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ABSTRACT

In computer vision, local descriptors permit to summarize relevant visual cues through feature vectors. These
vectors constitute inputs for trained classifiers which in turn enable different high-level vision tasks. While local
descriptors certainly alleviate the computation load of subsequent processing stages by preventing them from
handling raw images, they still have to deal with individual pixels. Feature vector extraction can thus become a
major limitation for conventional embedded vision hardware. In this paper, we present a power-efficient sensing-
processing array conceived to provide the computation of integral images at different scales. These images are
intermediate representations that speed up feature extraction. In particular, the mixed-signal array operation
is tailored for extraction of Haar-like features. These features feed the cascade of classifiers at the core of the
Viola-Jones framework. The processing lattice has been designed for the standard UMC 0.18µm 1P6M CMOS
process. In addition to integral image computation, the array can be reprogrammed to deliver other early vision
tasks: concurrent rectangular area sum, block-wise HDR imaging, Gaussian pyramids and image pre-warping
for subsequent reduced kernel filtering.

Keywords: Viola-Jones algorithm, smart imaging, sensing-processing arrays, mixed-signal circuitry, Haar-like
features, OpenCV library, integral images.

1. INTRODUCTION

Feature detectors are widely used for computer vision applications such as object detection and classification,
image retrieval, 3-D reconstruction or tracking, among others.1 They are based on the extraction of local
descriptors at early vision stages encoding relevant visual cues conveyed by means of feature vectors. These
vectors constitute inputs for trained classifiers or matching algorithms which in turn enable different high-level
vision tasks. While local descriptors certainly alleviate the computation load of subsequent processing stages
by preventing them from handling raw images, they still have to deal with individual pixels. Feature vector
extraction can thus become a major limitation for conventional embedded vision hardware.

Focal-plane sensing-processing2 constitutes the best approach in terms of exploitation and adaptation to the
particular characteristics of early vision.3 On the one hand, the information to be handled at this processing
stage —each and every pixel resulting from the raw readings of the sensors— is massive. On the other hand,
the computational flow is very uniform. The same calculations are repeatedly carried out on every pixel. More
interestingly, the outcome for each individual pixel does not usually depend on the outcome for the rest. Conse-
quently, while an enormous amount of data must certainly be processed, regular massively parallel operation can
still be applied. Focal-plane sensor-processor chips make the most of these characteristics by operating in Single
Instruction Multiple Data (SIMD) mode4 featuring concurrent processing and distributed memory. Focal-plane
processing architectures can also benefit from the possibility of including analog circuitry. When compared to
their digital counterpart, analog circuits can reach higher performance in terms of speed, area and power con-
sumption, but at the cost of low, moderate at most, accuracy. Fortunately, most vision algorithms can perform
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Figure 1. Simplified scheme of the Viola-Jones processing flow. It is applied over successive scaled versions of the original
image.

properly under these conditions.5 Numerous smart image sensors have been successfully implemented following
this scheme.6–10 Even commercial general-purpose vision systems based on focal-plane processing have been
reported.11

All in all, we address in this paper the design of focal-plane mixed-signal array circuitry implementing local
descriptors required by the Viola-Jones processing framework.12 In addition to other capabilities, the resulting
array provides support to the Viola-Jones processing flow at two low-level stages. First, it is be able to deliver
the integral and square integral images at different scales. Alternatively, it can compute the sum of pixels and
squared pixels at any possible rectangular area of the image, significantly easing the extraction of Haar-like
features. And this is achieved while making the most of two inherent characteristics of focal-plane operation:
distributed memory and ultra-low-power consumption.

2. VIOLA-JONES PROCESSING FRAMEWORK

The Viola-Jones framework constitutes one of the best approaches reported to achieve real-time object recogni-
tion. It is based on the extraction of very simple features across the image —the so-called Haar-like features—
which are subsequently analyzed by a cascade of classifiers of progressive complexity. These classifiers are previ-
ously trained according to the object to be detected, adapting their internal thresholds when successive training
images are passed through. A basic scheme of the Viola-Jones processing flow is depicted in Fig. 1. Despite its
simplicity, this framework still requires a considerable amount of computational and memory resources. During
the last few years, numerous efforts have been focused on exploiting the increasing memory and logic capabil-
ities available in FPGAs13 as well as the highly parallel computation structure of GPUs.14 When it comes to
low-power embedded systems, additional constraints must be introduced on the image resolution15 or the type
of processor operations16 in order to obtain at least moderate frame rates.

From the point of view of focal-plane processing, we are interested in the early stages of the flow represented
in Fig. 1. From now on, we will be considering the most usual operation mode for the Viola-Jones framework.16

In this mode, the original image is scaled until reaching a prescribed minimal dimension. The processing flow is
repeated for each scaled image. Note that the raw material feeding the cascade of classifiers consists of Haar-like
features. These features derive from the Haar wavelets17 and encode differences in average intensities between
rectangular regions. Their mathematical formulation is extremely simple. For a certain feature Fk, we have that:

Fk =
∑
i

∑
j

Wij −
∑
m

∑
n

Bmn (1)

where Wij represents the pixel values within the white rectangle/s and Bmn the pixel values for the black
rectangle/s. White and black are mere indicators of the area considered, with independence of their pixel values.
In practice, we are simply comparing the DC component of the rectangles involved since the sum of the pixels
is proportional to their mean value.

The large amount of resources to be allocated for the algorithm comes from the correspondingly large number
of Haar-like features to compute. As an example, the Viola-Jones face detection algorithm provided by the



OpenCV library18 requires 22 classifiers including 2135 features in total. Of course, most of the windows
scanned across the image are rejected at the first —and simpler— classifiers of the cascade on not containing the
targeted object. This avoids a great deal of useless calculations. But still there will be windows in which all the
features will have to be checked. In order to alleviate the computational and memory requirements from this
processing stage, an intermediate image representation is used, the so-called integral image. This intermediate
representation is defined as:

II(x, y) =

x∑
x′=1

y∑
y′=1

I(x′, y′) (2)

where I(x, y) represents the input image. That is, each pixel composing II(x, y) is given by the sum of all the
pixels above and to the left of the corresponding pixel at the input image. Two fundamental advantages support
the inclusion of this pre-processing stage. First of all, only four pixels adequately extracted from the integral
image permit to compute the sum of any rectangular region of the input image. Consider four points as in Fig. 1,
(x1, y1), (x2, y1), (x1, y2) and (x2, y2), with x1 < x2 and y1 < y2, defining a rectangle across the input image.
The sum of pixels within this region can be expressed as:

x2∑
x=x1

y2∑
y=y1

I(x, y) = II(x2, y1) + II(x1, y2)− II(x1, y1)− II(x2, y2) (3)

The second advantage is that the integral image can be computed in one pass over the input image by making
use of the following pair of recurrences:{

r(x, y) = r(x, y − 1) + I(x, y)
II(x, y) = II(x− 1, y) + r(x, y)

(4)

with r(x, 0) = 0 and II(0, y) = 0. This single-pass computation enables a fast operation on the part of a
microprocessor.

In addition to the integral image, the Viola-Jones processing flow also requires the calculation of the square
integral image, defined as:

IIsq(x, y) =

x∑
x′=1

y∑
y′=1

I2(x′, y′) (5)

This extra intermediate representation allows, in conjunction with II(x, y), the variance normalization of the
Haar-like features. All the windows used for classifier training are variance-normalized in order to minimize the
effect of different lighting and contrast conditions. Correspondingly, the features extracted from the input image
must also be variance-normalized. Taking into account that the variance of the generic rectangle previously
defined for Eq. (3) can be expressed as:

σ2 =
1

WH

x2∑
x=x1

y2∑
y=y1

I2(x, y)−
[

1

WH

x2∑
x=x1

y2∑
y=y1

I(x, y)

]2
(6)

and considering the counterpart of Eq. (3) for IIsq(x, y), we can re-write Eq. (6) as:

σ2 = 1
WH [IIsq(x2, y1) + IIsq(x1, y2) −IIsq(x1, y1)− IIsq(x2, y2)]

−
{

1
WH [II(x2, y1) + II(x1, y2) −II(x1, y1)− II(x2, y2)]}2 (7)

which shows how both integral images work together to achieve the variance normalization.

In the next section, we will propose a processing scheme devised for the focal-plane computation of II(x, y)
and IIsq(x, y). This computation, that constitutes the lowest-level task for the Viola-Jones framework, can



(a)

(b)
Figure 2. Integral images are to be computed from the original image and successively downsampled versions of it (a). In
practice, this is equivalent to compute them from the original image and its successive versions obtained by pixel binning
(b).

clearly benefit from the concurrent operation and distributed memory provided by focal-plane architectures.
We will also demonstrate that the same scheme can directly deliver the sum of pixels and squared pixels at
multiple rectangular image areas in parallel. This means that the computation of the integral images would not
be really needed. However, the full exploitation of this characteristic falls beyond the scope of this paper. It
would demand new algorithm-level strategies driving a Haar-like feature extraction tailored for the concurrent
sum of rectangular regions across the image.

3. FOCAL-PLANE IMPLEMENTATION OF VIOLA-JONES EARLY VISION TASKS

Our objective is the implementation of reconfigurable focal-plane circuitry delivering integral images at different
scales, as depicted in Fig. 2(a). For the sake of hardware simplicity, this is equivalent in practice to make use
of the original image and its successive versions obtained by pixel binning, as represented in Fig. 2(b). For each
scale, the pixels are correspondingly merged through averaging and the computation step along the x and y axis
is doubled. In order to reach the aforementioned objective, we propose a general scheme like that of Fig. 3.
A focal-plane array of 4-connected sensing-processing elementary cells provides the computational and memory
resources required. These cells, whose interconnection can be reconfigured by means of peripheral circuitry,
operate in a massively parallel way. They will work concurrently and jointly according to the corresponding
instruction. Note however that such parallelism cannot be applied to obtain all the pixels of an integral image at
the same time. Assuming a W ×H array, it would mean to hold W ×H copies of the top-left pixel of the original
image since this pixel is needed for the computation of each and every pixel of the integral image. Likewise,
a progressively reduced number of pixel copies along the original image would also have to be held. Instead,



Figure 3. Focal-plane sensing-processing scheme proposed for the computation of integral images.

we propose the exploitation of concurrency and distributed memory during a sequential processing stage. The
circuitry to achieve this is shown in Fig. 4. It has been designed for the standard UMC 0.18µm 1P6M CMOS
process. After photointegration, the pixel is represented by voltage Vij . This voltage is repeatedly copied into
VSij

by enabling the analog buffer through the control signal CP EN and then squared at VSQij
in order to

respectively support the computation of the integral and square integral images. We re-use the squarer reported
in19 because of its simplicity and successful experimental verification. The sum of pixels and squared pixels is
carried out through charge redistribution enabled by the switches controlled by ENSi,i+1 , ENSj,j+1 , ENSQi,i+1

and ENSQj,j+1
. These signals are set by peripheral circuitry according to the scale and current pixel location of

the integral images being calculated, as will be explained shortly. Once redistributions take place in parallel at
VSij and VSQij , these voltages constitute new pixels of the targeted integral images. Charge redistribution can
really be described as a diffusion process defined, for example for VSij , as:

RSCS

dVSij

dt
= −4VSij + VSi+1,j + VSi−1,j + VSi,j+1 + VSi,j−1 (8)

where RS is the equivalent resistance of the switches and CS is the capacitance holding VSij
. Eq. (8) is for an

inside cell like that of Fig. 4 featuring full connectivity. Cells at the edges are connected to fewer than four
neighbors. Unlike previous implementations,19 we are not now interested in transient states of this diffusion
process but in the steady state. And we want to attain it as fast as possible. Consequently, the switches are as
wide as area restrictions allow, thereby reducing their resistance. The steady state of a diffusion process like that
of Eq. (8) is characterized by a uniform distribution of voltages across the group of cells involved. Every voltage
reaches the same value, that coincides with the average of the initial voltages at the cells. It is this average what
encodes the sum required by the integral images.

In order to better visualize how the charge redistribution is configured, a simplified scheme of the proposed
array is shown in Fig. 5. It can be seen that the cells can be grouped column-wise and row-wise through the
corresponding control signals. Each pixel of the integral images is related to a stage of copy, squaring and
charge redistribution. After these three steps, the array must be re-arranged for the next pixel. As an example,
the computation of the first row of the integral images at scale #1 requires to disable all row connections
between cells and then progressively enable column connections. Thus, if we focus on ENSi,i+1 , the column
interconnection pattern ‘0000...0’ leads to II(1, 1), ‘1000..0’ to II(2, 1), ‘1100..0’ to II(3, 1) and so on. Applying
ones’ complement to these patterns, those of ENSQi,i+1

for IIsq(1, 1), IIsq(2, 1), IIsq(3, 1), etc. are respectively
obtained. For further scales, a more complex redistribution arrangement is needed. To explain this, let us describe
peripheral circuitry capable of providing ENSi,i+1

and ENSQi,i+1
—exactly the same is used for ENSj,j+1

and

ENSQj,j+1
. It is depicted in Fig. 6. We basically require a shift register.19 This makes reconfiguration for scale

#1 very simple and also ease further processing capabilities like image pre-warping for subsequent reduced kernel
filtering.20 But the point is how to deal efficiently with successive scales. Keep in mind that we first need pixel
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Figure 4. Proposed circuitry for integral image computation at the elementary sensing-processing cell.

binning and then reconfigurable charge redistribution over the resulting image. To speed up these two tasks, we
incorporate the possibility of disabling the shift register and setting interconnection patterns in parallel through
the signals denoted as SC#. These signals are distributed along the peripheral cells as illustrated in Fig. 7. For
scale #1, binning is not necessary. Our starting point is therefore an all-0’s bit string for rows and columns.
For scale #2, binning is achieved by switching the signal SC2, distributed as indicated in Fig. 7, from logic ‘0’
to ‘1’. In so doing, we merge voltages VSij

and VSQij
within 2×2-px blocks. By switching also the signal SC3

to ‘1’, again as distributed in the figure, the merging process would affect blocks of 4×4-px. Likewise, SC4 is
associated with 8×8-px blocks and SC5 with 16×16-px blocks. A single signal therefore permits to re-arrange
the array for the next scale. The final step is to perform charge redistribution between the macro-pixels thus
generated. This can be done by loading the adequate interconnection patterns, similarly to scale #1. Taking
scale #2 as an example, and assuming again the computation of the first row, the column interconnection pattern
‘1000...0’ would lead to II(1, 1), ‘111000000..0’ to II(2, 1), ‘111110000..0’ to II(3, 1), etc. These patterns mean
to double the computation step along the x axis with respect to that of scale #1, accordingly to the macro-
pixel dimensions. It is this enormous flexibility for focal-plane reconfiguration what endows the array with the
additional asset of computing the sum of pixels and squared pixels at multiple rectangular areas in parallel, as
required for the direct extraction of Haar-like features. The reconfigurability can also be exploited for block-wise
intra-frame HDR imaging.21



Figure 5. Simplified scheme of how the charge redistribution can be reconfigured in the proposed focal-plane array.
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Figure 6. Peripheral cell per column connection. The same cell is used per row connection in order to provide ENSj,j+1

and ENSQj,j+1 .

4. POWER CONSUMPTION

The array just described features one of the main assets of the focal-plane sensing-processing approach: power
efficiency. Bear in mind that we are targeting typical video frame rates, that is, around 30fps. At this rate, the
switching power associated to the peripheral digital circuitry, measured by a magnitude of µW/MHz, will hardly
impact energy consumption. Regarding the mixed-signal core, squaring and charge redistribution do not require
extra energy once the initial voltages at the corresponding capacitors have been set. Thus, three major sources
of power consumption are left: reset of the photodiode and sensing capacitance, precharge of the capacitance
holding VSQij and pixel copy operation. We will be considering a fixed frame rate of 30fps and a resolution of
320×240-px for the figures provided next. The reset of the photodiode is needed only once per frame. According
to simulations, this operation demands 16.4pW per cell, 1.26µW for the whole array. Regarding precharge for
subsequent pixel squaring, a single operation requires only 0.18pJ. However, it is performed at each cell of the
array for each pixel of the square integral image at each scale. Adding up all these operations for five scales,
the resulting power consumption is 42.4mW. Likewise, a single copy of pixel demands only 0.47pJ whereas all



Figure 7. Distribution of the signals SC# in order to set five scales.

the operations required across five scales amount to 111.36mW. A total power consumption always less than
200mW is therefore expected for the mixed-signal processing array. As a reference, we can scale this figure
in order to compare it to the power consumption reported for a smart camera handling 30×30-px images at
80fps:15 240mW . Under these conditions of image size and frame rate, the power consumption of our array
boils down to less than 100µW. Of course this comparison is not fair enough since the camera described in15

constitutes a general-purpose digital system carrying out the complete Viola-Jones processing flow. However, it
still permits to give an idea of the energy efficiency reached by the approach presented. Starting at 100µW for
imaging and low-level processing, it seems rather feasible to address the design of a vision system featuring a
power consumption significantly less than 240mW.

5. CONCLUSIONS

We have demonstrated in this paper that the local descriptors required by the Viola-Jones framework are suit-
able for mixed-signal focal-plane implementation. The methodology and circuitry proposed to address such
implementation has been described. We have also demonstrated the architectural advantages of our approach:
exploitation of focal-plane distributed memory and ultra-low-power operation. The reconfigurability of the array
at the core of our proposal endows the resulting processing lattice with additional low-level functionalities useful
for different vision algorithms.
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[21] Fernández-Berni, J., Carmona-Galán, R., and Rodŕıguez-Vázquez, A., “Reconfigurable focal-plane hardware
for block-wise intra-frame HDR imaging,” in [Int. Image Sensor Workshop ], 289–292 (2013).


