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This paper studies the relation between inflation and relative price variability (RPV) in Spain during the 1987-

2009 period. We find that this relation presents a U-shape profile, and that the optimal annual inflation rate 

(defined as the one that minimizes RPV) is around 4%, higher than the 2% inflation target proposed by the 

European Monetary Union. More importantly, this result does not depend on whether the monetary regime is 

before or after the euro. Hence, the main policy implication is that disinflation efforts to achieve the 2% inflation 

target result in welfare losses. The key link between inflation and RPV is unexpected inflation, whose optimal 

level is around zero. This suggests that monetary policy matters: the welfare costs associated with higher RPV 

can be minimized with a credible and predictable inflation targeting policy set at the appropriate level.  
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I. Introduction 

 

This paper provides new evidence on the key features of the relationship between inflation and relative price 

variability (RPV), focusing on Spain during the 1987-2009 period. We additionally try to determine if the 

inflation target proposed by the European Monetary Union (EMU) is a good guideline for monetary policy. 

Unlike previous studies, we consider all the features of the inflation-RPV relationship for two different monetary 

regimes, the first of higher inflation from the beginning of the period to the entry of Spain in the EMU in 1999, 

and the second sub-period of lower inflation thereafter. This allows us to investigate not only the functional form 

but also the stability of the relationship. Secondly, we estimate the optimal inflation rate, which depends heavily 

on the shape of the inflation-RPV relationship: if such a relation is linear, then the lower the inflation, the lower 

the RPV, so the optimal inflation rate that minimizes the welfare costs of price dispersion is zero; but this 

reasoning is no longer true if the inflation-RPV relationship shows a U-shape, because in this case the inflation 
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rate that minimizes RPV could be positive.
1
 In the third place, we study the role of inflation expectations and 

uncertainty as the linkages between inflation and RPV. 

Our central findings are that the relation between inflation and RPV presents a U-shape profile and, more 

importantly, the annual optimal inflation rate is around 4%, which is higher than the EMU’s 2% inflation target. 

This result is robust: it holds for different time periods. The main policy implication is that disinflation efforts to 

achieve the 2% target level result in welfare losses.  The key link between inflation and price dispersion is 

unexpected inflation, whose its optimal level is around zero. Hence, our results suggest that monetary policy 

matters: the welfare costs associated with higher price dispersion can be minimized with a credible and 

predictable inflation targeting policy set at the appropriate level. 

A huge body of empirical evidence has found a positive inflation-RPV relationship. Whilst traditional works 

like Glejser (1965) and Parks (1978) show that such a relationship is linear, more recently Caglayan and 

Filiztekin (2003) for Turkey and Caraballo et al. (2009) for Argentina, Brazil and Peru show that it is both non-

linear and unstable across different inflationary regimes. Similarly, Fielding and Mizen (2008) for the USA and 

Choi (2010) for the USA and Japan find a U-shape functional profile, as well as a positive optimal inflation rate. 

Meanwhile, Bick and Nautz (2008), in a panel threshold model for several US cities, point out that the annual 

optimal inflation, i.e., the inflation that minimizes RPV,
 
is in the range of 1.8%-2.8%. This result has important 

monetary policy implications: if the optimal inflation rate is positive, reducing inflation below it should increase 

RPV, and the welfare costs associated with higher price dispersion. Finally, Nautz and Scharff (2005) for 

Germany, and Nautz and Scharff (2006) for the Euro-area find that RPV is increasing with inflation, even in a 

low inflation environment. Several theoretical approaches try to disclose the links underlying such a relation: 

menu cost models emphasize the role of expected inflation, while the Lucas-type incomplete information 

approach argues that non-neutrality is explained by uncertainty and unexpected inflation.
2
 

In sum, the empirical results suggest a changing inflation-RPV relationship and support the idea of non-

neutrality, regardless of the inflation environment. Thus, inflation increases price dispersion, and thus welfare 

costs. Nevertheless, the literature has focused only on some of the key features of that relationship. For instance, 

Choi (2010) studies the shape and the stability across different inflation regimes for the USA, while Choi et al. 

(2011) extend the study to a wider sample with inflation targeting countries. However, these papers do not 

                                                           
1 In the literature focused on the inflation-RPV relationship, where this paper is included, the optimal inflation rate is defined as the one that 
minimizes RPV. Obviously, the term “optimal inflation” could refer to many other different meanings –such as the inflation rate related to 

the optimal monetary rule proposed by Friedman (1969), or the optimal output-inflation trade-off assessed in Tobin (1972) and Lucas (1973), 

among others– but they are not going to be taken into account in this paper. 
2 For additional explanations see Sheshinski and Weiss (1977), Rotemberg (1983), Caplin and Spulber (1987) and Caplin and Leahy (1991). 

In turn, early developments of the signal-extraction model can be found in Lucas (1973) and Barro (1976), Hercowitz (1981) and Cukierman 

(1983). 
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consider the crucial role played by the channels that connect inflation and RPV, in particular uncertainty and 

inflation expectations in different monetary and inflationary regimes.  

  In order to explore the key features of the inflation-RPV relationship for the case of Spain, the paper is 

organized as follows. In Section II we describe the price data and variables. Section III contains an Ordinary 

Least Square (OLS) estimation of the inflation-RPV relationship for the full sample and for the two sub-samples, 

before and after the entry of Spain into the EMU. This is not stable across both periods, which suggests a non-

linear relation between inflation and RPV. Thus, in Section IV we check the stability of coefficients and carry 

out semiparametric estimations, which allow us to obtain the optimal inflation rate. Section V studies the role of 

inflation expectations and uncertainty. Finally, Section VI concludes.  

 

II. Price Data and Variables 

 

 In this study we employ monthly price data of the Spanish Consumer Price Index (CPI), disaggregated into 

57 categories, over the 1987.01-2009.09 period.
3
 Data were extracted from the Instituto Nacional de Estadística 

(National Institute of Statistics). For each category and for the average, the inflation rate is the monthly log-

difference of the CPI.  

RPV is a measure of the non-uniformity: it captures the inflation rate of individual prices in relation to the 

average inflation rate.  In order to avoid spurious correlation between the mean (the average inflation) and the 

variance (in this case RPV) we use a modified version of the coefficient of variation (CV), as follows: 

 

 

/IN/1

)IN(INw

RPV
t

i

1/22
titit

t







 ,                                                                                                                      (1) 

 

where wit is the weight of price i in the price index, INit  the inflation rate of the price i, and INt  the average 

inflation rate at time t.  

We consider that expression RPV in equation (1) is the best option to define RPV because it avoids two 

important problems. On the one hand, instead of the simple variance or standard deviation, it is not spuriously 

correlated with the mean of the distribution, i.e., the inflation rate. On the other hand, and more important in low 

inflation economies, for inflation rates near zero, the traditional formula of CV generates values of RPV tending 

                                                           
3 The 57 categories appear in Appendix A. 
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to infinite, which implies an “artificial” negative inflation-RPV relationship. Both series, IN and RPV, were 

deseasonalized by the TRAMO-SEATS method.  

Since we study in Section V the role of inflation expectations and uncertainty in explaining the relation 

between inflation and RPV, we need to decompose inflation (IN) into its components: expected inflation (EIN), 

unexpected inflation (UIN) and uncertainty (UN). In order to do this, as Elliott and Timmermann (2008) point 

out, univariate time series models seem to be appropriate to forecast inflation, especially when data are monthly. 

Thus, we have chosen a univariate autoregressive moving-average model for the mean inflation and we have 

specified a GARCH equation for the variance of the inflation model error term, which allows us to estimate a 

proxy for UN.
4
 Since the dynamics of inflation has changed during the period, to obtain the estimations of EIN 

and UN the parameters of the ARMA-GARCH model have been estimated by means of recursive regression in 

which we used monthly inflation data from December 1979 to August 2009. EIN is derived as the one-period-

ahead inflation forecast and UIN is the resulting forecast error: UIN=IN-EIN. 

We take into account the updating information process for CPI inflation in Spain. Following the standard 

model of inflation forecasting, it was assumed that the available information in t-1 to forecast inflation in period t 

is the actual inflation until t-2 and the expected inflation for t-1, given that the actual inflation for t-1 is known 

about the middle of period t.  

Therefore, EIN was obtained from a two-step procedure. In the first stage, in order to select the appropriate 

number of lags, inflation for the total period has been modelled as an ARMA process using the standard Box-

Jenkins methodology. As is well known, the first step to model uncertainty with the variance of the error terms 

of the inflation model is to test if inflation is stationary (see Section III). If this is not the case, the variance of 

errors explodes and it makes no sense to use such a variance as a proxy of uncertainty.  

As usual, the Akaike information criterion has been applied to determine the optimal lag structure, from 

which an ARMA (1,6,12)(12) was selected as the best fitting ARMA model. Nonetheless, the forecast errors of 

this model were heteroskedastic, so that the inflation model could indicate uncertainty. To estimate a proxy for 

UN, we have specified a GARCH equation for the variance of the inflation model error term. A GARCH (1,1) 

                                                           
4 The GARCH model implies that uncertainty changes slowly over time. Given the role played by the monetary policy in Spain during the 

period analyzed in this paper, we can assume such behaviour for uncertainty. The Spanish economy reached the highest inflation rates in 
1977 and 1978, due to the political transition process and the oil crises. Since then, the monetary policy aimed at reducing inflation through 

different restrictive measures. In fact, inflation dropped from 26% in 1977 to rates below 8% in 1987, the first year of the period under study. 

Monetary policy has maintained its goal of stabilizing inflation, especially with the independence law of the Bank of Spain in 1994, the 
government’s commitment to meet the inflation targets for the incorporation into the euro, and after the EMU, with the 2% target set by the 

European Central Bank. Thus, inflation uncertainty should change slowly due to the credibility of the commitments of monetary policy to 

reduce and stabilize inflation. 
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minimizes the Akaike criterion and, by the simultaneous estimate of the ARMA process for the mean inflation 

and the GARCH equation, the following new inflation model with homoscedastic forecast errors is obtained: 

 

tttttt aINaINaINaIN    1241236211 ,                                                                                                       (2) 
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2
  ttt bb   ,                                                                                                                                            (3) 

 

where σεt
2 
is inflation uncertainty (UN).  

In the second step, once we have selected the optimal lag structure for the ARMA-GARCH model, we have 

calculated EIN and UN using the recursive coefficients technique. As expectations are based on past information, 

EIN was derived as follows: the expected value for January 1987 is calculated with the actual value from 

December 1979 to November 1986 and with the expected value for December 1986, and for the rest of the 

period we estimate the following model from December 1979 until t to derive EINt+2:  

 

tttttttttt aINaINaINaIN    12,412,36,21,1
,                                                                                   (4) 
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  ttttt bb   .                                                                                                                                      (5) 

 

III. Monetary Regimes, Inflation and RPV: Basic Regression 

 

Prior to the regression analysis, the stationarity of IN and RPV is checked by applying the Augmented Dickey-

Fuller (ADF), Dickey-Fuller with GLS Detrending (DF-GLS) and Phillips-Perron (PP) unit root null tests to the 

seasonally adjusted series for the total period. The results are presented in Appendix B, Table A2. A unit root is 

rejected for inflation, even though only at 10% for the ADF and DF-GLS tests when we apply the Akaike criteria 

to select the optimal lag length. On the contrary, the results for RPV are ambiguous: both the ADF and DF-GLS 

tests fail to reject a unit root, while PP rejects it. Such differences can be due to the presence of structural breaks 

in the series. Hence, we apply the unit root tests proposed by Perron (1997) and Vogelsang and Perron (1998), 

which allow for a break in the series at an unknown time. The results are presented in Appendix B, Tables A3 

and A4. Both IN and RPV present possible breaks from 1997.04 to 1998.05, and a unit root is rejected only for 

inflation. 
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In order to check the robustness of our results, in this section we employ the seasonally adjusted monthly 

core inflation (CIN), i.e., inflation obtained by excluding unprocessed food and energy prices, from which the 

corresponding RPV has been calculated (CRPV). The ADF, DF-GLS and PP tests show different results for CIN 

and CRPV. Once we apply the tests proposed by Perron (1997) and Vogelsang and Perron (1998), a unit root 

with a break cannot be rejected for both variables. A possible break appears between 1997.08 and 1999.01 (see 

Appendix B for details). In all cases the breaks are associated with a change in the monetary policy regime, and 

with different inflation behaviour: the annualized monthly inflation rate slumped from 7.4% to 1.4% before the 

entry of Spain into the EMU, while it has been fluctuating between 5.3% and -0.8% thereafter.  

 

A. Basic Regression Analysis 

 

A first approach to the relation between inflation and RPV is obtained from OLS regression analysis. Taking into 

account the breaks mentioned above, we have run the OLS regression for the full period and for two sub-periods: 

before and after the EMU. In order to avoid distortions, the months in which the variables may present breaks 

were left out. Therefore, for IN and RPV we drop the period from 1997.04 to 1998.05. Hence, the first sub-period 

spans from 1987.01 to 1997.03, and the second from 1998.06 to 2009.09. For CIN and CRPV, we leave out the 

period from 1997.09 to 1999.01, so that we have two sub-periods: 1987.01-1997.08 and 1999.02-2009.08. 

Moreover, to capture the impact of inflation and deflation on price dispersion, RPV is regressed on the absolute 

value of inflation (AIN) and CRPV on the absolute value of core inflation (ACIN).   

The estimations include the number of lags of AIN, ACIN, RPV and CRPV that minimize the Akaike 

criterion. Thus, the resulting regression equations are: 

 


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Table 1 presents the results of estimations of (6) and (7). They show that the coefficients of AIN and ACIN 

are positive and significant for the first period, the pre-EMU stage, while they are negative and not significant 
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for the second period, the post-EMU stage.
5
 These results can hide structural changes in the inflation-RPV 

relationship. Since the parametric model seems to be too restrictive to capture a changing relation, in the next 

section we undertake a stability test and a semiparametric approach. 

 

[TABLE 1 HERE] 

 

IV. Coefficient Stability and Non-Linearities 

 

A. Coefficient Stability 

 

Additional precisions on previous evidence on a time-varying pattern of the inflation-RPV relationship were 

obtained by employing rolling and recursive regression equations, which allow us to capture variations of the 

explanatory variables coefficients (in this case AIN), without imposing any prior to the timing of break points. 

Hence, it is flexible in detecting structural changes over time, by allowing each rolling sample to have a 

completely different estimation. A parametric model is used, where RPV is the dependent variable, and the 

explanatory variables are AIN and the lags of RPV and AIN that minimize the Akaike criterion. Therefore, we 

estimate: 

 




 
12

1

,,1

h

thtthtttt RPVAINRPV   .                                                                                                        (8) 

 

Thus, changes in the inflation-RPV relationship can be outlined by the instability of the parameters over 

rolling samples. The results for β1,t, our parameter of interest, which is obtained from different rolling and 

recursive regression windows, are reported in Figure 1. Recursive coefficients have been estimated by successive 

additions of one month to the 1987.01-1991.12 sub-sample and rolling equations have been estimated for fixed 

windows of six, eight and ten years. Figure 1 shows that in all cases β1,t is strongly unstable and decreasing in the 

second half of the total period. In the case of recursive coefficients estimation, this result indicates a changing 

marginal impact of AIN on RPV when new months are incorporated into the estimation. In turn, the rolling 

                                                           
5 The same conclusions are achieved when inflation and core inflation, instead of their absolute values, are taken as explanatory variables. 
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regressions for fixed windows present a lower step of such coefficient for the post-EMU period, i.e., since 1998, 

approximately, and this result is robust for different sizes of the windows.
6
  

 

[FIGURE 1 HERE] 

 

In short, the empirical evidence shows an unstable relation between inflation and RPV. This varies 

significantly with the monetary policy regime. More precisely, coefficients are sensitive to the addition of years 

from 1998, and they drop and lose significance in the post-EMU period. Even more, β1,t reaches negatives 

values, which implies a negative relation between inflation and RPV.
 
 This negative value and, in general, the 

less influence of inflation on RPV, is associated with the fact that, after the entry of Spain into the EMU, the 

inflation rate was stabilised but RPV increased sharply. This was due to the fact that the existence of a single 

currency lowered the inflation of tradable goods and services compared to inflation of non-tradable ones. Hence, 

the lower the mean inflation the higher the difference between the inflation of tradable and non-tradable goods 

and services, and, therefore, RPV is high for both high and low inflation, and low for medium inflation. This 

explains that a linear specification for the inflation-RPV relationship does not seem to be adequate. We mean to 

tackle this issue in the next section.  

 

B. Semiparametric Approach and Optimal Inflation 

 

In order to find out additional information about the relation between inflation and RPV, we apply a partially 

linear model. As a preliminary step, we try to approximate the shape of such a relation by including a squared 

inflation term, as follows: 

 




 
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h

ththttt RPVININRPV  .                                                                                                   (9) 

 

                                                           
6 Similar results for core inflation were obtained from rolling and recursive equations. The coefficient for core inflation starts to decline very 

sharply from 1998-1999, depending on the window size. In contrast to the inflation-RPV relationship, the coefficient for CIN is strongly 

significant in the pre-EMU stage for all cases. These results are available from the authors upon request. 
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The results displayed in Table 2 show evidence of a U-shape for such a relationship for the total period and 

the second sub-period (the squared inflation is significant) but not for the first one (the squared inflation is not 

significant).  

 

[TABLE 2 HERE] 

 

The next step is to carry out a semiparametric analysis, which in turn allows us to obtain the optimal 

inflation. To compare this with our previous findings, the same number of lags for RPV and IN of equation (6) 

are included, so that the following equation is estimated:  

 

 


 
12

1

12

h

tttht INgRPVRPV  ,                                                                                                                     (10) 

 

where g(INt) is an unknown non-linear smooth differential function, which relates inflation and price dispersion 

at time t. Therefore, our goal is the estimation of g(INt) in (10).  

The g(INt) function has been estimated semiparametrically in two stages. In the first one we estimate λk from 

the following regression equation: 

 




 
12

1

12

h

ttht RPVRPV  ,                                                                                                                                 (11) 

 

where htRPV   are the residual series from a non-parametric regression of each lag of  RPVt on INt.  

In the second stage we estimate g(INt)  non-parametrically from the regression: 

 

  ttt vINg ̂  ,                                                                                                                                                   (12) 

 

where 
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h
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In both stages we estimate the non-parametric regressions by applying a Nadaraya-Watson kernel regression 

estimator. Since the results of nonparametric regression are very sensitive to the bandwidth parameter (h), h has 
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been selected using a mean squared forecast error (MSFE) criterion. Moreover, as the treatment of extreme 

values of inflation can affect the results, we use an unbounded Gaussian kernel and an outlier-robust 

Epanechnikov kernel.  

 

[TABLE 3 HERE]  

 

The results of MSFE for different values of h in the semiparametric estimation are presented in Table 3. This 

indicates that the optimal bandwidth parameter is higher for the outlier-robust kernel. In turn, to capture the 

sensitivity of RPV to marginal increases in inflation, after the estimation of g(INt), we obtain the derivative of 

this function. If g’(INt) >0 (g’(INt) < 0), RPV is increasing (decreasing) in inflation, and the optimal inflation 

rate is given by g’(INt) = 0. The derivative of g(INt) was evaluated at 55 monthly inflation rates from -0.00097 to 

0.01. The results for Epanechnikov and Gaussian kernels and different bandwidths are depicted in Figure 2. This 

shows that g’(INt) are upward sloping and approximately linear for higher values of the bandwidth. Thus, g(INt) 

is non linear and in fact can be represented by a U-shape functional profile, while g’(INt) = 0 for a positive 

inflation rate, which is specified below. 

 

[FIGURE 2 HERE] 

 

Table 4 presents the annual optimal inflation rate obtained for each bandwidth considered in Figure 2. The 

results show that the optimal inflation is 4.17% for both the Epanechnikov and Gaussian kernels and higher at 

higher bandwidths.
7
 Such a value is similar to evidence found by Fielding and Mizen (2008) for the USA. In 

turn, our findings suggest an interesting issue in terms of monetary policy. As the inflation-RPV relationship 

presents a U-shape profile, and the optimal inflation rate is around 4%, additional efforts to reduce inflation 

under this value do not bring benefits of a lower RPV. Hence, the current goal of an annual inflation rate of 2% 

should increase price dispersion, which distorts the informational content of nominal prices, and thus impedes an 

efficient resource allocation. 

 

[TABLE 4 HERE] 

                                                           
7 We have checked our results for two additional outlier robust kernels: Cosine and Biweight. For both of them, the optimal bandwidth is 

0.0013, the corresponding MSFE are 3.939*10-5 and 3.641*10-5 and the optimal annual inflation rates are 4.17% and 3.93% respectively. 
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Following the same methodology, we estimate the optimal inflation rate for different time periods. In order to 

compare these results with those of the total period, we keep the optimal bandwidth of each kernel (i.e., 0.0007 

for the Gaussian kernel and 0.0013 for the Epanechnikov kernel).
8
 The time periods were selected as follows: we 

consider the last month (2009.08) as fixed and change the initial date. Therefore, initially we carry out the 

estimations for the period 1988.01-2009.08, then for the period 1989.01-2009.08, and so on. Finally, the process 

stops when we consider only the post-EMU period. Table 5 presents the results, which show that the optimal 

inflation is around 4%-5%. This result differs from other findings, in particular from Choi et al. (2011). They 

find an optimal inflation within the announced target that, jointly with the inflation trend, declines over time. On 

the contrary, our results point out that the optimal inflation rate is higher than the inflation target of the euro 

zone, while it is not declining over time.  

 

[TABLE 5 HERE] 

 

To sum up, the evidence in Section IV hints at a non-linear relation between inflation and RPV, from which 

an optimal inflation rate around 4-5% is obtained. Furthermore, this result is robust to different time periods as 

Table 5 shows.
9
 Moreover, inflation expectations and uncertainty can be the underlying causes behind this kind 

of relation (see, for example, Caraballo et al. 2006, Caraballo and Dabús 2008, Caglayan et al. 2008, Becker and 

Nautz 2009b and Choi 2010). This issue is studied in the next section. 

 

V. Inflation Expectations and Uncertainty 

 

There are several theoretical approaches trying to explain the links underlying the inflation-RPV relationship. 

Firstly, menu cost models assume that nominal price changes are costly, which imply that firms set prices 

discontinuously, according to an (S, s) pricing rule. Hence, nominal prices are changed only when the real price 

hits a lower threshold, s, so that the new real price equals a higher return point S. The crucial point is that an 

                                                           
8 Results presented in Table 5 do not change if we use different kernels, like Biweight and Cosine, or different values of the bandwidth. For 

the Biweight kernel, the optimal inflation is in the range of 3.64%-4.75%, and for the Cosine kernel in the range of 4.13%-4.91%. As far as 
the bandwidth is concerned, we have calculated the optimal inflation using the Epanechnikov kernel and values for the bandwidth from 

0.0005 to 0.0031 and results do not differ from those in Table 5. These results are disposable from the authors upon request.  
9
 These results reinforce those obtained in Section IV.A: monetary regime matters in order to reject a linear relation between inflation and 

RPV. In the period before the euro, high inflation was associated with a high RPV. The single currency implied an increase in RPV for low 

inflation, given the different behaviour between tradable and non-tradable inflation. This explains that a medium inflation rate of 4-5% 

minimizes RPV. 
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increase in the expected inflation induces a higher width of the (S, s) band to conserve on menu costs. This 

should reduce the price-change frequency, and then, assuming staggering price setting, increase price dispersion. 

Thus, this approach predicts that during deflationary periods the model works in reverse, so that RPV is 

increasing in the absolute value of the expected inflation (i.e., the relationship is V-shaped). Secondly, the signal-

extraction model proposed by Lucas (1973) and Barro (1976) states that ex ante inflation uncertainty generates 

“misperceptions” of absolute and relative prices, creating confusion between aggregate and relative shocks. 

However, in the presence of firms with identical elasticity of supply, realized aggregate shocks do not have 

effects on RPV, because all firms respond identically to any given aggregate shock, while ex ante inflation 

uncertainty has a positive effect on RPV. In an extension of the signal extraction model, Hercowitz (1981) and 

Cukierman (1983) assume firms with different supply price elasticity, which implies different responses of prices 

to unexpected aggregate demand shocks. Thus, the higher the unexpected inflation the higher the RPV, i.e., the 

key factor is the size of the shock, while the sign of unexpected inflation is irrelevant. 

Therefore, in order to find the links between inflation and RPV, this section introduces the components of 

inflation: expected and unexpected inflation, and uncertainty. All of them were estimated as explained in Section 

II. The EIN series shows a seasonal component which has been removed using the TRAMO-SEATS method. 

UIN is the difference between seasonally adjusted IN and seasonally adjusted EIN, whereas UN does not present 

a seasonal component. 

To capture the V-shaped relationship between inflation and EIN predicted by menu cost, we should take the 

absolute value of EIN, but for our data EIN is always positive. Meanwhile, we test the implications of the 

extension of the signal extraction model mentioned above by means of the positive unexpected inflation (UIN
+
) 

and the absolute value of negative unexpected inflation (AUIN
-
). The lags of RPV that minimize the Akaike 

criterion are included. Besides, lags for EIN, UIN
+
, AUIN

-
 and UN were not included as regressors because lags 

of inflation were previously included in the calculus or inflation expectations, so that the persistence of inflation 

is taken into account in equation (13). 

Finally, the following equation is estimated for the total period and the pre-EMU and post-EMU periods 

shown in Section III for the inflation-RPV relationship: 

 

tkt

k

kttttt RPVUNAUINUINEINRPV   



 
12

1

4320
.                                                       (13) 
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[TABLE 6 HERE] 

 

Table 6 shows that EIN and UN are not significant. This result holds when recursive and rolling equations 

techniques are applied: none of them is significant regardless of the size of the window or the sample. 

Meanwhile, as far as unexpected inflation is concerned, both UIN
+ 

and AUIN
-
 are significant for the whole 

period, but for the pre-EMU period AUIN
-
 is significant only at 10%, and for the post-EMU period UIN

+
 is not 

significant. These results are consistent with the U-shape inflation-RPV relationship found in Section IV: since 

both high and low inflation increase RPV, positive unexpected inflation implies a higher inflation than expected 

and thus a higher RPV, while negative unexpected inflation implies a lower inflation than expected, and then a 

higher RPV. 

However, the Wald test fails to reject the null of β2 = β3, which indicates the relevance of unexpected 

inflation in explaining RPV. Rolling and recursive equations show that β2 and β3 decline during the period and 

they show weak sensitivity to sample or window size (see Appendix C). The latter result is in line with those 

presented in Section IV, given that if unexpected inflation explains the relation between inflation and RPV, and 

this relation becomes weaker during the period, the coefficients of unexpected inflation are supposed to decline 

as well.
10

 Therefore, the role of unexpected inflation seems to be compatible with the signal extraction model’s 

predictions. Nonetheless, these models refer to zero inflation, while our evidence is framed in a case of positive 

inflation, so that our results are only partially compatible with their predictions.  

Finally, we try to find the true shape of the relationship between inflation and unexpected inflation by means 

of the semiparametric approach for the total period. The variables included in the parametric part are the lags of 

RPV, EIN and UN, while g(UINt) captures a non-linear relation between RPV and UIN. Therefore, the following 

equation is estimated: 

 

tkt

k

ktttt RPVUINgUNEINRPV   




12

1

40 )( .                                                                          (14) 

The optimal bandwidth parameter (h) has been selected as in Section IV, and again unbounded Gaussian and 

outlier-robust Epanechnikov kernels have been used. Table 7 shows the results concerning the MSFE and, as we 

obtained in Section IV, the optimal h is higher for the outlier-robust kernel.    

                                                           
10 Recent work presents evidence of a changing role for inflation expectations. Nautz and Scharff (2005, 2006) and Becker and Nautz 

(2009b) find that the impact of expected inflation on RPV is strongly declining in lower inflation periods, because inflation expectations had 

been stabilized at a low level. 
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[TABLE 7 HERE] 

 

The derivative of g(UINt) was evaluated at 85 monthly unexpected inflation rates from -0.0095 to 0.0095. 

Figure 3 presents the results for the Epanechnikov and Gaussian kernels and different bandwidths. All g’(UINt) 

are upward sloping and very close to a linear function, therefore g(UINt) seems to be nonlinear and hints at a U-

shape profile.  

 

[FIGURE 3 HERE] 

 

Table 8 summarizes the results. As the bandwidth decreases, the optimal value of UIN is nearer zero. 

According to the Epanechnikov kernel, the UIN that minimizes RPV is negative but near zero. Nonetheless, for 

the Gaussian kernel RPV is minimized at negative values of UIN, which can be due to the different treatment of 

the outliers in each kernel. In fact, the results for Cosine and Biweight kernels are very similar to those obtained 

with the Epanechnikov kernel: UIN around zero minimizes RPV.  

 

[TABLE 8 HERE] 

 

In short, if unexpected inflation is near zero, i.e., if there is no difference between actual and expected 

inflation, then welfare costs derived from price dispersion are minimal. From a monetary policy perspective, this 

means that credibility and fulfillment of announcements regarding inflation matter. Only a predictable monetary 

policy could minimize welfare costs caused by the impact of inflation on RPV.  

 

VI. Summary and Conclusions  

 

Evidence of a positive impact of inflation on RPV is widely documented. However, the features of this relation 

among different monetary and inflation regimes appear mixed. Similarly to previous papers for the USA and 

Japan, we find a U-shape inflation-RPV relationship. In turn, the optimal annual inflation rate is around 4%, and 

it remains despite the change in monetary regimes in 1999. Interestingly, this is higher than the inflation target 
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proposed by the European Central Bank. Thus, the goal of an inflation rate lower than the optimal inflation 

should increase RPV, which is harmful to resource allocation and economic performance.  

Moreover, our results suggest that the change of monetary regime, which has implied a change of the 

inflation regime and an in increase in RPV in the Spanish economy, helps to explain the U-shape inflation-RPV 

relationship: before the euro, high inflation was associated with a high RPV, but the lower inflation required by 

the single currency resulted in an increase in RPV, largely due to the differential inflation between tradable and 

non-tradable goods and services. 

Furthermore, the mechanisms underlying the inflation-RPV relation is unexpected inflation. This is significant 

for the total period and for the first period before the entry of Spain into the EMU, while only negative 

unexpected inflation is significant in the second period. Besides, in order to minimize RPV, the evidence 

indicates an optimal value of unexpected inflation near zero, which has clear implications for monetary policy: 

the welfare costs of inflation can be lessened with a credible and predictable inflation targeting policy, even 

though the optimal target we find is larger than the EMU target. In this sense, this evidence requires further 

research. More precisely, it is necessary to investigate which factors could explain an optimal inflation around 

4% for Spain, which is clearly above the target set by the EMU. 

 

 

Appendix  

 

A. Items of the Spanish CPI 

 

[TABLE A1 HERE] 

 

B. Unit roots tests 

 

Table A2 presents the results of the ADF, DF-GLS and PP unit root tests for seasonally adjusted variables.  

 

[TABLE A2 HERE] 

 



  

   

16 

 

On the other hand, we check for the existence of a unit root with structural breaks by applying the tests 

proposed by Vogelsang and Perron (1998). These tests allow us to distinguish two key properties: i) if the break 

affects the constant, the trend or both of them in the series, and ii) if the rupture impact on the variable is 

immediate (additional outlier) or gradual (innovational outlier). Taking into account the evolution of IN and 

RPV, we consider that additional outlier model must fit better to check structural breaks and unit root, because 

the entry into the euro affects IN and RPV once and for all. In turn, we select two models, one includes breaks in 

the constant and the trend, and the other one considers changes only in the trend.  

Following Vogelsang and Perron (1998), testing for a unit root test in the additional outlier framework 

includes two steps. In the first one, the following equation is estimated:  

 

tt

i

t

i

t DTgDUvtuy   ,                                                                                                                    (A1) 

 

where yt is the variable under study (in our case inflation and RPV), u is a constant, t is the trend, and DUt and 

DTt  are dummies for the constant and the trend respectively. Three models can be distinguished: i) if i=A the 

break only affects the constant, and g=0, ii) i=C indicates a rupture in the trend, and then v=0, and iii) i=B 

corresponds to the case that the rupture is in both the constant and the trend. In turn, calling TB the breakpoint, 

DUt=1 and DTt=t-TB if t>TB, and zero otherwise. 

In a second stage, and from the residuals of the regression of equation (A1), we estimate by OLS (A2) if i=A, 

B, and (A3) if i=C. 
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1   ,                                                                                                                                (A3) 

 

where DTB =1 for t=TB+1  and 0 otherwise. 

According to Vogelsang and Perron (1998), two data dependent methods can be applied to detect the 

breakpoints. The first one (method I) selects TB that minimizes tα (t-statistics corresponding to the estimated α in 

equations (A2) and (A3)). In this case, the choice of TB corresponds to the break date which is most likely to 

reject the unit root hypothesis. The second method (method II) can be used for model A and B. In this case we 
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pay attention to tv and tg (t-statistics associated to v (model A) or g (model B) in equation (A1)). We choose the 

breakpoint that maximizes (minimizes) the t-statistics when the direction of the break is known a priori to be 

positive (negative) or the absolute value of the t-statistics when the direction of the break is unknown. Once TB is 

determined, the corresponding tα in equation (A2) allows us to accept or reject unit root.  

On the other hand, to choose the lag length k of ε
i
 t-j in (A2) and (A3) we apply two criteria. The first one 

consists of choosing a fixed value for k, we have considered k =5 (as in Vogelsang and Perron (1998)).The 

second one is based on selecting a value of k (k =k*) in such a way that in regressions (A2) and (A3) the 

coefficient corresponding to k* is significant, while it is not significant for k >k*. 

Results of applying the above methodology to IN, RPV, CIN and CRPV are presented in Tables A3 y A4. 

These series show a change in the trend during the period, therefore in the paper we have taken into account the 

results obtained by model C. Nevertheless, we have also included results for model B. Trimming is slightly 

different in each case but in all of them the first twelve months and the last twenty four months have been 

removed. As can be seen from Table A3 (model C), the unit root is rejected only for IN. With model B results 

are not conclusive with respect to IN, CIN and CRPV. The unit root cannot be rejected in all cases only for RPV. 

 

[TABLES A3 AND A4 HERE] 

 

C. Rolling and recursive equations for unexpected inflation 

 

We estimate the following equation for different window sizes: 

 

tkt

k

tktttttttttt RPVUNAUINUINEINRPV   



 
12

1

,,4,3,2,0
. 

Figure A1 presents the results for β2,t and β3,t. As usual, recursive coefficients have been obtained by 

successive additions of one month to the 1987.01-1991.12 sub-sample and rolling regressions have been 

estimated for a window of 8 years. As can be seen from Figure A1, both coefficients decline during the period: 

β2,t seems to be significant in the pre-EMU stage and β3,t
 
is more sensitive to the sample considered. Similar 

results are obtained for windows of 6, 10 and 12 years (they are available from authors upon request). 

 

[FIGURE A1 HERE] 
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Figure 1. Recursive and rolling regressions 
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Notes: the significance of coefficients is for 10% of confidence intervals, and the months for which they are significant are 
marked in grey lines. The numbers on the horizontal axis represent the ending month of each window. For example, for a six-
year window, the value of beta1,t in 1992.12 captures the estimation of the parameter in (8) for 1987.01-1992.12, and so on. 
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Figure 2. Derivatives of g(INt) 
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Figure 3. Derivatives of g(UINt) 
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Table 1. Basic regression analysis 
DEPENDENT VARIABLE: RPVt   DEPENDENT VARIABLE: CRPVt   

PERIOD 1987.01-
2009.08 

1987.01- 
1997.03 

1998.06-
2009.08 

PERIOD 1987.01-
2009.08 

1987.01-
1997.08 

1999.02-
2009.08 

α 0.0007 
 (0.18) 

-0.0001 
(0.88) 

0.001* 
(0.08) 

α 0.0004 
(0.27) 

0.003*** 
(0.00) 

0.0005 
(0.44) 

AINt 0.07 
(0.29) 

0.20* 
(0.08) 

-0.03 
(0.65) 

ACINt 0.11 
(0.43) 

0.47*** 
(0.00) 

-0.15 
(0.49) 

RPVt-1  0.18
***

 
(0.00) 

0.16** 
(0.03) 

0.29*** 
(0.00) 

CRPVt-1 0.86*** 
(0.00) 

0.77*** 
(0.00) 

0.90*** 
(0.00) 

R
2
adj. 0.81 0.78 0.85 R

2
adj. 0.93 0.56 0.95 

Notes: *, **, *** denote that the coefficients are significant at 10%, 5% and 1% levels respectively. The t-statistics are based on 
standard errors computed according to the Newey-West (1987) procedure to allow for residuals that exhibit both autocorrelation 
and heteroskedasticity of unknown form. Terms in parentheses are the p-values associated with t-statistics. To simplify the 
presentation only the first lag of RPV appears in the table. 
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Table 2. Inflation, squared inflation and RPV 

DEPENDENT VARIABLE: RPVt   

PERIOD 1987.01-2009.08 1987.01- 1997.03 1998.06-2009.08 

α 0.001** 
(0.03) 

0.0008 
(0.53) 

0.001*** 
(0.01) 

INt -0.21** 
(0.03) 

-0.30 
(0.45) 

-0.25*** 
(0.00) 

INt
2 

41.88*** 
(0.00) 

58.32 
(0.15) 

40.08** 
(0.03) 

RPVt-1 0.18*** 
(0.00) 

0.16** 
(0.03) 

0.28*** 
(0.00) 

R
2
adj. 0.81 0.78 0.86 

Notes: *, **, *** denote that the coefficients are significant at 10%, 5% and 1% levels respectively. The t-statistics are based on 
standard errors computed according to the Newey-West (1987) procedure to allow for residuals that exhibit both autocorrelation 
and heteroskedasticity of unknown form. Terms in parentheses are the p-values associated with t-statistics. To simplify the 
presentation only the first lag of RPV appears in the table. 
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Table 3. MSFE for different values of the bandwidth parameter 

Bandwidth parameter Gaussian kernel Epanechnikov kernel 

0.0005 7.149*10
-5

 4.11*10
-5 

0.0007† 7.134*10
-5

 4.097*10
-5

 
0.0013‡ 7.182*10

-5
 4.018*10

-5
 

0.0019 7.252*10
-5

 4.065*10
-5

 
0.0025 7.348*10

-5
 4.140*10

-5
 

0.0031 7.457*10
-5

 4.190*10
-5

 

Notes: †Optimal bandwidth for Gaussian kernel. ‡Optimal bandwidth for Epanechnikov kernel. 



  

   

25 

 

Table 4. Optimal annual inflation rate 

Bandwidth Gaussian kernel Epanechnikov kernel 

0.0007† 4.17%  
0.0013‡ 4.83% 4.17% 

0.0019 5.31% 4.64% 
0.0025 5.88% 5.04% 
0.0031  4.91% 

Notes: †Optimal bandwidth for Gaussian kernel. ‡Optimal bandwidth for Epanechnikov kernel. 
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Table 5. Optimal annual inflation rate at different time periods 

PERIOD Gaussian 
kernel 

Epanechnikov 
kernel 

PERIOD Gaussian 
kernel 

Epanechnikov 
kernel 

1988.01-2009.08 4.42% 4.39% 1994.01-2009.08 4.70% 4.47% 
1989.01-2009.08 4.83% 4.39% 1995.01-2009.08 4.91% 4.41% 
1990.01-2009.08 4.38% 4.38% 1996.01-2009.08 4.91% 4.47% 
1991.01-2009.08 3.93% 4.13% 1997.01-2009.08 4.91% 4.75% 
1992.01-2009.08 4.35% 4.17% 1998.01-2009.08 5.10% 4.91% 
1993.01-2009.08 5.10% 4.47% 1999.01-2009.08 5.49% 4.75% 
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Table 6. RPV, expected and unexpected inflation and uncertainty 

 1987.01-2009.08 1987.01- 1997.03 1998.06-2009.08 

α 0.00 
(0.29) 

-0.00 
(0.44) 

0.00 
(0.60) 

EINt -0.002 
(0.99) 

1.06 
(0.15) 

0.32 
(0.50) 

UINt
+ 

0.31*** 
(0.00) 

0.74*** 
(0.00) 

0.06 
(0.61) 

AUINt
- 

0.24** 
(0.02) 

0.53* 
(0.08) 

0.17** 
(0.05) 

UN 0.05 
(0.81) 

0.54 
(0.44) 

0.03 
(0.85) 

RPVt-1 0.18*** 
(0.00) 

0.20*** 
(0.00) 

0.27*** 
(0.00) 

R
2
adj. 0.81 0.78 0.85 

Wald test: Ho: β2 = β3 

χ
2
(1) statistics (p-values) 

0.36 
(0.54) 

0.61 
(0.43) 

0.87 
(0.35) 

Notes: *, **, *** denote that the coefficients are significant at 10%, 5% and 1% levels respectively. The t-statistics are based on 
standard errors computed according to the Newey-West (1987) procedure to allow for residuals that exhibit both autocorrelation 
and heteroskedasticity of unknown form. Terms in parentheses are the p-values associated with t-statistics. To simplify the 
presentation only the first lag of RPV appears in the table. 
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Table 7. MSFE for different values of the bandwidth parameter 

Bandwidth parameter Gaussian kernel Epanechnikov kernel 

0.0023 9.384*10
-5

 7.912*10
-5 

0.0029† 9.333*10
-5

 7.869*10
-5

 
0.0035 9.349*10

-5
 7.846*10

-5
 

0.0042‡ 9.350*10
-5

 7.838*10
-5

 

0.005 9.386*10
-5

 7.873*10
-5

 
0.0055 9.396*10

-5
 7.909*10

-5
 

Notes: †Optimal bandwidth for Gaussian kernel. ‡Optimal bandwidth for Epanechnikov kernel. 
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Table 8. Optimal monthly unexpected inflation 

Bandwidth Gaussian kernel Epanechnikov kernel Cosine kernel Biweight kernel 

0.0023 -0.29% -0.02% -0.02% -0.04% 
0.0029† -0.30% -0.04% -0.04% -0.04% 
0.0035 -0.33% -0.08% -0.06% -0.06% 
0.0042‡ -0.34% -0.09% -0.07% -0.07% 
0.0049* -0.38% -0.12% -0.12% -0.09% 

0.0055 -0.41% -0.18% -0.12% -0.12% 

Notes: †Optimal bandwidth for Gaussian kernel. ‡Optimal bandwidth for Epanechnikov and Cosine kernels. *Optimal bandwidth 
for biweight kernel. The MSFE corresponding to the optimal bandwidth for cosine and biweight kernels are 7.789*10

-5
 and 

7.908*10
-5
 respectively. 
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Figure A1. Recursive and rolling regressions for unexpected inflation 
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Note: the months for which the coefficients are significant are marked in grey lines (10% significance level). The number of the 
horizontal axis represent the ending month of each window. 
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Table A1. Items of the Spanish CPI 

Data description Average weights
†
 Data description Average weights

†
 

Cereals and by-products 13.837 Footwear for women 7.543 

Bread 18.171 
Footwear for children and 
infants 

4.252 

Bovine meat* 13.360 Repair of footwear 0.515 

Sheep meat* 4.845 Rentals for housing 22.127 

Swine meat* 7.199 
Heating. electricity and water 
supply* 

48.316 

Poultry meat* 8.745 
Maintenance and repair of the 
dwelling 

41.330 

Other meats* 22.167 Furniture and floor coverings 16.097 

Fresh and frozen fish* 16.228 
Household textiles and 
decorations 

6.295 

Seafood and processed fish 12.445 
Household appliances 
including repair 

11.146 

Eggs* 3.108 Household utensils and tools 4.930 

Milk 13.189 Non-durable household goods 17.205 

Milk-based products 15.490 Household services 13.100 

Oils and fats 8.049 
Medical. dental and 
paramedical services 

20.232 

Fresh fruit* 15.988 
Medical products. appliances 
and equipment 

18.140 

Canned and dried fruit 3.182 Personal transport* 164.378 

Fresh vegetables* 9.686 Local transport* 5.621 

Processed vegetables 5.143 Long-distance transport* 5.352 

Fresh potatoes and potatoes 
preparations 

3.494 Communications 27.660 

Coffee, cocoa and infusions 3.281 Recreational items 23.874 

Sugar 1.352 Printed matter 11.819 

Other food products 9.175 Recreational services 14.580 

Mineral waters, soft drinks 
and juices 

6.761 
Pre-primary and primary 
education 

5.997 

Alcoholic beverages 8.729 Secondary education 4.485 

Tobacco 22.626 Tertiary education 6.605 

Garments for men 27.945 
Other educational goods and 
services 

4.328 

Garments for women 32.754 Personal effects 21.660 

Garments for children and 
babyclothes 

12.954 
Tourism. catering and 
accommodation services 

124.893 

Clothing accesories and 
repair of clothing 

5.309 Other goods and services 15.420 

Footwear for men 6.886 Total 1000 

Notes: 
†
From 1987 to 2001 the weights are kept constant. Since then, they have changed each year. The table shows the 

average weights of each product over time. *These items were excluded from the core inflation calculus because they 
correspond to unprocessed food and energy-related items. 
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Table A2. ADF, DF-GLS and PP unit root tests (1987.01-2009.08) 

Variable Criteria 
to select 

lags 

Constant and trend Constant 
No constant, no 

trend 

ADF DF-GLS PP ADF DF-GLS PP ADF PP 

INt Akaike -3.27
*
 -2.84

*
 -11.03*** -1.93 -1.56 -9.78*** -1.24 -3.88*** 

 Schwarz -10.69
***

 -10.32
*** 

 -9.11
***

 -5.08
***

  -1.24  
CINt Akaike -3.09 -2.50 -6.68*** -1.06 -0.54 -4.43*** -1.18 -2.41** 
 Schwarz -3.09 -2.50  -1.19 -0.70  -1.13  
RPVt Akaike -1.36 -1.09 -4.61*** -1.57 -0.93 -4.60*** -0.54 -1.01 
 Schwarz -1.36 -1.09  -1.73 -0.93  -0.54  
CRPVt Akaike -1.33 -1.09 -3.45** -0.35 -0.02 -1.90 1.10 0.10 
 Schwarz -2.31 -1.78  -0.95 -0.74  0.22  

Notes:*,**,*** denote rejection of the null at 10%, 5% and 1% level of significance. A Bartlett kernel-based estimator of the 
frequency zero spectrum is used for the Phillips Perron test. 
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Table A3. Unit root tests with structural breaks. Method I 

Model B: break in trend and constant 

Statistics IN 
k=5 

IN 
k(t-sig) 

CIN 
k=5 

CIN  
k(t-sig) 

RPV 
 k=5 

RPV 
 k(t-sig) 

CRPV 
k=5 

CRPV 
 k(t-sig) 

Min 
tα 

TB 1999.03 1997.08 1994.09 1995.03 1996.07 2000.12 2002.01 2002.01 
tα -5.084** -4.820* -3.493 -4.82** -3.908 -4.005 -6.396*** -5.008* 

Model C: break in trend 

Statistics 
IN  

k=5 
IN  

k(t-sig) 
CIN 
 k=5 

CIN 
k(t-sig) 

RPV  
k=5 

RPV  
k(t-sig) 

CRPV  
k=5 

CRPV  
k(t-sig) 

Min 
tα 

TB 1997.07 1997.07 1997.08 1998.02 1997.08 1997.06 1999.01 1998.09 

tα -4.748** -4.070* -3.052 -4.269 -3.708 -3.630 -3.643 -2.895 

Notes: *,**,*** indicate significance at the 10%, 5% and 1% levels respectively. tα: critical values in Vogelsang and Perron 
(1994). k(t-sig): the lag length k of ε

i
 t-j  has been selected (k=k(t-sig)) in such a way that in regressions (B2) and (B3) (for 

models B and C respectively) the coefficient corresponding to k(t-sig) is significant, while it is not significant for k >k(t-sig).  
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Table A4. Unit root tests with structural breaks. Method II 

        Statistics IN CIN RPV CRPV 

Model B. 
Break in trend 
and constant 

Max tg 
TB 1997.07 1998.06 1998.02 1997.06  
tg 1.859 3.283 18.783 11.742 

 tα   (k=5) -4.771 -3.009 -3.678 -3.643 
 tα (k(t-sig)) -4.698 -4.269** -3.556 -2.699 

Model C: 
Break in trend 

Max tg 
TB 1997.05 1998.05 1998.05 1998.02 
tg 1.840 3.270 18.949 10.451 

Notes: *,**,*** indicate significance at the 10%, 5% and 1% levels respectively. tα: critical values in Perron (1994). k(t-sig): the 
lag length k of ε

i
 t-j  has been selected (k=k(t-sig)) in such a way that, in regression (B2), the coefficient corresponding to k(t-sig) 

is significant, while it is not significant for k >k(t-sig). Obviously for model C, max tg gives some information about TB but it 
cannot be used to test unit root.  
 
 
 
 
 


