
neuronal layers implementation using a common digital bus

multiplexed in time, the AER bus. This representation

assigns a unique digital word (address) to each neuron.

One of the main advantages of this neuromorphic

approach is the fact that the process to perform does not

need to be delayed until all the input data needed is gathered,

as it occurs in classical artificial vision systems where any

processing step needs to wait to have a complete frame or

picture in memory. When using adequate neuromorphic

sensors, the sensed reality is translated into a sequence of

spikes or events. These events represent those pixels that

have detected a change (i.e. luminosity change, edges in a

moving object..., etc.) with the presence of the pixel address

on the AER bus and quantizing the intensity of the detected

change with a larger or smaller stream of events. The

potential of this approach allows the implementation of

pseudo-instantaneous preliminary results of complex

processing algorithms [17]. Their FPGA implementations

are being a very popular and attractive way to demonstrate

these properties of neuromorphic systems from sensors to

robotic actuators [8][13][14][15][16].

Classical control approaches of degree-of-freedom (DoF)

actuators in robots use Proportional-Integral-Derivative

(PID) controllers where the error signal is the source of the

controller. There are two spike-based controllers [13][14],

where spikes are used to directly power the motors, which

considerably reduces power and latencies between the

decision taken and the change in the motor. These two works

can be used in the ED-Scorbot as IP cores for FPGA: a

translation of a classic PID to the spikes domain, and a

neuro-cortex inspired controller (described in section IV).

This paper presents the ED-Scorbot neuromorphic robotic

framework as a test bed for cognitive robotic algorithms.

The framework was born during the BIOSENSE project and

it is intended to be used by the neuromorphic community

researchers locally or remotely. It is mainly composed of

hardware components (robotic arm, event-based sensors and

FPGA-based AER boards), and a library of IP cores for

FPGAs for event-based sensor’s filtering /processing /fusion

and spike-based motor controllers. Computer interfaces are

supported in jAER [12]. The next section reviews those

sensors that are compatible with this framework. Section III

summarizes sensor’s processing IPs for FPGA. Section IV is

devoted to motor controllers IPs. And section V describes

the platform with details.

II. EVENT-BASED SENSORS

This section reviews and summarizes the two main

sensors initially available in this framework, although any

other could be adapted with little effort.

ED-Scorbot: A Robotic test-bed Framework for FPGA-based

Neuromorphic systems

F. Gómez-Rodríguez, A. Jiménez-Fernández, F. Pérez-Peña, L. Miró, M.J. Domínguez-Morales,

A.Ríos-Navarro, E. Cerezuela, D. Cascado-Caballero, A. Linares-Barranco



Abstract— Neuromorphic engineering is a growing and

promising discipline nowadays. Neuro-inspiration and

brain understanding applied to solve engineering

problems is boosting new architectures, solutions and

products today. The biological brain and neural systems

process information at relatively low speeds through

small components, called neurons, and it is impressive how

they connect each other to construct complex

architectures to solve in a quasi-instantaneous way

visual and audio processing tasks, object detection and

tracking, target approximation, grasping…, etc., with very

low power. Neuromorphs are beginning to be very promising

for a new era in the development of new sensors,

processors, robots and software systems that mimic

these biological systems. The event-driven Scorbot (ED-

Scorbot) is a robotic arm plus a set of FPGA / microcontroller’s

boards and a library of FPGA logic joined in a completely

event-based framework (spike-based) from the sensors to the

actuators. It is located in Seville (University of Seville) and

can be used remotely. Spike-based commands, through

neuro-inspired motor controllers, can be sent to the

robot after visual processing object detection and

tracking for grasping or manipulation, after complex

visual and audio-visual sensory fusion, or after performing

a learning task. Thanks to the cascade FPGA

architecture through the Address-Event-Representation

(AER) bus, supported by specialized boards, resources for

algorithms implementation are not limited.

I. INTRODUCTION

Neuromorphic systems currently provide a high level of

parallelism, interconnectivity, and scalability, carrying out

complex processing in real time, with a good relation

between quality, speed and resource consumption.

Neuromorphic engineers work in the study, design and

development of neuro-inspired systems, like analog VLSI

chips for sensors [6][1][7], and neuro-inspired sensor’s

processing, filtering and learning [2][3][4][8][9], among

others [5][13][14]. Signals in spikes-domain are represented

by short pulses in time (i.e. spikes). Information is carried by

spikes, and it is usually measured in spike frequency

(following a Pulse Frequency Modulation (PFM) scheme),

inter-spike-interval timing (ISI) [3], time-from-reset to a

spike, spike rate or other higher level modulations.

Address-Event Representation (AER), proposed by Mead

lab in 1991 [10][11], solved the problem of connecting

silicon neurons in hardware along chips, to allow different

Francisco Gómez-Rodríguez, Angel Jiménez-Fernández, Lourdes

Miró, Manuel J. Domínguez-Morales, Antonio Ríos-Navarro, Elena

Cerezuela, Daniel Cascado-Caballero and Alejandro Linares-Barranco

are with the Robotic and Technology of Computers Lab. Higher

Polytechnic and Computer Engineering Schools. University of

Seville, Sevilla, SPAIN (emails: {gomezroz, ajimenez, lmiro,

mdominguez, arios, ecerezuela, danic, alinares}@atc.us.es). Fernando

Pérez-Peña is with the Applied Robotic Lab University of Cadiz

(fernandoperez.pena@uca.es).

Dynamic Vision Sensors [6] mimic part of the biological

retina’s functionality in silicon chips using typically CMOS

circuits in weak-inversion regions with asynchronous

communications (AER) [10][11]. Each sensing unit or pixel

is equivalent to the ON and OFF bipolar cells after the cones

of a biological retina. They work independently of each

other, they sense incoming visual information and then they

send events that codify its (positive and negative) changes,

like an increment or decrement in luminosity. These sensors

send out the visual information with a small latency, due to

the circuitry itself. A sensed change is sent out in the precise

instant it is produced. This philosophy is radically different

to the one in artificial vision. All digital cameras work by

measuring reality for a short period of time (exposure time)

and then they spend a considerable amount of clock cycles

sending out a whole picture or frame, even though only a

few pixels have changed since the last frame captured. For

hard real-time systems, such as mobile robots or high-speed

manipulation, this biological mimicking approach is crucial

and it is allowing nowadays the development of embedded

systems working with visual information that are able to

perform relatively complex visual tasks, like fast object

detection and tracking [15]. Several groups have developed

similar sensors, but the operational principle is the same, like

ATIS/cnmDV [6]. There are other kinds of event-based

analog sensors, like cochlea [1] and olfactory ones [7].

The biological cochlea is a part of the inner ear that plays

a central role in hearing. It moves in response to vibrations

caused by sound signals entering the ear and making the

basilar membrane vibrate. Thousands of hair cells on the

membrane sense the vibration and excite the spiral ganglion

cells, which generate spikes that are sent to higher-order

auditory brain areas. Because of the physical properties of

the basilar membrane, high-frequency inputs activate the

basilar membrane area closest to the base of the cochlea,

while low-frequency waves travel further down the

membrane [19]. The first silicon cochlea was proposed by

Lyon and Mead [20] with a cascade of 480 second-order

filter sections. In biological cochleae, the acoustic wave is

filtered mechanically and its frequency components are

represented by neural pulses in the auditory nerve. In this

robotic framework, we use a novel way to process the sound

wave using Spikes Signal Processing (SSP)[25].

We use two spiking audio systems for FPGA: the

Neuromorphic Auditory Sensor (NAS) for FPGA and a

spiking digital-filter-based cochlea. The NAS transforms the

information in the acoustic wave into an equivalent spike

rated representation, and then it uses a bank of cascaded

spike-based low-pass filters, which is inspired on Lyon’s

model of the biological cochlea [18]. This auditory system

processes information directly encoded as spikes using Pulse

Frequency Modulation (PFM), decomposes PFM audio into

a set of frequency bands, and propagates that information by

means of an AER interface (see Fig. 1).

The spiking digital-filter-based cochlea for FPGA has

been implemented together with a spiking neural network

for Spanish commands recognition (Fig. 3) [27]. The

frequency-selective displacement characteristic of the basilar

membrane is modelled using an array of 21 band-pass digital

filters and a set of spike generators. The band-pass filters,

whose cut-off frequencies range is over the human speech

frequencies (20 Hz - 20 KHz), split the speech signal into

different frequency components. It is based on the

subdivision of the audible frequency range into critical

bands proposed by Zwicker [28]. Each digital filter is

connected to a spike generator [29] that mimics the

functionality of the inner hair cells (IHCs).

III. EVENT-BASED SENSORY PROCESSING

Fig. 2 shows the architecture of the logic for multiple

objects detection and tracking for this framework. It is

composed of two main blocks: the background activity filter

(BAF) and the object tracker with center of mass calculation

(CMCell), where the second one is replicated several times

in a concatenated way.

A. Background Activity Filter

The ON/OFF bipolar events of dynamic vision sensor,

which represent the temporal contrast changes (DVS

events), are processed firstly by a Background Activity Filter

(BAF) to remove all the non-spatially and non-temporally

correlated event-rate activity. These DVS chips usually send

sporadic events due to noisy currents not related to light

changes in their pixels. This activity can decrease the

performance of any processing. BAF uses an always-on 32-

bit timer for time measuring.

B. Event-based Tracker

This logic has to detect a potential object from DVS

output and it then has to follow the object in the visual field.

To accomplish this, the implementation used for this

framework waits for an object at a particular initial position

Analog Audio
AC’97

Audio

Codec
AC’97 FSM

L – NAS Filter

Bank (L-NFB)

L - Synthetic

Spikes Generator

...

BPF_L_HF

BPF_L_LF

R – NAS Filter
Bank (R-NFB)

R - Synthetic

Spikes Generator

...

BPF_R_HF

BPF_R_LF

L-Data

R-Data

AC’97

FPGA

AER

Monitor
AER

REQ

ACK
...

Spikes_L_0

Spikes_L_N

Spikes_R_0

Spikes_R_N

...

Digital Audio Spikes

20

20

Right

Left

Analog Audio

Fig. 1: NAS Architecture. From left to right: analog audio signal is digitalized through commercial AC’97 audio codec. A FSM on the FPGA split left

and right signals into spikes generators. These spike-streams are processed by two cascade SSP filters that decompose audio into channels or bands in

the spike domain. All the channels’ output is merged into an AER encoder (AER monitor).

and sub-window of the visual field, called cluster. This

initial cluster location and size are configurable parameters.

As soon as a number of events, N, fall into the cluster within

a configurable period of time, the tracker is said to have

detected an object. A configurable extension over the cluster

size is always monitored by the tracker for dynamic decision

making on cluster size and position updates. Even N can be

dynamically updated for automatic adaptation to different

object speeds. Depending on the evolution of next events

falling in the cluster several tasks are performed in parallel:

(1) position update through the visual field according to the

CM calculation of last N events. (2) Cluster size update

(enlarged or shrunk) depending on the presence or absence

of events both in the cluster and its extension. If there is

activity in this extension area the cluster is enlarged. If the

activity is concentrated around the center of the cluster then

it is shrunk. (3) Current CM can be averaged with the

number of the last CM events (only a power of 2 for simple

implementation) to low-pass-filter for smoothing changes in

the trajectory. (4) N update: if the last N events have been

detected in a very short period of time (i.e. the object speed

is increasing), N is increased; but if that time for receiving N

events is increased (i.e. the object speed is decreasing), then

N is decreased to reduce the latency in the CM calculation

(precision can be reduced).

Each of these trackers in the FPGA has one input and three

different outputs: CM events, cluster events and pass

through events. The latter sends out all the events that are

not falling into the cluster of the current tracker, so this

output represents the output of the DVS where all the events

of the first detected object have been filtered. This output is

used by the next tracker for detecting a new object in the

visual field. The number of trackers to be implemented is

only limited by the resource limit of the selected FPGA.

C. Acoustic frequency bands classification

The AER output of the NAS codifies the frequency

activity of the sound. Each address corresponds to the mid

frequency of a band-pass filter. Different channels output

must be properly correlated in order to detect or classify

different acoustic features like pure tones, musical notes,

vowels, etc. Spiking neural networks for SpiNNaker have

demonstrated good accuracy [24], but simpler convolution

filters for FPGA (with properly adjusted / learned weights)

have also demonstrated good results [26]. The ED-Scorbot

framework has the convolution-based approach available (as

an IP core), although SpiNNaker platforms could be easily

connected to the framework for cognition task improvement.

D. Words recognition

A spiking neural network is used for detecting phonemes

and words, as sequences of phonemes. It is composed of

three types of neurons: Recognition-neurons (RNeuron)

spike when a set of their inputs spike simultaneously and

when a pre-set pattern is detected in their inputs; Winner-

neurons (WTANeuron) are used for empowering the most

active RNeuron and depressing the rest [32]; and Delay-

neurons (DelayNeuron) are needed for detecting commands

such as sequences of phonemes. These neurons, which are

based on an integrate and fire model [30][31], are able to

recognize auditory frequency patterns, such as vowel

phonemes.

E. Sensory fusion and integration

Sensory fusion is understood as a trained technique that is

able to use a mixture of the information from both types of

sensors in order to properly classify different scenarios.

Usually, neural networks and deep learning approaches have

been used for that purpose. Sensor integration is a term

devoted to those techniques that make different

approximations for a decision separately with different

sensors, which are then combined statistically for the final

decision. The IP library of this framework includes a sensory

integration module [23]. The sensory fusion for FPGA in

terms of an IPcore is currently being tested.

IV. EVENT-BASED MOTOR CONTROLLERS

The IP library of the ED-Scorbot framework also includes

two motor controllers implemented in the spike domain: a

classic approach of a PID controller (SPID) and a motor-

cortex based on the Vector-Integration-To-Endpoint

(SVITE).

A. SPID [13]: In control theory, a closed-loop controller

compares the real system state with a desired one, getting the

system error. This system error is processed, and then

applied to the system under control. A classic controller is

the Proportional-Integral-Derivative (PID). This controller

calculates three components: (1) one is Proportional to the

system error; (2) another one is proportional to the temporal

Integration error; and (3) the last one is proportional to the

temporal Derivative error. The addition of these three

components is the value of the signal used as the input of the

system under control, called actuation variable. PID

controllers can be implemented as analog circuits, based on

continuous system modeling (using e.g., Laplace transform),

or as digital circuits, modeling a discrete controller (using

e.g., the discrete Z-transform). Usually, these systems

execute PID-controllers as sequential algorithms, which

generate quantized output samples with fixed sample time.

Their implementations need to multiplex in time hardware

units and share resources for every discrete controller. For
Fig. 2: BAF and x4 Object Trackers (in cascade) block diagram.

these reasons, it is difficult to implement a high number of

digital real-time controllers running fully in parallel inside a

single device.

A spike-based PID-controller is very different to the

discrete ones mentioned above. Analog PID controller

implementation performs control operations over analog

signals, and the hardware elements, which perform these

operations, are usually operational amplifiers (OA) and

passive components such as resistors or capacitors. SPID

develops similar architectures but using only spikes (both

internally and externally). For that, it uses hardware

components that perform the same basic operations used in

analog circuits, but over the spike-domain.

Fig. 3 shows our spike-based PID controller, with its

internal blocks. There are only spikes flowing between these

blocks, being processed while they flow, with low latencies,

until they are applied to a motor (DC motor in our tests).

Like neurons that are small specialized computational units

that perform specific operations, the SPID controller has

been constructed using small hardware units designed as

building blocks [13]. Since each controller is using basic

digital components (counters, registers and comparators), it

is feasible to implement many SPID controllers in the same

FPGA (or chip) working in parallel without resource sharing

in time. Each of those spike processing building-blocks has

to provide a new stream of spikes that modifies the spike

frequency according to a specific mathematical primitive

operation, which can be addition/subtraction, integration and

derivation for our case. Other elements are mandatory, like

the conversion of motor/robot sensor information into a

spike-coded stream for the close-loop. In the case of

brushless motors or steps motors, these output spikes from

controllers cannot be applied directly to the motors, and

special bridges are needed for changing accordingly the

phases to be applied to the motors. These elements are

written in VHDL, which can be synthesized as digital

circuits for FPGAs, and they can be used as building blocks

for larger systems.

These building blocks allow to reuse and combine them in

different ways, offering the opportunity to build other

systems for spike-based signal processing (SSP), like, for

example, spike-based filters [5]. SSP building blocks are

composed of dedicated hardware components that work

independently from each other, and thus, when synthesizing

several of them on the same FPGA, they can behave as

parallel processing units.

At the system level, the idea behind the SPID controller is

to use a spike stream in order to achieve a fixed position for

ED-Scorbot motor with a closed-loop controller. The

reference for the controller can be translated into spikes

through a synthetic spikes generator (Fig. 3, left).

From these reference spikes, in order to design closed-

loop control systems, those spikes that codify the real motor

speed should be subtracted (left H&F in Fig. 3). The

subtraction of the real speed from the reference, both of

them codified into spikes, will provide a new spike stream

that codifies the system error, in the same way as traditional

closed-loop systems. Those error spikes will be processed by

several building blocks while they are flowing through the

controller until they are applied to the motor. While spikes

are flowing through the controller, integrative and derivative

operations are performed over the error spikes.

B. SVITE [14]:

The original VITE algorithm (referenced in [14]) is used

for calculating a non-planned trajectory. It computes the

difference between the target and the present position. It

models planned human arm movements. In contrast to

approaches that require the stipulation of the desired

individual joint positions, this trajectory generator operates

with desired coordinates of the end vector and generates the

individual joint, driving functions in real-time by employing

geometric constraints, which characterize the manipulator.

Fig. 4 shows the block diagram of the algorithm (top) and

the translation into spikes processing blocks (bottom). The

translation into spike-processing blocks is done by solving

the equations using Laplace transform to build up a system

under frequency domain. As we consider the firing rate as

the information of our neural code, this method of using

Laplace transform allows us to supposedly accept the match

between both concepts: firing rate and Laplace frequency.

The SVITE for FPGA is composed of four different types

of spike processing blocks:

Fig. 4: SPID block diagram.

B1

Bi

B2

Bn

RNeuron WTANeuron

�

j

jI jO
1

i

n
�

j

jI jO
1

i

n

Cochlea
band

Spiking recognition Nerual Network
Digital-filter-

based cochlea

Fig. 3: Words recognition Spiking Neural Network block diagram.

• Hold and Fire (H&F): it performs the addition or

subtraction of spike flows to compute the error signal. The

task of this block is similar to that of a neuron synapse [13].

This block has two inputs: one excitatory input coming from

the visual processing layer and one inhibitory input from the

end-block of the algorithm.

• Spike low pass filter (LPF): the behavior of the block is

the same as an analog classical low pass filter, with the

difference that it operates with the spike’s input firing rate.

The result of this block is a uniform distribution of the

spikes input [13]. There are LPF in the SVITE algorithm:

one at the H&F’s output and another one in the GO Block.

• GO Block: this block is controlling the speed of the

movement and it is also the gate. It is done by modifying the

input firing rate. We inject spikes according to a user

parameter that defines the desired speed. The behavior of

this block can be matched with an excitatory neuron.

• Integrate and Generate (I&G): this block is the

analogous of the Integrate-and-Fire block in VLSI designs,

with the difference that it generates a rate-coded stream of

the integration part [13].

From a biological point of view, this algorithm conforms

something similar to a forward model and evaluates the

corollary discharge with the I&G block. Thus, no sensory

discrepancies are noticed within this algorithm, as it was

expected without feedback from the robot. The assumption

is that the commanded position is reached. From a classic

control theory perspective, this algorithm cannot be exactly

matched with any of the traditional controllers, such as the

PID ones. If we consider the GO block as a disturbance and

the I&G one as the robot, the system could be matched with

a pseudo-proportional control.

V. ED-SCORBOT FRAMEWORK

ED-ScrotBot is a research framework developed in Seville

under the BIOSENSE project. It allows implementing and

testing event-driven algorithms, mechanisms or strategies,

using AER for blocks / boards communications. It is divided

in two main parts: hardware and software. The hardware

platform uses events (AER) coming from high level sensors

(artificial retinas or NAS) and processes them on the fly

through FPGAs in order to finally control the robot actuators

with spikes. Robot joints feedback is taken through event

conversion of motor encoders. The platform is composed of

a modified and old-fashioned SCORBOT-ER VII and

several event-based customized boards. Thus, the original

robot control unit is replaced by an event-driven control unit.

Besides the robot, the main polyvalent FPGA-based board

used in this framework is the AER-Node [21]. Multiple units

of this board can be connected in cascade (through AER

buses) in order to increase the number of steps to perform

the control, from the sensors to the actuators. Fig. 5 shows a

photograph of the hardware components of the ED-Scorbot.

In this figure, a DVS sensor is connected to an AER-Node

board where BAF and OBT IPs are running on the FPGA.

The output of the OBT is used as a reference for the 2D

movement of the Scorbot. Spike-based SPID motor

controllers are embedded in the same AER-Node board,

although these motor controllers can be held into a different

one, as it occurs with the SVITE algorithm. Its AER output

bus is connected to the AER-Scorbot board, which decodes

the AER bus into spikes to be sent to each motor. These

spikes are properly expanded before they are sent to the

motor. This expansion time constant represents the

proportional constant of the SPID controller, which is also

present and needed in the SVITE or any other pulse-

frequency based motor controller.

AER-Node could also be devoted to implement high level

cognition systems, such as vision or auditory integration /

fusion systems, learning and classification through SNN [22]

or ConvNets [8].

Several daughter boards can be connected to an AER-

Node to improve its connectivity and functionality. The

OKAER tool (used in [23]) is of particular interest; it allows

sequencing and monitoring streams of events to and from the

FPGA for debugging. It can also store in embedded DDR

memory a long sequence of events to be sequenced

repetitively. It also includes a merger for the sensory fusion

algorithm implementations.

The AER-Scorbot board collects spikes from the AER-

Node in order to set the desired position of each motor. It

collects information from motors (encoders and current

spent by each motor) and makes a conversion of this

information to spikes in order to send it back to the AER-

Node. This board is connected to the power boards.

Each power driver board is composed of a bidirectional

optocoupling layer, to isolate motor signals and logical

signals from the AER-Scorbot board, and a Hall effect

sensor. Information about encoders and current consumed by

motors are sent to AER-Scorbot. Output expanded spikes

from AER-Scorbot are sent to the Driver board (an H-

Bridge) to supply a suitable voltage and current to drive the

motor. A computer is connected to these boards in order to

send parameters at running time, but it is also used for

synthesizing our system for the FPGAs. This computer has

access to the event-based IP library and it can be used

locally or remotely through RemoteDesktop or VNC and a

webcam to supervise the robot.

VI. CONCLUSIONS

This manuscript presents a test bed framework for

neuromorphic systems implemented on FPGAs and it covers

the whole process from sensors to actuators allowing the

consecutive use of events (spikes) even for powering the

motors. This framework is enriched by an IP library of

Fig. 5: Up. Block diagram of the VITE algorithm. Down. Block diagram
of the SVITE generated from existing spikes processing blocks.

Hold &

Fire
LPF

Integrate and

Generate

TP

PP

DV PP

Target

Position (TP)

Difference

Vector (DV)
Present

Position (PP)
X

GO

GO
BLOCK

event-based algorithms that will be continuously growing.

Sensor’s filtering, integration, processing, learning and

motor control are currently available.

Thanks to the use of the de facto standard AER for

communicating events and wider parallel connectors, the

framework boards can be connected to other existing

platforms, such as SpiNNaker.

ACKNOWLEDGMENT

This research is supported by the Spanish grant (with

support from the European Regional Development Fund)

BIOSENSE (TEC2012-37868-C04-02) and the Andalusia

Council Excellence grant MINERVA (P12-TIC-1300).

REFERENCES

[1] V. Chan, et al.,“AER EAR: A Matched FPGA Cochlea Pair With

Address Event Representation Interface”. IEEE T. Circuits and Systems

54-I(1), pp. 48-59,2007
[2] R. Serrano-Gotarredona, et al., “On Real-Time AER 2-D Convolutions

Hardware for Neuromorphic Spike-Based Cortical Processing”. IEEE

T. Neural Network 19(7), pp. 1196-1219,2008
[3] P. Hafliger, “Adaptive WTA with an Analog VLSI Neuromorphic

Learning Chip”. IEEE T. Neural Networks18(2), pp. 551 – 572,2007

[4] G. Indiveri, et al.,“A VLSI Array of Low-Power Spiking Neurons and
Bistables Synapses with Spike-Timig Dependant Plasticity”. IEEE T.

Neural Networks 17(1), pp. 211 – 221, 2006

[5] M. Dominguez-Morales, et al.,“On the Designing of Spikes Band-Pass
Filters for FPGA”. Artificial Neural Networks and Machine Learning.

ICANN 2011. LNCS 2011, 6792, pp. 389-396.

[6] Posch, C.; et al., "Retinomorphic Event-Based Vision Sensors:
Bioinspired Cameras With Spiking Output," Proceedings of the IEEE ,

vol.102, no.10, pp.1470,1484, Oct. 2014.

[7] Koickal, T.J. et al. "Analog VLSI Circuit Implementation of an Adap-
tive Neuromorphic Olfaction Chip," Circuits and Systems I: Regular

Papers, IEEE Transactions on , vol.54, no.1, pp.60,73, Jan. 2007

[8] Zamarreno-Ramos, C. et al, "Multicasting Mesh AER: A Scalable
Assembly Approach for Reconfigurable Neuromorphic Structured AER

Systems. Application to ConvNets," Biomedical Circuits and Systems,

IEEE Transactions on , vol.7, no.1, pp.82,102, Feb. 2013
[9] D. Neil and S. C. Liu, "Minitaur, an Event-Driven FPGA-Based

Spiking Network Accelerator," in IEEE Transactions on Very Large

Scale Integration Systems, vol. 22, no. 12, pp. 2621-2628, Dec. 2014.
[10] M. Sivilotti, Wiring Considerations in analog VLSI Systems with

Application to Field-Programmable Networks, Ph.D. Thesis, California

Institute of Technology, Pasadena CA, 1991.
[11] Kwabena A. Boahen. “Communicating Neuronal Ensembles between

Neuromorphic Chips”. Neuromorphic Systems. Kluwer, Boston 1998.

[12] jAER opensource project: http://sourceforge.net/p/jaer/wiki/Home/
[13] Jimenez-Fernandez A, et al. A Neuro-Inspired Spike-Based PID Motor

Controller for Multi-Motor Robots with Low Cost FPGAs. Sensors.
2012; 12(4):3831-3856.

[14] F. Perez-Pena, et al. “Neuro-inspired spike-based motion: from

dynamic vision sensor to robot motor open-loop control through spike-

vite,” Sensors, vol. 13, no. 11, pp. 15 805–15 832, 2013.

[15] A. Linares-Barranco, et al, "A USB3.0 FPGA event-based filtering and

tracking framework for dynamic vision sensors," ISCAS, Lisbon, 2015,
pp. 2417-2420.

[16] R. Serrano-Gotarredona et al., "CAVIAR: A 45k Neuron, 5M Synapse,

12G Connects/s AER Hardware Sensory–Processing– Learning–
Actuating System for High-Speed Visual Object Recognition and

Tracking," in IEEE Transactions on Neural Networks, vol. 20, no. 9,

pp. 1417-1438, Sept. 2009.
[17] C. Farabet, et al. “Comparison Between Frame-Constrained Fix-Pixel-

Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual

Processing”. Frontiers in Neuroscience. V6. N32. 2012.
[18] Lyon, R., A computational model of filtering, detection, and

compression in the cochlea. ICASSP ’82. IEEE International

Conference on Acoustics, Speech, and Signal Processing, 1982.
[19] Jahn, A.F.; Santos-Sacchi, J. Physiology of the Ear. Singular, 2001.

[20] Lyon, R.F.; Mead, C. An Analog Electronic Cochlea. IEEE Trans.

Acoustic Speech and Signal Processing. 1988, 36, 1119-1134.

[21] T. Iakymchuk et al., "An AER handshake-less modular infrastructure

PCB with x8 2.5Gbps LVDS serial links," Circuits and Systems
(ISCAS), 2014 IEEE International Symposium on, Melbourne VIC,

2014, pp. 1556-1559.

[22] F. Morgan, et al, "An evolvable NoC-based spiking neural network
architecture," Signals and Systems Conference (ISSC 2009), IET Irish,

Dublin, 2009, pp. 1-6.

[23] A. Rios-Navarro, et al. "Live demonstration: Real-time motor rotation
frequency detection by spike-based visual and auditory AER sensory

integration for FPGA," Circuits and Systems (ISCAS), 2015 IEEE

International Symposium on, Lisbon, 2015, pp. 1907-1907.
[24] J.P. Dominguez-Morales. “Multilayer spiking neural network for audio

samples classification using SpiNNaker”. Submitted to ICANN 2016.

[25] A. Jimenez-Fernandez, et al. “A Binaural Neuromorphic Auditory
Sensor for FPGA: A Spike Signal Processing Approach”. Under review

(minor changes) at IEEE-TNNLS.

[26] E. Cerezuela-Escudero, et al. "Musical notes classification with

neuromorphic auditory system using FPGA and a convolutional spiking

network," IJCNN-2015.

[27] L. Miró-Amarante, et al. “A spiking neural network for real-time
Spanish vowel phonemes recognition”. NeuroComputing. Under

Review (minor changes)

[28] E. Zwicker, Subdivision the Audible Frequency range into Critical
Bands., J. Acoust. Soc. Am. 33 (1961) 248. doi:10.1121/1.1908630.

[29] F. Gómez-Rodríguez, et al, Two Hardware Implementations of the
Exhaustive Synthetic AER Generation Method, (2005) 534–540.

[30] C. Kock, Biophysics of Computation, 1st ed., Oxford University Press,

Inc., New York, 1999.
[31] C. Eliasmith, Computation, Representation, and Dynamics in

neurobiological systems, MIT Press, Cambridge, MA, USA, 2003.

doi:10.1017/CBO9781107415324.004.
[32] M. Oster, S.-C. Liu, Spiking Inputs to a Winner-take-all Network, Adv.

Neural Inf. Process. Syst. 18. (2006) 1051–1058.

Fig. 6: ED-Scorbot hardware components: Scorbot arm, Sensors (one

DVS in the picture), AER-Node board, AER-Scorbot and power drivers.

Fig. 7: ED-Scorbot framework block diagram. Left are sensors (light red),

AER-Node and AER-Scorbot PCBs (light green), which are parameterized
through USB. The Scorbot motors are reached after a set of power drivers

(purple). Many AER-Node boards can be connected in cascade.

