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RESUMEN 
 

Se desarrolla e implementa, en un código computacional, una formulación simétrica de ecuaciones integrales de 
contorno para la solución de problemas con presencia de grietas, cuya propagación está controlada por un modelo 
cohesivo de fractura. Se considera un material homogéneo isótropo y elástico-lineal. El código desarrollado se aplica al 
ensayo �wedge split�, comparando los resultados numéricos obtenidos con los datos experimentales disponibles en la 
bibliografía. Es importante mencionar que el uso del método de los elementos de contorno es bastante atractivo para 
esta clase de problemas debido a que todas las no linealidades se encuentran localizadas en el contorno de un dominio 
elástico-lineal. Además el uso del enfoque de Galerkin para la discretización de la formulación simétrica de ecuaciones 
integrales de contorno asegura la eficiencia, estabilidad y convergencia rápida de la solución numérica. 

 
ABSTRACT 

 
A symmetric boundary integral formulation is developed and implemented in a computational code for the solution of 
problems with cracks whose growth is governed by a cohesive fracture model. A homogeneous isotropic and linear-
elastic material is considered. The computational code has been applied to the wedge split test, and the numerical 
results with the experimental data presented in the literature. It is important to mention that Boundary Element Methods 
(BEMs) are very attractive for this class of problems because all the non-linearities are located on the boundary of a 
linear elastic domain. The symmetric-Galerkin formulation of Boundary Integral Equations (BIEs) ensures efficiency, 
stability and good convergence properties of the numerical solution. 
 
KEYWORDS: Cohesive Zone Model, boundary integral equation, SGBEM. 
 

 
1. INTRODUCTION 
 
The methods employed to simulate crack propagation 
have been traditionally based on Linear Elastic Fracture 
Mechanics (LEFM) and have assumed the presence of a 
crack. This fact made difficult to study crack initiation. 
Recently, other models have been intensively 
developed, e.g. the Cohesive Zone Models (CZMs), 
which assume hypotheses different from those adopted 
in LEFM, and avoid the presence of a stress singularity 
at the crack tip. These models are suitable to study both 
crack initiation and propagation, and also to estimate 
the fracture energy and the maximum allowable load of 
a structure. 
 
In the present work, the Ortiz � Pandolfi [1] CZM is 
implemented in a 2D Symmetric Galerkin BEM 

(SGBEM) code. The original version of this code [2] 
solved plane elastic problems including several 
homogenous isotropic linear-elastic materials with 
traction-free cracks inside a homogenous material. The 
materials were considered to be perfectly bonded along 
their interfaces.  
 
Constitutive equations of a CZM include a 
representation of a softening branch, which makes a 
problem with cohesive cracks strongly non-linear. Thus, 
the development and implementation of a suitable 
solution algorithm capable of following the evolution of 
the cohesive zone (modeling the crack growth) becomes 
an important issue. An arc-length control combined 
with a Newton-Raphson algorithm for iterative solution 
of nonlinear equations is used in the present work. 
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The SGBEM has several advantages in comparison with 
the traditional collocation BEM, e.g., a consistent 
treatment of subdomain corners or discontinuities of 
boundary conditions (changing abruptly their value or 
kind) where traction discontinuities can take place. 
SGBEM provides the required number of equations 
without the necessity of additional equations as in the 
case of the collocational BEM. The SGBEM uses both 
the strongly singular displacement BIE and the 
hypersingular traction BIE in such a way that the 
discretizations of these BIEs leads to a symmetric linear 
system of algebraic equations, with positive or negative 
definite diagonal blocks associated to unknown 
tractions or displacements. 
 
2. SGBEM 
 
A short review of the SGBEM is provided in this 
section. The implementation details of the algorithm 
employed herein are discussed in Sutradhar et al. [3] 
and Gray [4], works by Bonnet and co-workers [5, 6] 
can be recommended as well. 
 
2.1 Boundary Integral Equations 
 
The primary boundary integral equation for elasticity is 
the Somigliana displacement identity: 
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where  is the boundary of the domain , P is a point 

on a smooth part of , and u and  denote the 
displacement and traction vectors, respectively. The 
integral kernel U(P,Q) is generally taken as the Kelvin 
fundamental solution for the displacement at Q given a 
point load at P in an infinite medium. 
 
For the SGBEM in general and for a fracture analysis in 
particular, the Somigliana traction identity is essential. 
Formally differentiating Eq. (1) with respect to P, 
applying the Hooke constitutive law, and multiplying by 
the unit normal vector to  at the point P yields:  
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A rigorous derivation of Eq. (2) can be found in the 
cited references on SGBEM. Notice that, due to the 
singularity in the kernel functions at r=|P-Q|=0, moving 
the derivative with respect to P under the integral is, in 
general, not justified.  
 
2.2 Galerkin discretization scheme 
 
In a Galerkin formulation, the displacement and traction 
integral equations are enforced �on average�, in the 
form: 

 

B
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where the weight function l(P) is comprised of all 
shape functions that are equal to one at the node Pl and 
zero at other nodes. In this way a sufficient number of 
equations to solve for the boundary unknowns can be 
obtained. The shape functions themselves are 
determined by the choice of how the boundary 
displacements and tractions are interpolated. 
 
Note that in the Galerkin discretization of the above 
BIEs the source and field points P and Q are treated 
equally, and the weakly singular kernel U and the 
hypersingular kernel S fulfill the following reciprocity 
equations: 
 

).P,Q(S)Q,P(S),P,Q(U)Q,P(U jkkjjkkj      (4) 

 
Thus, if displacements are specified everywhere on the 
boundary, the displacement equation in (3) leads to a 
symmetric system of equations for the unknown 
tractions. Similarly the traction equation in (3) yields a 
symmetric matrix if tractions are prescribed along the 
whole boundary. In general, if the displacement 
equation is employed on the part of the boundary where 
displacements are specified, while the traction equation 
is employed on the part of the boundary where tractions 
are known, then the resulting linear system is 
symmetric. This follows from the fact that T and T* are 
adjoint kernels. 
 
For standard fracture analysis problems, wherein the 
boundary conditions on the crack are specified 
tractions, the symmetry is remarkably simple: the above 
prescription (writing the traction equation on the crack 
surface) retains the symmetry, with the proviso that the 
unknowns on the fracture surface are now the jumps in 
displacements, and the complementary variables are the 
sum of the known tractions, see e.g. [4]. 
 
At first glance, it might appear that the symmetry would 
be out of the question for a cohesive fracture model. 
However, and as shown in [7] for interface cracks and 
in the present work for cracks in homogenous materials, 
it is possible (and desirable) to obtain a symmetric 
formulation. 
 
3. COHESIVE ZONE MODELS 
 
Cohesive zone models combine the Strength of 
Materials formulation for crack initiation with the 
Fracture Mechanics for crack propagation. Cohesive 
zone formulations relate displacement discontinuities 
across the crack, i, to the traction vector, ti, in a zone 
located ahead of the crack tip [8, 9].  
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A constitutive law relating the cohesive tractions to the 
relative displacements is required for modelling the 
behaviour of the material in the process zone. The 
constitutive law may be formally written as ti = k. i, 
where k is generally a function of i. A fundamental 
aspect in the formulation of the constitutive model is the 
requirement that the energy dissipated at crack 
propagation must be equal to the fracture toughness, 
i.e., the following relation must be satisfied: 
 

if

cii Gdt
0

,                 (5) 

 
 where if  is the maximum value of a relative 

displacement 
 
3.1 Ortiz- Pandolfi model 
 
The relation between tractions and relative 
displacements in the cohesive zone proposed in [1], 
requires the concept of effective opening displacement 
: 
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Different weights are assigned to the normal opening 
displacement )( 1  and sliding )( 2  through the 
parameter . 
 
Following [1] the existence of a free energy density per 
unit undeformed area is postulated. In isothermal 
conditions, under the assumption of isotropic material, 
it has the form: 
 

),( q ,                 (7) 
 
where q is a suitable collection of internal variables 
which describe the elastic processes attendant to 
decohesion. From the first and second laws of 
thermodynamics, it is possible to show that the cohesive 
law takes the form: 
 

][gradt .                 (8) 

 
Finally, the evolution of internal variables is governed 
by a set of kinetics relations of the general form 
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It is assumed that the free energy  depends on  only 
through the effective opening displacement. This 
implies that in (7): 
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where ni is the component of the unit vector in the i-
direction. If no unloading is considered, ( / ) may be 
taken to be independent of q. In such a case a simple 
expression for the potential  is furnished by Smith and 
Ferrante´s universal binding law [1]: 
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where e  2.71828 is the base of the natural logarithm, 

c is the maximum cohesive normal traction and c is a 
characteristic opening displacement. From (11) it is 
easy to obtain: 
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It is interesting to specify (10) for pure mode I. The 
normal tractions are shown in Figure 1 and it reads as 
follows: 
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Figure 1. Normal tractions across the cohesive surface 

as a function of 1 with 2=0. 
 
4. CZM AND SGBEM 
 
Consider a body of an arbitrary shape B which contains 
a crack (cohesive or not). The boundary  of the body B 
is composed of the non-crack boundary b and the crack 
surface c. The crack surface c consists of two 
coincident surfaces and  which represent the 
upper and lower crack surfaces respectively. As 
explained in [2] it suffices to discretize the upper crack 
surface  as the crack surfaces are usually 

symmetrically loaded, i.e . Thus the Somigliana 
displacement (u-BIE) and traction (t-BIE) identities 
written for an interior point P take the following form: 
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In the Galerkin approximation for the non-crack 
boundary b, the limit of (14) and (15) is taken as 

P u and t, respectively; where u is the portion 
of the boundary with prescribed displacements uu and t 
is the portion of the boundary with prescribed tractions 
tt. As tractions are prescribed on the crack surface , 

only Equation (15) is written for source points on . 
c

c

 
Discretizing the limit forms of Equations (14) and (15) 
the following system is obtained in block matrix form: 
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where the subscripts b and c denote the contribution of 
the non-crack boundary and (upper) crack surface 
respectively.  The vector tb includes known tractions tt 
and unknown tractions tu. Similarly, ub includes the 
known displacements uu and unknown displacements ut. 
Equation (16) can be written in terms of the known and 
unknown boundary displacement and traction values as: 
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where, the subscripts u, t and c represent the terms 
corresponding to the non-crack boundary with 
prescribed displacements u, non-crack boundary with 
prescribed tractions t  and the crack surface , 

respectively. To rearrange Equation (16) into the form 

[A]{ } = { }, multiply the t-BIEs by -1, and make 

use of the relation in the crack cohesive zone 
(which relates the traction along the crack cohesive 
surface (  = ti) with the crack opening displacement 

( uc = i) in a specific period of time). In this way we 
finally arrive at the system written in terms of rates of 
elastic variables: 
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(18) 
 
The final coefficient matrix of this system is symmetric 
due to the reciprocity relations of the integral kernel 
tensors as shown in [10] where a similar matrix is 

obtained for the case of traction free cracks. The only 
difference is the {3,3} block of the linear system matrix 
(-Hcc - kGcc). 
 
At first sight the (-Hcc - kGcc) block appears non-
symmetric but as the Gcc matrix is a mass matrix this 
block keeps the desired symmetry. 
 
5. NONLINEAR SOLUTION ALGORITHM 
 
The non-linear nature of problems found in structural 
analysis, as the case of modelling cohesive fracture, 
often requires the use of sophisticated analysis 
techniques. The arc-length method is a powerful 
solution method, allowing for the evolution of the 
equilibrium states of a problem at various load levels 
[11]. All these equilibrium states trace the load-
displacement response of the structure in which the 
applied load varies proportionally as a function of a 
unique load parameter called herein . In such a case, 
for a system with n degrees-of-freedom (DOF), the  
n+1 unknowns u = (x, ) completely define the 
problem. 
 

 
Figure 2. Arc-length method with the Newton-Raphson 

method as iterative scheme. 
 
In Figure 2 the variables used in the arc-length method 
are shown, where the vectors up (p = number of step), in 
the case of SGBEM, is formed by the unknown 
displacements and tractions in a converged equilibrium 
point, while xi (i = number of iteration) is the vector of 
unknowns in the Newton-Raphson iterations between 
two converged equilibrium points, before equilibrium is 
reached. 
 
The arc-length scheme has several forms in its discrete 
formulation; the one used in the present work is the 
normal-flow algorithm [12], where successive Newton-
Raphson iterations converge to the equilibrium solution 
along a path which is normal (in an asymptotic sense) to 
the so-called Davidenko flow. The Davidenko flow can 
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be described by considering a small perturbation to the 
nonlinear system of equations. 
 
The flow chart of the normal flow algorithm is shown in 
Figure 3, where the following variables are used: 
 
Sign[ ] is the Sign function           (19a) 
dI =  [Kt]

-1{r}             (19b) 
dII =  [Kt]

-1{fext}             (19c) 
 
where Kt is the tangential stiffness matrix of the 
considered structure, {r} is the residual vector and {fext} 
is the external load and constraints vector. 
 
One very important issue of the procedure is the scaling 
of the known and unknown variables involved in the 
solution of a nonlinear system of equations. The 
elements in the final systems should have similar orders 
of magnitude, so as to aid the performance of the non-
linear numerical solvers.  
 

Loop on steps (p = 1, pmax)
 
(Predictor phase) 
d 0 (is assigned only in the first step) 

sig = Sign [dxp
T.dII] 

d 0 = sig . d 0 

dx0 = d 0 . dII 

x0 = u0 + dx0 

 
Loop on iterations (i = 1, imax)
 
(Corrector phase) 

]|.[]|[

]|.[]|[

ixII
T

ixII

ixI
T

ixII

i dd

dd
d  

dxi = d i . dII + dI 

xi= xi + dxi 

 

convergence test 

end loop 

Figure 3. Flow chart of the normal flow arc-length 
method. 

 
6. NUMERICAL RESULTS 
 
In order to verify the capability of the numerical model 
to reproduce experimental results, the wedge split test 
for a concrete mix, studied in [13], was modelled by the 
SGBEM code.  
 
The material characteristics are Young´s modulus E = 
25200 MPa, Poisson�s ratio  = 0.22, specific fracture 
energy GIc = 101 J/m2, and the values for the Ortiz 
model are maximum cohesive stress c = 2.3 MPa and 
critical opening displacement c = 1.61547x10-5 m.  It is 
important to mention that in this case the parameter  is 
not used, due to the Mode I character of the problem. 
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Figure 4. Specimen dimensions of the wedge split test. 

 
 
The specimen dimensions are shown in Figure 4. The 
numerical results obtained with the SGBEM code are 
represented by the load � displacement global response 
curve shown in Figure 5. 
 
The solution algorithm was implemented using the full 
Newton-Raphson method. The prediction phase 
includes the determination of the arc-length step size at 
each increment. 
 
The first step includes the selection of an appropriate 
value for the arc length d 0. The arc-length is adjusted 
from one step to the next using the following simple 
formula: 
 
d p+1= d n . m / n               (20) 
 
where m is the number of iterations that were required 
at the previous step and n is the (user specified) desired 
number of iterations at each step. This procedure allows 
larger steps to be taken when the solution is converging 
easily, and forces the solver to take smaller steps when 
convergence is more difficult. For the present work, n 
was selected between 3 and 4 so as to achieve the most 
favourable results in terms of computational time. 
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Figure 5.Load Displacement prediction and 

experimental results [13]. 
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7. CONCLUSIONS 
 
In the present work a symmetric boundary integral 
formulation of single-domain problems with cohesive 
cracks has been proposed.  This approach is likely to be 
suitable for engineering applications involving isotropic 
materials. 
 
The implementation of the formulation in a 2D SGBEM 
code has been carried out. The introduction of the 
cohesive zone requires an iterative solution procedure to 
solve the equations resulting from the boundary integral 
formulation; the arc-length with the normal flow 
method has been implemented. 
 
The existence and uniqueness of the solution of the 
equations basically depend on the adopted cohesive 
law. Non-linear constitutive equations typically present 
a softening branch and this peculiarity can cause a 
multiplicity of solutions to the rate problem. 
 
As shown by the numerical results presented, the 
cohesive zone formulation correctly modelled the crack 
growth behaviour.  By adjusting the parameters of the 
discrete model ( c and c in the case of the Ortiz-
Pandolfi model for Mode I), predicting the real behavior 
of structures should be possible. 
 
The present work is a starting point to study the 
possibilities of different cohesive models presented in 
literature, as well as different arc-length solver schemes 
applied in a SGBEM setting. 
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