
Performance Analysis of a Parallel Discrete Model for the Simulation of Laser
Dynamics

J.L. Guisado
Centro Universitario de Mérida, Universidad de Extremadura

Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain
jlguisado@unex.es

F. Fernández de Vega
Centro Universitario de Mérida, Universidad de Extremadura

Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain

K. Iskra
Section Computational Science

Faculty of Science, Universiteit van Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract

This paper presents an analysis on the performance of
a parallel implementation of a discrete model of laser dy-
namics, which is based on cellular automata. The perfor-
mance of a 2D parallel version of the model is studied as
a first step to test the feasibility of a parallel 3D version,
which is needed to simulate specific laser systems. The 3D
version will have to run on a parallel computer due to its
runtime and memory requirements. The model has been im-
plemented on a Beowulf Cluster using the message passing
paradigm. The parallel implementation is found to exhibit
a good speedup, allowing us to run realistic simulations of
laser systems on clusters of workstations, which could not
be afforded on an individual machine due to the extensive
runtime and memory size needed.

1. Introduction

In the latest years, there has been an ever-increasing in-
terest in the use of discrete models for the simulation of
complex systems. Cellular automata (CA), in particular,
are such a class of spatially and temporally discrete mathe-
matical systems, characterized by local interaction and syn-
chronous dynamical evolution [1]. They have provided
good models for a wide variety of physical systems exhibit-
ing cooperative phenomena [2], and have recently been suc-

cessfully applied to model laser dynamics [3, 4, 5]. From
a practical point of view, CA constitute a very interesting
approach to carry out realistic high performance simula-
tions, thanks to its intrinsic parallel nature which makes
them particularly suitable to be naturally and efficiently im-
plemented in parallel computers. Different parallel imple-
mentations of CA models[6, 7, 8, 9] and software tools for
the programming of CA in parallel computers [10, 11] have
been recently introduced.

In this work, we present an analysis on the performance
of a parallel implementation in two dimensions of a dis-
crete model of laser dynamics, based on CA. This model
was presented in references [3, 4], and a further applica-
tion of it was shown in reference [5]. While those papers
discussed a sequential implementation of the model, to our
best knowledge, this problem has never been modelled with
a parallel CA. The performance of such a parallel imple-
mentation of the model is discussed in this work. Our aim
is to study the possibility of running large size 2D simula-
tions of this model in clusters of workstations. This result
will be useful to test the feasibility of a parallel 3D version
of the model, needed to make realistic simulations of spe-
cific laser systems, which would necessarily require a paral-
lel implementation due to its extensive runtime and memory
requirements.

The rest of the paper is organized as follows. In Section
2 the discrete model for the simulation of laser dynamics is
summarized. In Section 3 we describe the parallel imple-

mentation of the model. In Section 4 the performance of
the implementation is analysed. Finally, the conclusions of
this study are explained in Section 5.

2. Cellular automaton model

In this section, we summarize the CA model model orig-
inally presented in references [3, 4].

A cellular automaton defined on a two-dimensional
square lattice of Nc = L × L cells with periodic bound-
ary conditions is used to simulate a laser device. Two vari-
ables ai(t) and ci(t) are associated to each node of the CA.
ai(t) represents the state of the electron in node i at time
t: if ai(t) = 0 the electron is in the laser ground state
and if ai(t) = 1 it is in the upper laser state. ci(t) ∈
{0, 1, 2, ..., M} represents the number of photons in node
i at time t. A large enough upper value of M is taken to
avoid saturation of the system. The Moore neighborhood
is considered, i.e. each cell has nine neighbors: the cell it-
self, its four nearest neighbors and the four next neighbors.
The transition rules, which specify the state of a cell at time
t+1 depending on the state of the cells included in its neigh-
borhood at time t, determine the time evolution of the CA.
These rules represent the different physical processes in a
laser system at the microscopic level:

• Rule 1. Pumping: If the electronic state of a cell has a
value of ai(t) = 0 in time t, then in time t+1 that state
will have a value of ai(t+1) = 1 with a probability λ.

• Rule 2. Stimulated emission: If, in time t, the elec-
tronic state of a cell has a value of ai(t) = 1 and
the sum of the values of the laser photons states in the
nine neighbor cells is greater than a certain threshold
(which in our simulations has been taken to be 1), then
in time t + 1 a new photon will be created in that cell:
ci(t+1) = ci(t)+1 and the electron will decay to the
ground level: ai(t + 1) = 0.

• Rule 3. Photon decay: A finite life time τc is assigned
to each photon when it is created. The photon will be
destroyed τc time steps after it was created.

• Rule 4. Electron decay: A finite life time τa is assigned
to each electron that is promoted from the ground level
to the upper laser level. That electron will decay to the
ground level again τa time steps after it was promoted,
if it has not yet decayed by stimulated emission.

Spontaneous emission as well as thermal contributions are
simulated by a continuous noise of random photons intro-
duced at every time step in the laser mode, by making
ci(t + 1) = ci(t) + 1 for a small number of cells (< 0.01%
of total) with randomly chosen positions. As in real lasers,
these random photons are responsible of the initial start-up
of the laser action.

3. The parallel implementation

In this section, the parallel implementation of the model
is summarized.

It is possible to obtain qualitative results which repro-
duce much of the laser phenomenology with a 2D automa-
ton of moderate size. Nevertheless, if we want to obtain
more detailed quantitative results, or if we want to carry out
an extension of this model to 3D to simulate the specific be-
haviour of particular laser devices, a very large automaton
has to be used. In this case, the algorithm will be time and
memory consuming even for the most powerful sequential
computers. Therefore, we have carried out a parallel imple-
mentation.

Parallelization was performed for distributed-memory
MIMD systems using the message passing paradigm. The
Parallel Virtual Machine (PVM) library [12] has been used,
because we were interested in a further study of our model
using dynamic load balance mechanisms specifically devel-
oped for this library. Nevertheless, it would be straightfor-
ward to port this implementation to other message passing
libraries such as Message Passing Interface (MPI).

Parallelization was performed using the master-slave
model. A separate control program (the “master”) is re-
sponsible for process spawning, initialization, collection of
results, input/output of data and timing of functions. The
“slave” programs, whose workloads are dynamically allo-
cated by the master, perform the actual computations.

The computations involve three phases. The first one is
the initialization phase, in which the master program per-
forms the following operations: collection of input data
from an external file (system size, number of partitions of
the automaton, parameter values, number of time steps),
spawning of slave programs, partitioning of the initial data
of the automaton, sending of initial data and common infor-
mation to each slave, collection of results from slaves for
each time step, calculations with the whole results, output
of final data to external files and timing functions to mea-
sure performance. The second phase, which is carried out
by the slave programs, performs computation. In this phase,
each slave computes the time evolution of the assigned par-
tition of the automaton, following the CA evolution rules.
After each time step, the values of the photon state ci(t)
of the cells in the borders of each slave partition are com-
municated to the slaves dealing with the neighbour parti-
tions. This communication is carried out directly between
the slave programs. In addition, each slave computes the
total number of electrons ai(t) and laser photons ci(t) in
its CA partition after each time step and sends this informa-
tion to the master, which can make some calculations with
these results such as computing the Shannon’s entropy as
described in [3]. The third phase is collection of final state
and termination tasks. In this phase, the master optionally

collects the final state of the CA partition from each slave,
output final data to external data files, terminates the slaves
execution and performs timing functions.

The cellular automaton is partitioned using a 1-
dimensional domain decomposition, i.e. the CA is verti-
cally partitioned in stripes, similarly as in [8]. Each subdo-
main is assigned to a different processor. This kind of par-
tition has been used, instead of a 2-dimensional (checker-
board) domain decomposition, because it makes the com-
munication structure simpler and minimizes the number of
send/receive calls. On the other hand, the amount of data
to be communicated in the 1D case is larger. Neverthe-
less, as shown in reference [6], a 1D decomposition is more
favourable in runtime for a small to moderate number of
nodes. For each subdomain, two additional columns of
ghost cells have been included at the left and right sides,
used to store the photon state ci(t) of neighbouring cells
belonging to different subdomains.

4. Performance analysis

The simulations were performed in the Abacus high-
performance computing cluster, a Linux Beowulf-style par-
allel cluster computer built by the Artificial Evolution
Group (GEA) at the University of Extremadura (Spain). It
runs the Rocks Linux cluster distribution, which allows a
very scalable cluster management strategy [13, 14]. Aba-
cus is a heterogeneous cluster composed of two different
kinds of nodes: six nodes with an Intel Pentium-4 proces-
sor with 2.7GHz of clock frequency and four more nodes
(including the master node responsible for the cluster co-
ordination) with the same processor but with 1.8 GHz of
clock frequency. Every node has 512MB of RAM memory.
Communication between cluster nodes is carried out using
a fast-ethernet 100 Mbps switch.

In order to test the performance of the parallel implemen-
tation, simulations have been carried out for different sizes
of the cellular automaton grid (2520 × 2520, 1260 × 1260
and 630 × 630 cells) using a number of nodes ranging from
1 to 10. For each experiment, we have completed 1000 it-
erations (time steps) for a single value of the system param-
eters: λ = 0.0125, τc = 10, τa = 180. The ratio of noise
photons (introduced in every time step) to total number of
cells in the system has been maintained constant (0.03% of
the cells) for the experiments with different system sizes.

It must be noted that, as our cluster is heterogeneous,
a particular configuration has been chosen for the experi-
ments to avoid indeterminsm in the results. For the simula-
tions with 1 to 6 nodes, the slave programs have been run
on the “fast” (2.7GHz) machines. For simulations with 7 to
10 nodes, additional “slow” (1.8 GHz) machines have been
used to complete the whole number of nodes. The master
program was always run on the master node of the cluster

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of Processors

2520 x 2520
1260 x 1260

630 x 630

Figure 1. Runtime of the experiments, shown
in a logarithmic scale, using three different
system sizes, for different number of parti-
tions of the whole CA. Each partition was run
on a different processor.

(which runs at 1.8 GHz).
In Fig. 1 the wall clock runtime of the experiments using

three different system sizes, for different number of parti-
tions of the whole CA (each one being handled by the slave
program on a different processor) is shown, using a loga-
rithmic scale. Runtime decreases with the number of pro-
cessors, except when moving from 6 to 7 processors. The
reason is that “fast” machines have been used for a number
of processors from 1 to 6 and “slow” machines to complete
a number of processors higher than 6. We must take into
account that the CA application operates in lock-step mode,
so the speed of the application is limited by the speed of
the slowest running task. Therefore, adding one “slow”
machine has the effect of forcing a slower speed for the
whole application. In Fig. 1, there are no data points for
the 630 × 630 data set with 4 and 8 processors and for the
1260 × 1260 data set for 8 processors. The reason is that
in our parallel implementation of the CA laser model ev-
ery partition must have exactly the same number of cells, so
the width of the system (in cells) must divide the number of
partitions used. As this is not obeyed in these cases, no data
were taken for them. Nevertheless, enough data have been
taken to be able to study the variation of the runtime with
the number of processors, for different system sizes.

In order to measure the performance of the parallel im-
plementation, it is interesting to study the speedup obtained
for different number of partitions of the system running on
different processors. The speedup of a parallel program is
defined as the ratio of the runtime of the sequential version
of the program to the runtime of the parallel version. We

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26

 0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

Speedup respect secuential program

2520 x 2520
1260 x 1260

630 x 630
Linear Speedup

Figure 2. Speedup calculated relatively to the
runtime of the sequential program.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26

 0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

Speedup respect 1-cpu parallel program

2520 x 2520
1260 x 1260

630 x 630
Linear Speedup

Figure 3. Speedup calculated relatively to the
runtime of the parallel program for only one
processor (i.e. using only one slave program
containing the whole CA grid).

have calculated the speedup in two different forms. In the
first one, the speedup has been calculated using the run-
time of the sequential implementation of the CA model (i.e.
the proper definition of the speedup has been used). In the
second one, the speedup was calculated using the parallel
program for only one processor (i.e. using only one slave
program containing the whole CA grid), as is often done
when lacking a sequential version of the program. The re-
sults are shown in Figs. 2 and 3, respectively. As expected,
similar qualitative results are obtained, but differences can
be observed in the actual speedup values. These differences
are dependent on the size of the system: for a system size
of 2520 × 2520 cells, the speedup is higher when calcu-

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

S
w

ap
 m

em
or

y
us

ed
 (M

B
)

Time (min)

Figure 4. Amount of swap memory used by
the slave node of the cluster during an exe-
cution of the parallel application for only one
node, for a size of 2520 × 2520 cells.

lated respect to the parallel program for only one processor,
whereas for a smaller system size, the speedup is higher
when calculated respect to the sequential version or there is
no substantial difference. The reason of these differences
is the efficiency of the parallel implementation (when run
for only one node) in comparison to a purely sequential im-
plementation, which is dependent on the size of the system.
The latter is to be preferred, when available, to evaluate the
performance of a parallel algorithm.

Figs. 1 to 3 show that the implementation takes a good
advantage of the parallelization: runtime decreases with the
number of nodes and a good speedup is obtained, in spite of
the fact that the border data have to be exchanged after every
time step. Speedup increases with the number of nodes ex-
cept in the jump from 6 to 7 nodes. As explained before for
the runtime, the reason is that a heterogeneous cluster has
been used, with “fast” machines for 1 to 6 nodes and “slow”
machines to complete a number of nodes higher than 6.

Superlinear speedup is obtained specially for a system
size of 2520 × 2520 cells, and also for 1260 × 1260 cells.
In order to explain its source, the amount of swap memory
used by the slave node in the execution of the parallel ap-
plication for only one node has been studied for different
system sizes. During the execution of the aplication with
system sizes of 630 × 630 and 1260 × 1260, no swap
memory is used by the system. On the other hand, for a
system size of 2520 × 2520, the slave node needs to make
extensive use of swap memory, as shown in Fig. 4. No swap
memory is used by the slave nodes in the execution of the
parallel application with the same system size for two slave
nodes.

A very large system size will be needed in order to run a

Figure 5. Gantt chart showing the different tasks executed versus time.

3D version of the model to simulate realistic laser devices.
The runtime for such a large size would be intrinsically
long. Furthermore, if a sequential version of that program
would be executed in a single processor, the use of mem-
ory swapping would produce a serious additional increase
in the runtime, making the calculation non-affordable. In
contrast, if the parallel version of that program is run on
the cluster using several nodes, the system is partitioned so
the memory limitation can vanish. This fact, together with
the parallel execution, can reduce the runtime and make the
calculation affordable.

The execution of the parallel application has been anal-
ysed using XPVM, a graphical console for PVM which pro-
vides a performance monitor and debugger [15]. In Fig. 5,
a Gantt chart showing the different types of tasks executed
for each node versus time is shown. In this chart, tasks 1
to 6 correspond to the slave nodes and task 7 to the master
node. The tasks marked as “Computing” are busy executing
user computation, those marked as “Overhead” are busy ex-
ecuting PVM system calls and those marked as “Waiting”
are idle waiting for messages. It can be observed that af-
ter the master process allocates the initial CA state to all the
slaves, computation is the dominant task for slave processes
for the rest of the execution, and the master process mostly
waits.

In Fig. 6, a detail of the tasks executed by each node
and the messages transferred between different nodes ver-
sus time, once the computation phase has started, is shown.
Two distinct periods can be distinguished: computation and
communication. In computation periods the CA state for
the next time step is calculated by applying the evolution
rules in each partition. In communication periods the pho-
ton state values of the cells in the borders of each parti-

tion are communicated to the slave nodes which handle the
neighbouring partition, and the total number of electrons
and photons in each slave partition are sent to the master
node. As can be observed in Fig. 6, computation periods
are much longer than communication periods. The average
computation-to-communication ratio obtained for the paral-
lel application for slave processes is of the order of 10. This
rather high value indicates that the application is taking a
good advantage of the parallelization.

5. Conclusions and future prospects

An analysis on the performance of a parallel implemen-
tation in 2D of a discrete model of laser dynamics based on
cellular automata has been presented. This work serves as
a first step to test the feasibility of a parallel 3D version of
the model, which will be needed to make realistic simula-
tions of specific laser systems. Such a 3D implementation
would necessarily require a parallel implementation, due to
its runtime and memory requirements.

In spite of the fact that some communication must be un-
dertaken between the slaves and with the master after each
time step, the implementation has been found to take a good
advantage of the parallelization. Runtime decreases with
the number of nodes and a good speedup is obtained. Su-
perlinear speedup is found for large system sizes, due to
memory swapping and finite memory effects. Therefore,
the parallel implementation allows us to run realistic simu-
lations on clusters of workstations, which could not be af-
forded on an individual machine due to the extensive run-
time and memory size needed.

We expect to extend this work with the study of a paral-
lel implementation of the model in 3D, which will be very

Figure 6. Gantt chart showing a detail of the tasks executed by each node and the messages passed
between different nodes versus time, once the calculation phase has started.

useful to run realistic simulations. In addition, it would be
interesting to investigate how this application benefits from
dynamic load balance in heterogeneous non-dedicated par-
allel systems (usual target plattforms for this kind of appli-
cation), and to study the scalability of the model for massive
parallelism.

6. Acknowledgements

This work was supported by Project TRACER
(TIC2002-04498-C05-01) of Ministerio de Educación
y Ciencia, Dirección General de Investigación (Spain).

References

[1] J. von Neumann. Theory of Self-Reproducing Au-
tomata. University of Illinois Press, Urbana, 1966.

[2] B. Chopard and M. Droz. Cellular automata model-
ing of physical systems. Cambridge University Press,
1998.

[3] J.L. Guisado, F. Jiménez-Morales, and J.M. Guerra. A
cellular automaton model for the simulation of laser
dynamics. Physical Review E, 67: 066708, 2003.

[4] J.L. Guisado, F. Jiménez-Morales, and J.M. Guerra.
Computational simulation of laser dynamics as a co-
operative phenomenon. Physica Scripta, T118: 148-
152, 2005.

[5] J.L. Guisado, F. Jiménez-Morales, and J.M. Guerra.
Simulation of the dynamics of pulsed pumped lasers
based on cellular automata. Lecture Notes in Com-
puter Science, 3305: 278-285, 2004.

[6] T. Worsch. Simulation of cellular automata. Future
Generation Computer Systems, 16: 157-170, 1999.

[7] P.M.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B.J.
Overeinder. Distributed simulation with cellular au-
tomata: architecture and applications. In J. Pavelka,
G. Tel, and M. Bartošek, editors, SOFSEM’99: The-
ory and Practice of Informatics, volume 1725 of
Lecture Notes on Computer Science, pages 203–248,
1999.

[8] S Bandini, M. Magagnini. Parallel processing simula-
tion of dynamic properties of filled rubber compounds
based on cellular automata. Parallel Computing, 27:
643-661, 2001.

[9] P.J. Love, M. Nekovee, P.V. Coveney, J. Chin, N.
González-Segredo, J.M.R. Martin. Simulations of

amphiphilic fluids using mesoscale lattice-Boltzmann
and lattice-gas methods. Computer Physics Commu-
nications, 153: 340-358, 2003.

[10] D. Talia. Cellular processing tools for high-
performance simulation. IEEE Computer, 33(9): 44–
52, September 2000.

[11] C. Hecker, D. Roytemberg, J.-R. Sack, Z. Wang. Sys-
tem development for parallel cellular automata and its
applications. Future Generation Computer Systems,
16: 235-247, 1999.

[12] A. Geist, A. Geguelin, J. Dongarra, W. Jiang, R.
Manchek, V. Sunderam. PVM: Parallel Virtual Ma-
chine. A Users’ Guide and Tutorial for Networked
Parallel Computing. The MIT Press, Cambridge MA,
1994.

[13] Rocks Cluster Distribution.
http://www.rocksclusters.org

[14] P.M. Papadopoulos, M.J. Katz, G. Bruno NPACI
Rocks: Tools and Techniques for Easily Deploying
Manageable Linux Clusters. Concurrency and Com-
putation: Practice and Experience, 00: 1-20, 2002.

[15] XPVM: A Graphical Console and Monitor for PVM.
http://www.netlib.org/utk/icl/xpvm/xpvm.html

View publication statsView publication stats

https://www.researchgate.net/publication/232994809

