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Abstract 

There is a significant interest in correlating polymer structure with thermal degradation 

behavior. Thus, polymer pyrolysis curves could be predicted from the chemical structure of the 

polymer. Recent proposals correlate the kinetic temperature function directly with the chemical 

structure of the polymer by means of the dissociation energy while assuming a semiempirical 

first order model for the reaction fraction function. However, first order model lacks physical 

meaning and it produces significant deviations of the predicted curves, mostly under isothermal 

conditions. Thus, in this work an upgrade of the method is proposed by using a new random 

scission kinetic model. The newly proposed kinetic equation has been checked by fitting the 

experimental data reported by different authors for the thermal pyrolysis of polystyrene. It has 

been demonstrated that it accounts for the experimental data of polymer degradation under 

different heating schedule with considerably higher precision than the previously assumed first 

order kinetics. 
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1. Introduction 

Predictions of polymer properties, such as thermal stability could be assessed from 

quantitative structure-property relationships. Van Krevelen [1] in a pioneering work,  proposed 

the Additive Molar Thermal Decomposition Function, based on the assumption that the 

thermal decomposition of a polymer is determined by a sum of contributions made by the 

different groups in the molecule. Biceranto approach considered additive contributions of 

atoms and bonds, while the environment of each atom and bond is taken into account [2, 3]. 

Very recently, Porter et al proposed an interesting approach to predict the mass loss curve as a 

function of time (and temperature) by the use of two functions:[4] an energy function, directly 

related to the dissociation energy of the chain backbone, and other a reaction fraction, defined 

for the sake of simplicity, by a first order, F1, kinetic model. The use of F1 models for polymer 

degradation studies is widely extended in literature since pioneering works by Van Krevelen et 

al. [5], Reich [6, 7],  Broido [8] and others used such model. The simplicity of F1 (and in general 

of “n order”)  model and the lack of alternative proposals would explain its extensive use, 

despite the importance of using proper models in kinetic studies. [9-14] In this communication, 

deviations in Porter et al prediction curves due to first order model assumption are discussed, 

while the use of a new model based on the polymeric chain scission and volatilization of the 

subunits is proposed. Prediction reliability of the method is tested with experimental curves 

under both linear heating and isothermal conditions. 

 

2. Experimental 

Atactic polystyrene (Goodfellow 261595) was used. Thermogravimetric experiments were 

performed in nitrogen flow (100mL min−1) using small mass samples (∼10 mg) under either 

linear heating or isothermal conditions  using a Q5000 TGA (TA Instruments). 

 

3. Results and discussion 

For polymer pyrolysis, the general kinetic equation correlates reaction rate, d/dt, with 

temperature, T, and reaction fraction, , by means of a function of temperature, k(T), and a 

function of reaction fraction, f(α): 

  

  
                 (1). 

Usually, the k(T) is approached by an Arrhenius equation defined in terms of the apparent 

activation energy and the Arrhenius preexponential factor, while f(α) is the mathematical 

expression of an ideal kinetic model. Thus, k(T)  and  f(α) are determined from the kinetic 

analysis of a series of experimental curves [15-19]. Once the temperature and reaction 

functions are determined, the thermal behavior could be modeled under any heating 

conditions. A different approach is that proposed by Porter that relates chemical structure 

with thermal behavior, in such a way that mass loss curves could be directly predicted from 

the knowledge of parameters such as dissociation energy [4].  In Porter’s approach, k(T) is 

defined in terms of the polymer chemical structure, by means of the following equation: 
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         (2), 

where 1 is the Debye reference temperature, Ed is the dissociation energy and HT is the 

thermal energy per group of atoms. HT, can be approximated by [4] 

                      (3), 

being N the number of degrees of freedom for characteristic structural group. Eq. (3) is valid 

for temperatures, T, higher than 1 [20, 21].  

For the reaction fraction function, f(α), Porter’s approach assumes a simple first order kinetic 

model.  

                 (4) 

From eqs (2), (3) and (4), the general kinetic equation (eq. (1)) can be written as follows: 

  

  
            

 
  

                       (5) 

This equation is a general differential expression valid for any heating schedule. For different 

heating conditions, eq (5) can be integrated as follows [22]:  

 
  

     
             

 
  

               
 

 

 

 
    (6), 

The first order kinetic model in Porter’s method is used as a semiempirical fitting function 

without any physical meaning. For its simplicity, this model is extensively used in polymer 

pyrolysis studies, but its application has been recently criticized as they provide significant 

deviations for experimental curves. Other physically sound approach is that based on the 

scission of the polymeric chain and volatilization of the subunits, such as Simha and Wall  

model that describes the reaction fraction in terms of the fraction of bonds broken, the initial 

degree of polymerization and the minimum length of the polymer that is not volatile [23]. This 

model is complex and require determining a number of parameters that are difficult to 

quantify experimentally. Therefore, its application to real systems is very scarce. Very recently, 

the model of Simha and Wall has been reformulated in terms of the reactions fraction, which 

could be determined from thermal analysis measurements [24, 25]. Thus, using the new 

functions, the reaction rate of the thermal degradation of polymers that go through a random 

scission mechanism could be directly related to the reacted fraction of the process.  

For a polymer that degrades by cleavage of chemical bonds following first order kinetics, all 

breakable bonds within the polymer have the same probabilities to be broken [23]. Thus, the 

rate of bond breakage can be written as follows: 

)1( xk
dt

dx
T         (6), 

where x is the fraction of bonds broken and KT the rate constant of bond breakage. Moreover, 

x and α are related by the following approximated expression: 
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   )1(111
1




Lxx
L     (7) 

Being L the minimum length of not volatile polymer subunit. This equation (eq. (7)) relates α 

(as for example mass loss) with the fraction of broken bonds. Nevertheless, as x cannot be 

measured by conventional techniques, and L is very difficult to determine experimentally, the 

application of eq. (7) is limited. Nevertheless, by differentiating eq. (7), and incorporating eq. 

(6), the value of the conversion function f(α) can be determined [24, 25]: 

  
1)1()1()(  LxxLLf       (10) 

For L=2, a symbolic solution can be obtained: 

   212)(f
      (11) 

For other values of L, the f(α) conversion functions can be easily determined numerically  [24, 

25]: 

Porter et al approach for the kinetic analysis of polymer degradation can be easily upgraded by 

considering a random scission kinetic model, L2, as the one described above, which has a 

physical significance, instead of the empirical F1 model. Thus, the general differential kinetic 

equation will take the following form: 

  

  
            

 
  
                 (12) 

This equation, eq. (12), is a general expression that is valid for predicting the thermal behavior 

under any heating schedule. Moreover, the shapes of  f(α) obtained for L  in the range 2-8 are 

very similar[25] and, therefore, eq (12) could be consider as a general equation for any value 

of L.   

Fig. 1 shows a comparison of the thermogravimetric experimental data (dots) for  polystyrene 

(PS) at 10 K min-1, as digitalized from Porter et al paper [4], and predictions using the same 

kinetic parameters as in Porter et al (Ed = 344 kJ mol-1, 1= 285 K and N = 2) but assuming either 

F1 (dashed-line), as in Porter et al or the newly proposed L2 (solid-line) models. Whereas F1 

provides a rough fitting of the experimental curve, L2 provides a much better fitting.  

Fig. 2 shows three thermogravimetric curves corresponding to the thermal pyrolysis of 

polystyrene sample recorded at three heating rates, i.e. 1, 2 and 5 K min-1. The comparison of 

the experimental curves (dots) and model predictions using the same kinetic parameters as in 

Fig. 1 and assuming F1 (dashed line) or L2 (solid line) kinetic models are also included in Fig. 2. 

For all three curves, as it happened with Porter et al experimental data shown above, the 

fitting is also much better for L2 than for F1. 

It is well known that experimental thermogravimetric curves obtained under linear heating 

rate conditions present sigmoidal shapes independently of the kinetic parameters, including 

the kinetic model, that describe the process. Thus, it has been shown that a single curve 

obtained under linear heating rate conditions could be perfectly fitted by any of the kinetic 

models proposed in literature by properly selecting the other kinetic parameters, i.e. kinetic 
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energy and preexponential parameter [26]. Nevertheless, curves obtained under other heating 

schedules, such as isothermal or sample-controlled conditions, present a shape that is 

characteristic of the kinetic model that describes the process [9, 27, 28]. Curves corresponding 

to the pyrolysis of PS under isothermal conditions at different temperatures, i.e. 325ºC and 

330ºC, are included in Fig. 3. This figure (Fig. 3) also shows the curves simulated with the same 

values of Ed, 1 and N as those used in Figs. 1 and 2 but for F1 (dashed-line) and L2 (solid-line). 

It is even clearer that the L2 model provides a much better fitting of the experimental curves. 

Thus, pyrolysis curves under isothermal conditions for the PS present sigmoidal shape with a 

characteristic small induction period that is nicely fitted by the random scission model in the 

entire range, while the first order one shows quite a different shape and both experimental 

and simulated curves are far away. Thus, for the first order model at α=0.5, the deviations 

observed are larger than 80 and 110 minutes for the isothermal curves at 330 and 325ºC, 

respectively.   

 

4. Conclusions 

In conclusion, the novel method for predicting polymer pyrolysis curves under any heating 

schedule, recently proposed by Porter et al [4], has been modified by considering a kinetic 

model that describes the polymer chain breakage and evaporation of the subunits as a 

function of the reaction fraction. The proposed method is a simple approach that does not 

take into consideration all the complex processes that takes place during pyrolysis, but 

provides a simple tool for predicting the pyrolysis curves of polymers directly from the chain 

structure. The proposed method has been tested with the thermal pyrolysis of polystyrene. It 

has been observed that it provides a better modeling of the experimental curves, mostly for 

isothermal conditions where the shapes of the curves are quite dependent on the kinetic 

model followed by the process. 
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Figure Captions 

 

Fig. 1. Comparison of the thermogravimetric experimental data (dots) for  polystyrene (PS) at 10 K min
-1

, 

as digitalized from Porter et al paper, and model predictions employing the same kinetic parameters 

used by Porter et al (Ed = 344 kJ mol
-1

 that corresponds to the average dissociation energy of the three 

key skeletal bonds, 1 = 285 K and N = 2) and assuming either first order (dashed line), as in Porter et al 

proposal, or random scission (solid line) kinetic model. 

Fig. 2. Comparison of the experimental curves (dots) for polystyrene (PS) at 1, 2 and 5 K min
-1 

and model 

predictions using the same kinetic parameters as in Fig. 1 and assuming first order (dashed line) or 

random scission (solid line) kinetic models. 

Fig. 3. Comparison of curves corresponding to the thermal pyrolysis of PS under isothermal conditions at 

325ºC and 330ºC and curves simulated using the same values of Ed, 1 and N as those used in Figs. 1 and 

2 but different kinetic model, i.e. first order (dashed line) and random scission (solid line). 
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Fig. 1. Comparison of the thermogravimetric experimental data (dots) for  polystyrene (PS) at 10 K min
-1

, 

as digitalized from Porter et al paper, and model predictions employing the same kinetic parameters 

used by Porter et al (Ed = 344 kJ mol
-1

 that corresponds to the average dissociation energy of the three 

key skeletal bonds, 1 = 285 K and N = 2) and assuming either first order (dashed line), as in Porter et al 

proposal,  or  random scission (solid line) kinetic model. 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 
 

 

250 300 350 400 450
0.0

0.2

0.4

0.6

0.8

1.0

250 300 350 400 450 500
0.0

0.2

0.4

0.6

0.8

1.0

250 300 350 400 450 500
0.0

0.2

0.4

0.6

0.8

1.0



=1



=2



T / ºC

=5

 

Fig. 2. Comparison of the experimental curves (dots) for polystyrene (PS) at 1, 2 and 5 K min
-1 

and model 

predictions using the same kinetic parameters as in Fig. 1 and assuming first order (dashed line) or 

random scission (solid line) kinetic models. 
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Fig. 3. Comparison of curves corresponding to the thermal pyrolysis of PS under isothermal conditions at 

325ºC and 330ºC and curves simulated using the same values of Ed, 1 and N as those used in Figs. 1 and 

2 but different kinetic model, i.e. first order (dashed line) and random scission (solid line). 

 


