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Abstract 

 The integral methods are extensively used for the kinetic analysis of solid-state 

reactions. The Arrhenius integral function [p(x)] does not have an exact analytical 

solution. Thus,  different approaches, accomplishing the condition that ln g(α) is a linear 

function of either 1/T or a predetermined function of T, have been proposed for this 

integral to determine the activation energy from a linear plot of the logarithm of  g(α) 

versus some function of T. The first approach was proposed by Van Krevelen and after 

that, a number of authors developed new approaches, very often with the scope of 

increasing the precision of the Arrhenius integral as checked from the standard 

deviation of the p(xa) function determined from these approximation with regards to the 

true value of the p(x) function. Besides this method, those proposed by Doyle, Horowitz 

and Metzger, Coats and Redfern, MacCallum and Tanner and Gyulay and Greenhow 

are very popular for determining activation energies. In fact, we have found more than 

4500 citations (1300 in the last five years) for the papers were these methods were 

proposed. However, a systematic analysis of the errors involved in the determination of 

the activation energy from these methods is still missing. A comparative study of the 

precision of the activation energy as a function of x and T computed from the different 

integral methods has been carried out.  

Keywords: Arrhenius integral, integral methods, solid state reactions, errors in 

activation energy. 
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1. INTRODUCTION 

Thermally stimulated solid-state reactions, such as decompositions, solid-solid 

reactions, crystallizations, etc, are, in general, heterogeneous processes. The reaction 

rate of such processes can be kinetically described, when it takes place under conditions 

far from equilibrium, by the following expression:1 
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where  t is the time and α is the extent of reaction ranging from 0 before the process 

starts to 1 when it is over. Thus, the left hand side term in eq. (1) is the reaction rate. 

The right hand side term in eq. (1) consists of two terms, i.e. f(T) and f(α), being f(T) a 

function that describes the dependence of the reaction rate with the temperature (T). 

Usually, this dependence is described by the Arrhenius equation: 

RTEeATf /)(        (2), 

being A the preexponential factor of Arrhenius, E the activation energy and R the gas 

constant. Additionally, f(α) is a term that describes the dependence of the reaction rate 

with the mechanism of the process. Different functions have been proposed in literature 

for describing the kinetic mechanism of the solid-state reactions. These mechanisms are 

proposed considering different geometrical assumptions for the shape of the material 

particles (spherical, cylindrical, planar) and driving forces (interface growth, diffusion, 

nucleation and growth of nuclei). Some of the most common equations proposed for 

these reactions are included in Table 1. 

The most common heating profile used for studying solid-state reaction is the 

linear heating program. Under these experimental conditions, T changes in a wide range 

of values and a entire α-T curve is recorded in a single experiment. For linear heating 

rate conditions eq. (1) can be written 
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being β the heating rate. 

Many of the experimental methods used to perform kinetic analysis of solid-state 

reactions are based in the measurement of the evolution of an integral magnitude, i.e. 

proportional to the extent of reaction, such as mass loss, released gas, amount of 

contraction, as a function of temperature. To perform the evaluation of such 

experimental data, it is necessary either to numerically differentiate the experimental 

data or to integrate eq. (3):     
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being x=E/RT. This expression can be written in the logarithmic form: 
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Under linear heating rate program, eqs. 4 and 5 do not have an exact analytical solution 

to p(x) and, therefore, the solution cannot be expressed in a closed form.2 Although, 

other T-t profiles, such as parabolic or hyperbolic programs, yield to analytical solutions 

to the Arrhenius integral, they are very seldom used. Thus, several approximated 

equations have been proposed for p(x) under linear heating program.  

The approximations for  p(x) most commonly used in the determination of the 

activation energy are those proposed by Coats and Redfern,3,4 Doyle,5-7 Horowitz and 

Metzger,8 MacCallum and Tanner,9,10 Gyulai and Greenhow,11,12 and Van Krevelen.13 

All these approximations have been obtained either by simplifications of the series 

expressions or in an empirical way. For a given kinetic model, the resulting equations 

lead to a linear correlation where the kinetic activation energy is easy obtained from the 

slope. The number of publications where these integral methods are used for 
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determining activation energies is vast.  Thus, about 4500 citations can be found in the 

literature for the original papers3-13 where these equations are proposed. Besides, the 

popularity of these integral methods has not decreased, as indicated by their more than 

1300 citations just in the last years, i.e. 2000-2004. In these last five years, the approach 

with more citations has been that of Coats and Redfern3,4 with about 590 citations, 

followed by those of Horowitz and Metzner8 and Doyle5-7 with 230 and 102 citations, 

respectively (information on the number of citations have been obtained from ISI Web 

of Science data base).  Nevertheless, independently of the approximation used, every 

g() leads to a high linear correlation coefficient and, therefore, it is not possible to 

discriminate the kinetic model from a single experimental curve. Additionally, the 

resulting activation energy values are very much dependant on the g() function 

assumed for the analysis (these limitations are extended not only to integral methods but 

also to any procedure that uses a single linear heating rate curve14,15 ). Thus, in 

principle, the integral methods should be only used under the two following 

circumstances: (i) when the kinetic model is already known for obtaining the activation 

energy or (ii) when the activation energy is known for determining the kinetic model. 

Nevertheless, a new question arises about the precision of the activation energy values 

determined by these popular integral methods because, as mentioned above, they are 

based in approximations to the p(x) function and  their precision for the estimation of 

the kinetic parameters are still in doubt, thus some authors have claimed that these 

methods are imprecise.16-19 Some studies have estimated the errors in the approximated 

p(x) functions by comparing the resulting values with those calculated by numerical 

integration, concluding that the errors are quite large. Fig. 1 shows as a way of example 

the evolution of the relative error of the Coats and Redfern approximation for the 

estimation of the p(x) function versus x. This figure indicates that the error decreases 



 5

with x, being significantly large for values of x commonly found in literature for solid-

state reactions. These findings have been used as an argument for invalidating these 

approximated equations in the estimation of the kinetic parameters. Nevertheless, the 

aim of the aforementioned approximations is the determination of the activation energy 

and not the accurate computation of p(x). Taking into account that the integral methods 

are so widely extended and that there is some controversy in their precision, it would be 

of interest to estimate the precision of such methods for the determination of the 

activation energy. The aim of the present paper is to perform a comparative study of the 

precision of the most extensively used approximations to p(x) in the determination of 

the activation energy.  

 

2. ERRORS IN THE ACTIVATION ENERGY 

2.1. Coats and Redfern method. 

 The Coats and Redfern3,4 approach to the Arrhenius integral is the following:  
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the subscript a stands for approximated. In general, the expression more commonly 

used is the simplified form:  
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This approach is named sometimes in literature as Fisher approach.20 By introducing eq. 

(7) into eq. (4), it follows 
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By taking natural logarithms, eq. (8) results 
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Thus, the activation energy could be easily obtained from the slope of the line resulting 

of plotting ln(g())-2ln(T) versus 1/T. 

 The relative error ε of the activation energy (Ea) calculated by the Coats and 

Redfern equation can be defined by the following equation: 
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By differentiating eq. (9): 
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and by differentiating eq. (5): 
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Thus, from eqs (11) and (12), it follows 
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that substituting in eq. (10) leads to 
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This equation indicates that the values of ε% depend on x=(E/RT), and, therefore, on the 

value of the activation energy and of the range of temperature of the process.  The 

values of ε% have been computed by means of the Mathcad software by numerical 

integration of the p(x) function using a tolerance (precision in the calculus) of 10-5. The 

resulting ε% values as a function of the parameter x are included in Table 2. The values 
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included in Table 2 illustrate that there is a significant influence of x in the precision of 

the calculated activation energy values. Thus, ε% ranges from almost -20% for x=2 to 

less than -1% for x values larger than 20; in the limit, for x=, the error is cero.  

 

 

2.2 Doyle method. 

The Doyle approach to the Arrhenius integral is the following:5-7  

aa xxp 4567.0315.2))(log(      (15)  

From eq. (15) and eq. (5), it follows 
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Thus, the activation energy can be obtained from the slope of the line resulting from 

plotting the left hand side of eq. (16) as a function of 1/T: 
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The relative error ε% (eq. (10)) for the activation energy obtained by the Doyle method 

can be obtained from eqs. (12) and (17): 
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The values of ε% have been computed by the same procedure as described in the latter 

section and the resulting error values are included in Table 2.  

 

2.3. Horowitz and Metzger method. 

 The integer equation after assuming the Horowitz and Metzger approach8 to the 

p(x) function is the following: 
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where  is a characteristic temperature such that =T-Ts, being Ts an arbitrary reference 

temperature. From eq. (19), it is clear that the activation energy is obtained from the 

slope of the line resulting of plotting the left hand side of eq. (19) versus , or versus T 

that yields the same slope: 
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From eqs. (12) and (20), the relative error ε% (eq. (10)) in the activation energy 

obtained by the Horowitz and Metzger8 results: 
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Table 2 includes the errors estimated by eq. (21) for the activation energy calculated by 

the Horowitz and Metzger approach. 8  

 

2.6. Van Krevelen method 

Considering the Van Krevelen et al approximation13 to the exponential integral 

of Arrhenius, eq. (5) has the logarithmic form: 

  T
TR

E
T

TE

A
g a

RT

E

a

a

a

ln
)1(

1
368.0

ln))(ln(
max

max
max

max































    (22), 

where Tmax is the temperature at the maximum thermogravimetric rate.  The activation 

energy is determined from the slope of the line resulting from the plot of ln(g(α)) as a 

function of  lnT: 
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Thus, the Van Krevelen et al method,13 even though it is a integer equation, for the 

determination of the activation energy, it requires of the differential experimental curve 

to obtain the Tmax value for eq. (23).   

As in the previous sections, the relative error can be calculated from eq. (12) and 

(23), resulting: 
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The resulting values for the error are included in Table 2.   

 

2.4. MacCallum and Tanner method 

 The decimal logarithmic form of the integer equation (eq. (5)) using the 

approach proposed by MacCallum and Tanner9,10 to the p(x) function results: 
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Thus, the activation energy can be calculated from the slope of the line resulting from 

the plot of log(g(α)) as a function of 1/T: 
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The relative error ε% (eq. (10)) of the activation energy can be calculated from eqs. (12) 

y (26): 
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In this case the error depends both on x and T. Table 3 includes the errors in the 

activation energy as estimated by means of eq. (27).  
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2.5. Gyulai and Greenhow method 

The decimal logarithmic form of the integer equation eq. for the approach of 

Gyulai and Greenhow11,12 can be written as follows: 
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The activation energy can be calculated from the slope of the line resulting from the plot 

of log(g(α)) as a function of 1/T: 
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As in the previous sections, the relative error can be calculated from eq. (12) and (29), 

resulting: 
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This expression has some similarities with that for the errors in the activation energy of 

MacCallum y Tanner (eq. (24)). Thus, here the ε% also depends on x and T (Table 4).   

 

 

3. CHECKING OF THE COMPUTED ERRORS WITH THEORETICAL AND 

EXPERIMENTAL CURVES. 

To check the validity of the errors calculated in the previous section, a set of 

experimental curves have been simulated and analyzed by the integral methods using 

the different approaches analyzed here. Two different curves have been simulated 

assuming two different kinetic models, kinetic parameters, and linear heating rate 

conditions. The simulated curves have been computed by solving the system of two 

differential equations constituted by eq. (1) and  tT /  by means of the Runge-

Kutta method using the mathcad software and a tolerance (precision in the calculus) of 
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10-5. The first curve (Fig. 2a) has been simulated for β= 10 K min-1, an A2 kinetic model 

and the following kinetic parameters: E=35 kJ mol-1 and A=10 min-1. The second curve 

(Fig. 2b) has been computed for β= 1 K min-1, an F1 kinetic model and the following 

kinetic parameters: E=100 kJ mol-1 and A=108 min-1. The average values of x for these 

two curves are 5 and 20 for the first (Fig. 2a) and second (Fig. 2b) curves, respectively. 

These curves have been analyzed by means of the integer method using the different 

approaches analyzed above. The resulting values of activation energy and the 

corresponding errors are given in Table 5. The errors included in Table 5 for the 

different approaches are consistent with those reported in Tables 2-4. The small 

differences between the errors in Table 5 and Tables 2-4 are due to the fact that the 

errors in Tables 2-4 have been calculated at constant values of x, while those reported in 

Table 5 do not correspond to a single x value but to a range of x values because the 

temperature varies in a α-T curve while the activation energy is constant. 

For checking the precision of the method with experimental data, a 

thermogravimetric (TG) curve was recorded for the decomposition of BaCO3 under 

high vacuum conditions. This is a very stable compound with low equilibrium pressure 

(3.5 10-3 torr) in the temperature range (1000 K) at which the reaction takes place. 

Therefore, the decomposition conditions should be properly controlled for maintaining 

the partial pressure of CO2 far away from the equilibrium pressure.21 Such condition 

was fulfilled by using small amount of sample (10 mg), low heating rate (0.2 K min-1), 

and performing the experiment under high vacuum (the balance was connected to a 

vacuum device that reduced the total pressure to 3 10-5 torr). Additionally, during the 

TG experiment, the partial pressure of CO2 was recorded with a quadrupole-mass-

spectrometer to make sure that CO2 partial pressure was far away from equilibrium 

pressure. In fact, the CO2 pressure did not increase during the thermal decomposition 
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above 1 10-6 torr. The thermogravimetric curve obtained under the conditions 

previously described is included in Fig. 3. Table 6 includes the activation energies and 

correlation factors resulting from the analysis of the experimental data (Fig. 3) by means 

of the integer methods analyzed here. It is worth noting that the correlation factors are 

very high for all the approximated equations. Additionally, the experimental integral 

curve was numerically differentiated with the Microcal Origin software and analyzed 

the logarithmic form of the equation resulting from eqs. (1) and (2):14,15,22,23 

RT
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 )ln())(ln(ln 

     (26) 

The activation energy can be directly obtained from the slope of the line resulting from 

the plot of the left hand side of eq. (26) as a function of 1/T. The resulting activation 

energy and correlation factor has been also included in Table 6. Using the activation 

energy calculated from the differential equation (eq. 26) as accurate value (because no 

approximation is involved in the method), we have calculated the errors of the 

activation energies determined by the different integer methods (Table 6). The resulting 

errors are in the range of the expected ones (Tables 2-4) for the value of x=25 

corresponding to this experiment, the small deviations observed are due to experimental 

errors and to the fact that x, as also mentioned before, is not constant during the entire 

process. 

 

4. SUMMARY 

 In this paper we have calculated the errors in the activation energy determined 

by the extensively used integral methods. These methods are based in approximated 

equations of the Arrhenius integral that lead to linear relation between the logarithmic 

form of g() and a function of the temperature from whose slope is determined the 

activation energy. The values of activation energy obtained by the integral method are 
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subjected to some impressions because these methods are based on approximations. It is 

worth to note that, as mentioned above, every kinetic model lead a good linear 

correlation and, therefore, from a single linear heating rate program curve it is not 

possible to determine the activation energy of the process unless the kinetic model is 

known. The scope of the paper is the quantification of the errors in the activation energy 

determined by integral methods when the kinetic model is known. The quantification of 

those errors has not been directly related to the precision of the approximated p(x) 

function for evaluating the temperature integral, because the application of these 

proposed approximations is the determination of the activation energy and not the 

calculation of the temperature integral. The error analyses have shown that for all the 

approaches analyzed here, the relative errors very much depend on x; that is, on E and 

on the average temperature of the process. Additionally, this average temperature of the 

process depends on the value of E, A and the kinetic model followed by the reaction. 

Thus, the error of the activation energy calculated by the integral method is influenced 

by the kinetic parameters of the process. In general, small values of x due to small 

values of E and/or high values of temperature yield relatively high errors and the 

integral methods are not appropriate. On the other hand, for high values of x, the errors 

are quite small. It is worth noting that the approach that leads to the minimum error in 

the activation energy is that of Coats and Redfern. Finally, the calculated error values 

have been checked with those obtained of the analysis of simulated and experimental 

curves showing an excellent agreement.    
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TABLE  1. f() and g() kinetic functions 
 

Mechanism 
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Phase boundary controlled reaction 
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(Avrami-Erofeev eqn. n =1) 
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Erofeev eqn.) 
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Three-dimensional diffusion  
(Jander equation) 
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Three-dimensional diffusion  
(Ginstling-Brounshtein equation) 
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1This equation represents an Avrami-Erofeev kinetic model with n=1 instead of a first order reaction. 

The symbol  A1 would be more proper. 
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TABLE  2. Values of the relative error (ε%) for the activation energy calculated by 

means of the Coats and Redfern, Doyle, Horowitz and Metzger, and Van Krevelen et al. 

equations as a function of the parameter x (E/RT). 

 
x Coats and 

Redfern 
Doyle Horowitz and 

Metzger 
Van Krevelen 

2 -19.72 71.43 80.28 30.28 
5 -4.76 28.60 35.26 15.23 

 10 -1.47 12.72 18.53 8.53 
20 -0.42 4.20 9.58 4.58 
30 -0.20 1.25 6.47 3.13 
50 -0.07 -1.17 3.92 1.92 

100 -0.02 -3.02 1.98 0.98 
 0 -4.90 0 0 

 
 

TABLE  3. Values of the relative error (ε%) for the activation energy calculated by 

means of the MacCallum and Tanner equation as a function of the parameter x (E/RT) 

and the temperature (T). 

 
x 400  600 800 1000 1200 
2 -48.55 -5.14 16.56 29.59 38.27 
5 -15.80 1.56 10.24 15.45 18.92 

10 -6.59 2.09 6.43 9.03 10.77 
20 -2.59 1.75 3.92 5.22 6.09 
30 -1.38 1.51 2.96 3.83 4.40 
50 -0.47 1.26 2.13 2.65 3.00 

100 0.17 1.04 1.47 1.73 1.91 
 0.78 0.78 0.78 0.78 0.78 

 
 

TABLE  4. Values of the relative error (ε%) for the activation energy calculated by 

means of the Gyulai and Greenhow equation as a function of the parameter x (E/RT) and 

the temperature (T). 

x 400  600 800 1000 1200 
2 50.25 52.93 54.86 56.37 57.61 
5 15.84 17.9 19.39 20.55 21.51 

10 4.04 5.89 7.23 8.27 9.14 
20 -1.21 0.55 1.82 2.81 3.63 
30 -2.43 -0.69 0.56 1.54 2.35 
50 -2.72 -0.99 0.26 1.24 2.04 

100 -1.70 0.05 1.31 2.30 3.12 
 18.90 18.90 18.90 18.90 18.90 
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TABLE  5. Values of the activation energies (Ea) and errors (ε%) obtained of the 

analysis of the simulated curves included in Figs 2a and 2b by means of the different 

integral methods  

 
 Simulated curve Fig. 2a 

(x5)* 
Simulated curve Fig. 2b 

(x20)* 

Ea (kJ mol-1) ε%  Ea (kJ mol-1) ε%  
Coats and Redfern 33.5 -4.4 99.6 -0.352 
Doyle 44.4 27.0 103.4  3.40 
Horowitz and 
Metzger 

48.5 38.7 114.2 14.20 

MacCallum and 
Tanner 

38.4 9.7 100.8 0.75 

Gyulai and 
Greenhow 

41.7 19.1 100.6 0.63 

Van Krevelen et al.  41.9 19.8 106.9 6.93 
*The average value of x has been obtained from E/RT=0.5, where T=0.5  is the 
temperature corresponding to =0.5.   
 

TABLE  6. Values of the activation energies (Ea) and errors (ε%) obtained of the 

analysis of the experimental results for the thermal decomposition of BaCO3 obtained 

under high vacuum (Fig. 3) by means of the different integral methods.  

 
Method Correlation factor Ea %* 

Coats and Redfern 0.999 212.5 -0.42 
Doyle 0.999 218.6 2.39 
MacCallum and 
Tanner 

0.999 222.9 4.45 

Gyulai Greenhow 0.999 220.1 3.14 
Horowitz Metzger 0.999 230.3 7.92 
Van Krevelen et al. 0.999 222.6 4.31 
Friedman 0.999 213.4 - 
 

* The errors of the activation energies have been calculated using the activation energy 

determined by the Friedman equation as the accurate value (because no approximation 

is involved in the method). 
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Figure Captions 

Fig. 1. Evolution of the relative error of the Coats and Redfern approach for the 

estimation of the p(x) function versus the value of x. The relative error has been defined 

by the expression: (pa(x)-p(x)/ p(x))·100, being  pa(x) the value obtained by the Coats 

and Redfern approximation and p(x) the value obtained by numerical integration.  

Fig. 2. Simulated curves (a) β= 10 K min-1, an A2 kinetic model and the following 

kinetic parameters: E=35 kJ mol-1 and A=10 min-1; and (b) β= 1 K min-1, an F1 kinetic 

model and the following kinetic parameters: E=100 kJ mol-1 and A=108 min-1
 

Fig. 3. Experimental TG curve obtained for the BaCO3 under high vacuum at a heating 

rate of 0.2 K min-1. 
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