identical to
the one of free ones (no quenching), agree with neutrino-nucleus experimens at intermediate ener-
gies. In this regard, we shown in Figs. E.1—E.3 the effect of a quenched gA value of 0.94, similar
to the one suggested by some of the previous studies at very-low energies, in comparison with re-
cent CCQE measurements from the MiniBooNE [20,21], MINERνA [171,172] and NOMAD [24]
Collaborations.
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Figure E.1: Flux-folded νµ−12C CCQE (upper panel) and νµ−CH (lower panel) scattering cross
section per target nucleon as a function of Q2

QE
and evaluated in the SuSAv2 and SuSAv2-MEC

models. The QE results are also shown for the quenched gA value. MINERνA data are from [172].

0 0.2 0.4 0.6 0.8 1 1.2
Tµ (GeV)

0

5

10

15

20

d
2
σ/

d
co

sθ
µ/d

T
µ (

1
0

-3
9
cm

2
/G

eV
)

MiniBooNE
QE+MEC
MEC
QE
QE

(g
A

=0.94)

0.6 < cosθµ < 0.7
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within the SuSAv2-MEC approach. The QE results are also shown for the quenched gA value.
MiniBooNE data are from [20].

Clearly, this choice (gA = 0.94) would put the theory below data as we observe a reduction of
∼ 30% in the QE response (dot-dashed brown line), thus underpredicting the MINERνA (Fig. E.1)
and MiniBooNE (Figs. E.2 and E.3) data even if considering 2p-2h MEC contributions. This re-
duction on gA would also imply an underestimation of the higher-energy NOMAD data (Fig. E.3).
Notice that for this experiment the data are supposed not to include 2p-2h effects. Moreover, the
effect of the quenched axial coupling is smaller for the antinetrino cross section (∼ 20 − 25%) due
to the transverse V − A cancellation (see bottom panel of Fig. E.3).
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We conclude that, although more experimental analysis would be valuable in order to broaden
our knowledge about the axial form factor and their corresponding parameters, these results can
be of relevance in this connection as they completely rule out the validity of using a quenched gA

in this energy domain.
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Figure E.3: MiniBooNE CCQE νµ-12C (νµ-12C) total cross section per nucleon as a function of
the neutrino energy. The QE results are also shown for the quenched gA value. The top panel
corresponds to neutrino cross sections and the bottom one to antineutrino reactions. Data are
from [20, 21, 24].





Appendix F

Energy reconstruction effects in the study of

neutrino oscillations

The interpretation of neutrino oscillation experiments requires an accurate knowledge of the neu-
trino energy which influences the oscillation length. As previously mentioned in Chapters 1 and 7,
neutrino beams are not monochromatic, involving a broad energy distribution around a maximum.
Hence, the true energy for a detected event is unknown. One approach to determine these neutrino
energies is to employ a energy reconstruction method defined in terms on the kinematics of the
CCQE-like events detected, as done in the MiniBooNE, T2K or MINERνA experiments based
on Cherenkov detectors. This method was introduced in Chapter 7 (see Eqs. 7.1—7.3) where the
measured final-lepton kinematics (El and θl) are used to obtain a reconstructed neutrino energy
E

QE
ν and 4-momentum transfer QQE assuming an initial-state nucleon at rest for QE neutrino-

nucleus reactions. However, the determination of these reconstructed magnitudes depends largely
on model assumptions and can be affected by different nuclear effects, such as Pauli blocking,
low-energy excitations, pion-absorption or multinucleon contributions. These effects have been
widely studied within the RPA approach and considering 2p-2h effects by Martini et al. [180,200]
and Nieves et al. [201]. In particular, the 2p-2h excitations introduce important effects in the en-
ergy reconstruction distributions where a large variety of neutrino energies can be related to one
reconstructed value.

In what follows, we analyze the corresponding distribution of charged current events, Drec (Eν),
in terms of the reconstructed energy (EQE

ν ≡ Eν). This distribution can be described in terms of
the double differential neutrino cross section as

Drec (Eν) =
∫

dEνΦ(Eν)
∫ Emax

l

Emin
l

dEl

MEl − m2
l
/2

Eν
2kl

[
d2σ

dω d cos θ

] cosθ=cos θ(El ,Eν )

ω=Eν−El

=

∫

dEνΦ(Eν)d(Eν,Eν). (F.1)

where the integral limits Emin
l

and Emax
l

represent the minimum and maximum values of the final-

lepton energy given in terms of Eν. The second integral in the previous expression refers to the
spreading function d(Eν ,Eν) which allow to study the Eν dependence for different Eν values. This
can be observed in Fig. F.1, where we represent the QE, 2p-2h MEC and pion production contri-
butions at kinematics of relevance for the MiniBooNE and T2K experiments.

As can be noticed, the spreading function is asymmetrical around Eν and the 2p-2h effects are
of special relevance at low Eν where a long energy tail emerges. For completeness, we have also
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included the contributions related to the ∆-resonance and the subsequent pion production that ap-
pear at large true kinematics and clearly extend to the lowest values of the reconstructed energies.
In general, we observe that the corrections introduced from the reconstructed kinematics in the
experimental measurements imply that charged current events tend to escape from the region of
high flux, being shifted to the low-energy region.
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Figure F.1: The spreading function d(Eν,Eν) per neutron for the νµ-12C scattering process. The
quasielastic, 2p-2h MEC and ∆-resonance contributions are shown separately. The net contribution
(solid lines) is also displayed.

The results shown in this appendix are of interest for the νµ → νe oscillation probability anal-
yses of MiniBooNE [202–204] and T2K [205, 206] as well as for the MiniBooNE low-energy
excess [202, 207], where the latter can be explained by nuclear effects beyond IA and the QE
regime, in particular, by multi-nucleon excitations. More specific analysis on this issue can also be
found on [200, 201, 208].
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Cosmic Gall

Neutrinos, they are very small.

They have no charge and have no mass

And do not interact at all.

The earth is just a silly ball

To them, through which they simply pass,

Like dustmaids down a drafty hall

Or photons through a sheet of glass.

They snub the most exquisite gas,

Ignore the most substantial wall,

Cold-shoulder steel and sounding brass,

Insult the stallion in his stall.

And, scorning barriers of class,

Infiltrate you and me! Like tall

And painless guillotines, they fall

Down through our heads into the grass.

At night, they enter at Nepal

And pierce the lover and his lass

From underneath the bed - you call

It wonderful; I call it crass.

John Updike

Telephone Poles and Other Poems

1963
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