
neuronal layers implementation using a common digital bus 

multiplexed in time, the AER bus. This representation 

assigns a unique digital word (address) to each neuron. 

One of the main advantages of this neuromorphic 

approach is the fact that the process to perform does not 

need to be delayed until all the input data needed is gathered, 

as it occurs in classical artificial vision systems where any 

processing step needs to wait to have a complete frame or 

picture in memory. When using adequate neuromorphic 

sensors, the sensed reality is translated into a sequence of 

spikes or events. These events represent those pixels that 

have detected a change (i.e. luminosity change, edges in a 

moving object..., etc.) with the presence of the pixel address 

on the AER bus and quantizing the intensity of the detected 

change with a larger or smaller stream of events. The 

potential of this approach allows the implementation of 

pseudo-instantaneous preliminary results of complex 

processing algorithms [17]. Their FPGA implementations 

are being a very popular and attractive way to demonstrate 

these properties of neuromorphic systems from sensors to 

robotic actuators [8][13][14][15][16]. 

Classical control approaches of degree-of-freedom (DoF) 

actuators in robots use Proportional-Integral-Derivative 

(PID) controllers where the error signal is the source of the 

controller. There are two spike-based controllers [13][14], 

where spikes are used to directly power the motors, which 

considerably reduces power and latencies between the 

decision taken and the change in the motor. These two works 

can be used in the ED-Scorbot as IP cores for FPGA: a 

translation of a classic PID to the spikes domain, and a 

neuro-cortex inspired controller (described in section IV). 

This paper presents the ED-Scorbot neuromorphic robotic 

framework as a test bed for cognitive robotic algorithms. 

The framework was born during the BIOSENSE project and 

it is intended to be used by the neuromorphic community 

researchers locally or remotely. It is mainly composed of 

hardware components (robotic arm, event-based sensors and 

FPGA-based AER boards), and a library of IP cores for 

FPGAs for event-based sensor’s filtering /processing /fusion 

and spike-based motor controllers. Computer interfaces are 

supported in jAER [12]. The next section reviews those 

sensors that are compatible with this framework. Section III 

summarizes sensor’s processing IPs for FPGA. Section IV is 

devoted to motor controllers IPs. And section V describes 

the platform with details. 

II. EVENT-BASED SENSORS

This section reviews and summarizes the two main 

sensors initially available in this framework, although any 

other could be adapted with little effort. 
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Abstract— Neuromorphic engineering is a growing and 

promising discipline nowadays. Neuro-inspiration and 

brain understanding applied to solve engineering 

problems is boosting new architectures, solutions and 

products today. The biological brain and neural systems 

process information at relatively low speeds through 

small components, called neurons, and it is impressive how 

they connect each other to construct complex 

architectures to solve in a quasi-instantaneous way 

visual and audio processing tasks, object detection and 

tracking, target approximation, grasping…, etc., with very 

low power. Neuromorphs are beginning to be very promising 

for a new era in the development of new sensors, 

processors, robots and software systems that mimic 

these biological systems. The event-driven Scorbot (ED-

Scorbot) is a robotic arm plus a set of FPGA / microcontroller’s 

boards and a library of FPGA logic joined in a completely 

event-based framework (spike-based) from the sensors to the 

actuators. It is located in Seville (University of Seville) and 

can be used remotely. Spike-based commands, through 

neuro-inspired motor controllers, can be sent to the 

robot after visual processing object detection and 

tracking for grasping or manipulation, after complex 

visual and audio-visual sensory fusion, or after performing 

a learning task. Thanks to the cascade FPGA 

architecture through the Address-Event-Representation 

(AER) bus, supported by specialized boards, resources for 

algorithms implementation are not limited. 

I. INTRODUCTION

Neuromorphic systems currently provide a high level of 

parallelism, interconnectivity, and scalability, carrying out 

complex processing in real time, with a good relation 

between quality, speed and resource consumption. 

Neuromorphic engineers work in the study, design and 

development of neuro-inspired systems, like analog VLSI 

chips for sensors [6][1][7], and neuro-inspired sensor’s 

processing, filtering and learning [2][3][4][8][9], among 

others [5][13][14]. Signals in spikes-domain are represented 

by short pulses in time (i.e. spikes). Information is carried by 

spikes, and it is usually measured in spike frequency 

(following a Pulse Frequency Modulation (PFM) scheme), 

inter-spike-interval timing (ISI) [3], time-from-reset to a 

spike, spike rate or other higher level modulations.  

Address-Event Representation (AER), proposed by Mead 

lab in 1991 [10][11], solved the problem of connecting 

silicon neurons in hardware along chips, to allow different 
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Dynamic Vision Sensors [6] mimic part of the biological 

retina’s functionality in silicon chips using typically CMOS 

circuits in weak-inversion regions with asynchronous 

communications (AER) [10][11]. Each sensing unit or pixel 

is equivalent to the ON and OFF bipolar cells after the cones 

of a biological retina. They work independently of each 

other, they sense incoming visual information and then they 

send events that codify its (positive and negative) changes, 

like an increment or decrement in luminosity. These sensors 

send out the visual information with a small latency, due to 

the circuitry itself. A sensed change is sent out in the precise 

instant it is produced. This philosophy is radically different 

to the one in artificial vision. All digital cameras work by 

measuring reality for a short period of time (exposure time) 

and then they spend a considerable amount of clock cycles 

sending out a whole picture or frame, even though only a 

few pixels have changed since the last frame captured. For 

hard real-time systems, such as mobile robots or high-speed 

manipulation, this biological mimicking approach is crucial 

and it is allowing nowadays the development of embedded 

systems working with visual information that are able to 

perform relatively complex visual tasks, like fast object 

detection and tracking [15]. Several groups have developed 

similar sensors, but the operational principle is the same, like 

ATIS/cnmDV [6]. There are other kinds of event-based 

analog sensors, like cochlea [1] and olfactory ones [7].  

The biological cochlea is a part of the inner ear that plays 

a central role in hearing. It moves in response to vibrations 

caused by sound signals entering the ear and making the 

basilar membrane vibrate. Thousands of hair cells on the 

membrane sense the vibration and excite the spiral ganglion 

cells, which generate spikes that are sent to higher-order 

auditory brain areas. Because of the physical properties of 

the basilar membrane, high-frequency inputs activate the 

basilar membrane area closest to the base of the cochlea, 

while low-frequency waves travel further down the 

membrane [19]. The first silicon cochlea was proposed by 

Lyon and Mead [20] with a cascade of 480 second-order 

filter sections. In biological cochleae, the acoustic wave is 

filtered mechanically and its frequency components are 

represented by neural pulses in the auditory nerve. In this 

robotic framework, we use a novel way to process the sound 

wave using Spikes Signal Processing (SSP)[25].  

We use two spiking audio systems for FPGA: the 

Neuromorphic Auditory Sensor (NAS) for FPGA and a 

spiking digital-filter-based cochlea. The NAS transforms the 

information in the acoustic wave into an equivalent spike 

rated representation, and then it uses a bank of cascaded 

spike-based low-pass filters, which is inspired on Lyon’s 

model of the biological cochlea [18]. This auditory system 

processes information directly encoded as spikes using Pulse 

Frequency Modulation (PFM), decomposes PFM audio into 

a set of frequency bands, and propagates that information by 

means of an AER interface (see Fig. 1). 

The spiking digital-filter-based cochlea for FPGA has 

been implemented together with a spiking neural network 

for Spanish commands recognition (Fig. 3) [27]. The 

frequency-selective displacement characteristic of the basilar 

membrane is modelled using an array of 21 band-pass digital 

filters and a set of spike generators. The band-pass filters, 

whose cut-off frequencies range is over the human speech 

frequencies (20 Hz - 20 KHz), split the speech signal into 

different frequency components. It is based on the 

subdivision of the audible frequency range into critical 

bands proposed by Zwicker [28]. Each digital filter is 

connected to a spike generator [29] that mimics the 

functionality of the inner hair cells (IHCs). 

III. EVENT-BASED SENSORY PROCESSING

Fig. 2 shows the architecture of the logic for multiple 

objects detection and tracking for this framework. It is 

composed of two main blocks: the background activity filter 

(BAF) and the object tracker with center of mass calculation 

(CMCell), where the second one is replicated several times 

in a concatenated way.  

A. Background Activity Filter

The ON/OFF bipolar events of dynamic vision sensor,

which represent the temporal contrast changes (DVS 

events), are processed firstly by a Background Activity Filter 

(BAF) to remove all the non-spatially and non-temporally 

correlated event-rate activity. These DVS chips usually send 

sporadic events due to noisy currents not related to light 

changes in their pixels. This activity can decrease the 

performance of any processing. BAF uses an always-on 32-

bit timer for time measuring. 

B. Event-based Tracker

This logic has to detect a potential object from DVS

output and it then has to follow the object in the visual field.  

To accomplish this, the implementation used for this 

framework waits for an object at a particular initial position 
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and sub-window of the visual field, called cluster. This 

initial cluster location and size are configurable parameters. 

As soon as a number of events, N, fall into the cluster within 

a configurable period of time, the tracker is said to have 

detected an object. A configurable extension over the cluster 

size is always monitored by the tracker for dynamic decision 

making on cluster size and position updates. Even N can be 

dynamically updated for automatic adaptation to different 

object speeds. Depending on the evolution of next events 

falling in the cluster several tasks are performed in parallel: 

(1) position update through the visual field according to the

CM calculation of last N events. (2) Cluster size update

(enlarged or shrunk) depending on the presence or absence

of events both in the cluster and its extension. If there is

activity in this extension area the cluster is enlarged. If the

activity is concentrated around the center of the cluster then

it is shrunk. (3) Current CM can be averaged with the

number of the last CM events (only a power of 2 for simple

implementation) to low-pass-filter for smoothing changes in

the trajectory. (4) N update: if the last N events have been

detected in a very short period of time (i.e. the object speed

is increasing), N is increased; but if that time for receiving N

events is increased (i.e. the object speed is decreasing), then

N is decreased to reduce the latency in the CM calculation

(precision can be reduced).

Each of these trackers in the FPGA has one input and three

different outputs: CM events, cluster events and pass

through events. The latter sends out all the events that are

not falling into the cluster of the current tracker, so this

output represents the output of the DVS where all the events

of the first detected object have been filtered. This output is

used by the next tracker for detecting a new object in the

visual field. The number of trackers to be implemented is

only limited by the resource limit of the selected FPGA.

C. Acoustic frequency bands classification

The AER output of the NAS codifies the frequency

activity of the sound. Each address corresponds to the mid 

frequency of a band-pass filter. Different channels output 

must be properly correlated in order to detect or classify 

different acoustic features like pure tones, musical notes, 

vowels, etc. Spiking neural networks for SpiNNaker have 

demonstrated good accuracy [24], but simpler convolution 

filters for FPGA (with properly adjusted / learned weights) 

have also demonstrated good results [26]. The ED-Scorbot 

framework has the convolution-based approach available (as 

an IP core), although SpiNNaker platforms could be easily 

connected to the framework for cognition task improvement.  

D. Words recognition

A spiking neural network is used for detecting phonemes

and words, as sequences of phonemes. It is composed of 

three types of neurons: Recognition-neurons (RNeuron) 

spike when a set of their inputs spike simultaneously and 

when a pre-set pattern is detected in their inputs; Winner-

neurons (WTANeuron) are used for empowering the most 

active RNeuron and depressing the rest [32]; and Delay-

neurons (DelayNeuron) are needed for detecting commands 

such as sequences of phonemes. These neurons, which are 

based on an integrate and fire model [30][31], are able to 

recognize auditory frequency patterns, such as vowel 

phonemes. 

E. Sensory fusion and integration

Sensory fusion is understood as a trained technique that is

able to use a mixture of the information from both types of 

sensors in order to properly classify different scenarios. 

Usually, neural networks and deep learning approaches have 

been used for that purpose. Sensor integration is a term 

devoted to those techniques that make different 

approximations for a decision separately with different 

sensors, which are then combined statistically for the final 

decision. The IP library of this framework includes a sensory 

integration module [23]. The sensory fusion for FPGA in 

terms of an IPcore is currently being tested. 

IV. EVENT-BASED MOTOR CONTROLLERS

The IP library of the ED-Scorbot framework also includes 

two motor controllers implemented in the spike domain: a 

classic approach of a PID controller (SPID) and a motor-

cortex based on the Vector-Integration-To-Endpoint 

(SVITE). 

A. SPID [13]: In control theory, a closed-loop controller

compares the real system state with a desired one, getting the 

system error. This system error is processed, and then 

applied to the system under control. A classic controller is 

the Proportional-Integral-Derivative (PID). This controller 

calculates three components: (1) one is Proportional to the 

system error; (2) another one is proportional to the temporal 

Integration error; and (3) the last one is proportional to the 

temporal Derivative error. The addition of these three 

components is the value of the signal used as the input of the 

system under control, called actuation variable. PID 

controllers can be implemented as analog circuits, based on 

continuous system modeling (using e.g., Laplace transform), 

or as digital circuits, modeling a discrete controller (using 

e.g., the discrete Z-transform). Usually, these systems

execute PID-controllers as sequential algorithms, which

generate quantized output samples with fixed sample time.

Their implementations need to multiplex in time hardware

units and share resources for every discrete controller. For
Fig. 2: BAF and x4 Object Trackers (in cascade) block diagram. 



these reasons, it is difficult to implement a high number of 

digital real-time controllers running fully in parallel inside a 

single device.  

A spike-based PID-controller is very different to the 

discrete ones mentioned above. Analog PID controller 

implementation performs control operations over analog 

signals, and the hardware elements, which perform these 

operations, are usually operational amplifiers (OA) and 

passive components such as resistors or capacitors. SPID 

develops similar architectures but using only spikes (both 

internally and externally). For that, it uses hardware 

components that perform the same basic operations used in 

analog circuits, but over the spike-domain.  

Fig. 3 shows our spike-based PID controller, with its 

internal blocks. There are only spikes flowing between these 

blocks, being processed while they flow, with low latencies, 

until they are applied to a motor (DC motor in our tests). 

Like neurons that are small specialized computational units 

that perform specific operations, the SPID controller has 

been constructed using small hardware units designed as 

building blocks [13]. Since each controller is using basic 

digital components (counters, registers and comparators), it 

is feasible to implement many SPID controllers in the same 

FPGA (or chip) working in parallel without resource sharing 

in time. Each of those spike processing building-blocks has 

to provide a new stream of spikes that modifies the spike 

frequency according to a specific mathematical primitive 

operation, which can be addition/subtraction, integration and 

derivation for our case. Other elements are mandatory, like 

the conversion of motor/robot sensor information into a 

spike-coded stream for the close-loop. In the case of 

brushless motors or steps motors, these output spikes from 

controllers cannot be applied directly to the motors, and 

special bridges are needed for changing accordingly the 

phases to be applied to the motors. These elements are 

written in VHDL, which can be synthesized as digital 

circuits for FPGAs, and they can be used as building blocks 

for larger systems.  

These building blocks allow to reuse and combine them in 

different ways, offering the opportunity to build other 

systems for spike-based signal processing (SSP), like, for 

example, spike-based filters [5]. SSP building blocks are 

composed of dedicated hardware components that work 

independently from each other, and thus, when synthesizing 

several of them on the same FPGA, they can behave as 

parallel processing units. 

At the system level, the idea behind the SPID controller is 

to use a spike stream in order to achieve a fixed position for 

ED-Scorbot motor with a closed-loop controller. The 

reference for the controller can be translated into spikes 

through a synthetic spikes generator (Fig. 3, left).  

From these reference spikes, in order to design closed-

loop control systems, those spikes that codify the real motor 

speed should be subtracted (left H&F in Fig. 3). The 

subtraction of the real speed from the reference, both of 

them codified into spikes, will provide a new spike stream 

that codifies the system error, in the same way as traditional 

closed-loop systems. Those error spikes will be processed by 

several building blocks while they are flowing through the 

controller until they are applied to the motor. While spikes 

are flowing through the controller, integrative and derivative 

operations are performed over the error spikes. 

B. SVITE [14]:

The original VITE algorithm (referenced in [14]) is used

for calculating a non-planned trajectory. It computes the 

difference between the target and the present position. It 

models planned human arm movements. In contrast to 

approaches that require the stipulation of the desired 

individual joint positions, this trajectory generator operates 

with desired coordinates of the end vector and generates the 

individual joint, driving functions in real-time by employing 

geometric constraints, which characterize the manipulator. 

Fig. 4 shows the block diagram of the algorithm (top) and 

the translation into spikes processing blocks (bottom). The 

translation into spike-processing blocks is done by solving 

the equations using Laplace transform to build up a system 

under frequency domain. As we consider the firing rate as 

the information of our neural code, this method of using 

Laplace transform allows us to supposedly accept the match 

between both concepts: firing rate and Laplace frequency.  

The SVITE for FPGA is composed of four different types 

of spike processing blocks:  

Fig. 4: SPID block diagram. 
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• Hold and Fire (H&F): it performs the addition or

subtraction of spike flows to compute the error signal. The 

task of this block is similar to that of a neuron synapse [13]. 

This block has two inputs: one excitatory input coming from 

the visual processing layer and one inhibitory input from the 

end-block of the algorithm.  

• Spike low pass filter (LPF): the behavior of the block is

the same as an analog classical low pass filter, with the 

difference that it operates with the spike’s input firing rate. 

The result of this block is a uniform distribution of the 

spikes input [13]. There are LPF in the SVITE algorithm: 

one at the H&F’s output and another one in the GO Block. 

• GO Block: this block is controlling the speed of the

movement and it is also the gate. It is done by modifying the 

input firing rate. We inject spikes according to a user 

parameter that defines the desired speed. The behavior of 

this block can be matched with an excitatory neuron. 

• Integrate and Generate (I&G): this block is the

analogous of the Integrate-and-Fire block in VLSI designs, 

with the difference that it generates a rate-coded stream of 

the integration part [13]. 

From a biological point of view, this algorithm conforms 

something similar to a forward model and evaluates the 

corollary discharge with the I&G block. Thus, no sensory 

discrepancies are noticed within this algorithm, as it was 

expected without feedback from the robot. The assumption 

is that the commanded position is reached. From a classic 

control theory perspective, this algorithm cannot be exactly 

matched with any of the traditional controllers, such as the 

PID ones. If we consider the GO block as a disturbance and 

the I&G one as the robot, the system could be matched with 

a pseudo-proportional control. 

V. ED-SCORBOT FRAMEWORK

ED-ScrotBot is a research framework developed in Seville 

under the BIOSENSE project. It allows implementing and 

testing event-driven algorithms, mechanisms or strategies, 

using AER for blocks / boards communications. It is divided 

in two main parts: hardware and software. The hardware 

platform uses events (AER) coming from high level sensors 

(artificial retinas or NAS) and processes them on the fly 

through FPGAs in order to finally control the robot actuators 

with spikes. Robot joints feedback is taken through event 

conversion of motor encoders. The platform is composed of 

a modified and old-fashioned SCORBOT-ER VII and 

several event-based customized boards. Thus, the original 

robot control unit is replaced by an event-driven control unit. 

Besides the robot, the main polyvalent FPGA-based board 

used in this framework is the AER-Node [21]. Multiple units 

of this board can be connected in cascade (through AER 

buses) in order to increase the number of steps to perform 

the control, from the sensors to the actuators. Fig. 5 shows a 

photograph of the hardware components of the ED-Scorbot. 

In this figure, a DVS sensor is connected to an AER-Node 

board where BAF and OBT IPs are running on the FPGA. 

The output of the OBT is used as a reference for the 2D 

movement of the Scorbot. Spike-based SPID motor 

controllers are embedded in the same AER-Node board, 

although these motor controllers can be held into a different 

one, as it occurs with the SVITE algorithm. Its AER output 

bus is connected to the AER-Scorbot board, which decodes 

the AER bus into spikes to be sent to each motor. These 

spikes are properly expanded before they are sent to the 

motor. This expansion time constant represents the 

proportional constant of the SPID controller, which is also 

present and needed in the SVITE or any other pulse-

frequency based motor controller.  

AER-Node could also be devoted to implement high level 

cognition systems, such as vision or auditory integration / 

fusion systems, learning and classification through SNN [22] 

or ConvNets [8].  

Several daughter boards can be connected to an AER-

Node to improve its connectivity and functionality. The 

OKAER tool (used in [23]) is of particular interest; it allows 

sequencing and monitoring streams of events to and from the 

FPGA for debugging. It can also store in embedded DDR 

memory a long sequence of events to be sequenced 

repetitively. It also includes a merger for the sensory fusion 

algorithm implementations. 

The AER-Scorbot board collects spikes from the AER-

Node in order to set the desired position of each motor. It 

collects information from motors (encoders and current 

spent by each motor) and makes a conversion of this 

information to spikes in order to send it back to the AER-

Node. This board is connected to the power boards. 

Each power driver board is composed of a bidirectional 

optocoupling layer, to isolate motor signals and logical 

signals from the AER-Scorbot board, and a Hall effect 

sensor. Information about encoders and current consumed by 

motors are sent to AER-Scorbot. Output expanded spikes 

from AER-Scorbot are sent to the Driver board (an H-

Bridge) to supply a suitable voltage and current to drive the 

motor. A computer is connected to these boards in order to 

send parameters at running time, but it is also used for 

synthesizing our system for the FPGAs. This computer has 

access to the event-based IP library and it can be used 

locally or remotely through RemoteDesktop or VNC and a 

webcam to supervise the robot. 

VI. CONCLUSIONS

This manuscript presents a test bed framework for 

neuromorphic systems implemented on FPGAs and it covers 

the whole process from sensors to actuators allowing the 

consecutive use of events (spikes) even for powering the 

motors. This framework is enriched by an IP library of 

Fig. 5: Up. Block diagram of the VITE algorithm. Down. Block diagram 
of the SVITE generated from existing spikes processing blocks. 
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event-based algorithms that will be continuously growing. 

Sensor’s filtering, integration, processing, learning and 

motor control are currently available. 

Thanks to the use of the de facto standard AER for 

communicating events and wider parallel connectors, the 

framework boards can be connected to other existing 

platforms, such as SpiNNaker. 
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Fig. 6: ED-Scorbot hardware components: Scorbot arm, Sensors (one 

DVS in the picture), AER-Node board, AER-Scorbot and power drivers. 

Fig. 7: ED-Scorbot framework block diagram. Left are sensors (light red), 

AER-Node and AER-Scorbot PCBs (light green), which are parameterized 
through USB. The Scorbot motors are reached after a set of power drivers 

(purple). Many AER-Node boards can be connected in cascade. 


