
 1

Room temperature mechanosynthesis of the La1-xSrxMnO3±δ (0≤x≤1) 

system and microstructural study  

M.J. Sayagués,* J.M. Córdoba and F.J. Gotor 

Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-US, Av. Américo 
Vespucio 49, 41092 Seville, Spain. 

 

Abstract 

 

Monophase nanocrystalline powders belonging to the La1-xSrxMnO 3±δ system (0≤x≤1) 

with a perovskite structure have been obtained by mechanochemistry synthesis using a 

planetary ball milling equipment from La2O3, SrO, and Mn2O3 mixtures. The solid state 

reaction was complete after one hour of milling treatment. For all the compositional 

range, the diffraction domain was very small and the structure appeared as a pseudo 

cubic perovskite. After annealing at 1100°C under static air, the symmetry evolution 

due to the La substitution by Sr was analyzed by x-ray and electron diffraction. Samples 

with x = 0, 0.25, 0.5, and 0.75 were assigned to R-3c space group (167) in the 

rhombohedral system and perovskite structure. However, the symmetry of the last term 

of the system (x=1), SrMnO3±δ sample, changed to P63/mmc space group (194) in the 

hexagonal system. The terms with x = 0.8, 0.85, and 0.9 presented mainly rhombohedral 

symmetry. 
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1. Introduction 

The perovskite structure oxides have been widely investigated during the last sixty 

years [1, 2] and they have special relevance regarding their applications, using their 

electric, magnetic, and catalytic properties among others [3,4]. In the last fifteen years 

they have been studied as components for solid oxide fuel cells (SOFCs) [5, 6]. They 

have been synthesized using several techniques, from the most common and ancient 

method -as the ceramic [7] -to the newer and sophisticated ones–as the hydrazine 

method [ 8] or the combustion synthesis [9].  

Solid solutions based on lanthanum strontium manganites La1-xSrxMnO3±δ (LSM) 

are promising materials for oxygen cathodic electrodes [10-19] and it is well known that 

its final properties depend on the La/Sr ratio as well as on the oxygen stoichiometry [20, 

21]. However, the cathode microstructure is also a critical factor in determining the 

activity and is controlled by several synthesis variables. Thus, the particle size of 

electrode materials, the heating condition for electrode adhesion, and the cell operation 

conditions must be considered. J.H. Choi et al. [22] have shown that higher activity is 

expected with smaller particle sizes and a higher porosity. Because the smaller particles 

are, however, more vulnerable to sintering under the high temperature electrode 

adhesion and cell operation conditions, their use can not always guarantee a higher 

activity. Particle growth leads to a loss of active sites. A trade-off is thus expected at a 

certain range of particle size between the two conflicting factors, namely, the number of 

active sites and particle sintering. 

This LSM system has been synthesized by several techniques [11-23]; however 

there are very few works [24-29] regarding their synthesis by mechanochemical 

method. Zhang et al. have synthesized LaMnO3 and La0.7Sr0.3MnO3 after 3 hours of 

milling, and Bolarín and co-workers have studied the mechanosynthesis of calcium 
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doped lanthanum manganites, however the long milling times used, 10 and 20 hours, 

could introduce high quantity of grinding media impurities. 

The aim of this study is to synthesize by a very simple method (one hour using a 

planetary ball milling equipment at room temperature) eight phases belonging to the 

system La1-xSrxMnO3±δ (x=0, 0.25, 0.5, 0.75, 0.80, 085, 0.90, and 1) and analyze the 

structure before and after annealing at 1100º C in static air. The evaluation of how the x 

value affects the final structure and symmetry, and how far- in terms of the x value- the 

solid solution is kept were considered. 

 

2. Materials and methods 

Powders of La1-xSrxMnO3±δ (0≤x≤1) were prepared using a mechanochemical 

method from stoichiometric amounts of La2O3, SrO, and Mn2O3 according to the 

following reaction: 

(1-x)/2La2O3 + xSrO + 1/2Mn 2O3              La1-xSrxMnO 3±δ 

Strontium carbonate (Panreac, 98% in purity), lanthanum oxide (Fluka, 99.98% in 

purity) and manganese (III) oxide (Aldrich, 99% in purity) powders were used as 

starting reactants. The SrCO3 was first heated at 1100º C to obtain the SrO. 

For each experiment, seven WC balls together with stoichiometric quantities of powder 

reactants (to get 2 g of the perovskite sample) were placed in a tempered steel vial 

(67Rc) and milled in a planetary ball mill (model Micro-Mill Pulverisette 7, Fritsch) at a 

spinning rate of 600 rpm. The volume of the vial was 45 ml. The diameter and weight of 

the balls were 15 mm and 26.4 g, respectively. The powder to-ball mass ratio (PBR) 

was approximately 1:92. 
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The milled powder samples (M ) were heated (H) at 1100º C under static air 

during 12 hours using a chamber furnace with a heating rate of 10ºC/min and free 

cooling. 

The X-ray diffraction (XRD) patterns of all the samples (M  and H) were 

obtained in a Panalitycal X’Pert Pro instrument equipped with a goniometer using Cu K 

radiation (45 kV, 40 mA), a secondary K filter, and an X’Celerator detector. The 

diffraction patterns were scanned from 20◦ to 150◦ (2θ) at a scanning rate of 0.0037◦ 

min−1. Lattice parameters of samples were calculated from the whole set of peaks of the 

XRD diagram using the FullProf free-software in a profile matching mode [30] .  

High-temperature X-ray powder diffraction diagrams were recorded on the previous 

mentioned instrument, which was equipped with an Anton Parr high-temperature 

attachment (HTK 1200). The diffraction diagrams were obtained under air atmosphere 

at temperature intervals of 100 °C (up and down), and a maximum temperature of 1100 

°C was investigated. The heating rate was set to 5 °C/min, and a scanning rate of 

5.4°min-1 was applied. In total, the 2θ range was scanned from 20° to 70° for 12 min 

and 18 s. 

Thermogravimetric measurements were performed by means of a TGA equipment 

developed on the basis of a CI Robal electrobalance (C.I. Electronics Ltd.) attached to 

the support frame of a high-temperature vertical furnace (1500 ºC; Severn Furnaces 

Ltd.) and connected to a system of flowing gases up to a total pressure of 1 atm. 

Samples were placed into an alumina crucible, which was centered inside an 8 mm 

inner diameter ceramic tube in order to minimize the buoyancy. The absolute oxygen 

content was determined by reducing the samples under a reductive mixture atmosphere 

of He/H2 (1/1 ratio) controlled by a digital rotametter system. A heating rate of 10 

°C/min from room temperature to 1200 °C was used and maintained the time required 
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to ensure complete reduction. The total weight loss was recorded and oxygen content 

was calculated taking into account that La1-xSrxMnO3±δ samples were reduced to a 

mixture of oxides where the lanthanum, strontium, and manganese oxidation states are 

3+, 2+, and 2+, respectively. 

Microstructural characterization was carried out by using scanning and 

transmission electron microscopy (SEM and TEM) techniques. Powder samples were 

dispersed in acetone and droplets of the suspension were deposited onto a holey C film. 

The SEM images were obtained on a Hitachi S-4800 SEM-FEG microscope. 

Transmission electron microscopy (TEM) images and electron diffraction (ED) patterns 

were taken on a 200 kV Philips CM200 microscope equipped with a supertwin 

objective lens and a LaB6 filament (point resolution ∅ = 0.25 nm).  

 

3. Results and discussion 

A first set of experiments was conducted for the x=0.25 composition 

(La0.75Sr0.25MnO3±δ, M2 sample) to determine the optimum milling time to complete the 

solid state reaction under the conditions described above. The products obtained at 

increasing time were analyzed by x-ray diffraction and the results are presented in 

figure 1. It is easy to observe how the reaction progressed significantly after 15 minutes 

of milling and after half an hour was nearly finished. After only 45 minutes, no reactant 

peaks were detected and the solid state reaction seemed to be complete. 

To be sure of achieving full conversion, the mechanochemical synthesis of the 

powder samples was then carried out using one hour of milling. Figure 2 shows the 

difractograms corresponding to the eight samples belonging to the La1-xSrxMnO3±δ 

(0≤x≤1) system (M  samples). All of them present a single phase with pseudo-cubic 

symmetry and perovskite structure. The shift observed in the XRD reflections was 
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attributed to different La and Sr ratio in the pseudo-cubic structure. In the inset of figure 

2a (x=0, 0.25, 0.5 and 0.75) can be observed a clear displacement to smaller d spacing 

when x value increases. However in the inset of figure 2b can be appreciated that the 

peak displacement is not so clear, probably due to the small x discrepancy (x=0.8, 0.85, 

0.9 and 1). 

Fullprof computer program was used from the whole set of peaks of the XRD 

patterns (Fig. 2a and b) to calculate unit cell dimensions for each phase in the system, 

assuming (pseudo) cubic unit cell, the found results and the average crystallite sizes (D) 

are presented in table I,  the cell parameters decreased with increasing substitution of La 

by Sr. As can be deduced from the large broadening of reflections in figure 2 the 

crystalline domain is very small, around 20 nm, it can be corroborated in the SEM and 

TEM micrographs showed below (Fig. 7 and 8). ,  

The X-ray diffraction diagrams of powder samples treated at 1100°C under air 

atmosphere are presented in figure 3 (H samples). It is clear that a higher crystallinity 

and a well defined symmetry took place. As observed in the M  samples, the XRD 

reflections are shifted to smaller d-spacing as a consequence of the La substitution, 

which is very clear from x=0 to x=0.8, according with the cell parameters. For samples 

with x=0 and 0.25, some of the maxima are clearly split showing a structure very 

similar to La0.95Mn0.95O3 (reference pattern-01085-1838) calculated by Van Roosmalen 

et al [31] with rhombohedral cell (R-3c, 167 space group). However, the diffraction 

lines (enlarged in the inset for the main one) for samples with x=0.5, 0.75, 0.8, 0.85, and 

0.9 were not split that could be due to a different symmetry or different lattice parameter 

and same symmetry. To elucidate this feature and calculate the lattice parameters the 

Fullprof computer program was used from the whole set of peaks of the XRD diagram, 

assuming a rhombohedral symmetry or cubic structure. The results showed a better fit 
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when rhombohedral symmetry (R-3c space group) was used (table I) for samples in the 

range of 0 ≤ x ≤ 0.90. Nevertheless, when the x value is equal to one (SrMnO3), another 

perovskite structure with hexagonal symmetry and P63/mmc space group (194) was 

observed. This term is excluded from the La1-xSrxMnO3±δ solid solution as the symmetry 

and cell parameters change, being a very similar but c smaller with respect to the 

rhombohedral structure. 

Results in table I show how substitution of La by Sr modifies the lattice 

parameters of the rhombohedral structure in such a way that the volume of the unit cell 

decreases with the x value. This trend was observed in both M  and H samples as shown 

in figure 4. The term x=1 is not presented as not belong to the rhombohedral solid 

solution. The volume diminution is due to the Mn4+ formation at the same time that La3+ 

is substitute by Sr2+ in the cationic subcell for keeping electroneutrality. This is 

consistent with the fact that the ionic radius of Mn4+ (53 pm) is smaller than that of 

Mn3+ (65 pm), and indicates that the manganese ionic radius is in fact the determinant of 

the unit cell volume. This is significant since La3+ (136 pm) has a smaller ionic radius 

compared with Sr2+ (144 pm). The ionic radius values are taken from Shannon 

considering the coordination number for each cation in the perovskite structure [32]. 

Moreover, it is worth noting that the presence of Mn4+, which increases with increasing 

strontium content, reduces the John-Teller effect that was favoured by the Mn3+ cation. 

This fact can explain the absence of the splitting of XRD peaks when the x values 

increase because of a higher symmetry of the structure. The intensity of some peaks in 

the difractogram is as also changing with the La substitution. The intensity is decreasing 

with the increasing Sr quantity. This effect is appreciated very clearly in the first peak 

which correspond to (012) from the rhombohedral cell (marked in the figure 3a), which 

corresponds to (100) in the pseudocubic cell, where the La and Sr atoms are located.  
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To quantify the oxygen composition (delta value) and the oxidation state of the 

manganese (% Mn4+), thermogravimetric analysis were performed in all the heated 

samples (H). All the results are presented in table I and figure 5. It was found that the 

amount of Mn4+ increased linearly with Sr2+ to reach the electroneutrality in the 

structure, while the oxygen stoichiometry approached to the value of three. 

With the purpose of studying the crystallization and symmetry change of milled 

samples (M pseudocubic symmetry) after annealing (H rhombohedral symmetry), 

experimental XRD measurements as a function of the temperature (up and down) under 

air atmosphere were carried out. XRD difractograms every 100°C, from 30°C till 

1100°C and vice versa were recorded. A summary of the obtained results are presented 

in figure 6 corresponding to M2 sample. When the experiment rises in temperature 

crystallization process could be observed and at 1100°C a small peak (aprox. 2θ=35º, 

marked with an asterisk) appears -which could be due to a formation of  an 

orthorhombic phase [33]-. Lowering down in temperature the small peak stays till 

800°C and below this temperature disappears. Below 500°C some of the reflexions start 

to split (see inset of figure 6) and a small peak before 2θ=40º appears (marked with a 

cross), indicating the formation of the rhombohedral phase. This fact indicates that the 

rhombohedral phase stabilizes at low temperature and can be explained in terms of 

oxygen composition. The orthorhombic phase stable at high temperature (1100°C) its 

able to accommodate  less quantity of oxygen in the structure [33] than the 

rhombohedral one, that stabilize below 500°C  with an oxygen composition of. 

La0.75Sr0.25MnO3.11 (see table I) 

The microcharacterization of M  and H samples were analyzed by SEM, TEM and 

ED techniques. Figure 7 presents the SEM micrographs found for some of the milled 

and heated materials, which are representative of the obtained results. All M  samples 
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(pseudocubic perovskite structure) had a similar microstructure characterized by 

aggregates of small particles. As expected, H samples were composed of larger faceted 

particles, being very similar in shape as can be seen in H1 and H2 (same rhombohedral 

symmetry); however H8 sample (with a different symmetry, hexagonal) presented very 

round particles and smaller in size. 

Figure 8 shows the TEM and ED representative results of the M  and H samples. 

The TEM micrograph corresponding to M1 sample (x=0) showed quite large particles 

formed in fact by agglomerated small crystallites in the nanometric range (Fig.8a) as 

evidenced by the presence of rings in the ED pattern. All the rings could be indexed in 

the pseudocubic structure (Pm-3m). TEM micrographs of H1 (fig. 8b) and H3 (fig. 8c) 

samples also showed the presence of aggregates but formed by submicrometric 

crystallites of several hundred nanometers as observed in the enlargements of two of 

these crystals. The corresponding EDPs were taken along the [001], [211] and [210] 

zone axis. All maxima could be indexed in the rhombohedral structure (R-3c).  

The TEM results corresponding to H8 sample (x=1) are presented in fig 8d, which 

shows an image where crystals with different sizes can be appreciated. All the found ED 

could be indexed in the hexagonal structure (P63/mmc) confirming the XRD results. 

The ED pattern presented was taken along the [201] zone axes. 

 

4. Conclusions 

Mechanochemical method is a good alternative to synthesize phases with 

perovskite structure belonging to the La1-xSrxMnO3±δ system, which is a proper 

candidate for cathodes in SOFCs. The rhombohedral phase (R-3c), found after 

annealing the M  samples, is kept along the solid solution in the range of 0 ≤ x ≤ 0.90 

and is a low temperature stable phase, nevertheless when x=1 (SrMnO
3
), appears 
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another perovskite structure with hexagonal symmetry and P63/mmc space group (194). 

From XRD data, it could be observed that the Sr substitution has influence on the cell 

parameters, and the volume decreases when x increases. Although La
3+

 (136 pm) has a 

smaller ionic radius than Sr
2+

 (144 pm), Sr substitution implies Mn
4+

 formation, which 

is smaller (53 pm) than Mn
3+ (65 pm).  

The microstuctural characterization showed that the powder samples after 

mechanical milling have nanometer character. After the temperature treatment the 

crystallite size increases, but is still quite small and suitable for the future application.  
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Figure captions 

 

Figure 1. Time evolution by X-ray diffraction of the solid state reaction to synthesize 

La1-xSrxMnO3±δ (x=0.25) sample by mechanochemistry. 

 
Figure 2. X-ray diffraction diagrams corresponding to the La1-xSrxMnO3±δ system (a) 

x=0, 0.25, 0.50 and 0.75, and (b) x=0.80, 0.85, 0.90 and 1, obtained by 

mechanochemical synthesis (M samples). The inset shows an enlargement of the 

highest maxima to reveal the displacement in the d spacing due to the La substitution. 

 

Figure 3. X-ray diffraction diagrams corresponding to the heated samples (H) at 1100°C 

under air, belonging to the La1-xSrxMnO3±δ system (a) x=0, 0.25, 0.50, and 0.75  and (b) 

x=0.80, 0.85, 0.90 and 1. The inset shows an enlargement of the highest maxima. 

 

Figure 4.  Unit cell volume variation with x value in the La1-xSrxMnO3±δ system. (a) M  

samples and (b) H Samples.  

 

Figure 5. (a) Oxygen stoichiometry (delta value) and (b) Mn4+ content (%) versus x, in 

the La1-xSrxMnO3±δ system for H Samples. 

 

Figure 6. Thermal evolution of the XRD diagram of M2 sample (La0.75Sr0.25MnO3±δ ) 

under air atmosphere from 30°C to 1100°C and vice versa from 1100°C to 30°C. The 

inset shows an enlargement of the highest maxima. 

 

Figure 7. SEM micrographs corresponding to samples M1 and H1(x=0), M2 and H2 

(x=0.25) and M8 and H8 (x=1).  

 
Figure 8. TEM micrographs and ED patterns corresponding to M1 (a), H1 (b), H3 (c) 

and H8 (d) samples. 



Table I. Structural and chemical parameters for all the synthesized samples in the 

La1xSrxMnO3±δ system,  in the first step after milling (M  samples) and after heated at 

1100 °C under air atmosphere during 12 hours (H samples). 

 
Sample          Compound 
        

 
a (Å) 

 
c (Å) 

 
D (nm) 

 
Mn 4+ 
(%) 

 
δ value 

(x=0)               LaMnO3±δ 
M1                  (Pm-3m) 
H1                   (R-3c) 

 
3.9114 
5.5306 

 
 
13.5668 

 
16 
88 

 
 
   34% 

 
 
0.17 

(x=0.25)          La0.75Sr0.25MnO3±δ 
M2                  (Pm-3m) 
H2                   (R-3c) 

 
3.9013 
5.5237 

 
 
13.3790 

 
23 
176 

 
 
   47% 

 
 
0.11 

(x=0. 5)           La0.5Sr0.5MnO3±δ 
M3                  (Pm-3m) 
H3                   (R-3c) 

 
3.8883 
5.4499 

 
 
13.3799 

 
22 
88 

 
  
   74 % 

 
 
0.07 

(x=0.75)          La0.25Sr0.75MnO3±δ 
M4                  (Pm-3m) 
H4                   (R-3c) 

 
3.8686 
5.4353 

 
 
13.3120 

 
16 
110 

 
 
   79% 

 
 
0.02 

(x=0.80)          La0.20Sr0.80MnO3±δ 
M5                  (Pm-3m) 
H5                   (R-3c) 

 
3.8585 
5.4226 

 
 
13.3007 

 
20 
38 

 
 
   82% 

 
 
0.01 

(x=0.85)          La0.20Sr0.80MnO3±δ 
M6                  (Pm-3m) 
H6                   (R-3c) 

 
3.8502 
5.4268 

 
 
13.3253 

 
18 
56 

 
 
   80% 

 
 
0.025 

(x=0.90)          La0.20Sr0.80MnO3±δ 
M7                  (Pm-3m) 
H7                   (R-3c) 

 
3.8416 
5.4287 

 
 
13.2991 

 
16 
61 

 
 
   92% 

 
 
0.02 

(x=1)                       SrMnO3±δ 

M8                  (Pm-3m) 
H8                   (P63/mmc) 

 
3.8511 
5.4572 

 
 
9.1076 

 
21 
76 

 
 
  100 % 

 
 
0.00 
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Figure 4  
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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