
Prototyping Component-Based Self-Adaptive
Systems with Maude

Juan F. Inglés-Romero1, Cristina Vicente-Chicote1, Javier Troya2, Antonio Vallecillo2

1 Dpto. Tecnologías de la Información y Comunicaciones, E.T.S.I. de Telecomunicación,
Universidad Politécnica de Cartagena, Edificio Antigones, 30202 Cartagena, Spain

{juanfran.ingles, cristina.vicente}@upct.es
2 GISUM/Atenea Research Group. Universidad de Málaga, Spain

{javiertc, av}@lcc.uma.es

Abstract. Software adaptation is becoming increasingly important as more and
more applications need to dynamically adapt their structure and behavior to
cope with changing contexts, available resources and user requirements. Maude
is a high-performance reflective language and system, supporting both equa-
tional and rewriting logic specification and programming for a wide range of
applications. In this paper we describe our experience in using Maude for proto-
typing component-based self-adaptive systems so that they can be formally
simulated and analyzed. In order to illustrate the benefits of using Maude in this
context, a case study in the robotics domain is presented.

Keywords. Self-adaptation, component-based architecture, prototyping, Maude

1 Introduction

Nowadays, significant research efforts are focused on advancing the development of
(self-) adaptive systems. In spite of that, some major issues remain still open in this
field [1][2]. One of the main challenges is how to formally specify, design, verify, and
implement applications that need to adapt themselves at runtime to cope with chang-
ing contexts, available resources and user requirements.

Adaptation in itself is nothing new, but it has been generally implemented in an ad-
hoc way, that is, developers try to predict future execution conditions and embed the
adaptation decisions needed to deal with them in their application code. This usually
leads to increased complexity (business logic polluted with adaptation concerns) and
poor reuse of adaptation mechanisms among applications [1]. The use of formal
methods can help alleviating the limitations of current approaches to self-adaptive
system development. In particular, they can provide developers with (1) a means for
creating and sharing common foundations, based on their experience in self-adaptive
system design; and (2) rigorous tools for testing and assuring the correctness of the
adaptive behavior of their systems. The latter is a remarkable open issue, since only a
few research efforts seem to be focused on the formal analysis and verification of
self-adaptive systems.

A. Ruíz, L. Iribarne (Eds.): JISBD’2012, pp. 609-622, ISBN:978-84-15487-28-9.
Jornadas SISTEDES’2012, Almería 17-19 sept. 2012, Universidad de Almería.

Maude [3] is a high-performance reflective language and system supporting both
equational and rewriting logic specification and programming for a wide range of
applications. The rewriting logic of Maude is simple, yet very expressive. This gives
Maude good representational capabilities as a semantic framework to formally repre-
sent a wide range of systems, including distributed and concurrent systems, network
protocols, etc. Maude and its supporting tools can be used in three, mutually reinforc-
ing ways: as a declarative programming language, as an executable formal specifica-
tion language, and as a formal verification framework.

A Maude program can be seen as an executable mathematical model of a system.
Thus, using Maude for prototyping self-adaptive systems, enables their simulation,
formally analysis (e.g., reachability/likelihood of certain system configurations) and
verification (e.g., testing that the system reaches a consistent configuration for all
given contexts). Furthermore, if the Maude prototype is simple, detailed and efficient
enough, it could be directly used as the final system implementation.

In this paper we present our experience in using Maude for prototyping compo-
nent-based self-adaptive systems. The results of this work derive from the implemen-
tation of a case study in the robotics domain. This research continues our previous
works on self-adaptive system design [4] and implementation [5] using the framework
developed within the EU 7FP DiVA Project [6].

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 details the proposed case study. Section 4 describes the Maude specification for
modeling the self-adaptation logic of the case study. Section 5 reports the lessons
learned and, finally, section 6 concludes and presents some future research lines.

2 Related Works

Significant research efforts are being invested to try overcoming the limitations of
current ad-hoc approaches to (self-) adaptive system development. These efforts have
given rise to new adaptation-enabling frameworks and middlewares, and new lan-
guages supporting adaptation primitives [2]. Some contributions provide a conceptual
guidelines describing the different stages of self-adaptation [7], while others focus on
the specification of design patterns for adaptive systems [8] [9]. Kramer et al. [10]
propose a three-layer architecture for self-managed systems, and Oreizy et al. [11]
present an infrastructure that simultaneously supports system adaptation and evolu-
tion. However, most current approaches do not offer either a formal specification of
the adaptation processes, nor a formal reasoning support for testing, assessing and
verifying the adaptation logic. This issue has been highlighted as a major challenge in
several works [1][2].

The field of formal methods is very broad and there is a vast literature describing
their many applications in different domains. The remaining of this section will focus
on formal approaches targeting specific aspects of self-adaptation.

In the area of Architectural Description Languages (ADLs) supporting system ad-
aptation, Wermelinger and Fiadeiro [12] present an algebra for formally specifying
runtime architecture reconfiguration. Canal et al. [13] propose the use of LEDA (an

610 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

ADL supporting inheritance and dynamic reconfiguration) to specify dynamic pro-
grams. LEDA is based on the -calculus, a simple but powerful process algebra that
allows to automatically deriving prototypes from the specification. At a higher level
of abstraction, Zhang et al. [14] present a model-based approach for formally specify-
ing the behavior of adaptive programs, starting from high-level requirements. The
resulting models can be analyzed using model checking techniques and can be used to
generate rapid prototypes from them. Aligned to the latter, the work by Sama et
al. [15] proposes a model-checking approach for detecting faults caused either by
erroneous adaptation logic, or by the asynchronous updating of the context infor-
mation that leads to inconsistencies between the physical context and its internal rep-
resentation in the application. This proposal relies on the formalism provided by the
Finite-State Machine theory. Cansado et al. [16] propose a formal framework that
supports behavioral adaptation and structural recon guration. This approach relies on
the formalisms provided by Labeled Transition Systems and model checking for
(1) reasoning about whether it is possible or not to recon gure the system; and (2) to
verify certain reconfiguration-related properties. Weyns et al. [17] present a rigorous
specification of a reference model for self-adaptation (called FORMS), defined using
the Z notation. FORMS aims to (1) establish a shared vocabulary of primitives that
can be used to precisely define arbitrary complex self-adaptive systems; (2) enable
engineers to precisely express their design choices and assess them; (3) allow for
comparison and evaluation of different types of self-adaptive systems; and (4) lay the
foundation for a systematic method of developing a catalog of architectural patterns.
Bruni et al. [18] propose the use of Maude to demonstrate the feasibility of their con-
ceptual framework in which adaptation revolves around control data. The authors use
the formal toolset provided by Maude (in particular, the statistical model checker
PVesta) for simulation and analysis. As a case study, they consider an example based
on robot swarms equipped with obstacle-avoidance and self-assembly capabilities.

3 Case Study

In this section, we introduce a robotic case study designed to illustrate the benefits of
using Maude for prototyping self-adaptive systems. Firstly, we describe the adapta-
tion scenario. Then, we briefly present the infrastructure we used to implement the
case study. Finally, we provide some details about the component-based software
architecture designed to cope with self-adaptation in the case study.

3.1 Adaptation Scenario

The case study takes place in a room (simulated with Lego blocks) where a small
robot moves around randomly avoiding obstacles. In order to improve this basic func-
tionality in terms of safety, power consumption and efficiency, the robot follows an
adaptation strategy that decides on the following variation points: (1) the signaling
type; (2) the signaling intensity; and (3) the robot velocity. There are two possible
variants for the signaling type (namely, light or acoustic), while the signaling intensity

Prototyping component-based self-adaptive systems with Maude. (Regular) 611

and the robot velocity may take any integer value in the range 0-100. The adaptation
strategy decides the best possible configuration (selection of variants for each varia-
tion point) according to the current context. The context variables considered in the
case study are the ambient light, the ambient noise and the robot battery level, all of
them integer values ranging from 0 to 100.

The goodness of each configuration is calculated based on the impact of each vari-
ant on the three properties being considered, that is: safety, power consumption and
efficiency. The following considerations are made concerning safety (making others
aware of the presence of the robot in the surroundings): (1) light signaling is more
convenient than acoustic signaling when the ambient light is low; and (2) the higher
the ambient noise (might indicate a crowded environment), the higher must be the
signaling intensity and the lower the robot velocity. Regarding power consumption,
the greater the signaling intensity and the robot velocity the greater the power con-
sumption. Thus, if the battery level is low, both the velocity and the signaling intensi-
ty need to be limited. Finally, concerning efficiency, the higher the velocity the shorter
the time it takes to the robot to reach its goal position. Obviously, maximizing safety
and efficiency, while simultaneously minimizing power consumption, imposes con-
flicting requirements. Thus, the adaptation strategy will need to find the right balance
among these requirements to achieve the best possible configuration for a given con-
text, even if some (or none) of them are optimized individually.

3.2 Case Study Implementation

As previously stated, we intend to use the versatility of rewrite theories and, in partic-
ular, of Maude for prototyping self-adaptive systems. However, the computational
limitations of the experimental robot we selected as our target platform made it im-
possible for us to deploy the whole application in it. As a consequence we decided to
adopt the remote processing schema illustrated in Figure 1.

Fig. 1. Deployment infrastructure: core devices, applications and components

612 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

We selected the E-puck robot [19] as our target platform. E-pucks are low-cost
mobile robots with a large range of sensors and actuators that make them appropriate
for testing the proposed self-adaptation strategy. The E-puck robot runs a server that
communicates with a PC via Bluetooth. This server provides the PC with information
about the robot sensor status. Besides, it executes the low-level commands it receives
from the PC (e.g., to turn on/off the lights or the speakers, to move faster or slower,
etc.). In turn, the PC runs three applications (see Figure 1), namely: (1) the self-
adaptive system architecture, specifically developed for the proposed case study; (2) a
generic context simulator; and (3) a generic communication middleware. The self-
adaptive architecture developed for the case study was implemented using Julia: the
Java reference implementation of the Fractal component model [20]. We selected
Julia for its runtime reconfiguration capabilities, among other interesting features.

In order to make the PC applications as independent as possible from the selected
robotic platform and from each other, we have developed a generic (case study inde-
pendent) communication middleware. This middleware provides the PC applications
with a standard interface to interact with the robot services as if they were local. Be-
sides, it manages process concurrency and offers flexibility to transparently connect
different applications, e.g., a virtual robot (instead of a real one), an application dis-
playing execution statistics, etc. Related to this, we have developed a generic (case
study independent) context simulator to emulate changes in (some of) the context
variables. In particular, in our case study, we simulate the robot battery level as E-
pucks do not have a battery sensor. Even if this sensor was available, the simulation
of this context variable seems more practical than waiting for the battery to drain, and
having to recharge it before running the next adaptation test.

3.3 Component-Based Software Architecture

The component-based software architecture developed for the case study is sketched
in Figure 2. As other self-adaptive systems [2], the proposed design includes: (1) a
reconfigurable part, comprising the optional and/or parameterized components; (2) a
set of monitoring components; and (3) an adaptation control unit.

Fig. 2. Component-based software architecture for the case study

Prototyping component-based self-adaptive systems with Maude. (Regular) 613

The Reconfigurable Component gathers the elements of the system that are suscep-
tible to change at runtime. Among them, the Control Component implements the core
robot functionality, that is, the motion control and the obstacle avoidance. This com-
ponent includes a parameter called velocity that regulates the robot motion speed, and
is responsible for activating or deactivating the robot signaling through the iSignaling
interface. The Reconfigurable Component also contains two optional components,
each one implementing one of the alternative ways for signaling the robot position:
Light Signaling and Acoustic Signaling. Both these components contain an intensity
parameter that regulates the frequency of the light and the acoustic signals, respective-
ly. The three variation points available at the Reconfigurable Component (i.e., select-
ing one of the two alternative signaling components and setting the velocity and the
intensity parameters) will need to be fixed at runtime by the adaptation strategy (im-
plemented by the Adaptation Control as detailed later).

The monitoring part of the architecture provides the context-aware support for the
adaptation. It comprises (1) a set of sensors (Noise Sensor, Light Sensor and Battery
Sensor) and monitors (Control, Light Signaling and Acoustic Signaling) for acquiring
information both from the environment (external context) and from the system itself
(internal context); and (2) the Event Service component that receives the context in-
formation from the former components via the iMon interface, and notifies the chan-
ges in the context to the Adaptation Control component through the iNotify interface.

Finally, the Adaptation Control component implements the adaptation strategy
which, on the basis of the context changes notified by the Event Service component,
decides which is the best possible configuration (variant selection) for the Reconfigu-
rable Component and applies the required changes via the iReconf interface. Next
section details how the Adaptation Control component relies on Maude for executing
this adaptation strategy.

4 Prototyping Self-Adaptation with Maude

This section describes the Maude specification of the self-adaptation strategy defined
for the case study. Note that, for lack of space, we do not provide the complete Maude
specification, but only the essential concepts for modeling the self-adaptation logic.

4.1 Overall Proposed Approach

Similarly to the systems described in [18], we have implemented our case study with
Core Maude using an object-based programming approach. This allows us to model
our self-adaptive systems as configurations (collections) of objects and messages that
represent (a snapshot of) a possible system state. Each object has an identifier, a class
and a set of attributes (e.g., < oid : cid | attr1, attr2 > represents an object
with identifier oid, belonging to the class cid, and with two attributes attr1 and
attr2). On the other hand, messages are described as operators that return a value of
type Msg. Each message includes an identifier and a list of arguments (e.g.,
mid (arg0, arg1) represents a message with identifier mid and arguments arg0 and

614 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

arg1). The idea behind using a set of objects and messages to represent the system
state is that we can specify the adaptation behavior as a set of rewrite rules that con-
sume and produce objects and messages, i.e., evolve the system state.

We have used Maude for specifying both the main adaptation loop and a bridge
aimed to enable the communication between Maude and the Java implementation of
the Adaptation Control component. Regarding the later, the communication is per-
formed through the standard I/O using the Domain Specific Language (DSL) summa-
rized in Table 1. A read-eval-print loop has been implemented to handle this commu-
nication and to maintain the persistent state of the application.

Concerning the adaptation loop, as in most self-adaptive systems [2], it mainly
comprises three processes, namely: (1) gathering and assessing the current context,
(2) reasoning on the best adaptation possible, and (3) performing the system reconfig-
uration. In our case, all these processes are carried out by the Adaptation Control
component. Figure 3 outlines the steps of the algorithm that implements this adapta-
tion loop. Each of these steps is further detailed in the following subsections.

Table 1. DSL for the interaction between Maude and the Adaptation Control component

Command Description

Start Starts the adaptation loop

synchArch <component : String>
 <parameter : String>
 <value : String>

Synchronizes the Maude architecture representation with
the actual Fractal architecture implementation. Example:
synchArch “LightSignaling” “state” “running” Maude
is notified of the actual state of the LightSignaling comp.

init (<battery : INT>,
 <noise : INT>,
 <light : INT>)

Maude is notified of the initial low-level context variables
Example: init (100, 55, 20)

battery <value : INT> Updates the battery (0-100). Example: battery 23

noise <value : INT> Updates the ambient noise (0-100) Example: noise 67

light <value : INT> Updates the ambient light (0-100) Example: light 10

notify <component : String>
 <parameter : String>
 <value : String>

Maude is notified of a change in a component.
Example: notify “control” “velocity” “23” The control
component notifies that the velocity has changed to 23

command <component : String>
 <parameter : String>
 <value : String>

Maude sends a reconfiguration command.
Example: command “control” “velocity” “11” The
velocity of control component must be changed to 11

4.2 Initialization

Prior to starting the adaptation loop, an initialization function needs to set up the con-
text and the architecture models that will be used throughout the adaptation process.
This function is labeled in Figure 3 as “Init context and synchronize representation”.

Prototyping component-based self-adaptive systems with Maude. (Regular) 615

Fig. 3. Outline of the adaptation loop

The context model. To safely and efficiently adapt a running system, it is important
to have a well- tted model of its context. A context model should be both detailed
enough to gather all the contextual information relevant for the adaptation, and ab-
stract enough to enable the system to ef ciently reason on it. The proposed case study
considers three low-level context variables, namely: the robot battery level and the
ambient noise and light levels. The context model abstracts these low level variables
by defining three new high-level variables: batt {LOW, MEDIUM, FULL} noise
{NORMAL, NOISY, NOISIEST} and light, which is a Boolean. The function that
computes the high-level context variables from the low-level ones (e.g., deciding
when a battery level is LOW, MEDIUM or FULL) will be later detailed in sec-
tion 4.3. A possible configuration of the context model could be as follows:

< ctx : Context | batt : FULL, noise : NORMAL, light : false >

The architecture model. Similarly to the context model, maintaining an explicit
re ection model that abstracts the actual running system is essential to efficiently
decide on and execute the required reconfigurations. This model needs to be synchro-
nized with the actual component-based system architecture in order to provide the
adaptation logic with up-to-date information. With regard to adaptation, the only rele-
vant information contained in the case study system architecture (see Figure 1) is the
list of components gathered in the Reconfigurable Component (neither the component
interfaces nor the connectors are modeled). Each component in this list is modeled in
Maude with an object containing, at least, two attributes: name (String) and state
{RUNNING, STOPPED}. An additional attribute will be added for each parameter
defined in each component. A possible configuration of the architecture model could
be as follows (please, note that the state of the AcousticSignaling component is
STOPPED, meaning that it is not present in the actual system architecture):

<c : Control | name : "control", state : RUNNING, velocity : 5 >
<l : LightSignaling | name : "lsig", state : RUNNING, intensity : 50 >
<a : AcousticSignaling | name : "asig", state :STOPPED, intensity:50>

616 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

Architecture and context model initialization. Before starting the adaptation loop,
the context and the architecture models need to be created and synchronized for the
first time to reflect the actual situation. Firstly, Maude creates and initializes a default
architecture model containing all the components in the Reconfigurable Component.
Secondly, when the Fractal architecture is created, all its components send (via iMon)
their initial state and attribute values to Event Service. This component notifies (via
iNotify) these values to Adaptation Control which, in turn, sends to Maude one or
more synchArch message for each component. These messages trigger in Maude the
arch-synchronization rewrite rule, which consumes the message and updates the
state and attributes of the corresponding components in the architecture model. Mes-
sages from components not belonging to the Reconfigurable Component are discarded
and produce no update. Finally, Maude waits until the Adaptation Control sends an
init message with the initial context information. This message triggers the init-
context rewrite rule, which (1) consumes the message; (2) creates and initializes the
context model; and (3) creates a reasoner message that launches the reasoning pro-
cess (later discussed) to assure that the system adapts (if necessary) to the initial con-
ditions. This starts the adaptation loop and, from that moment on, no more init or
synchArch messages are accepted (if they arrive, they are automatically discarded).

4.3 Context Assessment

The main functions of the Context Assessment process are: (1) to update the low-level
context variables when Maude receives new sensor data (see the battery, noise
and light commands in Table 1); (2) to update the high-level context model from
the low-level values previously received; and (3) to launch the reasoning process in
case the changes in the high-level context variables are significant enough. These
three functions are represented in Figure 3 in the decision node D1, the operation
“Abstract context” and the decision node D2, respectively.

In order to compute the high-level context model from the low-level sensor data
we have implemented three rewrite rules (one for each context variable). These three
rules share the same structure: the left-hand side term contains the current context
object and the message with the new low-level context value (this message is con-
sumed once the rule is executed) and the right-hand side term contains the abstraction
and the activation functions detailed next.

The abstraction function. This function maps the low-level context (variables usual-
ly quantified as integer or float values) into the high-level context (variables usually
modeled as enumerations or Booleans, providing a more qualitative than quantitative
information). In the current implementation, we use fix thresholds (predefined at de-
sign-time) for segmenting the low-level context data. For instance, we consider the
batt (high-level) to be FULL when the battery (low-level) value is greater than 80.

The activation function. This function determines how much the context must
change to require a new adaptation step. If this function is not appropriately adjusted
at design-time it may lead to a slow or ineffective adaptation or, what is worse, to an

Prototyping component-based self-adaptive systems with Maude. (Regular) 617

instable situation in which continuous reconfigurations are made to cope with every
single small change in the context. In the current implementation, the adaptation pro-
cess starts only if a high-level context variable changes. In this case, a reasoner
message is created that triggers the rules performing the reasoning process, detailed
next. This mechanism is more robust and stable than defining a fix variation range on
a low-level context variable that, when exceeded, causes a new adaptation step.

4.4 Reasoning

The Reasoning function (see Figure 3) implements the core self-adaptation logic as it
computes the best configuration possible for a given context, that is, it selects the set
of abstract variants that jointly optimize the overall system performance (in our case
the overall system safety, efficiency or power consumption). The abstract variants
considered by Maude conform to the variability model described next.

The variability model. As detailed in section 3.1, the proposed case study considers
three low-level variation points, namely: the signaling type (implies selecting the
Light Signaling or the Acoustic Signaling component), the signaling intensity (integer
ranging 0-100), and the robot velocity (integer ranging 0-100). The variability model
abstracts these low-level variation points by defining three new high-level ones,
namely: signaling {LIGHT, ACOUSTIC} intensity {LOW, MEDIUM, HIGH};
and velocity {SLOW, MEDIUM, FAST}. The abstraction provided by this model,
together with the one provided by the context and architecture models, significantly
simplifies the reasoning process. As shown below, each abstract variant is modeled in
Maude with an object containing the following attributes: name, dimension (ID of the
high-level variation point the variant belongs to), safety, consumption and efficiency
(impact of the variant in each property), score and state.

< v : Variant | name : "slow", dimension : "velocity", safety : 3,
 consumption : 2, efficiency : 1, score : 0, state : AVAILABLE >

The reasoning approach followed in this research is based on the method described
in [21], which combines (1) the use of adaptation rules and (2) the optimization of
property-based adaptation goals. Our adaptation rules have been implemented as two
Maude rewrite rules, non-available and required. Both these rules are executed
once for each variant object, updating its state attribute according to the current con-
text model. The non-available rule sets the state of those variants that are incon-
sistent with the current context model (i.e., cannot be selected during the subsequent
optimization process) as NON-AVAILABLE. For example, if the high-level batt
context variable is not FULL, then the high-level variant FAST is marked as NON-
AVAILABLE for the velocity variation point. The required rule sets the state of
those variants that, according to the current context, need to be compulsorily selected
as REQUIRED. For example, if the high-level light context variable is true, then the
high-level variant ACOUSTIC is marked as REQUIRED.

In order to cope with the optimization of property-based adaptation goals, we have
implemented two additional rewrite rules: calculate-scores and search-

618 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

solution. The first of these rules is triggered once for each variant and calculates
the attribute score of those marked as AVAILABLE. The higher the score of a variant
the better it fits the current context, i.e., the more likely to be selected as part of the
new system configuration. The calculation of the score is based on: (1) the impact of
each variant on the three system properties (ranging from 0: no impact to 5: very high
impact); and (2) the importance of each property in the current context (also ranging
from 0: no importance to 5: very high importance). The impact of each variant on the
three properties is defined at design-time and stored in the abstract variant objects.
The importance of each property depending on the context is also defined at design-
time but, in this case, using Maude equations (e.g., there is an equation stating that if
the batt is LOW, the importance of the power consumption property must be set to 5).

Finally, the search-solution rule finds the best possible system configuration
for the current context, that is, the set of abstract variants that, together, obtain the
highest score. This rule updates the SystemConfig object, which contains one attribute
per high-level variation point. The following example shows the SystemConfig object
resulting of a reasoning step in which the variants LIGHT, MEDIUM and FAST were
respectively selected for the signaling, intensity and velocity variation points.

< c : SystemConfig | signaling : “light”, intensity : “medium”,
 velocity : “fast” >

4.5 System Reconfiguration

The main functions of the System Reconfiguration process are: (1) to create a recon-
figuration plan (sequence of reconfiguration commands) that adapts the architecture
model according to the decision made by the Reasoning function; and (2) to synchro-
nize the architecture model with the runtime system architecture. To implement these
functions, labeled in Figure 3 as “Reconfigure architecture” and “Update representa-
tion”, we have implemented two Maude rewrite rules: reconfigure and notifi-
cation-when-pending.

The reconfigure rule takes the SystemConfig object (updated by the Reasoning
function) and the current architecture model (set of component objects) as its input,
and produces a set of reconfiguration commands. In order to map the high-level vari-
ants, selected in the SystemConfig object, into the low-level ones, defined for the ele-
ments gathered in the Reconfigurable Component, we have defined a set of Maude
equations (similar to those defining the relations among the system properties and the
context variables). For instance, there is an equation that maps the velocity variant
FAST with the value 90 for the attribute velocity of the Control component. When all
the variants have been mapped, the rule generates the reconfiguration commands only
for those components that need to be modified (i.e., those for which the state or other
attribute has changed). This is achieved by making the difference between the current
architecture model and the one that has just been derived from the selected variants.

The notification-when-pending rule is executed whenever a real component
(belonging to the Reconfigurable Component) notifies that it has changed in response
to a reconfiguration command. These notifications cause the architecture model to be

Prototyping component-based self-adaptive systems with Maude. (Regular) 619

updated to reflect the current situation. It is worth noting that we use an Adaptation-
System object to register all the reconfiguration commands sent by Maude and not
acknowledged yet with the corresponding notification. Context messages are discard-
ed while this object is not empty. This prevents the execution of new adaptation loops
while the architecture model and the running system are not completely synchronized.

5 Lessons Learned

The first benefit of using Maude for prototyping self-adaptive systems stems from its
capability to provide designers with executable mathematical models of these sys-
tems. This capability becomes essential for adjusting and validating their adaptation
behavior. Specifically, Maude can assist designers in (1) adjusting the activation func-
tion (see section 4.3) to make the adaptation stable, avoiding continuous system re-
configurations; (2) adjusting the design-time values that define the impact of the vari-
ants on the system properties, and the weight of these properties depending on the
context (see section 4.4); and (3) establishing the right links between the high-level
and the low-level context variables (see the abstraction function in section 4.3) and
between the high-level and the low-level variants (see section 4.5).

Regarding simulation, Maude enables the execution of the system specification
starting from any given state. This can be very useful for addressing the adjustments
enumerated above. For instance, to test the Activation Function, we could measure the
system reactivity by recording the number of reconfigurations performed per
time unit, and relating this number with the context variation rate. However, this kind
of analysis usually requires including some additional terms in the specification. This
not only pollutes the prototype with analysis-specific code but also may influence the
analysis results, as it might affect the overall performance of the prototype.

Concerning model checking, Maude provides the search command, which ex-
plores the reachable state space looking for a given configuration. This command is a
simple, yet very useful method for checking invariants. For example, consider the
following statement: the state of the LightSignaling and AcousticSignaling compo-
nents cannot be simultaneously RUNNING. If we use the search command to find a
counterexample and it returns an empty answer then we can assure that the statement
is never violated. Maude also provides other tools supporting more complex model
checking capabilities, e.g., a module for linear time temporal logic. It is worth noting
that, in general, model checking processes are highly memory- and time-consuming.

Regarding the reusability of the Maude specification, it is worth noting that, alt-
hough it is application-dependent, there some common structures (described in sec-
tion 4) that could be easily reused. Also related to reusability, it is worth highlighting
that the proposed design (see Figure 2) follows the separation of concerns principle,
since the adaptation logic (implemented in Maude and embedded in the Adaptation
Control component) is explicitly separated from “business” logic (in our case study
implemented in the components gathered in the Reconfigurable Component). The
benefits of such a decision are twofold: on the one hand, it reduces the complexity

620 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

and improves the maintainability of the design and, on the other hand, it promotes the
reuse and sharing of adaptation mechanisms among applications.

Some additional benefits of using Maude for prototyping self-adaptive systems
are [3]: (1) the rapid development process and the reduced length of the programs,
compared to other (traditional) programming languages. Prototyping in Maude has
allowed us to focus on the development of the adaptation mechanisms without having
to spend much time in implementation details; (2) the simplicity and versatility of
using (a) a set of objects and messages to describe the system state; (b) a set of equa-
tions to model the system data; and (c) a set of concurrent rules to describe the system
behavior; and (3) the performance of Maude prototypes is reasonably good. In fact,
the performance of the prototype developed for our case study seems to be good
enough for using it as part of a real self-adaptive system. The main limitation we
found relates with the difficulty for debugging Maude programs, due to the concurrent
nature of its rules and the scarcely legible traces it returns during the execution.

6 Conclusions and Future Work

This paper reports our experience in using Maude for prototyping, simulating and
verifying component-based self-adaptive systems. In order to demonstrate the benefits
(and also to assess the limitations) that Maude can bring in this field, we have devel-
oped a case study in the robotics domain that relies on a distributed processing sche-
ma. The robot adaptation logic, implemented in Maude, has been embedded (separate
from the business logic) in one of the components of the Fractal-based implementa-
tion of the system. This component is fed with contextual information and controls
the adaptation of the reconfigurable part of the architecture. In order to make the ad-
aptation decisions efficient, the Maude specification works with abstract models of
the context, the architecture and its variability. For the future, we plan to continue
exploring the potentials of Maude, in particular, for verifying the completeness and
correctness of the self-adaptive behavior specifications. We also plan to link this work
with our previous experience with the model-driven approach proposed by DiVA [6].
In this sense, our intention is to generate the Maude specification from the DiVA
models describing the self-adaptive system design.

Acknowledgements

This work has been partially funded by the EXPLORE (MICINN, TIN2009-08572)
and the MISSION (Fundación Séneca-CARM, 15374/PI/10) projects. Juan F. Inglés-
Romero thanks Fundación Séneca-CARM for a research grant (Exp. 15561/FPI/10).

References

1. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research roadmap.
In: Cheng, B.H.C., et al. (Eds.), Software Engineering for Self-Adaptive Systems. LNCS,
vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

Prototyping component-based self-adaptive systems with Maude. (Regular) 621

2. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems, 4(2), 1–42 (2009)

3. Clavel, M., et al.: All About Maude. A High-Performance Logical Framework: how to
specify, program and verify systems in rewriting logic. Springer-Verlag (2007). ISBN 978-
3-540-71940-3

4. Inglés-Romero, J. F., et al.: Using Models@Runtime for Designing Adaptive Robotics
Software: an Experience Report. In: 1st Int'l Workshop on Model-Based Engineering for
Robotics (RoSym), 3-8 October, Oslo, Norway (2010)

5. Inglés-Romero, J. F., et al.: Towards the Automatic Generation of Self-Adaptive Robotics
Software: An Experience Report. In: 20th IEEE Int'l Conf. on Collaboration Technologies
and Infrastructures (WETICE'), pp. 79–86, 27-29 June, Paris, France (2011)

6. EU 7FP DiVA Project, www.ict-diva.eu/
7. Kephart, J., et al.: The Vision of Autonomic Computing. Computer, 36(1), 41–50 (2003)
8. Gomaa, H., Hussein, M.: Software Reconfiguration Patterns for Dynamic Evolution of

Software Architectures. In: 4th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 79–88, 12-15 June, Oslo, Norway (2004)

9. Ramirez, A.J., Cheng, B.H.C.: Design Patterns for Developing Dynamically Adaptive Sys-
tems. In: 2010 Int’l Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 49–58, 3-4 May, Cape Town, South Africa (2010)

10. Kramer, J., Magee, J.: A Rigorous Architectural Approach to Adaptive Software Engineer-
ing. Journal of Comp. Science and Technology, 24(2), 183–188 (2009)

11. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. IEEE Intelli-
gent Systems, 14(3), 54–62 (1999)

12. Wermelinger, M., Fiadeiro. J.L.: Algebraic software architecture reconfiguration. In: Nier-
strasz, O., Lemoine, M. (Eds.), Software Engineering Conference (ESEC/FSE'99). LNCS,
vol. 1687, pp. 393–409, Springer, Heidelberg (1999)

13. Canal, C., Pimentel, E., Troya, J.M.: Compatibility and inheritance in software
architectures. In: Science of Computer Programming, 41(2), 105-138 (2001)

14. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive software. In:
28th Int’l Conf. on Software Engineering (ICSE), pp. 371–380, 20-28 May, China (2006)

15. Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Wang, Z.: Context-Aware
Adaptive Applications: Fault Patterns and Their Automated Identification. In: IEEE Trans.
on Software Engineering, 36(5), 644–661 (2010)

16. Cansado, A., Canal, C., Salaün, G., Cubo, J.: A Formal Framework for Structural
Reconfiguration of Components under Behavioural Adaptation. In: Electron. Notes Theor.
Comput. Sci., 263, 95-110 (2010)

17. Weyns, D., Malek, S., Andersson, J.: FORMS: a formal reference model for self-
adaptation. In: 7th International Conference on Autonomic Computing (ICAC), pp. 205–
214, 7-11 June, Washington DC, USA (2010)

18. Bruni, R., et al.: Modelling and analyzing adaptive self-assembling strategies with Maude.
In: 9th Int’l Workshop on Rewriting Logic and its Applications (WRLA), held in the con-
text of the 2012 European Joint Conferences on Theory & Practice of Software (ETAPS),
pp. 48-67, 24-25 March, Tallinn, Estonia (2012)

19. The E-puck website, http://www.e-puck.org
20. The Fractal Project, http://fractal.ow2.org/
21. Fleurey, F., Solberg, A. A Domain Specific Modeling Language Supporting Specification,

Simulation and Execution of Dynamic Adaptive Systems. In: 12th Int’l Conf. on Model
Driven Engineering Languages and Systems (MODELS), pp. 606-621, 4-9 October, Den-
ver, Colorado, USA (2009)

622 Juan F. Ingles-Romero, Cristina Vicente-Chicote, Javier Troya and Antonio Vallecillo

