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Abstract

This work proposes an alternative definition of the so-called program trans-
formers used to obtain reduction axioms in the Logic of Communication and
Change (LCC). Our proposal uses an elegant matrix treatment of Brzozowski’s
equational method instead of Kleene’s translation from finite automata to reg-
ular expressions. The two alternatives are shown to be equivalent, with Br-
zozowski’s method having the advantage of generating smaller expressions for
models with average connectivity.

Keywords: Logic of communication and change, dynamic epistemic logic,
propositional dynamic logic, action model, program transformer, reduction axiom

1 Introduction
Dynamic Epistemic Logic [1, 2] (DEL) encompasses several logical frameworks whose
main aim is the study of different single- and multi-agent epistemic attitudes and
the way they change due to diverse epistemic actions. These frameworks typically
have two building blocks: a ‘static’ component, using some ‘epistemic’ model to
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represent the notion to be studied (e.g., knowledge or belief), and a ‘dynamic’ com-
ponent, using model operations to represent actions that affect such notion (e.g.,
announcements or belief revision).1

Among the diverse existing DEL frameworks, the Logic of Communication and
Change (LCC) of [6] stands as one of the most interesting. It consists of Proposi-
tional Dynamic Logic [7] (PDL), interpreted epistemically (its ‘static’ component),
and the action models machinery [8, 9] for representing knowledge about actions
(its ‘dynamic’ component). The LCC framework allows us to model not only di-
verse epistemic actions (as public, private or secret announcements) but also factual
change.

A key feature of this logic is that it characterises the effect of an action model’s
execution via reduction axioms: valid formulas through which it is possible to rewrite
a formula with action model (update) modalities as an equivalent one without them,
thus reducing LCC to PDL and hence providing a compositional analysis for a wide
range of informational events. For example, the reduction axiom for conjunction
tells us that φ ∧ ψ will be the case true after the pointed action model (U, ei) is
executed, [U, ei](φ ∧ ψ), if and only if both φ and ψ are true after executing such
action, [U, ei]φ ∧ [U, ei]ψ. For another example, the reduction axiom for atoms p
effectively reduces an LCC formula [U, ei]p into a formula about the conditions of
the action ei and its effect on p (see Table 1).

As one might expect, the crucial reduction axiom is the one characterising the
effect of an action model over epistemic modalities π (i.e. over PDL programs):

[U, ei][π]φ ↔
n−1∧

j=0
[TU
ij (π)][U, ej ]φ

This axiom, presented in detail in what follows, characterises the epistemic change
that the action model U brings about: after the pointed action model (U, ei) is exe-
cuted, every π-path in the resulting epistemic model leads to a φ-world, [U, ei][π]φ,
if and only if, for every action ej in the action model U, every TU

ij (π)-path in the
original epistemic model ends in a world that, after the execution of (U, ej), will sat-
isfy φ. The axiom is based on the correspondence between action models and finite
automata observed in [10]; its main component, the so-called program transformer
function TU

ij , follows Kleene’s translation from finite automata to regular expressions
[11].2

1This form of representing the dynamics is different from other approaches as, e.g., epistemic
temporal logic [3, 4] (ETL), in which the static model already describes not only the relevant notion
but also all the possible ways it can change due to the chosen epistemic action(s). See [5] for a
comparison between DEL and ETL.

2See [12] for a deep discussion about the meaning of Kleene’s theorem.
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The present work proposes an alternative definition of program transformer,
using instead a matrix treatment of Brzozowski’s equational method for obtaining an
expression representing the language accepted by a given finite automaton [13, 14].

Structure of the paper The paper starts in Section 2 by recalling the LCC frame-
work together with its reduction axioms and its definition of program transformers.
Section 3 explains how we can obtain, through Brzozowski’s equational method, the
corresponding expressions for Kleene closure, and then Section 4 introduces this pa-
per’s proposal, used to define an alternative translation from LCC to PDL. Section
5 comments on the computational complexity of this approach; the computational
costs of the two methods are also compared using Prolog with different test-cases.
Section 6 presents a summary and a discussion of further topics for research.

2 Logic of Communication and Change
This section recalls LCC’s semantic structure, its language and semantic interpreta-
tion, and its axiom system. Throughout this paper, Var will denote a set of atoms
(propositional variables), and Ag will denote a finite set of agents.

We start the definition of LCC by introducing the involved structures. First, the
structure over which LCC formulas are interpreted.

Definition 1 (Epistemic model). An epistemic model M is a triple

(W, ⟨Ra⟩a∈Ag, V )

where W ̸= ∅ is a set of worlds, Ra ⊆ (W ×W ) is an epistemic relation for each
agent a ∈ Ag and V : Var → ℘(W ) is an atomic evaluation.

Note how the epistemic relations Ra are not required to satisfy any particular
property. As usual, each possible world can be interpreted as a possible state of
affairs (each one of them defined by the atomic valuation), and each relation Ra
represents agent a’s uncertainty about the situation: at world w, for agent a all
worlds u such that wRau are epistemically possible, i.e. are seen as possible by this
agent. Figure 1 shows an example of an epistemic model.

Here is the structure for representing the knowledge about actions in the system.

Definition 2 (Action model). Let L be a language built upon Var and Ag that can
be interpreted over epistemic models. An L action model U is a tuple

(E, ⟨Ra⟩a∈Ag, pre, sub)
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......p . ¬p.
abc

.
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.
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Figure 1: An epistemic model M with an actual p-world (gray) and a possible world
with ¬p (white). The arrows represent accessibility relations Ra, Rb and Rc, so only
agent a knows that currently p, while b and c ignore whether p.

where E = {e0, . . . , en−1} is a finite non-empty set of actions, Ra ⊆ (E × E) is a
relation for each a ∈ Ag, pre : E → L is a precondition map assigning a formula
pre(e) ∈ L to each action e ∈ E, and sub : (E × Var) → L is a postcondition map
assigning a formula sub(e, p) ∈ L to each atom p ∈ Var at each action e ∈ E. The
postcondition map should only change a finite number of atoms, so sub(e, p) ̸= p
can hold only for a finite number of p ∈ Var.3 We emphasise that, in this definition,
the language L is just a parameter.

Just as each relation Ra describes agent a’s uncertainty about the situation, each
relation Ra represents a’s uncertainty about the executed action: eRaf indicates a
cannot distinguish f from e. Note, again, how the relation is not required to satisfy
any particular property.

Example 1 (Announcements). Figure 2 illustrates three action models for an-
nouncements in a set of three agents Ag = {a, b, c}. Each of the actions, say f,
is purely epistemic (i.e., fact-preserving), so sub(f, p) = p for any p ∈ Var. La-
beled arrows denote accessibility relations Ra, Rb or Rc; a gray circle denotes the
action that is actually being executed, while other actions (wrongly believed by some
agents to possibly take place) are represented by white circles. The preconditions
are written below the corresponding actions.

As mentioned, action models represent both the actions and the knowledge
agents have about these actions. Action models modify epistemic models in the
following way.

Definition 3 (Update execution). LetM = (W, ⟨Ra⟩a∈Ag, V ) be an epistemic model
and U = (E, ⟨Ra⟩a∈Ag, pre, sub) an L action model, both over Var and Ag. Recall

3These ‘finiteness’ requirements (finite domain and only a finite number of atoms affected by
the postcondition function) are needed to allow the pointed action model (U, e) —a pair with U an
L action model and e a distinguished action in it— to be associated to a syntactic object and thus
to be used within formulae. For details, the reader is referred to the discussion about action models
in Section 6.1 of [1].
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Figure 2: (Top left) A truthful public announcement by a that p, denoted p!aAg.
(Bottom left) A private announcement by a to b about p, denoted p!ab ; here agent c
only knows about the ‘topic’ of the message. (Right) A secret lie about p made by
a to b, denoted p†ab , is accepted by b as truthful, i.e. as if it was p!ab ; agent c is not
aware of any communication between a and b.

that L is any language built upon Var and Ag that can be interpreted over epistemic
models, so we can assume the existence of a function [ · ]M returning those worlds
in M in which each formula of L holds.

The update execution of U on M produces an epistemic model

(M ⊗ U) = (WM⊗U, ⟨RM⊗U
a ⟩a∈Ag, V

M⊗U)

given, for every a ∈ Ag and p ∈ Var, by

WM⊗U := { (w, e) ∈W × E | w ∈ [pre(e)]M }
RM⊗U
a := { ⟨(w, e), (v, f)⟩ ∈WM⊗U ×WM⊗U | wRav and e Raf }

VM⊗U(p) := { (w, e) ∈WM⊗U | w ∈ [sub(e, p)]M }

Thus, the update execution of U on M produces an epistemic model M ⊗ U
whose domain is the restricted cartesian product of the original models’ domains.4
In M ⊗ U, a world (w, e) satisfies an atom p if and only if w satisfied the formula
sub(e, p) in M ; finally, an agent a sees a world (u, f) as possible from (w, e) if and
only if she sees u from w (in M) and sees f from e (in U). If one works with a
particular class of epistemic models in which the epistemic relations satisfy specific
properties, then the chosen action models should be such that the update execution
preserves these properties. This is straightforward in some cases as, e.g., reflexivity,
transitivity and symmetry are preserved by update execution when the relations in

4If there is no world in M satisfying pre(e) for some action e in U, then the resulting structure
is not an epistemic model, as its domain is empty.
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the action models are reflexive, transitive and symmetric, respectively. But this is
not always the case: for example, seriality is not preserved, even when the involved
action models are serial. See Figure 3 for an illustration of different updates in an
epistemic model.
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Figure 3: Two illustrations of update execution in the epistemic model M from Fig.
1 (topmost row here), where only agent a knows that p. (Left) Action e represents
a public (i.e. publicly observable) change to ¬p; note that the postcondition is
written on top of the action. After execution, it becomes common knowledge that
¬p. (Right) A private announcement by a to b about p results in a new model where
it is public that b now knows whether p, and only c remains ignorant about p.

With the semantic structures already defined, it is time now to define the lan-
guage that will be used to describe them. Note that the formulas (and programs)
of the language LLCC are defined simultaneously with the notion of an LLCC action
model (i.e. an action model using LLCC for its precondition and postcondition maps).

Definition 4 (Language LLCC). The formulas φ and programs π of the language
LLCC are given by, respectively:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | [π]φ | [U, e]φ
π ::= a | ?φ | π;π | π ∪ π | π∗

where p ∈ Var, a ∈ Ag and (U, e) is a pair with an LLCC action model U and an
action e in this model.5

5More precisely, the language is defined by a double induction starting from the language
PDL0 = PDL, then defining L0

LCC as PDL0 plus modalities of the form [U, e] for U a PDL0 action
model, then defining PDL1 as L0

LCC plus tests ?φ for φ ∈ L0
LCC, then defining L1

LCC as PDL1 plus
modalities of the form [U, e] for U a PDL1 action model, and so on. The full language LLCC is then
the union of all languages LiLCC with i finite.
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As the definition states, the set of LCC formulas contains the atomic propositions
and ⊤, and it is closed under negation, conjunction, and modalities [π] (for π a
program) and [U, e] (for U an LLCC action model and e an action in it).6 On the
other hand, the set of LCC programs contains basic programs for agents a and
‘tests’ ?φ (with φ a formula), and it is closed under sequential composition (;),
non-deterministic choice (∪) and Kleene closure (∗).

It is only left to define the [ · ]M function associated to LLCC that collects the
worlds of a given epistemic model M in which a given LLCC formula holds. In the
case of LCC, this function also indicates which pairs of worlds are related by a given
LLCC program.

Definition 5 (Semantics of LLCC). LetM = (W, ⟨Ra⟩a∈Ag, V ) be an epistemic model
and U = (E, ⟨Ra⟩a∈Ag, pre, sub) an action model. The function [ · ]M , returning both
those worlds in W in which an LLCC formula holds and those pairs in W ×W in
which an LLCC program holds, is given by

[⊤]M := W [a]M := Ra

[p]M := V (p) [?φ]M := Id[φ]M

[¬φ]M := W \ [φ]M [π1;π2]M := [π1]M ◦ [π2]M

[φ1 ∧ φ2]M := [φ1]M ∩ [φ2]M [π1 ∪ π2]M := [π1]M ∪ [π2]M

[[π]φ]M := {w ∈W | ∀v((w, v) ∈ [π]M ⇒ v ∈ [φ]M )} [π∗]M := ([π]M )∗

[[U, e]φ]M := {w ∈W | w ∈ [pre(e)]M ⇒ (w, e) ∈ [φ]M⊗U}

where ◦ and ∗ are the composition and the reflexive transitive closure operator,
respectively, and IdU is the identity relation on U ⊆W . Notice two special cases for
test: [?⊥]M = ∅ and [?⊤]M = IdW .

Even though LCC can be seen abstractly as the logic of regular programs (the
PDL part) plus action models (modalities of the form [U, e]), it is also illustrative to
discuss its epistemic interpretation, in particular, that of its PDL programs. Basic
‘agent’ programs a ∈ Ag produce formulas of the form [a]φ, read simply as “agent
a knows/believes φ” as in standard Epistemic Logic. More complex programs also
have epistemic readings. Formulas of the form [π1;π2]φ, relying on the sequential
composition π1 and then π2, can be read as “π1 knows/believes that π2 knows/believes
φ”, and thus can be used to express nested knowledge/belief; formulas of the form
[π1∪π2]φ, relying on the union of the relations for π1 and π2, can be read as “both π1
and π2 know/believe φ”, and thus can be used to express general knowledge/belief
among a group; finally, formulas of the form [π∗]φ, relying on the reflexive and

6From now on, all action models are assumed to be LLCC action models.
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transitive closure of the relations for π, can be read as “φ is the case, π knows it,
π knows that she knows it, and so on”, and thus can be used to express common
knowledge (or, if π+ := π;π∗ is used instead of π∗, common belief). The modalities
involving action models simply state the action’s effects, with formulas of the form
[U, e]φ reading “φ is the case after any execution of the pointed action (U, e)”.

Axiom system The axiom system for LCC, shown in Table 1, combines the known
axiom system of its PDL fragment (the left column; [7]) with recursion axioms for
its action model fragment (the right column). Intuitively, recursion axioms are
valid formulae characterising a situation after an update execution in terms of a
situation before such update, and thus indicating how to rewrite a formula with
an action model modality as a provably equivalent one without them. Then, while
soundness follows from the validity of these new axioms, completeness follows from
the completeness of the basic system.7

(taut) propositional tautologies (top) [U, e]⊤ ↔ ⊤
(K) [π](φ1 → φ2) → ([π]φ1 → [π]φ2) (atm) [U, e]p↔ (pre(e) → sub(e, p))

(test) [?φ1]φ2 ↔ (φ1 → φ2) (neg) [U, e]¬φ↔ (pre(e) → ¬[U, e]φ)
(seq) [π1;π2]φ↔ [π1][π2]φ (conj) [U, e](φ1 ∧ φ2) ↔ ([U, e]φ1 ∧ [U, e]φ2)

(choice) [π1 ∪ π2]φ↔ [π1]φ ∧ [π2]φ (KU) [U, e](φ1 → φ2) → ([U, e]φ1 → [U, e]φ2)
(mix) [π∗]φ↔ φ ∧ [π][π∗]φ (prog) [U, ei][π]φ↔

∧n−1
j=0 [TU

ij(π)][U, ej ]φ
(ind) φ ∧ [π∗](φ→ [π]φ)) → [π∗]φ (NU) From ⊢ φ infer ⊢ [U, e]φ
(MP) From ⊢ φ1 and ⊢ φ1 → φ2 infer ⊢ φ2

(Nπ) From ⊢ φ infer ⊢ [π]φ

Table 1: LCC calculus in [6] is that of PDL (left column) plus reduction axioms and
necessitation rule for [U, e] (right column).

In our particular case, recursion axioms for atomic propositions and boolean con-
stants/operators are standard for action models with ontic (i.e., valuation) change
[16]: while axiom (atm) states that an atom p will be the case after any update
execution with action model U and action e, [U, e]p, if and only if, before the up-
date, the formula sub(e, p) holds whenever pre(e) holds, pre(e) → sub(e, p), axioms
(neg) and (conj) state that update execution commutes with negation (modulo its
precondition) and distributes over conjunction, respectively.

7The reader is referred to Chapter 7 of [1] (see also [15]) for an extensive explanation of this
technique.
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The most important recursion axiom, (prog), characterises the effect of an action
model over LCC programs. It states that after any update execution with U on ei
every π-path in the resulting model will lead to a φ-world, [U, ei][π]φ, if and only if,
before the update, every TU

ij (π)-path leads to a world that will satisfy φ after any
update execution with U on ej where ej is any action on U, ∧n−1

j=0 [TU
ij (π)][U, ej ]φ.

In this axiom, the program transformer TU
ij is crucial, taking an LCC program π

representing a path on M ⊗U and returning an LCC program TU
ij (π) representing a

‘matching’ path on M , taking additional care that such path can be also reproduced
in the action model U. A program transformer follows Kleene’s translation from
finite automata to regular expressions [11], and it is formally defined as follows.

Note also that the (valid) formula KU is not listed among the LCC axioms in [6].
It has been added here not only because it cannot be derived from the rest of the
system, but also because it allows the derivation of the crucial rule

χ↔ ψ

[U, e]χ↔ [U, e]ψ REU

This rule is needed for the inside-out translation of nested action model modalities
(see footnote 10). The fact that KU is not derivable from the rest of the system is
stated in [15] (in particular, its Thm. 29), a paper which examines axiom systems
for PAL, the logic of public announcements [φ!]. Their analysis of completeness
proofs is based on a reduction from PAL, and thus it applies to LCC as well. (Of
course, another alternative is to add REU directly since, following [15, Prop. 3], KU
is derivable from REU and the original LCC system, Table 1 minus KU.) That the
system on Table 1 is indeed sound and (weakly) complete w.r.t. the given semantic
interpretation can be shown using the same technique as [15, Corollary 12].

Definition 6 (Program transformer [6]). Let U = (E, ⟨Ra⟩a∈Ag, pre, sub) be an action
model with E = {e0, . . . , en−1}. The program transformer TU

ij (i, j ∈ {0, . . . , n− 1})
on the set of LCC programs is defined as:

TU
ij(a) :=

{
?pre(ei); a if eiRaej
?⊥ otherwise

TU
ij(?φ) :=

{
?(pre(ei) ∧ [U, ei]φ) if i = j

?⊥ otherwise

TU
ij(π1;π2) :=

∪n−1
k=0(TU

ik(π1);TU
kj(π2)) TU

ij(π1 ∪ π2) := TU
ij(π1) ∪ TU

ij(π2)

TU
ij(π∗) := KU

ijn(π)

with KU
ijn inductively defined as follows:

79



Pardo, Sarrión-Morillo, Soler-Toscano and Velázquez-Quesada

KU
ij0(π) :=

{
?⊤ ∪ TU

ij(π) if i = j

TU
ij(π) otherwise

KU
ij(k+1)(π) =





(KU
kkk(π))∗ if i = k = j

(KU
kkk(π))∗;KU

kjk(π) if i = k ̸= j

KU
ikk(π); (KU

kkk(π))∗ if i ̸= k = j

KU
ijk(π) ∪ (KU

ikk(π); (KU
kkk(π))∗;KU

kjk(π)) if i ̸= k ̸= j

Example 2. In the action model of Fig. 3 (left), the axiom for the public change to
¬p reduces an epistemic consequence [U, e][a]¬p to a claim before execution, namely
[?pre(e); a][U, e]¬p, which is necessarily true –see the left column below–. Similarly,
in the action model of a private lying announcement Fig. 2 (right), enumerate
the actions as p†ab = e0 and p!ab = e1 and skipa = e2. Then, the axiom for the lying
announcement p†ab turns the believed lie [U, p†ab ][b]p into a claim before the execution,
also a tautology –see the right column–.

[U, e][a]¬p [U, p†ab ][b]p
≡ [?pre(e); a][U, e]¬p ≡ [TU

01(b)][U, p!ab ]p
≡ [?p; a]

(
pre(e) → ¬[U, e]p

)
≡ [?pre(p†ab ); b][U, p!ab ]p

≡ p→ [a]
(
p→ ¬(pre(e) → sub(e, p))

)
≡ [?¬p; b]

(
pre(p!ab ) → sub(p!ab , p)

)

≡ p→ [a]
(
p→ ¬(p→ ⊥)

)
≡ ¬p→ [b]

(
p→ p

)

≡ p→ [a]
(
p→ (p ∧ ⊤)

)
≡ ¬p→ [b]⊤

≡ p→ [a]⊤ ≡ ⊤ ≡ ⊤

3 Program transformation through Brzozowski’s equa-
tions

This paper proposes an alternative definition of program transformer, denoted
µU(π)[i, j], that differs from TU

ij (π) mainly in the case for the Kleene closure opera-
tor. Before presenting the formal definitions in Section 4, we introduce the method
in an informal way. In the action models of Figure 4, we tag every edge from ei to ej
with a label π | µU(π)[i, j] with π a program and and µU(π)[i, j] its transformation.
For example, in the agents’ diagram below, the label from e0 to e1

a | ?pre(e0); a means µU(a)[0, 1] = ?pre(e0); a.
i.e. ?pre(e0); a is what we should test in (M,w) to ensure that, after executing (U, e0)
over (M,w), an a-path from (w, e0) to some state (w′, e1) will persist in M ⊗ U. (If
no a-path from e0 to e1 exists, the transformation of a is ?⊥.)

80



Tuning the Program Transformers from LCC to PDL

..e0 . e1..a | ?pre(e0); a
..e0 .

?φ | ?(pre(e0) ∧ [U, e0]φ)

..e0 . e1.e2 .

π1 | S01
1

.

π2 | S01
2

.

π1 | S02
1

.π1 ∪ π2 | S01
1 ∪ S01

2.π1 ∪ π2 | S02
1

..e0 .

e1

.

e2

. e3.
π1

| S
01
1

.

π1 | S 02
1

.

π2 | S 132

.

π2 | S
23
2

.π1;π2 | (S01
1 ;S13

2 ) ∪ (S02
1 ;S23

2 )

Figure 4: An illustration of action models and their program transformers for the
following programs: agent (top left), test (top right), choice (mid) and composition
(bottom). Dashed and solid lines represent, respectively, the original labels and
those obtained after applying choice (mid) or product (bottom).

The construction of the diagrams on Figure 4 proceeds in a very similar way
to that of Def. 6, just simplifying some trivial cases like π ∪ ?⊥, which is reduced
to π. The main novelty of our transformation is for the Kleene closure. We use a
method proposed by Brzozowski [13], presented here in a matrix format (see [17, 18]
for more an in-depth analysis about the improvements that we are applying to LCC
language).

Kleene closure The following example will be used to illustrate the generation
of the transformations of π∗ from those of π. (The π∗-paths from ei to ej will be
denoted by Xij , while the corresponding π-paths are labeled as Sij .)

..e0 .e1. e2.

π | S01

.
π | S10

. π | S21

.

π | S11

.

π | S22
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Generate an equation system8 (Brzozowski [13]). E.g. for paths to e0:

X00 = ?pre(e0) ∪ (S01;X10) (1)
X10 = (S10;X00) ∪ (S11;X10) (2)
X20 = (S22;X20) ∪ (S21;X10) (3)

Solve the system9 using: substitution; associativity, distributivity [19], and Arden’s
Theorem [20] (X = B ∪ (A;X) implies X = A∗;B). E.g.

X00 = ?pre(e0) ∪ (S01; ((S10;S01) ∪ S11)∗;S10; ?pre(e0)) (4)
X10 = ((S10;S01) ∪ S11)∗;S10; ?pre(e0) (5)
X20 = (S22)∗;S21; ((S10;S01) ∪ S11)∗;S10; ?pre(e0) (6)

Similar processes produce labels for π∗-paths to e1 and e2, represented as:

..e0 .e1 . e2.
π∗ | S01; (S11 ∪ S10;S01)∗; ?pre(e1)

.
π∗ | (5) .π∗ | S22∗;S21; (S11 ∪ S10;S01)∗; ?pre(e1).

π∗ | (S11 ∪ S10;S01)∗; ?pre(e1)

.

π∗ | S22∗; ?pre(e2)

.

π∗ | (6)

.

π∗ | (4)

By using a matrix calculus similar to that in Chapter 3 of [14] we calculate all
Xij in parallel and thus avoid repeating the process for each destination node. The
following section presents the formal definition of the matrix calculus; here we just
illustrate the use of the matrix calculus. The equations (1)–(3) used above can be
represented in the following matrix:

8For equation (2), observe how a π∗-path from e1 to e0 might start with S10 and then continue
with X00 (an instance of π∗ from e0 to e0), but it might also start with S11 and then continue with
X10. In equation (1), a π∗-path from e0 to e0 is to do nothing, but then the transformation should
check ?pre(e0), i.e. whether e0 is executable at the target state.

9We illustrate first how equation (2) is solved into (5):

X10 = (S10; (?pre(e0) ∪ (S01;X10))) ∪ (S11;X10) (substitute X00 using (1))
= (S10; ?pre(e0)) ∪ (S10;S01;X10) ∪ (S11;X10) (distributivity)
= (S10; ?pre(e0)) ∪ (((S10;S01) ∪ S11);X10) (associativity)
= ((S10;S01) ∪ S11)∗;S10; ?pre(e0) (Arden’s Theorem)

Next, we use this to substitute X10 in (1) to obtain (4). Finally, we substitute X10 in (3) and apply
Arden’s Theorem to obtain (6).
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e0 e1 e2 e0 e1 e2

e0 ?⊥ S01 ?⊥ ?pre(e0) ?⊥ ?⊥
e1 S10 S11 ?⊥ ?⊥ ?pre(e1) ?⊥
e2 ?⊥ S21 S22 ?⊥ ?⊥ ?pre(e2)

The left part contains the π-paths from one node (row) to another one (column). It is
an accessibility matrix for the π-graph above. Call µU(π)[i, j] the cell corresponding
to row ei and column ej in this left part and AU[i, j] the cell with the same position
at the right part. Observe that AU[i, j] =?pre(ei) if i = j and ?⊥ otherwise. We
may check that the equations for Xij that we created above looking at the π-graph
can be created now by:

Xij = (µU(π)[i, 0];X0j) ∪ (µU(π)[i, 1];X1j) ∪ (µU(π)[i, 2];X2j) ∪AU[i, j] (7)

For example, the equations for X10 and X00 (equivalent to (2) and (1), resp.) are

X10 = (S10;X00) ∪ (S11;X10) ∪ (?⊥;X20) ∪ ?⊥ (8)
X00 = (?⊥;X00) ∪ (S01;X10) ∪ (?⊥;X20) ∪ ?pre(e0) (9)

The greatest advantage of working with matrices is that we can perform several
operations in parallel by working in a row. Applying Arden’s Theorem to the e1 row
of the previous matrix gives:

e0 e1 e2 e0 e1 e2

e1 (S11)∗;S10 ?⊥ (S11)∗; ?⊥ (S11)∗; ?⊥ (S11)∗; ?pre(e1) (S11)∗; ?⊥

We replaced the left cell [e1, e1] with ?⊥ and concatenated its previous value
(S11)∗ with the others cells in the row. After simplifying into ?⊥ cells we get:

e0 e1 e2 e0 e1 e2

e1 (S11)∗;S10 ?⊥ ?⊥ ?⊥ (S11)∗; ?pre(e1) ?⊥

To check that we have applied Arden’s Theorem, look at X10 (using (7) in the
last matrix): X10 = (S11)∗;S10;X00. It is the result of applying Arden’s Theorem
to (8) (or (2)). Substitution can also be done in parallel:

e0 e1 e2 e0 e1 e2

e2
(S21; (S11)∗;S10)

∪ ?⊥ ?⊥ (S21; ?⊥)
∪S22

(S21; ?⊥)
∪ ?⊥

(S21; (S11)∗; ?pre(e1))
∪ ?⊥

(S21; ?⊥)
∪ ?pre(e2)

The above row for e2 was obtained from the previous row by applying the follow-
ing substitution into the original matrix: first, the left position B = [e2, e1] (S21 in
this case) is replaced with ?⊥; second, every other (left/right) position D = [e2, ei]
contains now a program with the form (B;C) ∪D, where C is the program in the
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(resp. left/right) [e1, ei] position in the previous row for e1. After simplifying into
?⊥ cells (where appropriate) we obtain:

e0 e1 e2 e0 e1 e2

e2 (S21; (S11)∗;S10) ?⊥ S22 ?⊥ (S21; (S11)∗; ?pre(e1)) ?pre(e2)

To illustrate that we have done a substitution, consider the value of X21 in the
matrix before the substitution (just as in the initial matrix):

X21 = (S21;X11) ∪ (S22;X21) (10)

And now consider the value of X11 after the application of Arden’s Theorem:

X11 = ((S11)∗;S10;X01) ∪ ((S11)∗; ?pre(e1)) (11)

Using (11) to substitute X11 in (10) we get:

X21 =
(
S21;

(
((S11)∗;S10;X01) ∪ ((S11)∗; ?pre(e1))

))
∪ (S22;X21) (12)

that can be rewritten, using the distributive and associative properties, into:

X21 = (S21; (S11)∗;S10;X01) ∪ (S22;X21) ∪ (S21; (S11)∗; ?pre(e1)) (13)

which is the equation obtained for X21 in the previous matrix, after the substitution.
In the following section we introduce the formal definitions of our matrix calculus

to transform LCC programs.

4 A matrix calculus for program transformation
Definition 7 (Program transformation matrix). Let U = (E,R, pre, sub) be an action
model with E = {e0, . . . , en−1}. The function µU : Π →Mn×n, with Π the set of LCC
programs and Mn×n the class of n-square matrices, takes an LCC program π and
returns a n-square matrix µU(π) in which each cell µU(π)[i, j] is an LCC program
representing the transformation of π from ei to ej in the sense of the program
transformers TU

ij (π) of [6]. The recursive definition of µU(π) is as follows.

• Agents:

µU(a)[i, j] :=





?pre(ei); a if eiRaej
?⊥ otherwise

(14)

84



Tuning the Program Transformers from LCC to PDL

• Test:

µU(?φ)[i, j] :=





?(pre(ei) ∧ [U, ei]φ) if i = j

?⊥ otherwise
(15)

• Non-deterministic choice:

µU(π1 ∪ π2)[i, j] := ⊕
{
µU(π1)[i, j], µU(π2)[i, j]

}
(16)

where ⊕Γ is the non-deterministic choice of the programs in Γ set after re-
moving occurrences of ?⊥, that is,

⊕Γ :=





∪ (Γ \ {?⊥}) if ∅ ̸= Γ ̸= {?⊥}
?⊥ otherwise

(17)

being ∪ the generalised non-deterministic choice of a non-empty set of pro-
grams.

• Sequential composition:

µU(π1;π2)[i, j] := ⊕
{
µU(π1)[i, k]⊙ µU(π2)[k, j] | 0 ≤ k ≤ n− 1

}
(18)

where σ⊙ρ is the sequential composition of σ and ρ after removing superfluous
occurrences of ?⊥ and ?⊤, that is,

σ ⊙ ρ :=





σ; ρ if σ ̸= ?⊥ ̸= ρ and σ ̸= ?⊤ ̸= ρ

σ if σ ̸= ?⊤ = ρ

ρ if σ = ?⊤
?⊥ otherwise

(19)

• Kleene closure:
µU(π∗) := SU

0
(
µU(π) | AU

)
(20)

where µU(π) | AU is the n × 2n matrix obtained by augmenting µU(π) with
AU, an n× n matrix defined as

AU[i, j] :=





?pre(ei) if i = j

?⊥ otherwise
(21)
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The function SU
k (with 0 ≤ k ≤ n), defined as

SU
k (M | A) :=




A if k = n

SU
k+1(Subsk(Ardk(M | A))) otherwise

(22)

receives an argumentM | A and performs an iterative process applying Arden’s
Theorem to row k (via function Ardk : Mn×2n → Mn×2n) and substituting
rows different from k (via function Subsk : Mn×2n →Mn×2n) until a k = n,
then returning the right part of the augmented matrix. The two auxiliary
functions, Ardk and Subsk, are given by

Ardk(N)[i, j] :=





N [i, j] if i ̸= k

?⊥ if i = k = j

N [i, j] if i = k ̸= j and N [k, k] = ?⊥
N [k, k]∗ ⊙N [i, j] otherwise

(23)

Subsk(N)[i, j] :=





N [i, j] if i = k

?⊥ if i ̸= k = j

⊕{N [i, k]⊙N [k, j], N [i, j]} otherwise

(24)

The operators ‘⊕’ and ‘⊙’ used in the previous definition are versions of non-
deterministic choice and sequential composition that remove unnecessary occur-
rences of ?⊥ and ?⊤; thus returning programs that are (potentially) syntactically
shorter but nevertheless semantically equivalent to their PDL counterparts ‘∪’ and
‘;’, as the following propositions show.

Proposition 1. Let M be an epistemic model and Γ a set of LCC programs. Then,

[⊕Γ]M = [
∪

Γ]M

Proof. Take any epistemic model M . Equation (17) states that ⊕Γ is a non-
deterministic choice of the LCC programs in Γ that returns ∪(Γ\{?⊥}) when Γ is dif-
ferent from both ∅ and {?⊥}, and ?⊥ otherwise. In the first case, [⊕Γ]M = [

∪Γ]M

because [
∪Γ]M = [

∪(Γ \ {?⊥})]M ; in the second, [⊕Γ]M = [
∪Γ]M because

[
∪

∅]M = [
∪{?⊥}]M = [?⊥]M = ∅.

Proposition 2. Let M be an epistemic model and σ, ρ two LCC programs. Then,

[σ; ρ]M = [σ ⊙ ρ]M
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Proof. Take any epistemic model M . Equation (19) states that σ ⊙ ρ differs from
σ; ρ only when either σ or else ρ is ?⊥ or ?⊤. But, in such cases:

• [σ; ?⊥]M = [?⊥;σ]M = [?⊥]M ; hence, [σ; ρ]M = [σ ⊙ ρ]M .

• [σ; ?⊤]M = [?⊤;σ]M = [σ]M ; hence, [σ; ρ]M = [σ ⊙ ρ]M .

The rest of this section is devoted to prove that the function µU returns an
LCC program that is semantically equivalent to the one returned by the program
transformer TU of [6].

Lemma 1. Let U = (E,R, pre, sub) be an action model with ei, ej ∈ E; let π be an
LCC program. For any epistemic model M ,

[TU
ij (π)]M = [µU(π)[i, j]]M

Proof. By induction on the complexity of π. Let M be an epistemic model; then

(Base Cases: a and ?φ) Trivial, as the definitions of TU
ij and µU(π)[i, j] are identical

for both a and ?φ.

(Ind. Case π1 ∪ π2) Suppose (Ind. Hyp.) the claim holds for π1 and π2. Then

[TU
ij (π1 ∪ π2)]M = [TU

ij (π1) ∪ TU
ij (π2)]M (Def. 6)

= [TU
ij (π1)]M ∪ [TU

ij (π2)]M (Def. of [ · ]M )

= [µU(π1)[i, j]]M ∪ [µU(π2)[i, j]]M (Ind. Hyp.)

= [µU(π1)[i, j] ∪ µU(π2)[i, j]]M (Def. of [ · ]M )

= [⊕{µU(π1)[i, j], µU(π2)[i, j]}]M (Prop. 1)

= [µU(π1 ∪ π2)[i, j]]M (Def. of µU(π1 ∪ π2) in (16))

(Ind. Case π1;π2) Suppose (Ind. Hyp.) the claim holds for π1 and π2. Then
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[TU
ij (π1;π2)]M = [

∪n−1
k=0(TU

ik(π1);TU
kj(π2))]M (Def. 6)

= ∪n−1
k=0

(
[TU
ik(π1)]M ◦ [TU

kj(π2)]M
)

(Def. of [ · ]M )

= ∪n−1
k=0

(
[µU(π1)[i, k]]M ◦ [µU(π2)[k, j]]M

)
(Ind. Hyp.)

= [
∪n−1
k=0

(
µU(π1)[i, k];µU(π2)[k, j]

)
]M (Def. of [ · ]M )

= [
∪n−1
k=0

(
µU(π1)[i, k]⊙ µU(π2)[k, j]

)
]M (Prop. 2)

= [⊕{µU(π1)[i, k]⊙ µU(π2)[k, j] | 0 ≤ k ≤ n− 1}]M (Prop. 1)

= [µU(π1;π2)[i, j]]M (Def. of µU(π1;π2) in (18))

(Ind. Case π∗) Suppose (Ind. Hyp.) the claim holds for π and observe how [π∗]M =
[?⊤ ∪ (π;π∗)]M . Now,

[TU
ij (π∗)]

M = [TU
ij (?⊤ ∪ π;π∗)]M

= [TU
ij (?⊤)]M ∪ [

∪n−1
k=0(TU

ik(π);TU
kj(π∗))]

M (Def. 6)

= [TU
ij (?⊤)]M ∪ ∪n−1

k=0

(
[TU
ik(π)]M ◦ [TU

kj(π∗)]
M
)

(Def. of [ · ]M )

= [TU
ij (?⊤)]M ∪ ∪n−1

k=0

(
[µU(π)[i, k]]M ◦ [TU

kj(π∗)]
M
)

(Ind. Hyp.)

The last equality produces n2 relational equations. By abbreviating [TU
ij (π∗)]

M as
Xij for every 0 ≤ i, j ≤ n− 1, we get

Xij = [TU
ij (?⊤)]M ∪

n−1∪

k=0

(
[µU(π)[i, k]]M ◦ Xkj

)
(25)

Thus, it is enough to prove that [µU(π∗)[i, j]]M is a solution for Xij . This is shown
in the following three propositions about the functions building µU(π∗).

Proposition 3. Take Ω = (µU(π) | AU) (see (20)). Then,

Xij = [Ω[i, j + n]]M ∪
n−1∪

k=0

(
[Ω[i, k]]M ◦ Xkj

)
(26)

Proof. It will be shown that the right-hand side (r.h.s.) of (25) and (26) coincide.
Their respective rightmost parts are equivalent since, for 0 ≤ k ≤ n − 1, Ω[i, k] =
µU(π)[i, k] (recall that Ω is built by adding additional columns at the right of the
n first columns of µU(π), and the matrix’s indexes start from 0). For the leftmost
parts,
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[TU
ij (?⊤)]M =

{
[?(pre(ei) ∧ [U, ei]⊤)]M if i = j

[?⊥]M otherwise
(Def. 6)

=
{

[?pre(ei)]M if i = j

[?⊥]M otherwise
(as [U, ei]⊤ is trivially true)

= [AU[i, j]]M = [Ω[i, j + n]]M ((21) and Def. of Ω)

Proposition 4. For 0 ≤ k ≤ n− 1, if N is a matrix of size n× 2n with all cells in
columns 0, . . . , k−1 equal to ?⊥, then Subsk(Ardk(N)) contains all cells in columns
0, . . . , k equal to ?⊥.

Proof. Start with Ardk(N). Observe in (23) that the only modified cells are in the
kth row. Cell Ardk(N)[k, k] in the kth column is converted into ?⊥. With respect
to cells in columns from 0 to k − 1, if they were ?⊥, they continue being ?⊥: those
cells N [i, j] do not change, if N [k, k] =?⊥, or otherwise are converted by (23) into
N [k, k]∗ ⊙N [i, j] and, by (19), if N [i, j] =?⊥, then N [k, k]∗ ⊙N [i, j] =?⊥.

Now, call N ′ the output of Ardk(N) and observe Subsk(N ′)’s definition (24):
the only cells that change are in rows different to k. With respect to any such row
i, the position in the kth column is made ?⊥. For cells in previous columns, j < k,
the last case in the definition returns ⊕{N ′[i, k]⊙N ′[k, j], N ′[i, j]}. But as N ′ is the
result of Ardk(N), N ′[k, j] is ?⊥ (because, as argued above, Ardk(N) works over the
kth row and keeps the ?⊥ in columns before k). Also, N ′[i, j] =?⊥, as columns j < k
are filled with ?⊥. So ⊕{N ′[i, k] ⊙ N ′[k, j], N ′[i, j]} becomes ⊕{N ′[i, k]⊙?⊥, ?⊥}
and, by (17) and (19), it is ?⊥.

Proposition 5. Given an n × 2n matrix N of LCC programs, the equations built
using (26), with Ω = Subsk(Ardk(N)), 0 ≤ k ≤ n − 1, are correct transformations
of the equations built in the same way with Ω = N .

Proof. As argued in the proof of Proposition 4, Ardk(N) works only on the kth

row. If N [k, k] =?⊥, nothing is done, so according to (26) the equations for Xkj

(0 ≤ j ≤ n−1) do not change. Otherwise, the kth row of N changes: all cells N [k, j]
with j ̸= k become N [k, k]∗ ⊙N [k, j], except N [k, k] which becomes ?⊥. Then, for
every 0 ≤ j ≤ n− 1, the equation for Xkj becomes (using index t instead of k and
removing [?⊥]M ◦ Xkj from the union):

Xkj = [N [k, k]∗ ⊙N [k, j + n]]M ∪
∪

0≤t≤n−1
t̸=k

(
[N [k, k]∗ ⊙N [k, t]]M ◦ Xtj

)
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By Proposition 2 and [ · ]M ’s definition, this can be rewritten as

Xkj = ([N [k, k]]M )∗ ◦ [N [k, j + n]]M∪
∪

0≤t≤n−1
t̸=k

(
([N [k, k]]M )∗ ◦ [N [k, t]]M ◦ Xtj

) (27)

which is an application of Arden’s Theorem [20] to the corresponding equation for
the original row in N :

Xkj = [N [k, j + n]]M ∪
∪

0≤t≤n−1

(
[N [k, t]]M ◦ Xtj

)
(28)

Arden’s Theorem (which works on regular algebras, such as LCC programs) gives
X = A∗ ◦B as a solution for X = (A ◦X) ∪B. In (28), X is Xkj , A is [N [k, k]]M ,
and B is the union of all terms in the r.h.s. of (28) except [N [k, k]]M ◦ Xkj . Besides
Arden’s Theorem, from (28) to (27) we use ◦’s distribution over ∪, A ◦ (B ∪ C) =
(A ◦B) ∪ (A ◦ C).

Now denote by N ′ the output of Ardk(N). We move to Subsk(N ′) to show that
the equations obtained from it with (26) are correct transformations of the equations
built from N ′. The only modified cells in Subsk(N ′) are in rows different to k, so
it only affects equations for Xij with i ̸= k. According to (26), if Ω = N ′, these
equations are (using t instead of k):

Xij = [N ′[i, j + n]]M ∪
n−1∪

t=0

(
[N ′[i, t]]M ◦ Xtj

)
(29)

The same equation for Ω = Subsk(N ′) becomes the following (we remove from the
union the term [?⊥]M ◦ Xkj , as it is equivalent to ∅):

Xij = [⊕{N ′[i, k]⊙N ′[k, j + n], N ′[i, j + n]}]M∪∪

0≤t≤n−1
t̸=k

(
[⊕{N ′[i, k]⊙N ′[k, t], N ′[i, t]}]M ◦ Xtj

)
(30)

By using Propositions 1 and 2 and the properties of [ · ]M , equation (30) becomes

Xij = ([N ′[i, k]]M ◦ [N ′[k, j + n]]M ) ∪ [N ′[i, j + n]]M∪∪

0≤t≤n−1
t̸=k

(
(([N ′[i, k]]M ◦ [N ′[k, t]]M ) ∪ [N ′[i, t]]M ) ◦ Xtj

)
(31)
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But note that in the equation for Xkj , which is the same at N ′ and Subsk(N ′), the
kth row of N ′ is not changed by Subsk(N ′):

Xkj = [N ′[k, j + n]]M ∪
∪

0≤t≤n−1
t̸=k

(
[N ′[k, t]]M ◦ Xtj

)
(32)

We have eliminated the term [N ′[k, k]]M ◦ Xkj in (32) because N ′ = Ardk(N) and
by (23), N ′[k, k] =?⊥, which produces [N ′[k, k]]M ◦ Xkj = ∅.

Observe that (31) can be obtained from (29) by replacing Xkj by the r.h.s.
of (32) and applying the distribution of ◦ over ∪. So the modified equation (30) is
equivalent to correct transformations of the original one (29).

The proof of the case π∗ in Lemma 1 can be finished now. Take the set of
relational equations given by (25). By (20), µU(π∗) operates by iterating calls to
SU
k (with k from 0 to n) with Ω = (µU(π) | AU) as the initial argument. Let M−1

be Ω and Mk the output of SU
k (Mk−1). By Proposition 3, (26) gives equations

equivalent to (25). By Proposition 5, the equations are correct for each successive
Mk (0 ≤ k ≤ n− 1). As the calls to SU

k are done iteratively with k from 0 to n− 1,
Proposition 4 guarantees that, in Mn−1, all cells in columns for 0 to n− 1 are equal
to ?⊥. Thus, equations (26) for Mn−1 are:

Xij = [Mn−1[i, j + n]]M (33)

The rightmost union in (26) has disappeared (M [i, k] =?⊥ for 0 ≤ k ≤ n − 1, and
[?⊥]M = ∅). Now, by SU

k ’s definition in (22), Mn−1[i, j+n] = Mn[i, j] = µU(π∗)[i, j],
so Xij = [µU(π∗)[i, j]]M . Then, since Xij represents [TU

ij (π∗)]
M ,

[TU
ij (π∗)]M = [µU(π∗)[i, j]]M

which completes the proof.

We can now define new translation functions t′, r′ as follows. Note that t′ and r′
are defined as the translation functions t, r for formulas φ and programs π proposed
in [6], with the only exception of formulas of the form [U, ei][π]φ.10 Note also the
inside-out approach in the case t([U, e][U′, f]φ) = t([U, e]t([U′, f]φ)), which requires
rule REU (with χ = [U′, f]φ and ψ = t(χ)) in order to prove that the translation is
indeed provably equivalent (i.e. ⊢ ϕ↔ t(ϕ)).

10Two minor typos for the cases [U, e]p and [U, ei][π]φ are also corrected here w.r.t. [6] (the first
was given by t(pre(e)) → sub(e, p), and the second by

∧n−1
j=0 [TU

ij(r(π))]t([U, ej ]φ)).
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t′(⊤) = ⊤ r′(a) = a

t′(p) = p r′(B) = B

t′(¬φ) = ¬t′(φ) r′(?φ) =?t′(φ)
t′(φ1 ∧ φ2) = t′(φ1) ∧ t′(φ2) r′(π1;π2) = r′(π1); r′(π2)
t′([π]φ) = [r′(π)]t′(φ) r′(π1 ∪ π2) = r′(π1) ∪ r′(π2)
t′([U, e]⊤) = ⊤ r′(π∗) = (r′(π))∗
t′([U, e]p) = t′(pre(e)) → t′(sub(e, p))
t′([U, e]¬φ) = t′(pre(e)) → ¬t′([U, e]φ)
t′([U, e](φ1 ∧ φ2)) = t′([U, e]φ) ∧ t′([U, e]φ2)
t′([U, ei][π]φ) =

∧
0≤j≤n−1

µU(π)[i,j] ̸=?⊥
[r′(µU(π)[i, j])]t′([U, ej ]φ)

t′([U, e][U′, e′]φ) = t′([U, e]t′([U′, e′]φ))

Corollary 1. The translation functions t′, r′ reduce the language of LCC to that of
PDL. This translation is correct.

Proof. The effective reduction from LCC to PDL is immediate by inspection. Its
correctness follows from that in [6], with Lemma 1 for the case [U, ei][π]φ.

Definition 8. We define a new axiom system for LCC by replacing the reduction
axiom for PDL programs with the following

[U, ei][π]φ ↔
∧

0≤j≤n−1
µU(π)[i,j] ̸=?⊥

[µU(π)[i, j]][U, ej ]φ (prog)

Corollary 2. The axiom system for LCC from Def. 8 is sound and complete.

Proof. The only new axiom, that for PDL-programs, is sound by Lemma 1. For
completeness, the proof system for PDL is complete, and every LCC formula is
provably equivalent to a PDL formula using Corollary 1.

5 Complexity of the new transformers
The original program transformers in [6] require exponential time due to the use of
Kleene’s method [11]. Moreover, the size of the transformed formulas of type π∗ is
also exponential because of the definition of KU

ijn (Def. 6).
In order to study the complexity of our program transformers, we first imple-

mented in Prolog both the original program transformers and our matrix calculus.
Figure 5 shows the result for our transformers for two kinds of models, complete
and chain models, from 1 to 20 states. The graph’s vertical axis, which is shown in
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logarithmic scale, presents the number of PDL operators in the transformed program
µU(π∗)[n− 1, 0] for n the number of states in the model.

Figure 5: Number of PDL connectives in µU(π∗) for different action models

A model is complete when it is fully connected, i.e., when each µU(π)[i, j] = s(i, j)
is an atomic expression (which is not further analysed by the implementations).
All values s(i, j) in µU(π) are assumed to be different, avoiding simplifications of
repeated patterns. The number of operators in µU(π∗)[n − 1, 0] is in the order of
22n. In the worst case our transformers produce an exponential output, which implies
that the required time is also exponential. In a chain model, each state is connected
with itself, the previous and next one. Thus, µU(π)[i, j] is s(i, j) when i = j or
|i − j| = 1, and ?⊥ otherwise. Now the number of operators in µU(π∗)[n − 1, 0]
is in the order of 2n2, so in this case the length of the output is polynomial. We
chose models with chain-like structure because it makes it easier to generate models
of increasing size with limited connectivity. Similar results can be obtained for
other kinds of models with similar average connectivity, as the key is the number of
instances of ?⊥ spread along the matrices.

The results for the original program transformers are not shown in Figure 5 as
they are, for both the complete and chain models, as our worst case. (The reason is
that they do not benefit from removing superfluous ?⊥.)

An advantage of our transformers is that they do not require exponential space
in cases other than the worst one, in contrast with the original transformers which
always perform in the same (exponential) way. An additional advantage can be
found in the reusability of the information produced during program transforma-
tions. As we argued, working with matrices allows to perform several operations in
parallel. Indeed, matrix µU(π) contains the transformation of program π within all
states in the action model U. As building the matrix with the transformations of a
given program involves building the matrices for its subprograms, the information
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of each generated matrix is properly stored, and then it can be reused in the same or
subsequent transformations within the same action model. This is a practical way
to reduce the computation time required for program transformation.

6 Summary and Future Work
In this work, we presented an alternative definition of the program transformers
used to obtain reduction axioms in LCC. The proposal uses a matrix treatment of
Brzozowski’s equational method in order to obtain a regular expression representing
the language accepted by a finite automaton. While Brzozowski’s method and that
used in the original LCC paper [6] are equivalent, the first is computationally more
efficient in cases different to the worst one; moreover, the matrix treatment presented
here is more synthetic, simple and elegant, thus allowing a simpler implementation.

Towards future work, some definitions used by program transformers (partic-
ularly the ⊙ operation) can be modified to obtain even simpler expressions. For
example, σ ⊙ ρ might be defined as σ if σ ̸= ?⊤ = ρ and as ρ if σ = ?⊤. Moreover,
the algorithm implementing Ardk and Subsk functions can be improved by disre-
garding the N [i, j] elements with j < k or j > n+ k (being N [i, j] a n× 2n matrix),
since those are necessarily equal to ?⊥. These changes, despite not lowering the
translation’s complexity order, would nevertheless make it more efficient.
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