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This article reports on two databases for event-driven object recognition using a Dynamic

Vision Sensor (DVS). The first, which we call Poker-DVS and is being released together

with this article, was obtained by browsing specially made poker card decks in front of

a DVS camera for 2–4 s. Each card appeared on the screen for about 20–30ms. The

poker pips were tracked and isolated off-line to constitute the 131-recording Poker-DVS

database. The second database, which we call MNIST-DVS and which was released

in December 2013, consists of a set of 30,000 DVS camera recordings obtained by

displaying 10,000moving symbols from the standardMNIST 70,000-picture database on

an LCDmonitor for about 2–3 s each. Each of the 10,000 symbols was displayed at three

different scales, so that event-driven object recognition algorithms could easily be tested

for different object sizes. This article tells the story behind both databases, covering,

among other aspects, details of how they work and the reasons for their creation. We

provide not only the databases with corresponding scripts, but also the scripts and data

used to generate the figures shown in this article (as Supplementary Material).

Keywords: event-driven vision, event-driven object recognition, dynamic vision sensor (DVS), address event

representation, high speed vision, frame-free vision

1. INTRODUCTION

The availability of good, challenging benchmarks is an important prerequisite when developing
and comparing algorithms and tools. In the field of traditional frame-based vision, machine vision
researchers have made extensive use of a number of well established benchmark problems (such
as MNIST, LeCun et al., 1998 and Caltech101, Fei-Fei et al., 2007). More recently, Frame-Free
Event-Driven Vision Sensors (Culurciello et al., 2003; Chen and Bermak, 2005; Costas-Santos
et al., 2007; Leñero-Bardallo et al., 2010, 2014), and, above all, devices known as “Dynamic Vision
Sensors” (DVS) (Lichtsteiner et al., 2008; Leñero-Bardallo et al., 2011; Posch et al., 2011; Serrano-
Gotarredona and Linares-Barranco, 2013a; Brandli et al., 2014; Yang et al., 2015) which allow for
higher pixel resolution, have also been used by some research groups for vision related applications.
To date, however, not many groups yet have access to this new sensor technology and are able to
use it to record scenes to test the event-driven algorithms and architectures they are developing.
Furthermore, even if these new sensors were readily available and accessible to everybody, it
would be highly convenient to have benchmark problems with which independent researchers
could test their event-driven vision algorithms and systems on the same benchmark databases
for more objective comparisons. By their nature, datasets recorded with DVS cameras pose an
extra challenge with respect to traditional Frame-based image benchmarks: since a DVS sensor
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is sensitive only to changes, the scenes must be moving. One
can move either the scene itself or the sensor, to capture edges
and textures of objects, but it must be remembered that in both
cases the datasets recorded with DVS cameras will be moving,
and this is problematic for event-driven object recognition
systems. In a first stage, it is possible to create the “illusion”
that an object is static by subtracting the “Center of Mass”
coordinate of the object of interest. However, in the long term,
recognition algorithms and systems need to feature simultaneous
tracking and recognition. This article, submitted to the Frontiers
Special Issue on “Benchmarks and Challenges for Neuromorphic
Engineering,” discusses two datasets developed in our group in
the past. The first, called Poker-DVS, was never intended to be
used as a public benchmark, but was conceived just to illustrate
a very high speed object recognition problem with event-driven
convolutional neural networks (Pérez-Carrasco et al., 2013). In
its original form, it consisted of just 40 poker pips appearing on
the screen for about 20–30ms. The pips were artificially made
static by tracking and subtracting their moving “Center of Mass.”
We have now extended those same original recordings to create
a set of 131 elements. The second dataset, which we call MNIST-
DVS, was announced in several mailing lists in December 2013
and made available on the internet (Serrano-Gotarredona and
Linares-Barranco, 2013b). Since then, it has been used in a small
number of studies carried out by researchers like (Henderson
et al., 2015; Zhao et al., 2015). In this article we explain the
history and motivation of both datasets, focusing on certain
intricate peculiarities which were never officially reported and
other aspects of interest.

2. THE POKER-DVS DATASET

The history of Poker-DVS can be traced back to the CAVIAR
project (Serrano-Gotarredona et al., 2009), for which our group
developed event-driven convolution chips and Tobi Delbrück’s
group developed the Dynamic Vision Sensor (DVS; Lichtsteiner
et al., 2008). After that project, although we then had a sample
DVS to experiment with, Teresa Serrano-Gotarredona decided
that our group should design and fabricate our own DVS
camera, since devices of this type were not commercially available
and were a key element in event-driven vision research. The
original idea was simply to redesign Delbrück’s DVS with a faster
event read-out scheme (Boahen, 2000), but during the pixel
design phase an extra gain stage was added to improve contrast
sensitivity as well. When Teresa took maternity leave, our PhD
student Leñero took charge of testing the first prototype (Leñero-
Bardallo et al., 2011). The design and test results were included
in his PhD Dissertation, along with another event-driven spatial
contrast vision sensor he had developed and tested (Leñero-
Bardallo et al., 2010). In 2010 Tobi Delbrück was invited, as
an obvious choice, to Leñero’s PhD defense, which included a
live demonstration of the new DVS sensor. Those of us who
know Tobi Delbrück personally are aware that he is a big fan
of poker. He usually carries a deck of cards around with him
and does tricks with it when relaxing at meal times especially
if there are children around. He also organizes “Poker Night”
at each year’s Telluride Neuromorphic Engineering Workshop.

After Leñero’s defense, Delbrück went to the demo setup, took
a card deck from his pocket and quickly browsed it in front of
the DVS sensor. He then asked Leñero to play the recording back
in slow motion. He seemed quite impressed to find that the DVS
camera was able to capture all the details on the cards correctly,
given the very high speed of its event rate (close to 8 Meps—
mega events per second). From then on, we continued to use
this poker card browsing demo in conferences and lectures to
illustrate the good performance both of this DVS sensor and of
an improved version with much lower power and a smaller pixel
area (Serrano-Gotarredona and Linares-Barranco, 2013a). After
some practice, we managed to browse a full deck of 52 cards in
just 0.65 s, producing a total of 0.5 million events with a peak rate
of slightly above 8 Meps (Camuñas-Mesa et al., 2012).

At that time we were collaborating with the Signal Processing
Department at the University of Seville exploring event-
driven processing architectures and systems mainly through
simulations. It was there that the AERST event-driven simulator
was first developed (Pérez-Carrasco et al., 2010) and applied
to a texture recognition scenario. But since we also wanted to
extend this work to event-driven object recognition we used the
DVS to record a few scenes of people walking. The recordings
were rotated through different angles (0, 90, 180, 270) and we
decided to try to create a recognition system capable of detecting
the angle of rotation. To this end we developed an event-
driven convolutional neural network system, and then trained
it and tested it with the rotated silhouette recordings. The work
was submitted to IEEE Transactions on Pattern Analysis and
Machine Intelligence, but was rejected with the comment that
the results were not very impressive. At this point, Bo Zhao, a
PhD student from Prof. Chen’s laboratory in Singapore, arrived
on a 5-month visit to our Institute. He wanted to familiarize
himself with DVS data and event-driven processing, and we
thought it would be an interesting exercise for him to retrain
the rotating human silhouettes ConvNet with high speed poker
pips crossing the screen. This would produce a very high speed
event-driven recognition system and, hopefully, impress the
reviewers of our rejected manuscript more than our previous
submission.

The first thing we noticed at this point was that the DVS
poker card recordings we had made so far were not good
enough for reliable recognition. Browsing a poker card deck in
front of a DVS camera produces a very high event traffic rate.
Furthermore, our DVS cameras (Leñero-Bardallo et al., 2011;
Serrano-Gotarredona and Linares-Barranco, 2013a) had about
10 times higher contrast sensitivity than the DVS camera first
reported by Delbrück and would therefore produce extremely
high traffic (and actually saturate the internal event arbiter)1 if
contrast was set at maximum sensitivity. Consequently, to record
high speed poker card browsing (i.e., the full deck in 1–3 s), the
DVS contrast sensitivity had to be set rather low, so that the peak
event rate stayed within the 8–10 Meps range. Another major

1In these asynchronous pixel arrays, events are read out through competing
arbitration. When there are more than one event request to be read out
simultaneously, all except one will be delayed a few tens of nano seconds. However,
if pixel requests in the array exceed the maximum rate the arbiter can handle, then
the arbiter saturates and event read out collapses.
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speed bottleneck was the system connected to the DVS output
port. In our case we had two options. We could use the USBAER
board or the USBAERmini2 board, both of which had been
developed during the CAVIAR project (Serrano-Gotarredona
et al., 2009). The first board supports a fully standalone mode
(communicating only with the sensor at maximum speed). When
loaded with the data-logger firmware it can read events up to a
rate of about 9Meps. Unfortunately, however, it can only read 0.5
Mega events, which is the limit of its on-board storage capacity.
This half mega event can later be downloaded to a computer via
a low-speed USB. With the USBAERmini2 board the maximum
event rate is strongly influenced by the host computer, since
events are directly transferred in real time from the board to
the PC via high-speed USB2.0. Our experience is that with a
top-of-the-range Windows PC, the maximum achievable event
recording rate is less than 7 Meps. We used the USBAERmini2
with the jAER (Delbrück, 2006) open source control software
provided by Tobi Delbrück’s group, mainly because of this
software’s user-friendliness and interactivity.

But here came our next problem. After adjusting contrast
sensitivity to a level low enough not to saturate the event
read out chain (or the DVS chip internal event arbiter, or
the USBAERmini2 read out board), we noticed that the red
colored poker pips (hearts and diamonds) were of rather low
visual quality, while the black ones (spades and clubs) were of
excellent quality. We therefore decided to print out our own
poker deck with all the pips in black. This way, the recordings
would be of equal quality for all four suits, resulting in a good,
fair dataset for this four-symbol recognition target. Figure 1A
shows a photograph of our custom made card deck. Note that
we cut the cards in groups of two, with pairs sharing the
short edge. This way, it was possible to hold the lower part
firmly with one hand, while easily browsing the upper half,
which would then be better exposed to the camera, as shown in
Figure 1B.

The y vs. time plane in Figure 2A shows the events recorded
while browsing 18 cards in 1.47 s, a total of 487 k events, with a
peak event rate of 6 Meps. Figure 2B shows a close-up a 4 card
sequence browsed in 70ms. Note how the symbols first ramp up
a little and then, after reaching the top, run down through the
screen. Figure 2C shows a 600µs capture of an instant where two

cards can be seen simultaneously. Depending on a pip’s position
on the card, its trajectory duration can vary from a maximum of
about 30ms (for pips at the top of the cards) down to a minimum
of about 5 ms (for pips at the bottom part of the cards).

After transferring these recordings to Matlab for off-line
processing, we tracked 40 pips (10 for each type) as they crossed
the screen and then cropped and centered them into a 31 × 31
pixel window. These post-processed recordings constituted the
original dataset used to train the Event-Driven ConvNet. Bo Zhao
successfully trained the network and obtained impressively high
speeds in recognition performance, reducing recognition time to
1 ms after stimulus on set (in simulation). That is to say, although
the pips take from 10 to 30ms to cross the screen, it is possible to
recognize them within the first 1–2 ms if they are clearly visible.
Note that if you look carefully at the pip recordings with jAER,
the symbols are not always clearly visible during the full sweeping
period, especially at the start and end of the event sequence. These
results were added to our previously rejected manuscript, which
was then resubmitted, accepted and published (Pérez-Carrasco
et al., 2013). The 40 pip recordings used in this paper were never
made publicly available, although some researchers requested
them off-line and we provided them. For this Frontiers Special
Issue on Benchmarking we decided to complement that set with
more pips extracted from the same recordings. We originally
used 3 different custom card deck recordings, each with a small
number of cards (around 18), and with different ratios of pips.
From these three original card recordings we extracted a set of
131 tracked and centered pips, which now constitute the new
Poker-DVS dataset (Serrano-Gotarredona and Linares-Barranco,
2015).

It should be mentioned that, although we used an automated
script to track, center, and extract the 31 × 31 pixel pips, we
had to identify both the starting (x, y) coordinate and the start
and end timestamps of the pip sequences crossing the screen
manually in order to extract the symbols successfully. This was
because the original recordings had a significant amount of
noise and other distractors, like the edges of the cards, or the
card numbers in the corners. The automated tracking algorithm
would often jump to track this card number, or jump to an
adjacent symbol if few events were produced by the symbol
of interest during a short transient. We believe that automatic

FIGURE 1 | (A) Custom made pokercard deck with all pips in black. (B) Browsing the custom poker card deck in front of our DVS camera.
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FIGURE 2 | Recorded events. Units for x and y are pixel coordinates (from 0 to 127) and time is in seconds. (A) Events recorded when browsing 18 cards, shown in

y vs. time plane. Upper red arrows indicate the position of a card in time. Total time is 1.34 s. (B) Zoom-in between times 1.122 and 1.193 s showing 4 sequential

cards. The 4 cards cross the 128 × 128 pixel screen in 24, 23, 26, and 23ms, respectively. (C) Events collected between 300 µs before and after the time mark in

(B) displayed as y vs. x. Note how the previous card (diamonds) disappears at the bottom and the next card (clubs) appears at the top. Matlab scripts to reproduce

these figures are included in the Supplementary Material.

tracking, recognition and extraction of the different pips from
the full card browsings recorded initially would provide a
very interesting, highly challenging benchmark, and therefore,
together with our tracked and extracted 31 × 31 pixel pips, we
are now providing the set of three original full card browsing
recordings. We also present the Matlab scripts for extracting the
individual 31× 31 pixel pips from those recordings. For each pip
extracted, the Matlab scripts include its initial coordinate and its
initial and end timestamps, which were very patiently identified
manually for each pip using jAER. Furthermore, each extracted
pip sequence was carefully monitored with jAER, together with
its center of mass trajectory. If the extracted sequence did not
show up clearly in jAER or if there were suspicious jumps in the
center of mass trajectory, given parameters (such as the radius
of the extracted symbol, deviation between center of mass and
actual center for asymmetric symbols, initial coordinates or initial
and end timestamps) were manually retuned to improve the
sequence.

2.1. Example Uses of Poker-DVS and
Results
The original 40-pip Poker-DVS dataset was used on a purely
feed-forward spiking ConvNet (Pérez-Carrasco et al., 2013),
achieving around 90–91% recognition success rate on the
training set (the data was not separated into training and test
sets). Recognition could be achieved with just the first front of
events, corresponding to latencies of around 1–3ms.

Orchard et al. (2015b) subsequently proposed a very effective
event-driven ConvNet architecture called H-First, which exploits
lateral inhibition within each layer, testing this architecture with
the original 40-pip Poker-DVS dataset, and splitting it up into a
training set and a test set. They achieved recognition accuracy of
97.5% on the test set.

Recently, the original 40-pip Poker-DVS dataset has also
been used by Benosman and Lagorce (Lagorce, 2015) in a
newly proposed event-driven computing architecture based on
space-time surfaces. These researchers integrated over the full
period of card pip presentations (10–30ms), and explored their
architectures using different distance metrics. For one of the
distances they tested, called “normalized distance,” they obtained
100% recognition success over the training set (they did not
separate data into training and test sets).

3. THE MNIST-DVS DATASET

The Poker-DVS dataset is an extremely high-speed set, with
shape changing symbols, sometimes highly distorted, sometimes
fully disappearing, and usually with a lot of extra noise. These
characteristics also make it a highly challenging one. We wanted
to provide an alternative one, with cleaner characters, slower
speed and in which the characters would last for a few seconds (2–
3). With this in mind, the Frame-based MNIST dataset (LeCun
et al., 1998) seemed to be a sensible choice as a reference, since
it is a well established benchmark in conventional frame-based
machine vision. The MNIST set consists of a huge number
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(70,000) of 28 × 28 pixel pictures of handwritten digits. We
wanted to transform these characters into event-driven movies
with the digits moving in front of a DVS camera. We also
wanted to provide different scales for the digit sizes, as this
would better simulate a natural environment where, for example,
robots with event-driven machine vision need to be capable of
detecting and recognizing objects independently of their size.
Since DVS cameras are sensitive to changes, there are two ways
of transforming digit pictures into events using a DVS. One is to
flash the digit on a screen, either once or by (randomly) flickering
the pixels. This, however, is not a very natural scenario. A robot
moving in an environment, for example, would not typically
be exposed to light flashing objects. We, therefore, decided to
opt for the second, more difficult choice: that of moving the
digits. Obviously, the best solution would have been to move
digits mechanically printed on paper. This would have been
the scenario most similar to the real world, but was totally
impractical considering the many thousands of digits to be
recorded. In our project, we decided to use an LCD monitor to
display the moving characters. Monitors refresh full images at
a constant rate, so we knew this method would introduce some
artificial artifacts. We expected to see bursts of events at every
new frame with silent periods in the last part of each frame
time, so to minimize these expected artifacts we first set our
high definition LCD monitor to its maximum possible contrast.
This way, pixels would not be periodically switched off during
a fraction of the frame time. Secondly, we set the monitor’s
frame frequency to its maximum possible value, which in our
case was 75Hz. Thirdly, we decided to move the digits very
slowly over the screen using relatively short trajectories. This
way, only a few “randomly” placed pixels would be refreshed
between consecutive frames. Finally, since our DVS camera
had a relatively low resolution (128 × 128 pixels) whereas our
LCD monitor was high definition, we set the DVS camera to
cover the maximum possible field of view on the monitor. This
way, several monitor pixels would “map” to each DVS pixel,
improving smoothing between the moving pixels on the monitor
and those recorded with the DVS. Despite all these precautions,
we never actually thought we would fully neutralize the frame
refresh rate artifacts: our plan was simply to readjust the timings
of the recorded events artificially (while retaining their order)
to remove the effect of the LCD monitor refreshes. In our
opinion, readjusting the timing, while keeping events in the same
order would almost certainly have no effect on any recognition
algorithm. This assumption was based on claims in many earlier
works on computational neuroscience that the really meaningful
representation for event computation is the rank ordering of
events (once all specific time representations have been removed;
Van Rullen and Thorpe, 2001), or at least that what really matters
is the approximate relative timing of events and orders rather
than precise absolute times. This, therefore, was our original
plan.

However, when we started recording and looked at the
resulting event sequences, we were quite surprised to see that the
impact of LCD screen refresh was extremely small. Figure 3A
shows a close-up of a y vs. time plot corresponding to the
timing of five 75Hz frames (about 70ms). Although there is

clearly a tendency for the events to concentrate more in 5
regions separated by 13.33ms, the event flow is smooth overall. If
the recorded sequence is carefully observed with jAER in slow
motion, at different play back speeds, no appreciable artifact
attributable to the LCD monitor can be seen. In the end,
therefore, we decided to present the recorded sequences as they
were. In any case, together with the dataset we also provide now
a Matlab script for reshuffling the timings of the events, while
preserving their order, as explained in the next Section.

To clearly see the impact of the 75 Hz LCD screen refresh, the
only option is to perform a spectral analysis on the timestamp
sequence of a recording (Orchard et al., 2015a). Figure 3B shows
the analysis of one such recorded sequence (for character “0,”
the smallest scale, the first recording in the dataset). There
is a clear peak at 75Hz coming out of the noise floor. This
artifact can be removed by readjusting the event timings in
the following manner, but without changing the order of the
recorded events. First, the inter-spike time differences 1torigi =

torigi+1
− torigi , mean 1t and standard deviation σ (1t) of the

recorded events have to be computed from their timestamp
vector {torig1 , torig2 , ...torigT }. Then a completely new timestamp
vector is generated {tnew1 , tnew2 , ...tnewT } with the same inter-
spike difference mean and standard deviation:

tnewi+1 = tnewi + 1t + 2× σ (1t)× xi (1)

where xi is a randomly generated number with normal
distribution, zero mean and unit standard deviation. This new
sequence has to be sorted for monotonically increasing times,
and then rescaled for the same initial and end timestamps.
The resulting re-timed sequence has the spectrum shown in
Figure 3C, where the 75Hz peak has been removed. When
playing back both sequences in jAER no difference can be
observed between the two recordings. We therefore strongly
doubt that the 75Hz artifact will have any impact on any
recognition algorithm. In any case, together with the MNIST-
DVS dataset we provide a Matlab script for changing the timings
of all the recorded events to remove the 75Hz artifact. This way
the dataset can be tested with and without the 75Hz artifact.
As a point of interest, Figure 3D shows the same 70ms sub-
sequence as in (a) after re-timing of the timestamps. Again, there
is a clear, even stronger, tendency for events to group together
but the periodicity of this grouping is random and thus does not
show up on the spectrum.

For illustrative purposes, Figure 4 shows three jAER
snapshots of three MNIST-DVS digits of three different sizes
moving over the screen. The moving digits can very easily be
stabilized on the screen by simply subtracting the symbol center
trajectory (xc(t), yc(t)) from the recorded events. The Matlab
script provided to reshuffle timestamps can also be set to stabilize
the moving digits this way. Additionally, it can also be set to
remove the event polarity changes.

The original MNIST picture dataset (LeCun et al., 1998)
comprises 70,000 pictures, all of the same size. From this set we
selected only 10,000, scaling each one up to 3 different sizes on the
monitor screen. Our set therefore has only 30,000 jAER event-
driven movies. The main reason we decided to record only 1/6
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FIGURE 3 | Illustration of LCD screen refresh rate impact. (A) Plot of recorded events in y vs time plane for a 70 ms time interval. Units for y are pixel number.

This sequence includes five 75Hz screen refreshes in a period of 13.33ms. There is a slight tendency toward event grouping every 13.33ms. (B) Timestamp

sequence spectrum of the recorded event-driven video showing a clear peak at 75Hz. Mean interspike time difference is 140 µs and standard deviation is 169 µs.

(C) Spectrum of the same recorded sequence after readjusting the timestamps to remove the 75Hz peak. Mean interspike time difference and standard deviation are

kept the same as in (B), while timestamps are generated randomly. (D) Plot of the event sequence in (A) after timestamp adjustment. There is still a tendency toward

event grouping but its periodicity is random. Matlab scripts to reproduce these figures are included in the Supplementary Material.

of the original dataset was the huge size of the recordings. The
3-scale MNIST-DVS dataset occupies 10.4 Gbytes. The method
for upscaling the original 28 × 28 pixel digits to smooth looking
edges on the high definition LCD monitor is based on bilinear
interpolation.

3.1. Example Uses of MNIST-DVS and
Results
The MNIST-DVS data set was used by Henderson et al. (2015) to
explore a new spike based learning rule on a multi-layer spiking
network. Ninety percent of the recordings of each character were
used for training while the remaining 10% were used for testing.
The classification output correctly classified the test input digits
87.41% of the time.

Zhao et al. (2015) used two spiking MNIST datasets to test
a newly proposed feed forward spiking neural architecture. The
first spiking dataset was artificially generated from the original
frame-based MNIST dataset (LeCun et al., 1998) by assigning
spikes to active pixels. Random spikes were also added on top
to emulate noise corruption. For this dataset, correct recognition
of between 47.10 and 91.29% was achieved on the test set
depending on the level of injected noise. For the training set
correct recognition of between 78.01 and 99.36% was achieved,
depending on noise level. For the second MNIST spiking dataset
MNIST-DVS was used. Its recognition performance was tested
as a function of input event stream length, from a minimum
of 100ms to the full 2 s recordings. For the test set, recognition
accuracy ranged from 76.86% for 100ms inputs to 88.14%
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FIGURE 4 | Example of different moving MNIST digits captured with the DVS camera. (A) Example of smallest scale digit, (B) example of medium scale digit,

and (C) example of largest scale digit.

FIGURE 5 | Simple Statistical Analyses of recorded MNIST-DVS data, as function of MNIST symbol and for the three different scales. (A) Average

inter-spike time difference. (B) Relative Standard Deviation of inter-spike time differences. (C) Standard Deviation of consecutive event x coordinate differences.

(D) Standard Deviation of consecutive event y coordinate differences. Matlab scripts to reproduce these figures are included in the Supplementary Material.
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FIGURE 6 | Simple Statistical Analyses of recorded POKER-DVS data, as function of Poker pip symbol. (A) Mean of consecutive timestamp differences. (B)

Standard Deviation of consecutive timestamp differences. (C) Standard Deviation of consecutive event x coordinate differences. (D) Standard Deviation of consecutive

event y coordinate differences. Matlab scripts to reproduce these figures are included in the Supplementary Material.

for the full 2 s recordings. For the training sets, recognition
ranged from 98.86% for 100ms inputs to 99.13% for the 2 s
recordings.

4. STATISTICAL ANALYSIS OF DATABASES

Databases can have hidden statistical biases that may make
some algorithms perform better than others simply because they
discover such hidden statistics. We analyzed the recorded data to
check some of its simple statistical properties.

For the MNIST-DVS we checked, for each symbol, the
average number of events, the mean and standard deviation of
the differences in consecutive timestamps 1t of the recorded
samples. Figure 5A shows the average 1t of the inter-spike
time differences for each symbol and for the different scales.
Since the recording time T is always the same for all recording,
this average is directly related to the average number of events
Nevs per symbol and scale: 1t = T/Nevs. The number of
events produced by each symbol is highly related to its edge
perimeter. Therefore, it is logical to expect a reasonable variation
from symbol to symbol. Figure 5B shows the relative standard
deviation of the inter-spike time differences σ (1t)/1t, as a
function of MNIST symbol and for the different scales. As can
be seen, it is fairly stable and symbol independent. We also
checked at the x and y coordinates (see Figures 5C,D) and the

polarity bit p for simple statistics by computing the mean and
standard deviation of x, y, and p, and the mean and standard
deviation of consecutive event differences 1x, 1y, and 1p. No
bias was revealed either in polarity, the means of the x or y
coordinates, or themeans of1x or1y. However, for the standard
deviations of σ (x) ≈ σ (1x) some weak, symbol-dependent bias
was observed, as shown in Figure 5C. In particular digit “1”
revealed a smaller spread in the x coordinates, although this is
quite logical since it is typically much thinner in the x direction
than the other digits. Consequently, no significant statistical bias
has been observed that could favor some algorithms with respect
to others.

Figure 6 shows the result of a similar analysis carried out on
the full POKER-DVS database. In this case there is also a symbol-
dependent bias in the average inter-spike time differences, most
probably also due to perimeter differences. Figure 6A reflects
almost a factor 2 spread (between 5 and 9 µs) in 1t. For σ (1t)
the symbol-dependent spread is relatively small. It is interesting
to note that, here, it is the absolute standard deviation that has
a symbol independent behavior, while in the MNIST-DVS case it
was the relative standard deviation. On the other hand, a weak
spread can be appreciated in σ (x) ≈ σ (1x) between 6.6 and 10.4
pixels, while for σ (y) ≈ σ (1y) the symbol-dependent spread is
even smaller. In summary, no significant statistical bias can be
observed for this dataset either.
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5. CONCLUSIONS

This paper presents and discusses the history, background,
and some of the hidden details of Poker-DVS and MNIST-
DVS, two event-driven datasets developed by our group.
Poker-DVS is an extremely high speed dataset (although its
timestamps can always be slowed down) which also offers the
possibility of simultaneously testing tracking with recognition
algorithms. MNIST-DVS is a transformation of the original
MNIST digit 28 × 28 pixel pictures into event-driven movies,
with a duration of over 2 s each and for three different
sizes. Poker-DVS is a very high speed database, and also the
moving symbols contain a much smaller number of events
than the ones in MNIST-DVS. On the other hand, MNIST-
DVS contains 10 different symbols instead of 4, and its input
space is 128 × 128 pixels instead of 32 × 32. In any case,
both datasets present a good balance between speed and
complexity, and could constitute not only good starting points

for event-driven vision tests but also inspiration for future
benchmarks.
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