
Noname manuscript No.
(will be inserted by the editor)

Full Contract Verification for ATL using Symbolic
Execution

Bentley James Oakes · Javier Troya · Levi Lúcio · Manuel Wimmer

June 28, 2016

Abstract The Atlas Transformation Language (ATL)

is currently one of the most-used model transformation

languages and has become a de-facto standard in model-

driven engineering for implementing model transforma-

tions. At the same time, it is understood by the com-

munity that enhancing methods for exhaustively verify-

ing such transformations allows for a more widespread

adoption of model-driven engineering in industry. A va-

riety of proposals for the verification of ATL transfor-

mations have arisen in the past few years. However, the

majority of these techniques are either based on non-

exhaustive testing or on proof methods that require hu-

man assistance and/or are not complete.

In this paper, we describe our method for statically

verifying the declarative subset of ATL model trans-

formations. This verification is performed by translat-

ing the transformation (including features like filters,

OCL expressions, and lazy rules) into our model trans-

formation language DSLTrans. As we handle only the

declarative portion of ATL, and DSLTrans is Turing-

incomplete, this reduction in expressivity allows us to

use a symbolic-execution approach to generate repre-

sentations of all possible input models to the transform-

Bentley James Oakes
School of Computer Science, McGill University, Canada
E-mail: bentley.oakes@mail.mcgill.ca

Javier Troya
Department of Computing Languages and Systems, Univer-
sidad de Sevilla, Spain,
E-mail: jtroya@us.es

Levi Lúcio
fortiss GmbH, München, Germany,
E-mail: lucio@fortiss.org

Manuel Wimmer
Business Informatics Group, TU Wien, Austria,
E-mail: wimmer@big.tuwien.ac.at

ation. We then verify pre-/post-condition contracts on

these representations, which in turn verifies the trans-

formation itself.

The technique we present in this paper is exhaus-

tive for the subset of declarative ATL model transfor-

mations. This means that if the prover indicates a con-

tract holds on a transformation, then the contract’s pre-

/post-condition pair will be true for any input model for

that transformation. We demonstrate and explore the

applicability of our technique by studying several rela-

tively large and complex ATL model transformations,

including a model transformation developed in collabo-

ration with our industrial partner. As well, we present

our ‘slicing’ technique. This technique selects only those

rules in the DSLTrans transformation needed for con-

tract proof, thereby reducing proving time.

Keywords Model transformation · ATL · Formal

verification · Symbolic execution · Contracts · Pre-

/Post-conditions

1 Introduction

Model transformations have become the main means for

manipulating models in model-driven engineering [12],

as transformations are an excellent compromise between

strong theoretical foundations and applicability to real-

world problems [34]. In particular, model transforma-

tions allow for mathematical treatment based on foun-

dations of graphs and graph transformations, and can

natively manipulate domain-specific concepts expressed

in metamodels.

For example, the Atlas Transformation Language

(ATL) [4, 28] has come to prominence in the model-

driven engineering community. This success is due to

ATL’s flexibility, support of the main meta-modelling

2 Bentley James Oakes et al.

standards, usability that relies on strong tool integra-

tion with the Eclipse world, and a supportive develop-

ment community.

Due to the importance of ATL in both the academic

and the industrial arenas, the verification of ATL trans-

formations is of prime importance. This is because the

correctness of software built using model-driven engi-

neering techniques typically relies on the correctness

of operations executed using model transformations.

As well, there is a strong demand for tools that allow

the building of verified software, especially in industries

where quality and safety standards have to be met.

In this paper we address this issue by detailing our

technique for verifying visual pre-/post-condition con-

tracts on ATL transformations. A contract is said to

hold on a transformation if it holds on the transform-

ation’s input-output pairs. That is, for all input mod-

els where the contract’s pre-condition holds, the con-

tract’s post-condition also holds in the corresponding

output model produced by executing the transform-

ation. Traceability constraints between the elements of

the input and output models may also be required. Oth-

erwise, the contract does not hold, and consequently,

the transformation does not correctly implement the

contract.

For example, this paper considers as running exam-

ple an extended version of the well-known Families-to-

Persons transformation from the ATL zoo [2], where

mother(s), father(s), daughter(s) and son(s) belonging

to a family are translated into men and women who are

members of a community. One possible contract would

try to assert that, for any input model containing a

family that includes a mother and a daughter, a man is
produced in the output community. We would expect

the contract not to hold for the Families-to-Persons

transformation, because there can exist families that

are composed of only a mother and her daughter.

The main contribution of our technique is that, if

our prover demonstrates that the contract holds, then

it will hold for any input model given to the ATL model

transformation. We can thus guarantee the user can

safely execute the model transformation without any

need for additional testing or runtime checking, as seen

in other ATL verification approaches (cf. Section 9).

Our contract language is based on pre-/post-condition

contracts, but also includes propositional logic opera-

tors for combining contracts. Section 5 includes a dis-

cussion of contracts, including examples and a summary

of contract expressiveness.

We prove that contracts hold or not by translating

ATL transformations into transformations defined in a

model transformation language called DSLTrans [10].

A theoretical framework has been developed for the

DSLTrans model transformation language in which pre-

/post-condition contracts can be shown to hold for all

those input/output model pairs resulting from execut-

ing a given DSLTrans model transformation, or to not

hold for at least one of those input/output pairs [32].

A fully automatic property prover based on this the-

ory has been shown to be applicable to industrial prob-

lems [44].

In this paper we focus on verifying the declara-

tive part of ATL, given the similarity to the DSLTrans

model transformation language. It is common practice

to use this subset of the language for the majority of

transformation requirements. Additionally, using only

declarative ATL normally results in clearer, more read-

able and more maintainable model transformations than

when the imperative part of the language is used.

Please note that this article is an extension of a

paper presented at the MoDELS 2015 conference [36].

Besides incremental advancements of the general ver-

ification approach, this article introduces four major

extensions over the previous paper. First, a substantial

subsection (cf. Subsection 4.2.2) has been added, which

explains how Object Constraint Language (OCL) ex-

pressions are handled in the transformation from ATL

to DSLTrans. Second, additional ATL features are now

considered in the mapping, namely helpers and condi-

tions (cf. Section 4.1). Third, the evaluation of the ap-

proach has been significantly improved. In particular,

we now also compare the transformations produced by

the HOT with hand-built transformations in two case

studies of varying complexity. Finally, the slicing al-

gorithm initially described in [36] has been further im-

proved and is now presented in more detail in Section 7.

The presentation of our work is as follows: Section 2

briefly introduces the ATL and DSLTrans languages

and their relevant constructs. Following this, Section 3

presents the extended Families-to-Persons ATL trans-

formation, describes how it is executed, and presents

its DSLTrans counterpart.

Section 4 provides a pseudo-code algorithm and exe-

cution example for the higher-order transformation that

automatically transforms declarative ATL transforma-

tions into their semantically-equivalent DSLTrans coun-

terparts.

Section 5 discusses our contract proving method.

This includes the creation of the artifacts which rep-

resent transformation executions through symbolic ex-

ecution, as well as a description of how contracts are

proven using these artifacts. Some relevant pre-/post-

condition contracts for the extended Families-to-Per-

sons transformation are also described.

Performance results obtained from applying our tool

to a number of transformations, including a transform-

Full Contract Verification for ATL using Symbolic Execution 3

ation obtained from our industrial partner, are pre-

sented in Section 6. These results are discussed within

the section and show that our technique is feasible. In

Section 7, our slicing algorithm is discussed, which al-

lows the prover to select only those rules which are

needed to prove a particular contract. Results presented

in this section demonstrate the reduction in contract

proving time.

Section 8 examines the transformations produced

by our higher-order transformation (HOT) from ATL

code, versus versions produced by hand in our earlier

work. Both versions of one transformation are then used

for contract proving, to examine the suitability of the

HOT to replace the building of DSLTrans transforma-

tions by hand. Finally, we wrap-up in Sections 9 and 10

by describing related work and discussing threats to

validity, our conclusions, and some thoughts on future

work.

2 Preliminaries: ATL and DSLTrans

In this section, we introduce the model transformation

languages used in this paper.

2.1 ATL

ATL is a textual rule-based model transformation lan-

guage that provides both declarative and imperative

language concepts. It is thus considered a hybrid model

transformation language.

An ATL transformation is composed of a set of

transformation rules and helpers. Each rule describes

how certain target model elements should be gener-

ated from certain source model elements. There are two

kinds of rules: matched rules and lazy rules1. Matched

rules are automatically executed by the ATL execution

engine for every match in the source model according

to the input patterns of the matched rules. In contrast,

lazy rules have to be explicitly called from another rule,

which gives more control over the transformation exe-

cution.

The Object Constraint Language (OCL) is used all

throughout ATL transformations as an expression lan-

guage. A helper can be seen as an auxiliary OCL func-

tion, which can be used to avoid the duplication of the

OCL code at different points in the ATL transform-

ation.

Rules are mainly composed of an input pattern and

an output pattern. The input pattern is used to match

input pattern elements that are relevant for the rule.

1 We include ATL’s called rules under lazy rules.

The output pattern specifies how the output pattern

elements are created from the input model elements

matched by the input pattern. Each output pattern el-

ement can have several bindings that can be used to

initialize the values of the elements in the target model.

Please note that these initializations are performed

in a second phase after a first phase where all output

elements are created by the matched rules. This separa-

tion in two steps enables the initialization of target val-

ues independent from the execution order of the rules,

as explained in detail in Section 3.3.

Listing 1 Families-to-Persons ATL Transformation Excerpt

module Families2Persons ;
create OUT : Persons from IN : Families ;

rule Country2Community {
from
c : Families ! Country

to
cmm : Persons ! Community (
persons <− c . families−>collect (f |f . mothers) ,
. . .

)}

rule Mother2Woman {
from
p : Families ! Parent
(p . family . mothers . includes (p))

to
w : Persons ! Woman (
fullName <− p . firstName + p . family . lastName

)}

In Listing 1 we give a minimal excerpt of the Fam-

ilies-to-Persons transformation, which is fully explained

in Section 3. In particular, two matched rules are de-

fined. The first one transforms Countries into Com-

munities, while the second one creates for each mother

instance in the source model, a Woman instance in the

target model. Please note that the second rule also has

a filter for selecting from the set of Parents only the

mothers. Bindings are used, for instance, to initialize

the persons reference of Communities, by collecting all

mothers from all Families of the matched Country.

For more information on ATL the interested reader

is referred to [28].

2.2 DSLTrans

DSLTrans is a visual graph-based and rule-based model

transformation engine that has two important proper-

ties enforced by construction: all its computations are

both terminating and confluent [10]. These properties

stem from the fact that DSLTrans does not allow un-

bounded loops during execution, making it a Turing-

incomplete computing language [10]. Besides their obvi-

ous importance in practice, termination and confluence

were instrumental in the implementation of our verifi-

cation technique for pre-/post-condition contracts.

Model transformations are expressed in DSLTrans

as sets of graph rewriting rules, having an upper part

(named MatchModel), a lower part (ApplyModel) and,

4 Bentley James Oakes et al.

Fig. 1 An example of a DSLTrans rule

optionally, negative application conditions. The main

construction used in the scheduling of model transform-

ation rules in DSLTrans is a layer. Each model trans-

formation rule in a layer cannot match over the output

of any other rule in the same layer. As well, rules can-

not modify the input graph during the rewriting phase

(termed out-place execution). Layers are organized se-

quentially and the output model that results from exe-

cuting a given layer is passed as input to the next layer

in the sequence.

A DSLTrans rule can match over the elements of

the input model of the transformation and also over el-

ements that have been generated so far in the output

model. Matching over elements of the output model of a

transformation is achieved using a DSLTrans construct

called backward links. Backward links allow matching

over traces between elements in the input and the out-

put models of the transformation. These traces are ex-

plicitly built by the DSLTrans transformation engine

during rule execution.

For example, we depict in Figure 1 a rule in the

DSLTrans language. When a rule is executed, the graph

in the MatchModel of the rule is searched for in the

transformation’s input model, together with the classes
in the ApplyModel of the rule that are connected to

backward links. An example of a backward link can be

observed in Figure 1 as a dotted line connecting the

Country and the Community match classes. During the

rewrite part of rule application, the instances of classes

in the ApplyModel of the rule that are not connected to

backward links, together with their adjacent relations,

are created in the output model.

For example, the UnionWomanRule rule in Figure 1

will match over a Country element connected to a Fam-

ily element connected to a Parent element. If these el-

ements are found in the input model along with the

corresponding Community and Woman elements in the

output model, then a persons relation will be created

between those output elements.

Although not present in this rule, copying object at-

tribute values from the MatchModel to the ApplyModel

of the rules is also part of the DSLTrans language, as

illustrated in Section 3.4.

In addition to the constructs presented in the exam-

ple in Figure 1, DSLTrans has several others: existential

matching which allows selecting only one result when a

match class of a rule matches an input model, indirect

links for transitive matching over containment relations

in the input model, and negative application conditions

that allow the transformation designer to specify con-

ditions under which a rule should not match. These

constructs are not currently used in our verification ap-

proach, and the interested reader is referred to [10] for

further information.

3 The Extended Families-to-Persons

Transformation

As our running example we present an extended version

of the Families-to-Persons transformation described in

[36]. The original Families-to-Persons transformation

can be found in the ATL zoo [2], and has also been

discussed in a number of related works on verification

and testing [25].

We chose this Families-to-Persons transformation

as our running example for two reasons. First, it trans-

forms domains whose concepts are easily understand-

able by anyone (cf. Section 3.1). Second, it has a cer-

tain degree of complexity since it uses many features

available in the ATL language (cf. Section 3.2).

3.1 Transformation Domains

The input and output metamodels of this transform-

ation are shown in Figure 2. Please note that abstract

classes are depicted in grey color and with italic names,

and inheritance relationships are depicted in grey.

The input metamodel, the Families Extended meta-

model, has the Country class as a root element. A

Country is made up of companies, families and cities.

A Family has a lastName, is registeredIn a Neighbor-

hood and can have any number of mothers and fathers,

who are Parents and may, in turn, work in (worksIn) a

Company. It can also contain any number of sons and

daughters, who are Children, and every child goesTo a

School. Both parents and children are Members that

have a firstName, belong to a family and each of them

livesIn a City.

A City may contain companies, and a Company,

in turn, can be present in (relationship isIn) several

distinct cities. A City is composed of neighborhoods,

and these can have schools, where several students are

registered. Every School has Services, and these may

be special, for students with special needs, or simply

Full Contract Verification for ATL using Symbolic Execution 5

Country

City

Company

School

Service

Neighborhood

Family
lastName : EString

Child

Member
firstName : EString

Parent

NamedElement
name : EString

1..* families

0..*
sons

0..*
daughters0..*

fathers
0..*

mothers

family1..1
1..*

cities

0..*
companies

1..*
isIn

0..*
employees

0..1
worksIn

companies0..*

registeredIn1..1

1..1
livesIn

0..*
schools

0..*
special

0..*
ordinary

neighborhoods1..*

goesTo1..1students
0..*

(a) Families Extended metamodel

Community

TownHall

Committee

Association

SpecialFacility OrdinaryFacility

Facility

District

Man Woman

Person
fullName : EString

NamedElement
name : EString

1..* persons

0..* associations

committee
1..1

1..*townHalls

1..*districts

facilities0..*

workersmembers
0..*0..*

committee 1..1

(b) Persons Extended metamodel

Fig. 2 Metamodels of the Families-to-Persons Extended
transformation

offer ordinary services. Finally, countries, cities, com-

panies, neighborhoods and schools have a name at-

tribute, which is inherited from the abstract NamedEle-

ment class.

The output metamodel, Persons Extended, is shown

in Figure 2(b). The root class is Community, which

is made up of persons, townHalls and associations. A

Person has a fullName and can either be a Man or a

Woman. An Association has a Committee that makes

decisions. Every TownHall has a roster of workers (all

the persons that are employed), hosts a Committee to

make decisions, and also governs several districts. A

District may contain several facilities, either of type

SpecialFacility for those with special needs, or Ordi-

naryFacility. Each Facility may have registered sev-

eral persons as members. Finally, associations, town

halls, committees, districts and facilities have a name

attribute.

3.2 Transformation Explanation

Listing 2 displays the ATL code for the Families-to-

Persons Extended model transformation, which is com-

posed of 10 rules. In order to better explain the trans-

formation and the mapping to the DSLTrans language

(cf. Section 4.2.1), we have annotated many lines in the

listing as follows:

– Ri stands for rule i

– IPEij for in-pattern element j in rule i

– Fi for filter of rule i

– OPEij for out-pattern element j of rule i

– Bijk for binding k in simple out-pattern element j of

rule i

In ATL, the from part of rules is called an in-pattern

and is made up of in-pattern elements and an optional

filter. These in-pattern elements represent the elements

from the input model that are matched by the rule, as

long as they satisfy the filter. The to part of the rule

is referred to as an out-pattern and is made up of out-

pattern elements which represent the elements that are

created in the output model. They contain bindings,

which are used to initialize the features of the created

elements. The feature initialized by a binding can be

either an attribute or a reference to another created

element.

In Listing 2, the transformation creates a Commu-

nity from each Country, as specified by R1. The six

bindings of OPE11 are used to initialize references.

Please note that when the same property representing a

reference is initialized in more than one binding (prop-

erty persons in B111, B112, B113 and B114 in our
case), the result is the union of the elements retrieved

in all the bindings.

Let us now focus on B115, which initializes the town-

Halls association of the created Community. It assigns

the cities of the Country which match the expression

(c.cities). However, due to the output metamodel, the

townHalls association of the created Community in the

output model cannot point to a City in the input model.

In fact, what the association will actually be pointing

to is the element in the output model created from the

respective City element of the input model. Therefore,

there must be a rule that creates something from City

elements.

In our example, this is R6, which creates a Town-

Hall from the matched City. Therefore, B115 initializes

the townHall association of the Community created in

OPE11 by referencing the TownHall elements created

from the City elements referred to by the Country ele-

ment matched in IPE1. To this purpose, ATL uses an

internal trace mechanism, where the correspondences

6 Bentley James Oakes et al.

between elements in the input and output models are

tracked.

Listing 2 Families-to-Persons Extended ATL Transformation

module Families2Persons_Extended ;
create OUT : Persons_Extended from IN : Families_Extended ;

rule Country2Community { - - R 1

from
c : Families ! Country - - I P E 1 1

to
cmm : Persons ! Community (- - O P E 1 1

persons <− c . families−>collect (f |f . fathers) , - - B 1 1 1

persons <− c . families−>collect (f |f . mothers) , - - B 1 1 2

persons <− c . families−>collect (f |f . sons) , - - B 1 1 3

persons <− c . families−>collect (f |f . daughters) , - - B 1 1 4

townHalls <− c . cities , - - B 1 1 5

associations <− c . cities−>collect (cty | cty . companies
−> collect (cmp | Tuple{ct=cty , cm=cmp})) - - B 1 1 6

)}

rule Father2Man { - - R 2

from
p : Families ! Parent - - I P E 2 1

(p . family . fathers . includes (p)) - - F 2

to
m : Persons ! Man (- - O P E 2 1

fullName <− p . firstName + p . family . lastName - - B 2 1 1

)}

rule Mother2Woman { - - R 3

from
p : Families ! Parent - - I P E 3 1

(p . family . mothers . includes (p)) - - F 3

to
w : Persons ! Woman (- - O P E 3 1

fullName <− p . firstName + p . family . lastName - - B 3 1 1

)}

rule Daughter2Woman { - - R 4

from
ch : Families ! Child - - I P E 4 1

(ch . family . daughters . includes (ch)) - - F 4

to
w : Persons ! Woman (- - O P E 4 1

fullName <− ch . firstName + ch . family . lastName - - B 4 1 1

)}

rule Son2Man { - - R 5

from
ch : Families ! Child - - I P E 5 1

(ch . family . sons . includes (ch)) - - F 5

to
m : Persons ! Man (- - O P E 5 1

fullName <− ch . firstName + ch . family . lastName - - B 5 1 1

)}

rule City2TownHall{ - - R 6

from
c : Families ! City - - I P E 6 1

to
th : Persons ! TownHall (- - O P E 6 1

name <− c . name + ’ TownHall ’ , - - B 6 1 1

workers <− c . companies −> collect (cmp | cmp . employees)
−> flatten () −> select (em | em . livesIn=c) , - - B 6 1 2

committee <− cmt , - - B 6 1 3

districts <− c . neighborhoods - - B 6 1 4

) ,
cmt : Persons ! Committee (- - O P E 6 2

name <− c . name + ’ TownHall Committee ’ - - B 6 2 1

)}

rule CityCompany2Association{ - - R 7

from
ct : Families ! City , - - I P E 7 1

cm : Families ! Company - - I P E 7 2

(ct . companies . includes (cm)) - - F 7

to
a : Persons ! Association (- - O P E 7 1

name <− ct . name + cm . name - - B 7 1 1

committee <− thisModule . resolveTemp (ct , ’ cmt ’) - - B 7 1 2

)}

rule Neighborhood2District{ - - R 8

from
n : Families ! Neighborhood - - I P E 8 1

(Families ! Family . allInstances ()
−> exists (f |f . registeredIn=n)) - - F 8

to
d : Persons ! District (- - O P E 8 1

name <− n . name ,
facilities <− n . schools −> select (sch | sch . ordinary
−> notEmpty ()) −> collect
(sch | thisModule . CreateOrdinaryFacility (sch)) , - - B 8 1 1

facilities <− n . schools −> select (sch | sch . special
−> notEmpty ()) −> collect
(sch | thisModule . CreateSpecialFacility (sch)) - - B 8 1 2

)}

lazy rule CreateOrdinaryFacility{ - - R 9

from
sch : Families ! School - - I P E 9 1

to
of : Persons ! OrdinaryFacility (- - O P E 9 1

name <− ’ Ordinary Fa c i l i t y Se rv i c e f o r schoo l ’

+ sch . name , - - B 9 1 1

members <− sch . students - - B 9 1 2

)}

lazy rule CreateSpecialFacility{ - - R 1 0

from
sch : Families ! School - - I P E 1 0 1

to
sf : Persons ! SpecialFacility (- - O P E 1 0 1

name <− ’ Spe c i a l F a c i l i t y Se rv i c e f o r schoo l ’
+ sch . name , - - B 1 0 1 1

members <− sch . students - - B 1 0 1 2

)}

For clarification purposes, Figure 3 shows the cre-

ation of an output model from an input model by apply-

ing the Families-to-Persons Extended transformation.

The left-hand side of the figure displays a model which

conforms to the Families Extended metamodel seen in

Figure 2(a). The right-hand side of the figure presents

the output model obtained, which conforms to the Per-

sons Extended metamodel (cf. Fig. 2(b)).

Note that attributes are ignored in Figure 3, and

classes and references are coloured to improve the read-

ability of the figure. Elements are also given an identi-

fier to indicate to which type they belong (e.g., Cmp1 is

an element of type Company), and references have the

same colour as their source element. In case of bidirec-

tional references, the reference has the colours of both

elements, but tags describing a specific end of the refer-

ence have the colour of the source element. For simplifi-

cation and readability purposes, not all tags have been

included (for instance, there are missing livesIn tags),

although most of them are present. Since the attributes

and references of the created elements are initialized

with bindings, we have annotated the binding responsi-

ble for initializing each reference (again, attributes are

ignored) in the output model.

The central section of Figure 3 shows the internal

traces used by ATL that keep information of which el-

ements in the output model are created from which

ones in the input model and the rule responsible for

doing so. We can see that the traces also keep infor-

mation about the identifiers of the in-pattern elements

and out-pattern elements of each rule, something spe-

cially useful for the implementation of the resolveTemp

operation (cf. Section 3.3).

Figure 3 thus illustrates what has been described

before, namely that Comm1 is created from Ctry1 by

R1. Its townHalls reference is pointing to TH1, which

has been created by R6 from Cty1, which belongs to

Ctry1.cities, and assigned by B115.

Both R2 and R3 take a Parent as input. Here, a fil-

ter is used to determine if the Parent is a father (R2)

or a mother (R3). For instance, parents Par1 and Par2

are transformed to a Man with R2, while Par3 is trans-

formed to a Woman with R3. The same thing happens

with Children. Bindings B111 - B114 are used to ini-

tialize the person reference for the Community created

in OPE11 for all parents and children. We see that an

Full Contract Verification for ATL using Symbolic Execution 7

Ctry1 Comm1

Fam1
Fam2

Par1

Par2
Par3

Chd1

Chd2

families

fathers

fathers
mothers

sons

daughters

Man1
Man2

Wom1

Wom2

Cty1
livesIn

Cmp1

Nghb1

companies

neighborhoods

Sch1
Sch2

Srv1
Srv2

schools

ordinary special

employees

livesIn

companies

student

R1

cities

student

Man2R2

R2
R5

R4
R3

TH1

Comt1

workers
(B612)

workers
(B612)

committee
(B613)

R6

Asso1

R7

Dist1
R8

SF1

OF1

R8, R10

R8, R9

persons
(B114)

persons
(B112)

persons
(B111)

persons
(B113)

persons
(B111)

to
w
nH

al
ls

(B
11
5)

associations
(B116)

districts
(B614)

facilities
(B811)

facilities
(B812)

members
(B912)

members
(B1012)

registeredIn

registeredIn

Input model Output modelATL traces

family
family family

family

family

goesTo
goesTo

worksIn committee
(B712)

c cmm

ch

ch

w

w
m

m
m

p
p

p

c cmt
thct

cm
a

n d

n

n
sch

sch sf

of

Fig. 3 Execution example of the Families-to-Persons Extended transformation

OCL collect operation is necessary, since we need to

retrieve elements of specific types.

B116 shows a special case where the Tuple operator

is used. In this case, the collect operation retrieves pairs

of {City, Company} elements, and the output elements

created by these pairs are assigned to the associations

reference. Therefore, there must be a rule that takes

these pairs in the in-pattern. In our example, it is R7,

composed of IPE71 and IPE72, where F7 makes sure

that the Company is located in the City. As a result,
following our example, Asso1 is created from Cty1 and

Cmp1.

B612 uses both the collect and select operators to

pick only those employees of the companies located in

the matched City (IPE61) that actually live in such

city. In our example, Par1 and Par3 are selected, so the

workers reference of TH1 points to Wom2 and Man2,

created from Par1 and Par3, respectively.

Finally, it is worth mentioning the use of lazy rules

(R9 and R10). Lazy rules are only executed when they

are called from other rules. This means that they will

create elements only when they receive calls.

In our example, these rules are called from R8, and

specifically from bindings B811 and B812. Let us focus

on binding B811. R8 creates a District (OPE81) from

a Neighborhood (IPE81) as long as there is at least

one Family registered in that neighborhood (F8). Then,

for initializing its facilities reference, in B811 it selects

those schools in the Neighborhood that have an ordinary

Service and collects the result produced by lazy rule

CreateOrdinaryFacility.

This lazy rule (R9) receives as parameter the se-

lected schools. It creates an OrdinaryFacility (OPE91)

from the School (IPE91) and initializes its members

reference with the students of the school. In Figure 3,

we represent a joint execution of R8 and R9, since the

latter is executed at the same time as the former due to

its invocation. The same situation occurs with R8 and

R10.

3.3 ATL Semantics and Transformation Execution

The semantics of ATL define how an ATL transform-

ation is internally executed. However, the ATL lan-

guage has been described in the community in an in-

tuitive and informal manner, by means of definitions

of its main features in natural language [47]. This lack

of rigorous description can easily lead to imprecisions

and misunderstandings that might hinder the proper

usage and analysis of the language, and the develop-

ment of correct and interoperable tools. The other ref-

erence implementation of ATL is available as metamod-

els for the language and its virtual machine, and as

a compiler from the language to the virtual machine

and an interpreter for the virtual machine. The prob-

lem of this kind of implementation is that it is not

abstract enough to provide meaningful semantics, and

in an implementation-independent manner. Therefore,

with the purpose of later describing the mapping from

8 Bentley James Oakes et al.

ATL to DSLTrans, the aim of this subsection is to ex-

plain the semantics of ATL and to instantiate them in

our running example.

The execution of ATL transformations is split in

two major steps: element creation and features initial-

ization. This two-step process, however, is not explicit

in ATL, and is described here to reduce the conceptual

delta between ATL and DSLTrans.

The first step of the execution is the creation of

target elements and the above-mentioned trace links,

the latter being created implicitly and automatically

by ATL. In Figure 3, this step creates all the elements

in the output model (but does not set their references

nor attributes) as well as the trace links specified in the

central part of the figure. This means that in-pattern

elements are obtained from the input model and out-

pattern elements are created in the output model.

In the second step, the features of the elements

created in the output model are set. This means that

the bindings are executed and resolved. In order to ini-

tialize the references, ATL uses the internal trace links.

Although the references are automatically resolved as

explained in the previous section, there exists an opera-

tion, the so-called resolveTemp operation, which can be

used to explicitly resolve references. It makes it possible

to point to any of the target model elements generated

from a given (sequence of) in-pattern element(s). It is

specially useful (and, in fact, needed) when the refer-

ence specified in a binding has to refer not to the first

out-pattern element created in another rule, but to any

of the rest.

In our running example, B712 contains an operation

of this type. Thus, an Association contains a reference
named committee that has to reference the Committee

created from the City matched in IPE71. As we can see

in R6, every City creates a TownHall and a Committee.

The latter is what we want to be referenced from B712.

Since it is the second element created in the rule, we

need the operation thisModule.resolveTemp(ct,‘cmt’),

where ct is the identifier of IPE71 and cmt is the iden-

tifier of the out-pattern element that creates the Com-

mittee (OPE62 in our example).

As we highlighted in the previous section, the re-

solveTemp operation provides the reason to store the

identifiers of in-pattern elements and out-pattern ele-

ments in the trace links.

3.4 DSLTrans Representation

Figure 4 displays the DSLTrans transformation which

corresponds to the ATL Families-to-Persons Extended

transformation shown in Listing 2. Let us mention here

that we have removed five rules from the figure to im-

prove visual clarity. There is a vertical dotted blue line

for each of these rules, located where the rules have been

removed. The missed rules are similar to those that sur-

round them, and can therefore be safely ignored in our

explanation.

The process of constructing a DSLTrans transform-

ation from an ATL one is described in the next section.

For now, note that DSLTrans transformation obtained

from ATL through the higher-order transformation in-

cludes only one rule per layer, meaning all rules execute

sequentially. This is due to the sequential semantics of

ATL that we replicate in DSLTrans.

Also, note that attribute copies are represented with

arrows from the ApplyModel of the rule to the Match-

Model, such as in rule Neighborhood2District, where the

created District gets the same name as the matched

Neighborhood. The string of an attribute of a created

element can also be initialized with the concatenation

of several strings. For instance, in rule Father2Man, the

full name of the created Man comes from the concate-

nation of the first name of the matched Parent and

the last name of his/her Family. Or it can be assigned

the string of an attribute of an element in the Match-

Model concatenated with a given string, such as in rule

City2TownHall.

4 Mapping ATL into DSLTrans

In this section we first present the features of the declar-

ative part of ATL that we consider for the translation

to DSLTrans. Then, we describe the mapping between

ATL transformations and DSLTrans transformations,

emphasizing the translation of selected OCL operators.

Finally, we explain the implementation of the mapping.

4.1 ATL Subset Selected

While the version of our translator from ATL to DSL-

Trans presented at the MoDELS 2015 conference [36]

considered a large set of features available in the declar-

ative part of the ATL language, our current version

considers practically the complete set of features. As

shown in Table 1, we now handle helpers and condi-

tions. Since we consider almost all the features in the

declarative part of ATL, we can assert that our current

implementation of the higher-order transformation is

sufficiently powerful to be of interest.

The only features that are not considered for the

translation are the using block and unique lazy rules.

The using block is rarely used in ATL model trans-

formations, as it is an optional mechanism for declaring

Full Contract Verification for ATL using Symbolic Execution 9

Fig. 4 DSLTrans version of the Families-to-Persons Extended transformation

10 Bentley James Oakes et al.

local constants in ATL rules. Consequently, the same

rule can be written without using this block by always

writing the constant content instead of the constant

identifier. An example of an ATL transformation con-

taining a using block and an equivalent one without it

can be found on our website [3].

Regarding unique lazy rules, they would require spe-

cial logic to be translated to DSLTrans. In an ATL

transformation, the first time that a unique lazy rule is

called, with a specific (set of) parameter(s), it creates

one or more elements in the output model. The follow-

ing times the rule is called with the same parameter(s),

the elements that were already created are retrieved,

but they are not created again. Translating this behav-

ior would require the inclusion of a condition on the

DSLTrans side. However, since there is no branching or

any mechanism to specify conditions in DSLTrans, we

do not translate unique lazy rules to DSLTrans. In any

case, although unique lazy rules are a powerful feature

of ATL, not many existing ATL transformations [2] use

them.

Since DSLTrans is by default terminating and con-

fluent, we require that the ATL transformation is also

terminating and confluent before it can be translated

to DSLTrans with our approach. This is easily achieved

by following some guidelines and good practices when

developing an ATL transformation.

First, since we are using the declarative part of ATL,

helpers must not be used as global variables, so no in-

formation is to be stored in them. Second, we have to

ensure that navigations terminate in a defined number

of steps (by “step” we mean the traversal of a reference),

so we must avoid recursive helpers and recursive lazy

rules. Third, since we are dealing with out-place trans-

formations, only ATL transformations written with the

default execution mode (and not the so-called refining

mode [46,47]) can be transformed. Please note that the

majority of current ATL transformations are written

using the default execution mode [2].

Finally, we require that the ATL transformation

must not throw any compilation nor run-time error [20].

Compilation errors indicate, for instance, errors in the

syntax, or that a target model element is being used as

input for a rule. Indeed, the target model is not nav-

igable, and is only writable [28]. If we want to access

the target model in our ATL transformation, we have

to make explicit use of the resolveTemp function, as

shown in binding B712 of Listing 2 and explained in

Section 3.3. Run-time errors are thrown, for example,

when the same source model element has been used as

input element for two different matched rules.

In order to ensure all the mentioned points are sat-

isfied, we can use the approach by Troya and Valle-

Table 1 Features of Declarative ATL considered

Matched Rules X Filters X
Lazy Rules X OCL Expressions X

Several Bindings X Helpers X
Several InPatternElements X Conditions X

Several OutPatternElements X Using Block ×
ResolveTemp operation X Unique Lazy Rules ×

cillo [47]. Thus, the ATL transformation is translated

to a formal domain, Maude [19], where termination and

confluence checks can be easily performed.

Finally, let us mention that, in our current proto-

type, we have used ATL versions 3.5 (in Eclipse Luna)

and 3.6 (in Eclipse Mars).

4.2 Mapping between ATL and DSLTrans

4.2.1 Semantics

In order to map ATL onto DSLTrans, we must explic-

itly represent the semantics of ATL in DSLTrans. This

includes using backward links to make explicit in DSL-

Trans the binding step which is implicitly present in

ATL for resolving associations between elements cre-

ated in the transformation. Please recall that the se-

mantics of ATL have been described in Section 3.3.

For clarification purposes, in the following discus-

sion we explain the mapping generically and then we

instantiate it for the Families-to-Persons Extended case

study shown in Listing 2, to describe how the partial

DSLTrans representation shown in Figure 4 is built.

Specifically, we explain how the transformation from

ATL to DSLTrans works, i.e., we textually define its

semantics. The semantics for the mapping are divided

in two steps, to reflect the semantics of ATL,

Generic Semantics for Step 1 In the first step,

every matched rule in ATL is translated into a rule

in DSLTrans. Matched rules are declaratively matched

by the ATL engine, so they are not called explicitly

from anywhere. In DSLTrans, rules are given an explicit

order, since a rule may match over elements that have

been created in previous rules. In our case, DSLTrans

rules corresponding to matched rules are independent

from each other. Thus, their order does not matter, and

we apply the same order as in the ATL transformation.

The MatchModels of these rules contain the ele-

ments appearing in the from part of the corresponding

ATL rules. There is an element for each in-pattern el-

ement (IPE) that appears in the ATL rule. As well, if

the ATL rule has a filter, then some more elements and

associations may appear in the MatchModel in order to

satisfy the conditions of the filter. Boxes representing

Full Contract Verification for ATL using Symbolic Execution 11

attributes can also appear inside elements of the Match-

Model, which occurs when such attributes are used to

initialize attributes in the ApplyModel.

In the ApplyModels of the rules created, there is an

element for each out-pattern element (OPE) declared

in the ATL rules. Normally, when more than one OPE

is created in an ATL rule, then some OPEs reference

others. In DSLTrans, this is specified as an association

between the created elements in the ApplyModel.

When there are bindings in the OPEs of the ATL

rules that are initializing attributes (not references),

then these attributes appear in the elements created

in the ApplyModel in DSLTrans. Recall that such bind-

ings can be defined with helpers as well. Besides, as

previously mentioned, attributes must also appear in

the elements in the MatchModel if their value is used

to initialize the values of the attributes in the apply

part, and associations are created between them.

Finally, an attribute called ApplyAttribute appears

within the elements created in the ApplyModel in two

cases. First, whenever a value is assigned to any of the

attributes of the element in the ApplyModel. Second,

if the DSLTrans transformation is to be executed by

the transformation engine, as they are required for op-

timization purposes.

These ApplyAttribute are, in fact, the way DSLTrans

simulates the internal traceability mechanism employed

by ATL explained in Section 3.3. Thereby, anytime an

ApplyAttribute appears in a created element, the as-

sociation of such element with the elements appearing

in the MatchModel is stored in the traces. Since main-

taining these traces in DSLTrans is expensive, traces

are only created in the presence of an ApplyAttribute.

This use of traces is necessary when employing back-

ward links, as explained in the next step.

Please note that the presence of ApplyAttributes in

the rules is not reflected in the output models gener-

ated. In fact, the “ApplyAttribute” name is a reserved

keyword.

Running Example Instantiation for Step 1 This

first step is exemplified in Figure 4 in the sequence of

rules that goes from Country2Community until Neigh-

borhood2District. There are six rules in such sequence,

and two rules that have been omitted, which correspond

to Mother2Woman and Son2Man. They are very simi-

lar to rules Father2Man and Daughter2Woman. There-

fore, these eight rules have a direct mapping with rules

R1 – R8 in Listing 2.

Let us have a look at the Father2Man rule. The

ATL rule only has one in-pattern element, IPE21 in

Listing 2, of type Parent, and it also contains a filter.

In the corresponding DSLTrans rule, we can see that

the Parent element is present, and there is also another

element and some relationships. They correspond to the

filter, as is explained in Section 4.2.2.

A number of rules such as CityCompany2Associa-

tion, Father2Man, and Daughter2Woman have Match-

Model elements which contain boxes representing ele-

ment attributes. These attributes are used to initialized

new attributes in the ApplyModel, as represented by in-

coming arrows.

Let us focus now on the out-pattern. The rule City2-

TownHall in cf. Listing 2 defines that the created Town-

Hall (OPE61) has a reference to the created Comm-

ittee (OPE62) through the association committee, as

specified in B613. In its corresponding DSLTrans rule

(City2TownHall in Figure 4), the association committee

is created from element TownHall to element Comm-

ittee.

Bindings that initialize attributes are present in our

example as B211, B311, B411, B511, B611, B621, B711,

B811, B911 and B1011. Note that the last two bindings

are in lazy rules, and will be explained in the second

step of the mapping. The initialization of such bindings

can be seen in rules Father2Man, Daughter2Woman,

City2TownHall, CityCompany2Association and Neigh-

borhood2District in Figure 4. Note that, in this first

step that bindings that initialize references are ignored.

This would be all remaining bindings.

Finally, the ApplyAttribute attribute is present in

all the rules except for Country2Community.

Generic Semantics for Step 2 A rule in DSLTrans

is created for every binding that initializes the value of

a reference in the ATL transformation. Such bindings

can include helpers, whose content is considered in the

translation as if it appeared directly in the binding.

Again, these rules are independent from each other, so

the order does not matter. However, they must go after

the rules created in the first step in order to properly

utilize backward links as rule dependencies. We give

them the same order as the order of the bindings in the

ATL transformation from which the DSLTrans rules are

created.

In the DSLTrans rules created in this step, the left

part of the ATL binding, which is the name of the as-

sociation that is being resolved in the binding, appears

in the ApplyModel. The source and target classes of the

association are also placed in the ApplyModel of the

rules. If the source and/or target classes of the associ-

ation are abstract classes, our mapping determines the

specific element that has to be added, as we see later

in our running example. The elements and associations

placed in the MatchModel of the created rule are those

appearing in the right part of the binding. The right

12 Bentley James Oakes et al.

part of bindings are expressed in terms of OCL expres-

sions, and we explain them in Section 4.2.2.

All the rules created in this step contain backward

links. As mentioned before, they allow matching over

traces between elements in the input and the output

models of the transformation. As explained in Section 2,

when an element in the ApplyModel is linked with a

backward link to one or more elements in the Match-

Model, then the ApplyModel element is not produced

in the output model, but is instead referring to ele-

ments that were already created in previous rules. This

is how the internal traces mechanism of ATL is explic-

itly modeled in DSLTrans. Of course, an element in the

ApplyModel can be linked to more than one element

in the MatchedModel by backward links, and the other

way around (several backward links can depart from

the same element in the MatchedModel). This is equiv-

alent to those traces in ATL that have more than one

source/target elements.

According to the explanation given in the first step

of the mapping, an ApplyAttribute attribute is also pro-

duced in the elements in the ApplyModel in this step.

Lazy rules can also be present in those ATL bindings

that are initializing associations, so they are considered

in this step. In this case, the elements appearing within

the lazy rule are included in the DSLTrans rule cre-

ated from the binding. Now, the elements created in the

MatchedModel are not only those appearing in the right

part of the binding, but also those acting as matching

elements in the lazy rule. Likewise, the elements cre-

ated in the ApplyModel also contain the elements and

associations created in the lazy rule.

Running Example Instantiation for Step 2 The

rules created in this step are all those that follow rule

Neighborhood2District in Figure 4. Note that our trans-

formation assigns these rules a unique but long name.

For simplification purposes, this explanation will only

use the first part of the name, until the first capital

letter appears.

The two copersons[...] rules are the mappings to

bindings B111 and B114, respectively. The two omit-

ted rules correspond to bindings B112 and B113, and

they are very similar to the two rules shown. In the

DSLTrans rules created from these bindings, the left

part of the ATL binding, which is the name of the asso-

ciation that is being resolved in the binding, appears in

the ApplyModel. The source and target classes of such

association are also placed in the ApplyModel of the

rules.

Let us focus on the first copersons[...] rule. The

metamodel in Figure 2(b) indicates that the source class

of the persons relationship is Community, while the tar-

get class is Person. Regarding the source class, it is

also the class that is created in the ATL transformation

(OPE11 in our example), so it is straightforwardly in-

cluded in the DSLTrans rule. As for the target class, the

class Person is abstract. However we can know which

non-abstract class inheriting from it should be chosen.

This is resolved by navigating the OCL expression ap-

pearing in the right part of the binding. B111 retrieves

elements of type Parent that have the role of fathers.

Therefore, according to the Father2Man rule, we know

the target element of the relationship must be of type

Man.

Regarding the elements and associations appearing

in the MatchModel of the created rule, they are those

appearing in the right part of the binding. Since the

right part of bindings are expressed in terms of OCL

expressions, we explain them in Section 4.2.2.

In contrast to the two copersons[...] rules, the twork-

ers[...] rule contains an element of type Person in the

ApplyModel. This rule is the mapping of B612. In this

case, the target element of the workers relationship can

be of type Man or Woman, and no distinction is needed.

The only constraint is that the Person must have been

created from a Parent, as indicated by its backward

link.

To mention another example of backward links, ex-

amine again the two copersons[...] rules, where the el-

ement Community refers to the Community created in

the Country2Community rule, since it is linked with

a backward link with element Country. Likewise, ele-

ments Man and Woman were created in rules Father2-

Man and Daughter2Woman, respectively. This means

that the only thing added in these two rules is the asso-

ciation persons, whenever the MatchModel is found in

the input model.

In the acommittee[...] rule we see an example of an

element in the ApplyModel with more than one back-

ward link. It corresponds to binding B712, which initial-

izes the committee association. In the DSLTrans rule,

the Association element is linked backwards with the

Company and City elements. Indeed, an Association

is created from a Company and a City by rule City-

Company2Association. The Committee element is back-

wardly linked with City, since a Committee is created

from a City in rule City2TownHall. Binding B712 is

actually resolving the committee association by mak-

ing use of the ATL resolveTemp operation explained in

Section 3.2.

Finally, let us see an example of lazy rules called

from a binding. In our running example, there are calls

to lazy rules in B811 and B812. The DSLTrans rule

dfacilities[...] corresponds to B811, while the DSLTrans

Full Contract Verification for ATL using Symbolic Execution 13

rule created from B812 is very similar and is therefore

omitted in our explanation.

In Listing 2 we can see that B811 is invoking the

lazy rule CreateOrdinaryFacility (R9), which creates an

element of type OrdinaryFacility. It also initializes the

name attribute of the created element and the asso-

ciation members. Therefore, all this is included in the

ApplyModel of the rule created from B811.

Regarding the members association, let us clarify

that the new element created by the lazy rule, OPE91,

acts as its source. The target is resolved by the OCL ex-

pression sch.students, which returns an element of type

Child (cf. metamodel in Figure 2(a)).

4.2.2 OCL Expressions Handled

One of the main challenges when analyzing an ATL

transformation is to deal with the OCL expressions it

contains, due to the large number of navigation possi-

bilities that OCL offers. Although there are some works

dealing with the translation of OCL to graph domains [8,

11], DSLTrans has its own peculiarities. For this rea-

son, in this section we explain how OCL expressions

are translated to DSLTrans using our running exam-

ple, since several OCL operators are present. The most

interesting ones are those that deal with collections.

First of all, let us recall that in ATL, OCL expres-

sions may appear in both filters and bindings. As well,

they always navigate the input model, as the output

model is strictly writable in ATL. In the two steps of

the mapping from ATL to DSLTrans explained in Sec-

tion 4.2.1, filters are translated in the first step, while

bindings are considered in the second step. However, in

both cases, the elements and associations appearing in

OCL expressions are included in the MatchModel of the

generated DSLTrans rules.

Let us start by explaining navigations in filters, and

then discuss those appearing in bindings, which may

contain calls to lazy rules.

OCL Expressions in Filters Please recall that ele-

ments appearing in the ApplyModel of DSLTrans rules

which do not have backward links are created from

those elements in the MatchModel that are also not

connected to backward links.

In the first step of the mapping (cf. Sect. 4.2.1),

recall that there are no backward links in the rules

created. Therefore, traces are created between the el-

ements of the MatchModel and the ApplyModel when-

ever the ApplyAttribute is present. However, we do not

want the elements in the MatchModel that are intro-

duced due to the filter condition to be included in such

traces. This is the reason why DSLTrans distinguishes

in the MatchModel between AnyMatchElements and

ExistsMatchElements.

AnyMatchElements correspond to those in-pattern

elements appearing in the ATL rules and must be in-

cluded in the traces created. They have the ∀ symbol

in their graphical representation. On the other hand,

ExistsMatchElements are used to state conditions over

AnyMatchElements, and we use them in our translation

in order to insert elements that appear in the OCL ex-

pressions of the filters of the ATL transformation. They

have the ∃ symbol in their graphical representation and

are not considered in the traces.

The reason to decide whether to include an Exists-

MatchElement or an AnyMatchElement in the Match-

Model is simple, and is according to the content of the

filter. If we have a navigation in the filter that reaches

a certain element, but this element does not appear in

the matching part of the ATL rule (from part), then it

is represented by an ExistsMatchElement.

We can see two examples of our running case study

in Figure 5. In the filter of Figure 5(a), we can see

that Parent (variable p) is the element performing the

match, and Family (reached through the family refer-

ence) is used as part of the condition. As for the filter of

Figure 5(b), the element used as part of the condition is

again a Family, in this case reached with the use of the

allInstances and exists operations. As we see in both

cases, all references appearing in the OCL expression

of the filter are included.

(a) Father2Man rule

(b) CityCompany2Association rule

Fig. 5 Filter elements translated to ExistsMatchElements

Conversely, if the elements that are reached through

navigations do appear in the matching part of the ATL

rule, then AnyMatchElements are created in the DSL-

Trans rule. An example is shown in Figure 6.

14 Bentley James Oakes et al.

Fig. 6 Filter elements translated to AnyMatchElements: City-
Company2Association rule

OCL Expressions in Bindings For rules generated

in the second step of the mapping the right part of the

bindings are included in the MatchModel of DSLTrans

rules. In these rules, all ApplyModel elements are con-

nected with backward links to elements in the Match-

Model, so we do not need to include ExistsMatchEle-

ments.

Again, elements that are reached through naviga-

tions (whether OCL collection operations are used or

not) must be introduced in the MatchModel. Figure 7

shows two examples where in the two bindings select

and collect operators are present. All references that are

included in both bindings are reflected in the Match-

Models created from them, and all elements reached

through said references are represented with AnyMatch-

Elements.

(a) copersons[...] rule

(b) tworkers[...] rule

Fig. 7 Binding contents translated in MatchModels

OCL Expressions in Bindings That Call a Lazy
Rule We have stated that, since elements have back-

ward links in the MatchModel of those rules created

from bindings, they will be created as AnyMatchEle-

ment. However, there is a special case, and this is when

there is a call to a lazy rule in the binding, as we can

see in Figure 8.

Lazy rules have one or more input parameters (an

element of type School in our case). The DSLTrans

rules created from bindings that contain calls to lazy

rules produce new elements, which are precisely the el-

ements created from the lazy rule. This is because the

content of the lazy rule is considered when creating the

DSLTrans rules, as explained in Section 4.2.1. For this

reason, the DSLTrans rule may contain elements in its

MatchModel that refer to properties of the element(s)

passed as parameters to the lazy rule.

This is the case, in our example of Figure 8, with the

element Service linked with the ordinary reference to

the School element. Since no backward link is connected

to this element, it is included as an ExistsMatchEle-

ment.

Fig. 8 Binding that contains a call to a lazy rule

4.3 Implementation

The mapping between ATL and DSLTrans has been im-

plemented with a higher-order transformation (HOT)

developed in ATL. It is the ATL2DSLTrans HOT shown

in Figure 9, which is explained in the following together

with its inputs and output.

The HOT is composed of three main matched rules

for realizing the two-steps mapping described in Sec-

tion 4.2.1. The first one matches a matched rule of the

ATL Transformation taken as input and produces a

rule in the DSLTrans Transformation generated as out-

put. As we mentioned before, in this step we also create

the corresponding attributes and filter conditions. In or-

der to know if a binding in the ATL Transformation is

initializing an attribute or a reference, we need informa-

tion of the Output Metamodel taking part in the ATL

Transformation. Several lazy and unique lazy rules for

creating elements, associations and attributes are in-

voked from this matched rule. This rule also stores in

an internal structure the traces that keep the relation

between the elements of the MatchModel and Apply-

Model of the DSLTrans Transformation rules that are

generated, which is useful for generating backward links

in the second step.

Full Contract Verification for ATL using Symbolic Execution 15

ATL2DSLTrans
HOT

OCL Types
Extracted

ATL
Transformation

Input/Output
Metamodels

DSLTrans
Transformation

OCL Types Extraction
HOT

ATL2DSLTrans
HOT

OCL Types
Extracted

ATL
Transformation

Input/Output
Metamodels

DSLTrans
Transformation

OCL Types Extraction
HOT

Fig. 9 Mapping Implementation

The second main matched rule deals with the cre-

ation of DSLTrans rules from ATL bindings initializing

references that do not call any lazy rule, and the third

one transforms those bindings that do invoke a lazy rule

into DSLTrans rules. Thus, they take as input a binding

where a navigation over the input model is realized and

produce a rule in the DSLTrans Transformation. This

is why we need the Input Metamodel of the transform-

ation as input for the HOT.

These two main rules implement the second step of

the mapping described in Section 4.2.1. Again, these

rules call several helpers, lazy and unique lazy rules

available in the ATL2DSLTrans HOT in order to cre-

ate the elements appearing in the DSLTrans Transform-

ation rules and the associations between them. The last

step in these two rules is to create the backward links

between elements in the MatchModel and the Apply-

Model, for which the structure previously mentioned is

used.

As another input for the ATL2DSLTrans HOT, we

use a model where the OCL navigations appearing in

the filters and the bindings of the input ATL Trans-

formation are parsed (model OCL Types Extracted in

Figure 9). In this parsing, we remove all the collection

operators appearing in the navigations in order to ob-

tain the types appearing in such navigations. Since ATL

does not offer any support nor API to statically obtain

the types of an OCL expression, we make use of an-

other HOT, namely OCL Types Extraction HOT, that

returns the model with the OCL navigations parsed.

This model is used by the ATL2DSLTrans HOT for

two purposes. First, when creating the elements and as-

sociations in the MatchModel of a DSLTrans rule that

correspond to the filter of an ATL rule, which is real-

ized in the first step of the mapping. Second, for cre-

ating the elements and associations in the MatchModel

of a DSLTrans rule that correspond to the navigation

of a binding, which is realized in the second step of the

mapping.

The rationale for having two separated HOTs is two-

fold. First, the result of the OCL Types Extraction HOT

Input: Input MM, Output MM, ATL Trans, OCL Parsed
Output: DSLTrans Transformation
1: for all MR ∈ MatchedRule do // Beginning of Step 1

2: Create DSLTrans rule
3: for all IPE ∈ MR do

4: Create AnyMatchElement

5: end for
6: if MR contains Filter then

7: [Create ExistsMatchElements] // May happen or not
8: Create MatchAssociations

9: end if

10: for all OPE ∈ MR do
11: Create ApplyClass

12: for all B ∈ OPE do

13: if B initializes an attribute then
14: Create ApplyAttribute in ApplyClass

15: if Attributes from an IPE are used in B then

16: Create MatchAttribute in MatchElement
17: end if

18: end if

19: end for
20: end for

21: Create corresponding ApplyAssociations
22: end for

23: for all MR ∈ MatchedRule do // Beginning of Step 2

24: for all OPE ∈ MR do
25: for all B ∈ OPE do

26: if B initializes a reference then

27: Create DSLTrans rule
28: Create AnyMatchElements with the OCL Exp of B

29: Create MatchAssociations
30: Create ApplyElements, for OPE and the type of B

31: if B invokes a LazyRule (LR) then

32: for all OPE in LR do
33: Create ApplyElement

34: end for

35: end if
36: Create corresponding ApplyAssociations

37: end if

38: Create corresponding BackwardLinks
39: end for

40: end for

41: end for

Fig. 10 ATL to DSLTrans HOT summary

can be used with a different purpose and, second, we

reduce the complexity of the ATL2DSLTrans HOT.

As a summary, the pseudocode presented in Fig-

ure 10 describes, at a high level, the two-steps algorithm

that maps ATL transformations to DSLTrans transfor-

mations. Using the same notation as before in the pa-

per (cf. Section 3.2), MR stands for matched rule, LR

for lazy rule, IPE for in-pattern element, OPE for out-

pattern element and B for binding.

5 Contract Prover

This section will describe the operation of our contract

prover such that contracts are proven on all executions

of a DSLTrans transformation.

16 Bentley James Oakes et al.

The contract prover we describe here is the engine

of the SyVOLT tool, which can currently be used to de-

velop and verify DSLTrans transformations within the

Eclipse environment [1,5,33]. Examples of contracts we

prove are also presented, along with a brief discussion

of the expressibility of the contract language.

5.1 Contract Proving Overview

Given a transformation written in the DSLTrans trans-

formation language, our contract proving technique can

prove whether pre-/post-condition contracts will hold

or not hold on all executions of the transformation. If

a contract holds, then whenever the pre-condition of

the contract matches over an input model, then the

post-condition of the contract will match over the cor-

responding output model.

Fig. 11 A contract to verify that two Woman and two Man
elements are produced from the corresponding Members

For example, Figure 11 describes a contract to be

proved over all transformation executions for the ex-

tended Families-to-Persons transformation. An infor-

mal statement for this contract is: ‘an input family with

a father, mother, son and daughter should always pro-

duce two men and two women in the output commu-

nity’. Note that we employ backward links as part of

the contract language, where as they are used to re-

quire that the output elements be generated from the

attached input elements, similar to their use in DSL-

Trans rules. Our contract prover is then able to prove

whether or not this contract will hold for all transform-

ation executions, and produce any counter-examples if

Fig. 12 An example path condition representing the execu-
tion of three rules

they occur. Further examples of contracts are found in

Section 5.3.1.

Contracts are proved through a process that first

symbolically constructs all possible executions of the

transformation, producing a set of path conditions. Each

path condition represents the execution of a set of trans-

formation rules, by containing the input and output el-

ements which are produced by the execution of those

transformation rules.

For example, the path condition in Figure 12 repre-

sents the execution of three rules in the transformation.

This representation includes the input and output el-

ements that will be present in the input and output

models if these three rules execute. The set of path

conditions produced by the prover will therefore parti-

tion the set of valid executions of the transformation,

where each execution is an input/output model pair.

This technique was first proposed in [31] and further

detailed in [32].

Pre-/post-condition contracts form an implication,

which needs to be checked for each path condition that

has been generated by the proving algorithm. In broad

terms, a contract holds on a path condition if either

the contract’s pre-condition elements cannot be found

in the path condition, or the contract’s pre-condition

together with its post-condition can be found in the

path condition. The contract does not hold on the path

condition if its pre-condition can be found in the path

condition but its post-condition cannot. Finally, a con-

tract holds for a transformation if it holds for all of its

generated path conditions.

Contracts are formally described in [32], while ex-

tensive discussion of the contract language is found in

the PhD thesis of Gehan Selim [42]. Section 5.3.1 and

Section 5.4 present further contract examples, while

Section 5.5 briefly discusses the expressiveness of the

contract language.

5.2 Path Condition Creation

As described in [33], our contract prover constructs

all artifacts used for contract proof through match-

ing and rewriting of typed graphs. Therefore, the first

Full Contract Verification for ATL using Symbolic Execution 17

step for the contract proving process is to create T-

Core matcher and rewriter primitives from each of the

rules in the DSLTrans transformation [45]. These model

transformation primitives are at the core of our prover,

allowing us to reason about how rules could overlap

with each other during transformation execution, and

to perform the graph rewriting necessary for our tech-

nique.

Note that this use of reasoning about the transform-

ation under study as explicit graphs is in opposition to

other approaches in the literature, where the transform-

ation specifications are translated into a SAT solver or

theorem prover, and then the proving mechanisms for

those tools are used. A further discussion of our ap-

proach versus that in the literature can be found in [42].

In order to fully reason about all input models to a

transformation, our contract prover creates a set of arti-

facts that represent all possible executions of the trans-

formation. These artifacts are created by symbolically

executing all rules in the transformation, taking into ac-

count rule overlapping and dependencies between rules.

The rule combinations that are created are termed path

conditions.

For example, the first path condition could represent

the case where no rules in the transformation execute.

The next path condition is the case where only the first

rule executes, the next is where only the second rule

executes, and a fourth path condition is where both

the two rules execute.

Note that in our path condition creation process, we

only consider one execution of each rule. That is, either

a rule does not execute (and does not appear in the path

condition), or we assume that it executes some number

of times (and the rule appears once). This restriction

is due to our abstraction, where we symbolically repre-

sent many executions of the same rule by the rule being

present only once in each path condition. This abstrac-

tion is necessary for analysis purposes, as the infinite

number of transformation executions must be covered

by a finite number of path conditions. Note that this

abstraction is possible because of the monotonicity of a

DSLTrans transformation: a rule can only add elements

to the output model of a DSLTrans transformation, but

never remove them.

As the transformation is made of layers, the sym-

bolic execution process moves through each layer and

determines how rules may interact with each other. Un-

like generating the powerset of all rules, these rule in-

teractions may in fact decrease the number of path con-

ditions generated by the prover as certain combinations

of rules are proven infeasible.

For example, consider a rule R1 which matches on

an A element, and a rule R2 which matches on an A

element connected to a B element. During an execution

of the transformation, it would be impossible for R2 to

execute without R1 also executing, as the match graph

of R1 is a subset of the match graph of R2. Therefore,

the rule R1 is ‘subsumed’ by the rule R2. Our prover is

able to detect these subsumption interactions and re-

solve them in a step just prior to path condition genera-

tion. This lowers the number of path conditions created

by disallowing certain rule combinations, as further dis-

cussed in [44].

As well, DSLTrans rules can also define backward

links, as described for the extended Families-to-Persons

transformation in Section 4.2.1. Recall that these back-

ward links make dependencies on elements created by

earlier rules. Specifically, these backward links require

that the connected element in the apply part of the rule

was created from the connected element in the match

part of the rule, by matching over traceability links cre-

ated during the execution of the transformation. This

functionality is therefore similar to the implicit bind-

ing step present in ATL, as discussed in Section 4.2.1

under the title Generic Semantics for Step 2. During

path condition construction, these backward link de-

pendencies prevent some rules from executing, further

decreasing the rule combinations possible.

5.2.1 Rule Interaction Cases

As mentioned, our contract prover combines rules from

different layers in the transformation to generate the

path conditions. This section will now summarize the

three cases in which a rule in a layer may combine with a

path condition from a preceding layer. This information

is presented to give the reader a sense of the complexi-

ties behind the symbolic execution of these rules, and a

greater understanding of how path conditions represent

executions of the transformation. For interested read-

ers, a formal treatment of these cases is found in [32].

Note that backward links are represented by thick

dashed lines between the match and apply elements

in the figures below. Traceability links have also been

added between elements in rules, and are represented

by thin unbroken lines. For clarity, we omit association

labels in the figures.

Empty Path Condition The path condition generation

process begins with the empty path condition. As men-

tioned, this represents the set of all transformation ex-

ecutions where no rules execute. As rules are combined

with this empty path condition, match and apply ele-

ments will be placed in the path condition. These el-

ements will symbolically represent elements present in

the input and output model of the transformations rep-

resented by that path condition.

18 Bentley James Oakes et al.

No Dependencies In the first case for rule interaction,

the rule contains no backward links. In the path con-

dition generation algorithm, two different path condi-

tions will be produced. The first path condition pro-

duced represents the possibility of the rule not execut-

ing, while the other path condition produced represents

the possibility of the rule executing.

An example of this case is displayed in Figure 13,

where the path condition PC is combined with the

rule Father2Man. Note that the example path condi-

tion PC already contains Country and Community el-

ements, to represent the symbolic execution of the rule

Country2Community. The two path conditions on the

right-hand side of Figure 13 show one path condition

which is identical to PC, and one path condition which

also contains the elements from the rule Father2Man.

(a) Path condition and rule to combine

(b) Two path conditions produced by combination

Fig. 13 Combination example where the rule has no depen-
dencies

Unsatisfied Dependencies For the second case in rule

interaction, the latter rule contains backward links that

cannot be found in the path condition. This implies

that the rule cannot execute. The old path condition is

retained, and no new path condition is created.

This case is represented by Figure 14. Note that

the rule cotownHalls[...] contains backward links, which

require that a Community element to have been created

by a Country element, as well as a Townhall element

to have been created by a City element. As this second

backward link cannot be satisfied by the elements in

PC, the rule cotownHalls[...] cannot execute. Therefore,

only the path condition PC is retained and no new path

condition is created.

(a) Path condition and rule to combine

(b) One path
condition pro-
duced by combi-
nation

Fig. 14 Combination example where the rule’s dependencies
are not satisfied

Satisfied dependencies Finally, the most difficult case is

where the backward links match onto the path condi-

tion, over the traceability links present. Therefore, the

rule may or must execute, depending on whether the

elements in the match part of the rule already exist in

the path condition. In this case, a new path condition

is created for every possibility of how the rule may be

matched onto the path condition.

In the partial satisfiability case, not all elements of

the rule can be found in PC. Figure 15 shows the com-

bination of the path condition PC with the rule coas-

sociations[...]. Note that the rule contains associations

between the Country and City elements, as well as be-

tween the Country and Company elements. However,

these associations are not present in the path condition

PC.

As the associations are not present in PC, this indi-

cates that there is the possibility that the input model

may not contain these associations between these el-

ements. Therefore, two path conditions are produced.

One path condition represents the case where the input

Full Contract Verification for ATL using Symbolic Execution 19

model does not allow for the rule coassociations[...] to

execute. The other path condition produced will include

these associations, as it represents the case where the

rule will execute on the input model. Note that if the

rule might match at multiple locations on PC, a new

path condition would be produced for each location.

(a) Path condition and rule to combine

(b) Two path conditions produced by combination

Fig. 15 Combination example where the rule’s dependencies
are partially satisfied

The complement to the partial satisfaction case is

the total satisfaction case. In this case, the rule’s re-

quired elements are all present in the path condition.

Therefore, the rule must execute for the transformation

executions represented by that path condition.

Figure 16 demonstrates the case where the depen-

dencies of the rule acommittee[...] are totally satisfied

by the path condition PC. Note that all backward links

in the rule can be found in PC, as well as the required

associations.

The path condition produced is built by combining

the rule onto the path condition locations at the loca-

tion(s) where the rule matches. Note that in Figure 16,

an association has been built between the Association

and Committee elements. As with the partial satisfac-

tion case, the rule may match at multiple locations.

Attribute Setting The setting of attributes for rule el-

ements is also symbolically executed in path condition

construction. Essentially, we store in the path condition

the equations stating the values for the attributes as

they are assumed by the rules, and in subsequent rules

we check for value compatibility of the match elements

being matched. If the conditions on the attributes on

the path condition element and the rule element are

conflicting, no path condition is generated.

Note that a fairly trivial solver is currently used, as

the only available attribute data type in DSLTrans is

(a) Path condition and rule to combine

(b) One path condition produced by combination

Fig. 16 Combination example where the rule’s dependencies
are totally satisfied

String. However, our approach is not overly restricted

by this approach. From a pragmatic viewpoint, we note

that our industrial case study only manipulates Strings.

More generally, DSLTrans has been used to write

many useful transformations with models that have only

Strings as attributes. This is because DSLTrans special-

izes in language translations, as described in [34]. Model

transformations of this kind typically do not require

complex computations over attributes and the bulk of

the work is achieved by node matching and rewriting.

String attribute data is mostly copied over to the gen-

erated model or concatenated with other String data.

A possible workaround to the restriction of only hav-

ing available the String type is to convert non-String

attributes and operations into Strings, such that they

can be manipulated by the transformation. Then, each

output String can be evaluated to produce the value in

the original type. Note that, using this method, no op-

erations of algebras other than the String algebra can

be executed by the transformation engine.

A more holistic approach would be to introduce ad-

ditional data types in the DSLTrans language itself,

thus allowing the execution of operations of other al-

gebras. However, much care needs to be used when in-

troducing new data types in DSLTrans, such that those

types do not introduce potential non-terminating com-

putations. That would invalidate the fact that all DSL-

Trans transformations terminate. Additionally, a more

powerful solver would also be necessary to allow path

condition construction for a DSLTrans extended with

additional data types.

20 Bentley James Oakes et al.

Fig. 17 An example path condition representing the execu-
tion of three rules

Partitioning Transformation Executions Following this

reasoning about the three cases for interactions of rules,

all rules in the transformation are examined and com-

bined into path conditions. This is performed by ex-

amining each layer in the DSLTrans transformation in

turn.

For the first layer, the empty path condition is com-

bined with each rule. Then for each subsequent layer

n, the set of path conditions produced by layer n-1 are

combined with rules from layer n. For example, the path

condition examined in the total satisfiability case above

will have been produced by the layer containing coas-

sociations[...], as in the partial satisfiability case.

The resulting path conditions at the end of this pro-

cess will represent all viable sets of rules that could

execute in the transformation. The infinite set of trans-

formation executions will therefore be partitioned by

the finite set of path conditions [32]. As each rule con-

tains match and apply elements, the path condition

thereby define which elements are present in the input

and output models for that partition of transformation

executions. Note that the empty path condition, which

contains no elements, matches all other transformation
executions not represented by another path condition.

For example, Figure 17 symbolically represents the

execution of three rules from the extended Families-to-

Persons transformation: Country2Community, Mother-

2Woman, and copersonsSolveRef[...]Woman. Note that

the Community element was produced from the Coun-

try element in the Country2Community rule, and was

matched over by the backward link dependency in the

copersonsSolveRef[...]Woman rule. This path condition

represents all transformation executions where these

three rules execute, and thus presents the input and

output elements and associations which are known to

exist if this set of rules executes.

This abstraction of transformation executions by

path conditions forms the basis for our technique of

contract proving, where proving contracts on the set

of produced path conditions allows us to reason about

how the contract holds on the transformation’s input-

output model pairs.

5.3 Contract Proving Process

As path conditions are constructed through reasoning

about the interaction of transformation rules, the struc-

ture of a path condition is very similar to that of a DSL-

Trans rule with a match graph and an apply graph, as

seen in Figure 17.

The meaning of a particular path condition is, ‘if

the elements in the top component of the path condi-

tion are in the input model, then the elements in the

bottom component will be in the output model.’ Recall

that this matches the intended meaning of a contract:

‘if the elements in the pre-condition are found in the

transformation’s input model, then the post-condition

elements should be found in the output model’. There-

fore, to prove that a contract holds or not on a path

condition, it is sufficient to see whether the elements in

the contract can be matched onto the path condition,

as described in [32].

There are three cases for determining the status of

a contract:

– If the pre-condition of the contract, including back-

ward links, does not match the path condition, then

the contract is not applicable for that path condi-

tion.

– If both the pre-condition and post-condition match,

then the contract does hold on that path condition.

– If the pre-condition matches, but the post-condition

does not match, then the contract does not hold on

that path condition.

Note that a contract may be expected to not hold

in all cases for a transformation. For example, consider

the contract DaughterMother, reproduced in Figure 18.

The informal statement for this contract is ‘a family

with a mother and a daughter will always produce a

community with a man’. It is easy to see that an in-

put model which contains only mother and daughter

elements should not produce a man in the target com-

munity.

Our contract prover will then find multiple counter-

example path conditions which cause the contract to

not hold, such as the path condition in Figure 17. Note

that the pre-condition of the contract does match onto

the top component of the path condition, while the

Man element in the contract post-condition cannot be

found in the bottom component of the path condition.

Thus the failure of this contract gives further assurance

that the transformation is working correctly, as daugh-

ters and mothers are not accidentally transformed into

men. As this result is expected, this allows the trans-

formation builder to have increased confidence in the

validity of the transformation.

Full Contract Verification for ATL using Symbolic Execution 21

Fig. 18 A contract to verify whether a Man element will be
produced from a Family containing a daughter element and a
mother element - this contract will not hold

If a contract fails to hold on the transformation and

it was not expected to fail, then this indicates an er-

ror with either the contract or the transformation. The

prover will report (and optionally draw) the path con-

ditions which the contract did not hold on. As well, a

minimal path condition is reported, which represents

the smallest combination of rules that fails. This allows

the transformation developer to identify those rule com-

binations wherein an error may occur, and change the

transformation or contract accordingly. Note that our

technique only identifies the path conditions where a

problem arises. Identification of the erroneous elements

and suggestions for repair are not handled at this time.

Note that, despite the fact that the pre-condition

of the DaughterMother contract cannot be (isomorphi-

cally) matched in the path condition in Figure 17, the

pre-condition of the contract is still found in that path

condition. This is so because there are input models

matched by these two rules where the two distinct Fam-

ily elements belonging to the two separate rules will

match over the same family instance – remember that

in DSLTrans rules can match over the same elements in

the input model. The relation between the pre-condition

of contracts and path condition is thus such that, any

possibility of overlaps (or absence thereof) between el-

ements of the same type belonging to two or more dif-

ferent rules in the path condition, is considered as a

matching possibility for the pre-condition of the con-

tract.

The relation between the contract and path condi-

tion packs thus more information than a simple graph

isomorphism. It is a mixed partial surjective / injec-

tive homomorphism between the path condition and

the contract typed graphs: while the surjection allows

“forgetting” that two or more elements in a path condi-

tion belong to different rules, the injection guarantees

that elements belonging to the same rule in the path

condition have an isomorphic counterpart in the prop-

erty. Further examples, as well as a formalization of this

relation can be found in [32].

In the case that the contract must explicitly rea-

son about the multiplicity of Family elements, the con-

tract language includes propositional logic, as in Sec-

tion 5.3.1.

5.3.1 Further Contract Examples

Fig. 19 A contract to verify proper construction of the name

attribute in the output model

Our contract language also allows reasoning about

the attributes of elements in the models. Figure 19 de-

scribes a contract determining if the full name of the

produced Person has been correctly created from the

last name of the Family and the first name of the Mem-

ber.

Contracts can also be combined using propositional
logic and pivots to enhance the expressiveness of the

contract language [42, 44]. For example, we present a

contract for the original Families-to-Persons transform-

ation in Figure 20. This contract demonstrates the use

of propositional logic in our contract prover to form an

‘if, then NOT’ implication between the two contracts2.

For this combination contract to be true, for each path

condition where the first contract holds, the second con-

tract must not hold and the elements marked by the

pivot attributes must be the same. This contract’s infor-

mal statement is ‘If a community contains any people,

then that community does not contain two (or more)

people’. Therefore, this contract expresses constraints

on the multiplicity of elements, as will be further dis-

cussed in Section 5.5.

Note that the contract language we present in this

paper relies only on constructs that are found in the

2 The logical connections between the contracts is not rep-
resented graphically

22 Bentley James Oakes et al.

(a) ‘If’ portion

(b) ‘Then NOT’ portion

Fig. 20 Using propositional logic to express ‘if, then NOT’
contracts

input and output metamodels, plus traceability links.

Given that both ATL and DSLTrans operate on EMF

metamodels, the contract language can thus be used

seamlessly to describe pre-/post-conditions we wish to

check on either ATL or DSLTrans transformations. This

fact is a major advantage for our work: contracts can

be expressed exactly in the same language and have the

same semantics for both an ATL transformation and its

semantically equivalent DSLTrans representation.

5.4 Contract Results

This section will present the nine contracts we have cre-

ated for the extended Families-to-Persons transform-

ation, to illustrate the utility of contracts for verifica-

tion.

366 path conditions were created for this transform-

ation, representing a finite partition of the infinite set

of the transformation’s possible executions. Then, each

of the nine contracts were tested against each path con-

dition. Each contract is detailed here as a tuple of an

informal statement, the graphical representation, and

how many path conditions the contract succeeded or

failed on.

Note that a contract’s success here means that both

the contract’s pre-condition and post-condition (includ-

ing backward links) matched onto the path condition,

while failure means that the pre-condition matched, but

the post-condition did not. As well, the contract still

holds on path conditions where the pre-condition did

not match, which is the remainder of the path condi-

tions.

If the contract does not hold on some path condi-

tions, and therefore on not all transformation execu-

tions, a brief explanation will describe the rule interac-

tions that prevent the contract from holding.

Note that this section includes contracts that we ex-

pect to fail for the transformation. As mentioned, these

contracts increase our confidence in the correctness of

our transformation, as the prover will produce counter-

example path conditions where the contract does not

hold. As the path condition represents the execution of

a particular set of transformation rules, this allows the

user to reason about the interaction between the rules,

and determine whether the transformation is erroneous

or not.

Note that the following division of contracts into

sections is primarily for readability, as they address dif-

ferent areas of the source and target metamodels.

5.4.1 Families-to-Persons Contracts

Pos-FourMembers

Statement: A Family with a father, mother, son and

daughter should always produce two Man and two

Woman elements in the target Community.

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 137

Path Conditions Failed On: 0

Pos-MotherFather

Statement: The full name of a produced Person is cor-

rectly created from the concatenation of the first name

of the Member and the last name of his/her Family

Full Contract Verification for ATL using Symbolic Execution 23

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 236

Path Conditions Failed On: 0

Neg-DaughterMother

Statement: A Family with a mother and a daughter will

always produce a Community with a man

Expected Result: Does not hold for all path conditions

Path Conditions Succeeded On: 178

Path Conditions Failed On: 42

Explanation: A Man element will not be produced from

an all-female Family

5.4.2 Location Contracts

Pos-TownHallComm

Statement: A TownHall and a Committee are created

for every City, and the created TownHall must have the

created Committee as its committee

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 352

Path Conditions Failed On: 0

Pos-AssocCity

Statement: A Community that contains a City with a

Company should produce a Community with a Town-

Hall and a Committee

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 287

Path Conditions Failed On: 0

Pos-ParentCompany

Statement: If a Parent worksIn a Company, the Person

created from him/her should be within the workers of

the TownHall created from the City where the Person

lives
Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 222

Path Conditions Failed On: 0

Neg-CountryCity

Statement: If the Country has at least one City, then

at least one Association should be created

Expected Result: Does not hold for all path conditions

Path Conditions Succeeded On: 189

Path Conditions Failed On: 176

Explanation: An Association is only created if there is

24 Bentley James Oakes et al.

a Company in the City

5.4.3 Facility Contracts

Pos-ChildSchool

Statement: If a Child goesTo a School that has a spe-

cial Service, then a SpecialFacility has to be created

that has the Person created from the Child as mem-

bers

Expected Result: Holds for all path conditions

Path Conditions Succeeded On: 168

Path Conditions Failed On: 0

Neg-SchoolOrdFac

Statement: An OrdinaryFacility should be created from

each School

Expected Result: Does not hold for all path conditions

Path Conditions Succeeded On: 168

Path Conditions Failed On: 60

Explanation: A School will be transformed into a Spe-

cialFacility if it provides a special Service

5.5 Contract Expressiveness

This section will briefly discuss the expressiveness of

our contract language.

As seen from the above examples, contracts contain

a pre-condition and a post-condition which each con-

tain a typed graph. [42] divides the possible contracts

into three types: multiplicity invariants, syntactic in-

variants, and pattern contracts3.

5.5.1 Multiplicity Invariants

Contracts can express multiplicity invariants contained

in the source or target metamodel. As seen in Fig-

ure 20 in Section 5.3.1, the propositional logic of our

contract language allow us to specify that only one Per-

son should be connected to a Community in the output

model. This allows the user to ensure that rules are not

combining to produce more elements than desired.

Note however, that due to the abstraction of our

approach these multiplicity invariants are not strict. As

only one execution of each rule is considered in a path

condition, our prover will not generate path conditions

where a rule executes multiple times. Thus, multiplicity

contracts such as the one in Figure 20 check for the ex-

istence of transformation executions where two Person

elements are always created.

5.5.2 Syntactic Invariants

Syntactic invariant contracts check whether the path

condition is well-formed with respect to the input or

output syntax. An example of this type of contract is

shown in Figure 21 for the UML-to-Kiltera case study

described in Section 6.1.3. The informal statement for

this contract is ‘if there is an Inst element, then that

Inst element has the same name as a ProcDef element.’

Fig. 21 An example of a syntactic invariant contract

3 We here exclude rule reachability contracts, as the prover
now automatically reports the failure of a rule to execute

Full Contract Verification for ATL using Symbolic Execution 25

5.5.3 Pattern Contracts

The final category of contracts described by [42] are pat-

tern contracts, which relate elements in the input model

to elements in the output model. The nine contracts

presented in Section 5.4 for the extended Families-to--

Persons transformation are of this type. The intention

of these contracts is to allow the user to verify that

multiple rules are interacting in a valid way, which is

difficult from manual inspection of the rules themselves.

5.5.4 Limitations

We note that our contract language allows for the def-

inition of a wide variety of structural conditions. Com-

parisons can be drawn to [27], where the authors use

PaMoMo as the basis for their contract language. This

allows the authors to define a variety of visual contracts

to express both negative and positive contracts.

However, our contract language is currently limited

as it can only represent structural conditions and not

arbitrary expressions. This renders the contract lan-

guage much less powerful than other constraint lan-

guages such as OCL. For example, the current imple-

mentation of our contract language does not contain

operators for sets, or for handling non-String attributes.

As well, as we are abstractly representing the rules that

execute, and the number of times each rule executes,

users must be careful about their definition of multi-

plicity constructs. Contracts also cannot be written to

validate instance data for input or output models, such

as ensuring that all input names start with a capital

letter.

6 Experimental Results

In this section we present an evaluation of our higher-

order transformation and contract-proving technique.

In particular, we are interested in the following research

questions:

– RQ1: Is our technique applicable to complex ATL

transformations?

– RQ2: How does the time and memory usage of the

contract prover differ for each of our case studies?

– RQ3: Given a particular contract, can we reduce the

time taken for contract proving through transform-

ation slicing?

– RQ4: Does the version of the transformation pro-

duced by our higher-order transformation differ sig-

nificantly from a hand-built transformation?

Note that RQ1 and RQ2 are discussed directly in

this section, while RQ3 is examined in Section 7 and

RQ4 in Section 8.

6.1 Study Setup

This section will describe the case studies used to an-

swer our research questions.

6.1.1 Families-to-Person Transformations

One of our experiments for this work was the Families-

to-Persons transformation described in [36]. We retain

this transformation for our experiments, as it contains

a number of interesting concepts with regards to our

verification work. In particular, the rules producing el-

ements in the output model are non-trivial, as those

elements have their attributes set through manipula-

tion of the attributes in the input model. This case

study tests our technique’s ability to correctly trans-

form these attribute-setting rules and then prove con-

tracts on these transformations.

As well, this case study is technically challenging to

prove contracts on, as multiple rules in the transform-

ation contain duplicate elements, such as the Family el-

ement. As described in Section 5.3, our contract prover

must be able to correctly perform non-isomorphic match-

ing of the contract onto a path condition. That is, if

there are similar elements in two rules in the path condi-

tion, the contract prover must resolve whether these ele-

ments match over separate elements in the input model,

or over the same element.

We also performed experiments on the extended Fam-

ilies-to-Persons transformation described in Section 3.

This extension expands the number of ATL rules from

five in the original transformation to ten in the ex-

tended version, which increases the number of DSL-

Trans rules produced from 9 to 19. Consequently, the

number of path conditions produced by our prover grows

from 101 to 366.

The purpose of experimenting on this transform-

ation is therefore to examine the performance of our

property prover on a larger transformation example

which contains more complex rules and contracts. Note

that the contracts proved on this transformation have

been created by an author of this paper and do not

come from past work.

6.1.2 GM-to-AUTOSAR Transformation

Another transformation we examine as a case study is

an industrial transformation seen in our earlier contract

proving work [44]. The transformation in question takes

as input models defined in a proprietary legacy meta-

model used at General Motors (GM) for Vehicle Con-

trol Software development. The output metamodel is

26 Bentley James Oakes et al.

Table 2 Size of transformation metamodels

Num. Num. Num. Num. Inheri.

Transformation Metamodel Elements Assoc. Attrib. Relations

Families-to-Person Input 3 5 2 0
Output 3 1 2 2

Ext. Families-to-Person Input 11 21 3 7
Output 12 8 2 9

GM-to-AUTOSAR Input 6 10 5 0
Output 13 8 2 3

UML-to-Kiltera Input 42 51 6 41
Output 30 41 9 20

the automotive industry-standard AUTOSAR4. There-

fore, this transformation is used for model-evolution

purposes, migrating the models to the new standard

for greater interoperability with tools.

Our intention with this case study is two-fold. First,

we are interested in comparing the time and memory

consumption of this industrial example to the other

transformations.

Secondly, we will compare the DSLTrans transform-

ation produced by our higher-order transformation, and

the hand-built transformation built for that earlier work.

These results will be discussed in the context of RQ4

for whether the DSLTrans representation generated by

the higher-order transformation is sufficiently efficient

for contract verification to replace the hand-built ver-

sion. This will be discussed in Section 8.1, along with a

brief comparison of the two DSLTrans transformations.

Note that [42] further discusses the GM-to-AUTO-

SAR case study, including a detailed description of the

transformation and the contracts to be proved.

6.1.3 UML-to-Kiltera Transformation

For our final case study, we have selected a transform-

ation for transforming a subset of UML-RT state ma-

chine diagrams into Kiltera, which is a ‘language for

timed, event-driven, mobile and distributed simulation’.

The transformation was proposed in [39] and developed

in [37]. Previously, we have studied this transformation

to obtain insights into the contract-proving process [43].

We include this case study for reasons similar to the

GM-to-AUTOSAR transformation. As the transform-

ation rules in the UML-to-Kiltera contain a large num-

ber of elements, especially duplicated elements, we are

interested in the performance penalty to the matching

and rewriting steps during the contract proving process.

One contract in particular is quite troublesome for our

matching process, as described in Section 7.2.

As well, we are interested in the differences between

the hand-built transformation built for [43], and the

4 AUTomotive Open System ARchitecture, AUTOSAR.org/

version produced by our higher-order transformation

(HOT). In particular, a number of improvements were

made to the higher-order transformation to correctly

generate the correct DSLTrans transformation for this

case study, increasing the applicability of our approach

in verifying ATL transformations. Further details on

the comparison between the hand-built and HOT-prod-

uced transformation versions are in Section 8.2.

Further details on this case study are presented in

[42], including both metamodels, all contracts, and both

ATL and DSLTrans transformations. Note that a num-

ber of contracts have been omitted from the current

work due to some functional equivalences.

6.2 Case Study Summary

This section briefly presents two tables which compare

the case studies in terms of their ATL rule composi-

tion, as well as certain metrics for their input and out-

put metamodels. This summary is presented to support

our claim that our technique is applicable to a variety of

ATL transformations. Please note that the metamod-

els and ATL/DSLTrans transformations for each case

study are available on our website [3].

Metrics for the size and complexity of the input and

output metamodels for each transformation are pre-

sented in Table 2. These metrics include the number

of elements, associations, and inheritance relationships

present in each metamodel.

Table 3 presents the number of matched rules, lazy

rules, and helpers in the ATL transformation for each

of our case studies.

6.3 Measures

To objectively answer our defined research questions,

contract prover experiments were conducted for all case

studies mentioned above. For each case study, the suc-

cess of our contract prover rests on whether the con-

Full Contract Verification for ATL using Symbolic Execution 27

Table 3 Number and classification of rules in each ATL spec-
ification

Transformation Num. Num. Num.
Matched Lazy Helpers

Families-to-Person 5 0 0
Ext. Families-to-Person 8 2 0
GM-to-AUTOSAR 3 2 0
UML-to-Kiltera 7 13 3

tracts we have indicated hold or do not hold on all path

conditions (as appropriate).

The following information was collected during the

contract proving process for each case study:

– Number of rules in each transformation

– Number of path conditions produced by the con-

tract prover

– Time required in order to generate all path condi-

tions

– Number of contracts to be proved on the case study

– Time required to prove the contracts

– Maximum memory usage required by the contract

prover

Note that the number of rules found in the ATL

transformation may be different from the DSLTrans

transformation produced by the higher-order transform-

ation. Therefore, both counts are reported.

The experiments were run on a 2013 Macbook Air

with an Intel Core i5-4250U and 8 GB of RAM, run-

ning on Arch Linux and Python 3.5.1. Both the path

condition construction and contract proving processes

were parallelized amongst four threads. Each experi-

ment was conducted at least five times, with results

averaged. Timing information was obtained by using

the Python timing package time. Memory information

was obtained using the /usr/bin/time command. Note

that the memory usage information will also record the

space overhead required by the Python interpreter.

All the artifacts used for our experiments can be

found on our website [3].

6.4 Results

Table 4 shows the performance results for proving con-

tracts on our case studies. We shall now discuss these

results in the context of the first two research questions.

RQ3 and RQ4 will be discussed separately in Section 7

and Section 8.

6.4.1 RQ1: Applicability of the Technique

To answer our first research question ‘Is our technique

applicable to complex ATL transformations?’, we have

tested our contract prover on a number of transforma-

tions of varying sizes sourced from different application

domains. Metrics for the case studies are presented in

Section 6.2.

For each case study, contracts we expected to hold

were successfully proved on all applicable path condi-

tions. For other contracts, which do not hold in all cases,

counter-examples were produced that indicate the exact

combination of rules where the contract is not guaran-

teed to hold. These counter-examples were then manu-

ally examined to ensure their correctness.

For example, we attempted to prove the Daughter-

Mother contract on the extended Families-to-Person

transformation, as detailed in Section 5.3. Our contract

prover correctly indicated that for input models that

only contain daughter and mother elements, it is not

guaranteed that there is a Man element in the output

model. As this was an expected result, this raises our

confidence in the correctness of the transformation.

Success of our contract prover on these case studies

lets us conclude that we can apply our technique to a

variety of complex ATL transformations with varying

rule and metamodel sizes.

6.4.2 RQ2: Time and Memory Characteristics

To answer our second research question, ‘How does the

time and memory usage of the contract prover differ

for each of our case studies?’, we refer to the results in

Table 4 which contains the performance results of our

experiments.

Note that while the number of path conditions gen-

erated is certainly dependent on the number of DSL-

Trans rules in the transformation, there is not a lin-

ear formula that can be applied. As an example, the

extended Families-to-Persons transformation produced

three times more path conditions than the original Fam-

ilies-to-Persons transformation, even though the ex-

tended version has roughly twice the number of rules.

The exact number of path conditions produced will

depend on the complexities of how rules can combine

with each other, such as the number of dependencies

between rules or even the number of elements in each

rule. As well, since our path condition generation is im-

plemented using graph-matching and rewriting, larger

rules will also take longer to combine, increasing the

time taken for path condition generation [32].

The time to prove contracts on each transformation

is also dependent on a number of factors. Similar to

path condition generation, the time taken for contract

proving is roughly proportional to the number of path

conditions generated for a transformation, the number

28 Bentley James Oakes et al.

Table 4 Performance results

ATL/ DSLTrans Path Conds. Time (s) Contracts Time (s) Memory

Rules Generated Proved (MB)

Families-to-Person 5 / 9 101 0.24 4 0.52 54
Extended Families-to-Person 10 / 19 366 3.89 10 7.35 59
GM-to-AUTOSAR (handbuilt) 5 / 9 13 0.18 9 0.15 58
GM-to-AUTOSAR (HOT) 5 / 9 10 0.26 9 0.15 60
UML-to-Kiltera 20 / 17 322 1.86 15 11.99 55

of contracts to be proved on that transformation, and

the composition of path conditions and contracts.

Note that our contract proving times are different

(and may indeed be worse) than those reported in [36]

or earlier works. This is primarily due to the replace-

ment of the core matching algorithm in the prover. Re-

call that matching of contracts onto path conditions is

non-isomorphic, as discussed in Section 5.3. Previously

our prover had a ‘disambiguation’ step to explicitly pro-

duce all possible overlapping of rules, which could then

be matched with a standard isomorphic matcher. A

new matching algorithm was designed to bypass this

step and take these overlapping elements into account.

This algorithmic improvement also has the side-effect

of tending to produce more path conditions compared

to our earlier works.

We note that this new matching algorithm has not

been the subject of heavy optimization, and we expect

further speed improvements in the future. In partic-

ular, we note that one contract in particular for the

UML-to-Kiltera case study has terrible matching per-

formance, taking 142 seconds to prove. This is solely

due to our unoptimized matching algorithm. In partic-

ular, the contract contains a New element connected to

four Name elements. As well, this structure is repeated

a number of times in the transformation’s path con-

ditions. As our matching algorithm is currently based

on an association-based approach, a combinational ex-

plosion occurs when the matcher attempts to return

all possible matches. We consider this contract to be

an edge case, and its proving time is not included in

Table 4 as it is solely an artifact of our unoptimized

matching algorithm. Future work will attempt to ad-

dress this implementation issue.

The memory usage of our contract prover is depen-

dent upon the number of DSLTrans rules in the trans-

formation, and on the number of path conditions that

are created. Note that for the transformations used here

as case studies, the prover memory usage is between 54

to 60 MB, which is less than 10 MB higher than the

overhead to run the Python scripts.

Overall, our contract proving approach stays within

a modest time and memory budget. All transforma-

tions have their path conditions generated and have

their contracts proved within 15 seconds and 60 MB of

memory. Indeed, even the edge case contract has a rea-

sonable proving time of 142 seconds. Future work will

pursue optimizations to our technique in order to prove

contracts on even larger and more complex ATL and

DSLTrans transformations.

7 Slicing Transformations

This section will expand on the slicing algorithm in-

troduced in [36]. Contrary to the earlier work, this al-

gorithm has now been made an automatic part of the

contract prover.

The intention of this algorithm is to create the min-

imal set of transformation rules for a given contract,

such that when this set is symbolically executed by the

contract prover, the correct result is produced. Decreas-

ing the number of rules that need to be symbolically ex-

ecuted allows for a significant decrease in the amount

of time required for the proving process.

Thus, this slicer algorithm is our attempt to answer

RQ3: ‘Given a particular contract, can we reduce the

time taken for contract proving through transformation

slicing?’

7.1 Slicer Overview

There are three steps in our technique to slice the trans-

formation for a contract.

The first step is to decompose the contract into its

typed elements and associations. This information al-

lows the slicing algorithm to determine which rules are

required to be involved in the contract proving process.

The second step examines all rules in the transform-

ation, and identifies those rules which contain the nec-

essary elements for the contract to match over.

Finally, the third step determines if those rules se-

lected in the second step require elements that are pro-

duced by earlier rules. This must be an iterative process

to allow all required rules to execute. Note that this de-

pendency analysis is currently performed very conser-

vatively, and future work will attempt to optimize the

process to eliminate more rules.

Full Contract Verification for ATL using Symbolic Execution 29

Fig. 22 Example contract for the slicing process

All those rules not required for the contract are then

removed from the transformation to be verified. Note

that this new transformation may be smaller than the

original, but this depends on the specific dependencies

between the contract and the transformation rules.

7.1.1 Decomposing Contract and Rules

To support the slicing algorithm, it is necessary to de-

termine which rules the contract (and other rules) re-

quire for execution. This is determined by ‘decompos-

ing’ the underlying typed graph structure to determine

precisely which elements it matches over. In the cur-

rent implementation, the backward links and associa-

tions between elements in the graph are extracted, as

well as any elements which are not connected to others,

termed isolated elements.

For example, consider the contract in Figure 22.

There are two associations in the pre-condition, where

each is composed of a Member element connected to

a Family element. One association is typed by daugh-

ters, while the other is typed by mothers. As well, there

is the backward link which connects an element in the

pre-condition with an element in the post-condition,

enforcing that a Man element has been created by the

same rule that matched the Family element.

The second step to the slicing algorithm is to ex-

amine all the rules in the transformation. Recall that

the path conditions which the contract matches over

have been created by combining rules (cf. Section 5.2).

Therefore, for the associations in the contract to appear

in the path condition, one of the rules which contain this

association must have been symbolically executed.

Each rule is examined to determine if there are iso-

morphic copies of the contract associations, backward

links, or isolated elements present in the rule. If so, then

that rule may produce the required association or ele-

ment, so the rule is marked as crucial to the proving of

the contract.

As a clarification for backward links, recall that as

backward links must match over traceability links, where

an input element produces an output element as part of

the same rule. Therefore, this step succeeds when both

elements connected by the backward link are found in

the rule, despite no explicit traceability link between

them.

This collection step is very conservative, as it in-

cludes all rules which contain any of the contract as-

sociations or isolated elements. However, it is correct

to reason about the contract as a collection of asso-

ciations and isolated elements rather than a complete

graph. Recall that in Section 5.3, the contract is not

matched isomorphically onto the path condition, due to

the path condition structure representing the execution

of a set of transformation rules. Therefore, the elements

required for the contract may be ‘split’ amongst many

rules in the transformation, necessitating a decomposi-

tion approach.

Note that if any association, backward link, or iso-

lated element in the contract cannot be found in the

full set of transformation rules, then the contract can-

not match on any path condition produced by the prov-

ing algorithm. This indicates that either the contract or

transformation contains errors and must be fixed.

The final step is to reason about the rules marked

as crucial for contract proving in the second step. The

decomposition and searching steps described above are

repeated for each rule. This produces an extremely con-

servative rule-dependency graph, which indicates the

rules that must be present in the transformation for

this contract to be correctly proven.

7.2 Results and Discussion

To measure the impact of the slicing algorithm on con-

tract proving, we examined the effects of slicing the

UML-to-Kiltera transformation. A number of contracts

were proven on both the whole transformation (denoted

as the ’original’ version) as well as the subset of the

transformation returned by the slicing algorithm (the

’sliced’ version). Note that the time taken to perform

slicing itself was less than 0.05 seconds for all contracts.

The results in Table 5 show the reduction in con-

tract proving time when slicing is performed. The orig-

inal UML-to-Kiltera transformation, which originally

contained 17 DSLTrans rules, has been sliced into sub-

sets ranging from 2 to 15 rules for each contract. Note

that the sliced transformations produce at most half

the number of path conditions as the original trans-

formation, greatly lowering both path condition con-

struction time and contract proving time. Furthermore,

30 Bentley James Oakes et al.

Table 5 Effect of slicing on contract proving time for the
UML-to-Kiltera transformation

Name Version Rules PCs PC Build Prove
Time (s) Time

(s)

PP1 Original 17 322 1.64 6.77
Sliced 14 161 0.93 3.26

PP2 Original 17 322 1.80 6.63
Sliced 14 161 0.94 3.15

PP3 Original 17 322 1.75 141.15
Sliced 14 161 0.89 139.41

PP4 Original 17 322 1.85 7.02
Sliced 14 161 1.01 3.42

MM1 Original 17 322 1.47 5.29
Sliced 2 3 0.05 0.09

MM2 Original 17 322 1.68 7.01
Sliced 8 64 0.13 0.12

MM3 Original 17 322 1.87 7.06
Sliced 11 64 0.55 0.62

MM4 Original 17 322 1.84 7.00
Sliced 11 64 0.58 0.64

MM5 Original 17 322 1.84 7.00
Sliced 12 99 0.76 1.18

MM6 Original 17 322 1.71 6.33
Sliced 2 3 0.04 0.08

MM7 Original 17 322 1.55 5.65
Sliced 8 7 0.13 0.11

MM8 Original 17 322 1.84 6.84
Sliced 12 99 0.74 1.14

MM9 Original 17 322 1.81 7.03
Sliced 12 99 0.77 1.13

MM10 Original 17 322 1.47 5.29
Sliced 11 64 0.59 0.67

MM11 Original 17 322 1.55 5.81
Sliced 12 115 0.77 1.97

SS1 Original 17 322 1.57 5.89
Sliced 15 112 0.28 0.74

the results of contract proof were identical for both the
normal and sliced versions.

However, the number of rules in the slice depends

on the particular elements involved in the contract and

the rules. For example, slicing the transformation for

the MM6 contract produced a DSLTrans transform-

ation with 2 rules, while a slicing for the SS1 contract

produced a transformation with 15 rules.

As described in Section 6.4.2, the proving time for

the PP3 contract is a significant outlier from the rest of

the contracts, even when the transformation is sliced.

As mentioned, we consider this to be an artifact of our

unoptimized matching algorithm.

These results show that the slicing of transforma-

tions based on the contract to be proven can have a

large impact on the proving time. Path condition con-

struction time was reduced by 43 to 97 percent, while

contract proving time was reduced by 51 to 98 percent

(excluding PP3). This answers our research question in

the affirmative.

As well, contrary to our earlier work in [36], this

slicing can now also be performed automatically during

contract proving. Note that the current implementation

of the slicer is based on a relatively simple decomposi-

tion of contract and rule graphs, along with construc-

tion of a conservative rule dependency graph. Future

work will ensure that the minimum number of rules are

selected in the sliced transformation.

We note that our slicing technique has definite par-

allels to other transformation verification works. For

instance, [13] quantitatively compares the elements in

‘Tracts’ (an analogous version of our contracts5) to trans-

formation rules to suggest to the user which rules are

causing the Tract to fail. However, their approach dif-

fers from ours in two fundamental ways. First, the ap-

proach of [13] focuses on guiding the user towards the

problematic rules6. Our slicing approach is a perfor-

mance optimization to reduce the number of path con-

ditions that must be created. Second, our sliced trans-

formation must contain all rules that could change the

result of a contract holding or not holding on a trans-

formation. We cannot afford a false result in our veri-

fication as is allowed in [13], and thus our set of rules

must be conservatively built.

8 Hand-built versus HOT-produced

Transformations

This section will investigate our last research question

RQ4, ‘Does the version of the transformation produced
by our higher-order transformation differ significantly

from a hand-built transformation?’ The case studies of

interest are the GM-to-AUTOSAR and UML-to-Kiltera

transformations. As the DSLTrans transformations are

generated directly from ATL transformations, it is illu-

minating to directly compare these produced transfor-

mations to hand-built versions created by our academic

partners in earlier work. In particular, we are inter-

ested in the performance penalty due to non-optimized

transformations. If the penalty is minor or non-existent,

then the HOT can serve as an automatic replacement

to building the transformation by hand.

5 Related work concerning Tracts is discussed in more detail
in Section 9.
6 Note that this guidance is partially addressed in our work.

When path conditions fail a contract, we report the path con-
dition which represents the minimum number of rules. There-
fore, it is the interaction of these rules that cause the contract
to fail.

Full Contract Verification for ATL using Symbolic Execution 31

8.1 GM-to-AUTOSAR Transformation

As discussed in Section 6.1.2, this transformation mi-

grates models from a proprietary General Motors meta-

model to an industry standard metamodel [44].

8.1.1 Transformation Shape

For brevity, the hand-built and HOT-produced versions

of the transformation will not be presented as figures.

Instead, the transformations are summarized in Tables 6

and 7 by listing the number of match and apply el-

ements in each rule. The full transformations can be

found on our website [3].

Table 6 GM-to-AUTOSAR (Hand-built) transformation struc-
ture

Layer Rule Name Match Apply

Elements Elements

1 MapPN2FiveElements 1 5
Map Module 3 2
MapPartition 2 1

2 ConnECU2VirtDev1 2 2
3 ConnVirtDev2Distrib1 3 2
4 ConnVirtDev2Distrib2 2 2
5 ConnECU2VirtDev2 2 2
6 ConnPPortProto 5 2

ConnRPortProto 5 2
Total 9 25 20

Table 7 GM-to-AUTOSAR (HOT) transformation structure

Layer Rule Name Match Apply
Elements Elements

1 createComponent 1 2
2 initSysTemp 3 6
3 initSwc2EcuMap 3 1
4 sysMapping 2 2
5 compostype 3 2
6 mappingcomponent 2 2
7 mappingECUinstance 2 2
8 pportprototype 5 2
9 rportprototype 5 2
Total 9 26 21

Note that both the hand-built and HOT-produced

versions of the transformation have nine rules, and the

number of match and apply elements produced are ap-

proximately equivalent. This indicates that the HOT

is producing a transformation that is roughly similar

in complexity to what a human would build. Note how-

ever that the HOT currently produces a transformation

which contains one rule per layer.

8.1.2 Effect on Contract Proving

Our research question asks whether the HOT-produced

transformation is sufficient to replace the hand-built

transformation when contract proving. The following

results in Table 8 show the comparison between proving

each contract on the two versions of the transformation.

Note that 13 path conditions were generated for the

hand-built GM-to-AUTOSAR transformation, while 10

path conditions were generated for the HOT-produced

version.

We note that all contracts are proved in an almost

equivalent amount of time, and have comparable results

between the two versions of the transformation. The

contract failures for M1 and M3 are expected, as the

original ATL transformation contained errors [42].

Table 8 GM-to-AUTOSAR version effect on contract proving

Name Version PCs

Succ.

PCs

Fail.

Prove

Time (s)

M1 Hand-built 4 8 0.06
HOT 4 4 0.05

M2 Hand-built 12 0 0.05
HOT 8 0 0.05

M3 Hand-built 4 4 0.05
HOT 4 4 0.05

M4 Hand-built 8 0 0.06
HOT 8 0 0.05

M5 Hand-built 12 0 0.06
HOT 8 0 0.05

M6 Hand-built 12 0 0.06
HOT 8 0 0.05

P1 Hand-built 6 0 0.07
HOT 4 0 0.05

P2 Hand-built 6 0 0.07
HOT 4 0 0.07

S1 Hand-built 4 0 0.06
HOT 4 0 0.08

8.2 UML-to-Kiltera Transformation

As mentioned in Section 6.1.3, the UML-to-Kiltera trans-

formation transforms UML-RT state machine diagrams

into the Kiltera language for the purposes of verifica-

tion and simulation. It is discussed in more depth in [37]

and [42].

The authors happily note that the exact same rules

were produced by the higher-order transformation from

the ATL transformation code. In fact, all elements and

names were consistent between the versions, allowing

us to declare the hand-built and HOT-produced trans-

formations functionally identical.

Contrary to our other case studies, it is also interest-

ing to note that the DSLTrans version of the UML-to-

Kiltera transformation contains only 17 rules compared

to the 20 rules in the ATL version. This difference is

due to the ATL version containing six trivial lazy rules

which perform attribute setting.

32 Bentley James Oakes et al.

8.3 Conclusion

The results for both experiments indicate that the pro-

duced DSLTrans transformations are of equivalent qual-

ity to the hand-built versions. There is a small to non-

existent performance penalty in one case, and in the

other the rules produced were identical to the hand-

built version. Thus, we believe that it is sufficient to

use our higher-order transformation as part of a tool-

chain to verify ATL transformations.

9 Related Work

There has been already an extensive work on verifying

different aspects of model transformations, e.g., cf. [6,

40] for surveys in this domain. With respect to the con-

tribution of this paper, we summarize previous con-

tributions for checking different kind of contracts for

model transformations whereas the concrete approaches

range from testing to verification approaches.

9.1 Model Transformation Testing

In [25, 48] the authors describe their method where

‘Tracts’ can be specified for model transformations. These

tracts define a set of constraints on the source and

target metamodels, a set of source-target constraints,

and a tract test suite, i.e., a collection of source mod-

els satisfying the source constraints. The accompany-

ing TractsTool can then automatically transform the

source models into the target metamodel, and subse-
quently verify that the source/target model pairs sat-

isfy the constraints. The advantages of this are that the

approach is not computationally-intensive, as tests can

be narrowly focused in a modular way.

Besides the Tracts approach, there are several other

approaches supporting the testing of model transforma-

tions based on different kind of contracts such as model

fragments [35], graph patterns [9,27], Triple Graph Gram-

mars (TGGs) [49], dedicated testing languages [22,29],

or as used in Tracts OCL constraints [17], and even a

combination of these mentioned approaches [23]. While

these mentioned approaches resort to black-box based

testing, there are also approaches which allow for white-

box based testing of model transformations such as [26].

In contrast to testing approaches, the presented ap-

proach in this paper allows for contracts to be proved

for all possible transformation executions, i.e., for all

possible input models. However, we also keep the same

implication idea: the pre-condition of a property sets

constraints on the input models of the transformation,

and then, the post-condition defines constraints on the

output model.

9.2 Model Transformation Verification

Previous work also proposed the idea of transforming

ATL to formal domains. The work of [47] describes a

formal semantics for ATL, such that ATL transforma-

tions can be expressed in the formal language Maude.

Once expressed in Maude, properties can then be ver-

ified over the execution of this transformation, such as

reachability of particular states, or that no more than

one rule is matched on each source element. In our work,

we transform the ATL transformation into the DSL-

Trans transformation language to prove transformation

contracts which is not in the scope of [47].

The work in [15] automatically transforms trans-

formations in a number of transformation languages

(such as ATL) to OCL. As well, similar to our sys-

tem, the invariant, pre- and post- conditions are de-

scribed in a graph format. However, in [15] the counter-

example conditions for each property are generated.

Then a model finder generates a possible counter-example

model, before the system determines if the model can

be satisfied or not. Note that due to incomplete search-

ing of the model space, the model finder may not find

every counter-example. In contrast, our system works

by matching the property onto path conditions, which

abstracts all possible transformation executions. Thus,

our property prover can give a stronger proof.

In [24] the authors are checking different kinds of

model transformation properties based on OCL and the

usage of KodKod which requires again concrete bounds

for property proving. The work by Anastasakis et al. [7]

transforms QVT model transformations to Alloy in or-

der to verify if given assertions, i.e., properties, hold for

the given transformations. If no target model is found

by Alloy for a given source model, the assertion does

not hold. As Alloy needs bounds for the model search,

models outside the given bounds are not found. Similar

model transformation verification support based on Al-

loy is presented in [21] which also needs concrete bounds

for performing the model search.

Besides the mentioned bounded verification approaches,

there are some unbounded approaches using theorem

provers for verifying model transformations. For instance,

Calegari et al. [16] propose an interactive approach to

verify contracts for ATL transformations based on the

Coq proof assistant. This approach is unbounded, but

requires some user guidance. Another approach using

the Coq proof assistant to ensure the correctness of

model transformations is presented in [38]. However,

Full Contract Verification for ATL using Symbolic Execution 33

the authors aim to synthesize transformation imple-

mentations from specifications which are correct-by-

construction instead of verifying independently devel-

oped transformations.

Other approaches using theorem provers for model

transformation verification go one step further by using

modern SMT solvers such as is done in [14, 18]. These

approaches do not require user guidance as it was re-

quired in the aforementioned Coq based approaches.

They translate the ATL transformations as well as the

contracts expressed in OCL into first-order logic expres-

sions and use Z3 for performing the theorem proving.

Compared to our approach, these approaches are in the

same spirit, but they consider a smaller subset of ATL

compared to our solution. For instance, currently they

do not support lazy rules.

Another work which translates ATL transformations

for analysis purposes is presented in [41]. The authors

argue that an algebraic graph transformation represen-

tation would allow for enhanced verification tasks. How-

ever, the authors do not go into detail on this aspect

as they mainly focus on the correct translation of ATL

language concepts to Henshin concepts. Thus, they con-

sider the exploration of concrete verification tasks as

future work.

In [30], the authors present a generic transform-

ation metamodel which can be used as an intermedi-

ate language for translating model transformation lan-

guages to this representation, before the transforma-

tions are transformed into a formal domain for perform-

ing analysis. The authors present several verification

cases where the proposed framework helps in exploit-

ing different verification formalisms and techniques. In

our approach, we also aim for reusing an existing verifi-

cation formalism provided by DSLtrans and show how

a considerable subset of ATL can be translated into

DSLtrans to perform contract verification.

9.3 Synopsis

To the best of our knowledge, in this paper we have pre-

sented the only approach to fully prove properties de-

fined as contracts for model transformations expressed

in declarative ATL including advanced features such as

lazy rules.

10 Conclusion

This section will offer a brief discussion as to threats of

validity, as well as a number of concluding thoughts on

our contract prover and technique.

10.1 Threats to Validity

This subsection discusses the major threats to the va-

lidity to our work.

The higher-order transformation has not been for-

mally verified. Thus, we cannot be completely sure that

the DSLTrans transformations that are automatically

produced are directly equivalent to the original ATL

transformation. However, two arguments can be made

for the HOT’s correctness. The first is that the HOT is

relatively simple, as explained in Section 4. It consists of

two steps: first creating the rules that generate the out-

put elements and then creating the rules that generate

the relations between output elements. This two-step

approach makes ATL’s semantics explicit, and makes

the DSLTrans transformations generated by the HOT

easily understandable as well as traceable back to their

original ATL specifications.

Second, we have compared the contract proof results

between two transformations created by hand, and the

corresponding transformations generated by our higher-

order transformation in Section 8. We note that one

transformation produced by our HOT was exactly the

same (modulo minor rule rearrangement) as the hand-

built version. As well, the other transformation was ver-

ified with similar proving time compared to the hand-

built version. For future work, we are interested in ver-

ifying the higher-order transformation itself using the

contract prover we present here.

Scalability is always an issue when exhaustive ap-

proaches such as ours are proposed. We have shown

with our experiments that the HOT and the contract

prover can transform and verify reasonably sized and

complex transformations. As well, the slicing algorithm

presented is able to reduce the verification time signif-

icantly for a complex transformation. However, more

experiments with large transformations and contracts

involving many elements are necessary to confirm our

positive results on the usability and scalability of our

technique.

As DSLTrans is a Turing-incomplete computing lan-

guage, it has limited expressiveness. This means that

ATL transformations that use the refining mode for

realizing in-place transformations or imperative con-

structs cannot in general be translated into DSLTrans

to be verified by our approach. However, our technique

can be used to verify the declarative subset of ATL

in out-place transformations using the default mode,

which is used in many more transformations than the

refining mode. We are thus confident our technique is

usable for a large class of real-world problems.

Finally, only the String type is available in SyVOLT:

this limitation implies that proofs in SyVOLT can only

34 Bentley James Oakes et al.

be built for model transformations that manipulate at-

tributes of types String. Note that this is not a limita-

tion of the SyVOLT prover itself, but rather of the ex-

pressiveness of the DSLTrans language. This limitation

can be surmounted in various ways, perhaps by convert-

ing non-String attributes and operations into Strings

before transformation and doing the reverse operation

after the transformation is concluded.

10.2 Conclusion

In this paper, we have expanded on our novel tech-

nique from [36] to fully verify pre-/post-condition con-

tracts on declarative ATL transformations. This ap-

proach is centered around transforming ATL transfor-

mations into DSLTrans, our transformation language

with reduced-expressiveness. Our path condition gen-

erator is then able to produce a set of path conditions,

which represent all possible transformation executions.

Contracts are proved to either hold or not hold on each

path condition, and thus on all transformation execu-

tions.

This paper has also presented a number of case

studies designed to answer our four research questions.

Results indicate that our contract prover is applicable

to reasonably sized and complicated ATL transforma-

tions, and that contracts can be proved using a feasible

amount of time and memory. As well, we have also fur-

ther detailed our ‘slicing’ technique, which selects only

the rules which are needed to prove a particular con-

tract. This results in a significant decrease in contract

proving time. Finally, we determined that our HOT pro-

duces transformations that are a suitable replacement

for hand-built transformations in contract proving.

10.3 Future Work

Our future work will attempt to address any limita-

tions of this work. In particular, we aim to produce a

tool that can be used off-the-shelf to prove properties

about a class of existing ATL transformations, fully au-

tomatically, by using the DSLTrans language as a hid-

den back-end. Our current focus is on integrating our

higher-order transformation into our SyVOLT tool [5].

Another ongoing concern of ours is the time and

space requirements to prove contracts on large transfor-

mations. We are investigating implementation speedups,

such as further optimization of our matching algorithm

and refinement of the transformation slicer.

Acknowledgments

The authors warmly thank Gehan Selim and Cláudio

Gomes for their contributions to the implementation of

the contract prover.

Bentley James Oakes is funded by an NSERC grant,

as well as support from the NECSIS project, funded by

Automotive Partnership Canada.

The work of Javier Troya is funded by the European

Commission (FEDER) and the Spanish and the An-

dalusian R&D&I programmes under grants and projects

BELI (TIN2015-70560-R), THEOS (P10-TIC-5906) and

COPAS (P12-TIC-1867).

Finally, the work of Manuel Wimmer is funded by

the Christian Doppler Forschungsgesellschaft and the

BMWFW, Austria.

References

1. A Short Introduction to SyVOLT. https://www.youtube.

com/watch?v=8PrR5RhPptY

2. ATL Zoo. http://www.eclipse.org/atl/

atlTransformations

3. ATL2DSLTrans Artifacts. http://msdl.cs.mcgill.ca/

people/levi/files/MODELS2015_SoSyM

4. Atlas Transformation Language – ATL. http://eclipse.
org/atl

5. SyVOLT tool. http://msdl.cs.mcgill.ca/people/levi/

contractprover

6. Amrani, M., Lúcio, L., Selim, G.M.K., Combemale, B.,
Dingel, J., Vangheluwe, H., Traon, Y.L., Cordy, J.R.: A
Tridimensional Approach for Studying the Formal Veri-
fication of Model Transformations. In: Proc. of ICSTW,
pp. 921–928 (2012)

7. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of
Model Transformations via Alloy. In: Proc. of MoDeVVa
(2007)

8. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From
Core OCL Invariants to Nested Graph Constraints.
In: Proc. ICGT, pp. 97–112 (2014). DOI 10.1007/
978-3-319-09108-2 7

9. Balogh, A., et al.: Workflow-Driven Tool Integration Us-
ing Model Transformations. In: Graph Transformations
and Model-Driven Engineering, pp. 224–248 (2010)

10. Barroca, B., Lúcio, L., Amaral, V., Félix, R., Sousa,
V.: DSLTrans: A Turing Incomplete Transformation Lan-
guage. In: Proc. of SLE, pp. 296–305 (2011)

11. Bergmann, G.: Translating OCL to Graph Patterns. In:
Proc. of MoDELS, pp. 670–686 (2014). DOI 10.1007/
978-3-319-11653-2 41

12. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven
Software Engineering in Practice. Morgan & Claypool
Publishers (2012)

13. Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.:
Static Fault Localization in Model Transformations.
IEEE Transactions on Software Engineering 41(5), 490–
506 (2015)

14. Büttner, F., Egea, M., Cabot, J.: On Verifying ATL
Transformations Using ’off-the-shelf’ SMT Solvers. In:
Proc. of MoDELS, pp. 432–448 (2012). DOI 10.1007/
978-3-642-33666-9 28

Full Contract Verification for ATL using Symbolic Execution 35

15. Büttner, F., Egea, M., Guerra, E., De Lara, J.: Checking
Model Transformation Refinement. In: Proc. of ICMT,
pp. 158–173 (2013)

16. Calegari, D., Luna, C., Szasz, N., Tasistro, A.: A Type-
Theoretic Framework for Certified Model Transforma-
tions. In: Proc. of SBMF, pp. 112–127 (2010). DOI
10.1007/978-3-642-19829-8 8

17. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL
Contracts for the Verification of Model Transformations.
ECEASST 24 (2009)

18. Cheng, Z., Monahan, R., Power, J.F.: A Sound Exe-
cution Semantics for ATL via Translation Validation.
In: Proc. of ICMT, pp. 133–148 (2015). DOI 10.1007/
978-3-319-21155-8 11

19. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet,
N., Meseguer, J., Talcott, C.: All About Maude - a High-
performance Logical Framework: How to Specify, Pro-
gram and Verify Systems in Rewriting Logic. Springer
(2007)

20. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering Er-
rors in ATL Model Transformations Using Static Analy-
sis and Constraint Solving. In: Proc. of ISSRE, pp. 34–44
(2014). DOI 10.1109/ISSRE.2014.10

21. Gammaitoni, L., Kelsen, P.: F-Alloy: An Alloy Based
Model Transformation Language. In: Proc. of ICMT,
pp. 166–180 (2015). DOI 10.1007/978-3-319-21155-8 13

22. Garćıa-Domı́nguez, A., Kolovos, D.S., Rose, L.M., Paige,
R.F., Medina-Bulo, I.: EUnit: A Unit Testing Framework
for Model Management Tasks. In: Proc. of MoDELS, pp.
395–409 (2011)

23. Giner, P., Pelechano, V.: Test-Driven Development of
Model Transformations. In: Proc. of MoDELS, pp. 748–
752 (2009)

24. Gogolla, M., Hamann, L., Hilken, F.: Checking Trans-
formation Model Properties with a UML and OCL Model
Validator. In: Proc. of VOLT, pp. 16–25 (2014)

25. Gogolla, M., Vallecillo, A.: Tractable Model Transform-
ation Testing. In: Proc. of ECMFA, pp. 221–235 (2011)

26. González, C.A., Cabot, J.: ATLTest: A White-Box Test
Generation Approach for ATL Transformations. In: Proc.
of MoDELS, pp. 449–464 (2012)

27. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel,
A., Retschitzegger, W., Schönböck, J., Schwinger, W.:
Automated Verification of Model Transformations Based
on Visual Contracts. Automated Software Engineering
20(1), 5–46 (2013)

28. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL:
A Model Transformation Tool. Sci. Comput. Program.
72(1-2), 31–39 (2008)

29. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model Compar-
ison: A Foundation for Model Composition and Model
Transformation Testing. In: Proc. of GaMMa, pp. 13–20
(2006)

30. Lano, K., Clark, T., Rahimi, S.K.: A Framework
for Model Transformation Verification. Formal Asp.
Comput. 27(1), 193–235 (2015). DOI 10.1007/
s00165-014-0313-z

31. Lúcio, L., Barroca, B., Amaral, V.: A Technique for Au-
tomatic Validation of Model Transformations. In: Proc.
of MoDELS, pp. 136–150 (2010)

32. Lúcio, L., Oakes, B., Vangheluwe, H.: A Technique for
Symbolically Verifying Properties of Graph-Based Model
Transformations. Tech. rep., Technical Report SOCS-
TR-2014.1, McGill University (2014)

33. Lúcio, L., Oakes, B.J., Gomes, C., Selim, G.M., Dingel,
J., Cordy, J.R., Vangheluwe, H.: SyVOLT: Full Model
Transformation Verification Using Contracts. In: Proc.
of MoDELS 2015 Demo and Poster Session (2015)

34. Lúcio, Levi and Amrani, Moussa and Dingel, Jürgen and
Lambers, Leen and Salay, Rick and Selim, Gehan and
Syriani, Eugene and Wimmer, Manuel: Model Trans-
formation Intents and their Properties. Software &
Systems Modeling pp. 1–38 (2014). DOI 10.1007/
s10270-014-0429-x

35. Mottu, J.M., Baudry, B., Traon, Y.L.: Model Transform-
ation Testing: Oracle Issue. In: Proc. of ICSTW, pp.
105–112 (2008)

36. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully Ver-
ifying Transformation Contracts for Declarative ATL. In:
Proc. of MoDELS, pp. 256–265 (2015)

37. Paen, E.: Measuring Incrementally Developed Model
Transformations Using Change Metrics. Master’s thesis,
Queen’s University (2012)

38. Poernomo, I., Terrell, J.: Correct-by-Construction Model
Transformations from Partially Ordered Specifications in
Coq. In: Proc. of ICFEM, pp. 56–73 (2010). DOI 10.
1007/978-3-642-16901-4 6

39. Posse, E., Dingel, J.: An Executable Formal Semantics
for UML-RT. Software & Systems Modeling 15(1), 179–
217 (2016). DOI 10.1007/s10270-014-0399-z

40. Rahim, L., Whittle, J.: A Survey of Approaches for
Verifying Model Transformations. Software & Sys-
tems Modeling 14(2), 1003–1028 (2015). DOI 10.1007/
s10270-013-0358-0

41. Richa, E., Borde, E., Pautet, L.: Translating ATL Model
Transformations to Algebraic Graph Transformations.
In: Proc. of ICMT, pp. 183–198 (2015). DOI 10.1007/
978-3-319-21155-8 14

42. Selim, G.M.: Formal Verification of Graph-Based Model
Transformations. Ph.D. thesis, Queen’s University (2015)

43. Selim, G.M., Cordy, J.R., Dingel, J., Lúcio, L., Oakes,
B.J.: Finding and Fixing Bugs in Model Transforma-
tions with Formal Verification: An Experience Report.
In: Proc. of AMT, pp. 26–35 (2015)

44. Selim, G.M., Lúcio, L., Cordy, J.R., Dingel, J., Oakes,
B.J.: Specification and Verification of Graph-Based
Model Transformation Properties. In: Proc. of ICGT,
pp. 113–129 (2014)

45. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a
framework for custom-built model transformation en-
gines. Software & Systems Modeling 14(3), 1215–1243
(2015). DOI 10.1007/s10270-013-0370-4

46. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Refining
Models with Rule-based Model Transformations. Re-
search Report RR-7582, INRIA (2011)

47. Troya, J., Vallecillo, A.: A Rewriting Logic Semantics for
ATL. Journal of Object Technology 10(5), 1–29 (2011).
DOI 10.5381/jot.2011.10.1.a5

48. Vallecillo, A., Gogolla, M., Burgueno, L., Wimmer, M.,
Hamann, L.: Formal Specification and Testing of Model
Transformations. In: Formal Methods for Model-Driven
Engineering, pp. 399–437 (2012)

49. Wieber, M., Anjorin, A., Schürr, A.: On the Usage of
TGGs for Automated Model Transformation Testing. In:
Proc. of ICMT, pp. 1–16 (2014)

36 Bentley James Oakes et al.

Author Biographies

Bentley James Oakes is a

PhD candidate in the Mod-

elling, Simulation, and De-

sign Lab at McGill Univer-

sity in Canada. His PhD

topic is on the verifica-

tion of model transforma-

tions in various domains us-

ing the SyVOLT frameworks

and tool. Other research in-

terests include causal-block

diagrams, intellectual prop-

erty issues in models, and ar-

tificial intelligence. Further information on his research

can be found at http://msdl.cs.mcgill.ca/people/

bentley/.

Javier Troya received

his PhD degree in 2013 from

the University of Malaga,

Spain. He is currently a post-

doctoral researcher in the De-

partment of Computer Sci-

ence and Languages at the

University of Seville, Spain.

Previously, he has been a

postdoctoral researcher in

the Business Informatics Group

(BIG) at the Vienna Univer-

sity of Technology for more

than two years. His research

interests include modeling and metamodeling, model

transformations, non-functional properties analysis and

metamorphic testing. For more information, please visit

http://www.lsi.us.es/~jtroya.

Levi Lúcio is currently a

staff researcher and Project

Manager at fortiss GmbH,

Germany. He received his

PhD from the University

of Geneva, Switzerland, in

2008. His research is about

bridging software engineering

and formal techniques. Some

of his concrete areas of in-

terest are model-driven de-

velopment, model transform-

ation languages, the verification of model transforma-

tions, correctness-by-construction, models of concur-

rency (in particular Algebraic Petri Nets), model evolu-

tion, model-based testing and tool construction. Levi is

currently developing and leading projects together with

avionic and automotive companies to produce IDEs

based on frameworks that seamlessly integrate a range

of domain specific languages. Such frameworks aim at

providing the right languages for the right modelling

tasks, while offering verification, refinement and trace-

ability services. One of the main goals of such frame-

works is to improve the available means for the certifi-

cation of safety-critical software by the relevant author-

ities.

Manuel Wimmer is a

post-doctoral researcher at

the Business Informatics Group

of TU Wien. His research

interests include the foun-

dations of model engineer-

ing techniques as well as

their application in domains

such as tool interoperability,

legacy modeling tool mod-

ernization, model versioning

and evolution, software re-

verse engineering and migra-

tion, web engineering, cloud computing, and smart

production. For further information about his re-

search activities, please visit http://big.tuwien.ac.

at/staff/mwimmer.

