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Abstract—As the complexity of model transformations grows, there is an increasing need to count on methods, mechanisms, and tools 
for checking their correctness, i.e., the alignment between specifications and implementations. In this paper we present a light-weight 
and static approach for locating the faulty rules in model transformations, based on matching functions that automatically establish 
these alignments using the metamodel footprints, i.e., the metamodel elements used. The approach is implemented for the 
combination of Tracts and ATL, both residing in the Eclipse Modeling Framework, and is supported by the corresponding toolkit.
An evaluation discussing the accuracy and the limitations of the approach is also provided. Furthermore, we identify the kinds of 
transformations which are most suitable for validation with the proposed approach and use mutation techniques to evaluate its 
effectiveness.
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1 INTRODUCTION

MODEL transformations are key elements of model-
driven engineering (MDE)[1]. They allow querying,

synthesizing, and transforming models into other models or
into code, and are essential for building systems in MDE. In
this context, the quality of the resulting systems is therefore
highly influenced by the quality of the model transforma-
tions employed to produce them. However, users of
transformations have to deal with the problem that transfor-
mations are difficult to debug and test for correctness [2]. In
fact, as the size and complexity of model transformations
grow, manual debugging is no longer possible, and there is
an increasing need to count on methods, mechanisms and
tools for testing their correctness[2], [3].

In general, debugging is readily classified into three
parts: the identification of the existence of a problem, the
localization of the fault, and the actual correction of the
problem [4].

In this paper, the existence of a problem is detected by
the misalignment between the model transformation
specification and its implementation. The former specifies
the contract that determines the expected behavior of the
transformation and the context in which such a behavior
needs to be guaranteed, while the latter provides the
actual behavior of the transformation. If the transforma-
tion does not behave as expected, a violation of the
contract occurs.

Here we use Tracts [5] for the specification of model
transformations, which are a particular kind of model trans-
formation contracts [6], [7] especially suitable for specifying
model transformations in a modular and tractable manner.
Tracts count on tool support for checking, in a black-box
manner, that a given implementation behaves as expected—
i.e., it respects the Tracts constraints [8].

Once a problem has been found (i.e., a constraint has
been violated), we need to locate the fault [9]. One of the
major shortcomings of model transformation specification
approaches based on contracts is the lack of traceability
links between specifications and implementations. In the
case a constraint is not fulfilled, the elements involved in
the constraint evaluation could provide valuable informa-
tion to the transformation engineer, but the links to the
transformation implementation are not available.

Based on first ideas which we outlined in previous work
[10], this paper presents a solution to this problem. It uses a
white-box and static analysis to find the location of the
model transformation rules that may have caused the faulty
behavior. It provides the first step of an iterative approach
to model transformation testing, which aims at locating
faults as early as possible in the development process.
Although this step cannot fully prove correctness, it can be
useful for identifying many bugs in a very early stage and
in a quick and cost-effective manner [11]. It can also deal
with industrial-size transformations without having to
reduce them or to abstract away any of their structural or
behavioral properties, and it can represent a very valuable
first step before diving into more expensive and complex
tests (such as model checking, formal validation, dynamic
tests, etc. [12], [13], [14], [15], [16], [17]) which represent
numerous challenges, mainly because of their inherent
computational complexity [2], [6].

An evaluation discussing the accuracy and the limita-
tions of the approach is also provided. The evaluation has
been conducted on a number of transformations with the
goal of quantitatively assessing the correctness (Are the
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alignments correct?), completeness (Are there any missed
alignments?) and usefulness (How useful is the resulting
information to the developer for locating the faults?) of the
techniques. Furthermore, we also identify the kinds of
transformations which are most suitable for validation with
the proposed approach, and provide a test to automatically
check this a-priori. Finally, we use mutation techniques to
evaluate its effectiveness.

This paper is organized as follows. After this introduc-
tion, Section 2 briefly presents the background to our work
and the technologies we make use of. Then, Section 3 intro-
duces the proposed approach and Section 4 discusses how
we have implemented it in the case of ATLAS transforma-
tion language (ATL) [18] model transformations. Section 5
is devoted to the evaluation of our proposal, and to analyze
its advantages and limitations. Finally, Section 6 presents
related work before Section 7 concludes and outlines future
research lines.

2 BACKGROUND

This section explains the prerequisites for the rest of the
paper, namely how to specify, implement, and test model
transformations with a combination of Tracts and ATL.

2.1 Specifying Transformations with Tracts

Tracts were introduced in [5] as a specification and black-
box testing mechanism for model transformations. They
provide modular pieces of specification, each one focusing
on a particular transformation scenario. Thus each model
transformation can be specified by means of a set of Tracts,
each one covering a specific use case—which is defined in
terms of particular input and output models and how they
should be related by the transformation. In this way, Tracts
allow partitioning the full input space of the transformation
into smaller, more focused behavioral units, and to define
specific tests for them. Commonly, what developers are
expected to do with Tracts is to identify the scenarios of
interest (each one defined by a Tract) and check whether the
transformation behaves as expected in these scenarios.

In a nutshell, a Tract defines a set of constraints on the
source and target metamodels, a set of source-target con-
straints, and a test suite, i.e., a collection of source models.
The constraints serve as “contracts” (in the sense of con-
tract-based design [19]) for the transformation in some
particular scenarios, and are expressed by means of OCL
invariants. They provide the specification of the transfor-
mation. Test suites models are pre-defined input sets of
different sorts, to exercise an implementation of the trans-
formation (they may not only be positive test models, sat-
isfying the source constraints, but also negative test
models, used to know how the transformation behaves
with them).

Fig. 1 depicts the main components of the Tracts
approach: the source and target metamodels, the transfor-
mation T under test, and the transformation contract, which
consists of a Tract test suite and a set of Tract constraints. In
total, five different kinds of constraints are present:
the source and target models are restricted by general
constraints added to the language definition, and the Tract
imposes additional source, target, and source-target Tract

constraints for a given transformation. In the drawing, mm
stands for metamodel, and cd is a short for class diagram.

If we assume a source model M being an element of
the test suite and satisfying the source metamodel and
the source Tract constraints given, the Tract essentially
requires the result T ðMÞ of applying transformation T to
satisfy the target metamodel and the target Tract con-
straints, and the tuple < M; T ðMÞ > to satisfy the source-
target Tract constraints.

To demonstrate how to use Tracts, we introduce the sim-
ple transformation example Families2Persons (the complete
example is available from our project website [8]). The
source and target metamodels of this transformation are
shown in Fig. 2.

For this example, one Tract (Listing 1) is developed to
consider only those families which have exactly four mem-
bers (mother, father, daughter, son). The first constraint
states that all families in the source model have exactly one
daughter and one son. The second and third constraints
state that all mothers and daughters are transformed into
female persons. Constraint C4 mandates that all fathers and
sons should be transformed into male persons. Constraints
C5 and C6 state, respectively, that all female and male
objects in the target model come from the corresponding
object in the source model. Then, C7 checks that the size of
the source and target models correspond. Finally, C8 checks
that all names in the target model are neither the empty
String nor undefined. Note that although some of the con-
straints could have been written using similar expressions
(e.g., C2, C3, C4), we decided to express them using differ-
ent styles for illustration purposes, and also to be able to dif-
ferentiate them in our analyses.

Concerning the kinds of constraints defined, C1 repre-
sents a pre-condition for the transformation, C2-C7 define
constraints on the relationships between the source and tar-
get models, i.e., constraints that should be ensured by the
transformation, and finally, C8 represents a post-condition
for the transformation. Note that this approach is indepen-
dent from the model transformation language and platform
finally used to implement and execute the transformation.

2.2 Implementing Transformations with ATL

Given this specification, a model transformation language
may be selected to implement the transformation. The
ATLAS transformation language [18] is a common choice.
ATL is designed as a hybrid model transformation language
containing a mixture of declarative and imperative
constructs for defining uni-directional transformations. An
ATL transformation is mainly composed by a set of rules. A
rule describes how a subset of the target model should be

Fig. 1. Building blocks of a tract [5].



generated from a subset of the source model. A rule
consists of an input pattern (henceforth also referred to as
left-hand side)—having an optional filter condition—which
is matched on the source model and an output pattern
(henceforth also referred to as right-hand side) which pro-
duces certain elements in the target model for each match of
the input pattern. OCL expressions are used to calculate the
values of target elements’ features, in the so-called bindings.
Given the metamodels in Fig. 2, a possible implementation
in ATL is shown in Listing 2.

Listing 1. Tracts for the Families2Persons Case Study.

– C1: SRC_oneDaughterOneSon

Family.allInstances->forAll(f|f.daughters-

>size=1 and f.sons->size=1)

– C2: SRC_TRG_Mother2Female

Family.allInstances->forAll(fam|Female.

allInstances->exists(f|fam.mother.first-

Name.concat(’t’).concat(fam.lastName)=f.
fullName))

– C3: SRC_TRG_Daughter2Female

Family.allInstances->forAll(fam|Female.

allInstances->exists(f|fam.daughters-

>exists(d|d.firstName.concat(’t’).concat
(fam.lastName)=f.fullName)))

– C4: SRC_TRG_FatherSon2Male

Family.allInstances->forAll(fam|Male.allIn-

stances->exists(m| fam.father.firstName.

concat(’t’).concat(fam.lastName)=m.full-
Name xor fam.sons->exists(s|m.firstName.

concat(’t’).concat(fam.lastName)=s.
fullName))

– C5: SRC_TRG_Female2MotherDaughter

Female.allInstances->forAll(f|Family.allIn-

stances->exists(fam|fam.mother.firstName.

concat(’t’).concat(fam.lastName)=f.full-
Name xor fam.daughters->exists(d|d.first-

Name.concat(’t’).concat(fam.lastName)=f.
fullName)))

– C6: SRC_TRG_Male2FatherSon – analogous to C5

– C7: SRC_TRG_MemberSize_EQ_PersonSize

Member.allInstances->size=Person.allInstan-

ces->size

– C8: TRG_PersonHasName

Person.allInstances->forAll(p|p.fullName <> ”

and not p.fullName.oclIsUndefined())

It comprises two helper functions (whose definition is
not shown in the listing) and two rules. One of the helpers
is used to decide whether a member is female or not, and

the second one is used to compute the family name of a fam-
ily member. Then, the first rule, R1, transforms male mem-
bers (note the use of the helper isFemaleðÞ to filter the
corresponding source objects) into male persons and com-
putes their fullName attribute. Rule R2 is analogous, but for
female family members.

Listing 2. Families2Persons ATL Transformation.

moduleFamilies2Persons;

create OUT: Persons from IN: Families;

helper context Families!Member def :isFemale:

Boolean=...

helper context Families!Member def :familyName:

String=...

rule Member2Male { – R1

from

s: Families!Member (not s.isFemale)

to

t: Persons!Male(fullName<-s.firstName+’t’+s.
familyName)

}

rule Member2Female { – R2

from

s: Families!Member (s.isFemale)

to

t: Persons!Female(fullName<-s.firstName+s.

familyName)

}

2.3 Testing Transformations with Tracts

By running the transformation implementation for each
model of the test suite and checking the target as well as
source-target constraints for the resulting input model and
output model pairs, the validation of the transformation
with respect to the constraints is achieved. The output of
this validation phase is a test report documenting each con-
straint validation for the given input and output model
pairs. An example report for the Families2Persons example
for an input test model called src model001 produced by
the TractsTool [8], [20] is shown in Listing 3. Such a model is
composed of 1,250 model elements (250 families, each one
with one father, one mother, one son and one daughter),
and was generated by an ASSL [21] procedure (cf. [8]).

Listing 3. Test Result for the Families2Persons Example.

—————————

– Results for src_model001

—————————

C1: SRC_oneDaughterOneSon: OK

...

C4: SRC_TRG_FatherSon2Male: KO

Instances of src_model001 violating the

constraint

Set(Member001, Member002, ...)

...

In order to fix the transformation implementation to
fulfill all constraints, the alignments between the transfor-
mation rules and the constraints are crucial in order to track
the actual faults in the transformation rules from the

Fig. 2. The Family and Person metamodels.



observed constraints violations. While for the given exam-
ple this may be achieved by just looking at the constraints
and the rules (actually R2 misses the white space in the
String concatenation), for larger examples automation sup-
port is essential due to the complexity of model transforma-
tions. Even in this example the alignment between the rules
and the constraints is not trivial, and this is precisely where
our proposed approach comes into play.

3 MATCHING CONSTRAINTS AND RULES

In this section, we introduce our approach to locate faults in
model transformations.

3.1 Motivation and Challenges

As we have seen in the previous section, Tracts have
allowed us to define constraints for specifying transforma-
tions, while ATL uses rules to express model transformation
implementations. Having independent artifacts for the spec-
ification and implementation of model transformations per-
mits choosing which formalism to use for each level.
However, the following questions cannot be answered with-
out a thorough analysis of both artifact types:

� Which transformation rule(s) implement(s) which
constraint(s)?

� Are all constraints covered by the transformation
rules?

� Are all transformation rules covered by the
constraints?

In order to establish the relation between the constraints
and the rules that might make them fail, two approaches
can be followed: dynamic or static.

Dynamic approaches are based on a concretemodel trans-
formation execution over a model or set of models. The pro-
cedure consists of tracking the transformation process and
storing information about each executed step and the specific
instances. Once the transformation has finished and the fail-
ures and the objects that caused them are known, it is neces-
sary to go backwards over the trace information stored
during the transformation execution to find the errors. In
these approaches, an input model needs to be available to
execute the transformation, and the environment where the
transformation is to be executedmust be provided too.

Static approaches, in turn, do not make use of executions.
They obtain the relation between the constraints and the
rules by means of an algorithm. The only inputs for this pro-
cess are the transformation implementation and the specifi-
cation constraints.

Dynamic approaches normally give more precise results,
although, as mentioned before, they are dependent on the
particular input model and transformation execution, while
static ones can compute more general alignments. In this
paper, we target the challenge of finding “guilty” transforma-
tion rules following a static approach. Since there is no direct
relation between the rules and the constraints (constraints are
created independently of any transformation implementa-
tion), our work computes for each pair (constraint, rule) the
probability that the constraint failure comes from the rule
making use of the common denominator that both have: the
structural elements belonging to themetamodels.

It can also be considered a white-box approach, because
it takes into account the internal structure and details of the
tract constraints and of the transformation implementation.

3.2 Methodological Approach

Given a set of OCL constraints (from the Tracts) and a set of
ATL rules, Fig. 3 summarizes the commonalities between
them (in the figure, relationships �c2� and �u� stand,
respectively, for “conforms to” and “uses”). There is also a
direct relation between the ATL and the OCL metamodels,
because the former embeds the latter. This may simplify the
alignments between ATL and OCL, although it is also true
that the OCL constraints and the ATL rules are written dif-
ferently. First, the former impose conditions on the relation-
ship between the source and target models, while the latter
describe how the target model should be built from the ele-
ments of the source model. Second, specifications and
implementations are normally written by different people,
at different times, with different goals in mind, and using
different styles (e.g., they may use different navigation
paths to refer to the same elements, because the starting
contexts are not the same, or use different OCL operators
for querying elements). Finally, there are slight differences
between OCL and ATL, e.g., ATL introduces additional
operations which are of particular interest for transforma-
tions which are not available in OCL. In any case, the OCL
constraints and the ATL rules make use of the same source
and target metamodels. As we have seen for the Families2-
Persons example, the same types and features are used in
the specification and in the implementation of the transfor-
mation. Thus, we use these commonalities to indirectly
match the constraints and the rules by matching their foot-
prints concerning the source and target metamodels used.

Our approach focuses on the construction and interpreta-
tion of the so-called matching tables with the alignments we
have discussed before. Thus, our approach builds on the fol-
lowing steps:

1) Footprint extraction. The structural elements (hence-
forth referred to as footprints or types and features) of
both model transformation and constraints are
extracted, as explained later in Section 3.3.

2) Footprint matching. The footprints extracted in the
previous step are compared for each rule and
constraint.

3) Matching tables calculation. The percentage of foot-
prints overlapping, so-called alignment, for each
transformation rule and constraint is calculated. This
information is used to produce the matching tables
(cf. Section 3.4).

Fig. 3. Heterogeneities and commonalities between constraints and
rules.



4) Matching tables interpretation. The resulting tables are
analyzed for identifying the guilty rules for each con-
straint. Guidelines for this analysis, exemplified with
a case study, are described in Section 3.5.

3.3 Footprint Extraction

Now we present how we extract footprints from OCL con-
straints and ATL rules.

3.3.1 Constraints

There are several possibilities for the footprints extraction of
OCL constraints. For example, we could take into consider-
ation all types and features that appear in the OCL expres-
sions, just because they are mentioned. We could even
assign weights to these types and features according to their
number of occurrences in the constraints, giving less impor-
tance (a lower value) to those that appear less often. How-
ever, in order to isolate the information which is really
relevant for our purposes, it is important to distinguish
between two different kinds of elements that appear in the
OCL expressions: those that we want the constraint to refer
to, and those which are used for navigation purposes only.
Since metamodels are graphs, OCL expressions are heavily
dependent on their contexts (i.e., the starting class) [22] and
also on the path used to navigate to the final type, which is
precisely the one we want the constraint to refer to. Thus
we need to isolate the target features of the constraint from
the ones used to reach it. This is why we only consider as
relevant the last elements of the OCL expressions. For exam-
ple, if we have Family:mother:firstName, then we will only
consider mother:firstName whose footprints are Member
and Member:firstName. To consider operations on collec-
tions, we take into account only the footprints inside the
body of the deepest (in the sense of nesting) iterators (forAll,
exists, etc.), to extract just the relevant footprints and not
those used for navigation purposes only.

Similarly, primitive types and constants are not consid-
ered. Types like Integer or Boolean, or constants like true or
false can appear frequently, but this does not mean that
each appearance provides relevant information for locat-
ing a fault. On the contrary, taking them into consider-
ation only introduces more confusion, when precisely our
goal is to isolate those elements that are more relevant for
locating the faults.

3.3.2 Rules

In this paper we deal with ATL as proof of concept,
although any transformation language based on rules and
that uses OCL could be used. For each rule, we obtain the
footprints in the left-hand side, right-hand side and impera-
tive part, and build all navigation paths. Then, as in the
OCL constraints, we only consider the last part of these
paths. Regarding helpers, they can appear in any part of a
navigation path. For this reason, when there is a helper in a
path, we simply obtain the type it returns. If it is a collection
type, we obtain the type of the collection.

We apply the same approach for calls of ATL (unique)
lazy rules and called rules. In these cases, we return the
type of the first element created by these rules (since this is
what ATL actually returns).

With all this, the footprints extracted for the Families2Per-
sons example presented in Section 2 are shown in Table 1,
for each rule and constraint.

3.4 Footprint Matching and Matching Tables

A tabular representation (called matching tables) is used to
depict the alignment between constraints and rules. We
apply three different matching functions to automatically
obtain the values for filling the tabular representations.
Each function provides a certain viewpoint on the align-
ment. This allows us to interpret the results and provides an
answer to the questions presented in Section 3.1.

In these tables, rows represent constraints and columns
represent rules. Each cell links a constraint and a rule with a
specific value between 0 and 1. Let Ci be the set of types
and features extracted from constraint i and Rj from rule j.
Let j � j represent the size of a set.

3.4.1 Matching Tables: Three Different Viewpoints

The constraint coverage (CC) metric focuses on constraints.
This metric measures the coverage for constraint i by a
given rule j. For this metric, the value for the cell ½i; j� is
given by the following formula:

CCi;j ¼ jCi \Rjj
jCij : (1)

Since the denominator is the number of types and fea-
tures in Ci, the result is relative to constraint i and we inter-
pret this value for rule traceability, i.e., to find the rules
related to the given constraint. This is, if a constraint fails,
the CC table tells us which rule or rules are more likely to
have caused the faulty behavior (i.e., be “guilty”). Thus, the
CC table is to be consulted by rows.

The rule coverage (RC) metric focuses on rules. This metric
calculates the coverage for rule j by a given constraint i. We
use the RC table to express constraint traceability, i.e., to
find the constraints more closely related to a given rule, and

TABLE 1
Footprints for the Families2Persons Example

Constraint Considered Types and Features

C1 Member, Family, Family.daughters, Family.sons
C2 Member, Family, Female, Member.firstName,

Family.lastName, Female.fullName
C3 Member, Family, Female, Family.lastName,

Member.firstName, Female.fullName
C4 Member, Family, Male, Member.firstName,

Family.lastName, Male.fullName
C5 Member, Family, Female, Family.lastName,

Female.fullName, Member.firstName
C6 Member, Family, Male, Family.lastName,

Male.fullName, Member.firstName
C7 Member, Person
C8 Person, Person.fullName

Rule Considered Types and Features

R1 Member, Male, Member.firstName,
Male.fullName

R2 Member, Female, Member.firstName,
Female.fullName



therefore it is to be read by columns. The metric is calcu-
lated as follows:

RCi;j ¼ jCi \Rjj
jRjj : (2)

The last metric is relative to both constraints and rules, so
the RCR table can be consulted by rows and by columns.
Thus, it provides information about the relatedness of both
rules and constraints, without defining a direction for inter-
preting the values. The relatedness of constraints and rules
(RCR) metric is computed as follows:

RCRi;j ¼ jCi \Rjj
jCi [Rjj : (3)

The overlap between the elements extracted from the
constraints and the rules gives rise to five different cases
which are reflected by the previous metrics. They are
depicted in Fig. 4 using Venn diagrams.

In case (a), each element present in the constraint is con-
tained in the set of elements in the rule: Ci � Rj. Conse-
quently, the value for the CC metric is 1, meaning that the
constraint is fully covered by the rule. The other metrics
have a value lower than 1.

In case (b), all the elements in the rule are contained in
the elements of the constraint, Rj � Ci. RC metric is 1.

In case (c), Ci and Rj are disjoint sets. Thus, the three
metrics are 0, which means that the given constraint and the
given rule are completely independent.

In case (d), each metric will have a value between 0 and
1. The specific value depends on the size of the sets and on
the number of common elements. Thus, the bigger the com-
mon part for Ci is, the closer to 1 the value for metric CC
will be. Similarly for Rj and metric RC. Regarding the RCR
metric, its value only depends on the size of the common
part (for a specific size of the footprints); the bigger it is, the
closer to 1 the value will be.

In case (e), both constraints and rules have the same ele-
ments set, so all metrics are 1.

Considering subtyping. In the three formulas presented
above, we consider the intersection Ci \Rj as the common
elements present in constraint Ci and rule Rj. But we should
also take subtyping into account. Its consideration is impor-
tant because some OCL operators used in the Tract con-
straints and in the ATL rules (such as allInstances) retrieve
all instances of a certain class, as well as the instances of all
its subclasses, and therefore we can have types in a con-
straint and in a rule that are not directly related (since they
are not the same type), but are related via subtyping (when
one type is a sub/super-type of the other). Thus, the fault
may be due to a problem not only in a class but also in any
of its superclasses. To take this into consideration, we assign
a weight to the parent classes, given by the number of its

structural features (attributes and references) divided by
the number of features of the child class—both sets com-
prise the class’s own features as well as the inherited fea-
tures from all its superclasses. Thus, the more similar the
parent and the child are, the closer to 1 the weight is. Simi-
larly, if the child class incorporates many new features w.r.
t. the parent class, the weight assigned to the parent will be
closer to 0.

Setting a threshold value. Before going any further, let us
explain the need for setting a threshold for cell values in the
matching tables. Such a threshold is meant to establish a
boundary under which alignments are ignored. It is needed
to be able to disregard those situations where a constraint
and a rule are minimally related, and thus should not be
considered as relevant for locating the fault. Moreover, if a
value in a cell is below the threshold in table RCR, then the
value in the equivalent cells in the other two tables must be
disregarded too, even if their value is above the threshold,
to avoid considering irrelevant information.

Fig. 5 helps explain this situation. Assume that the ele-
ments extracted from constraint Ci are a subset of the ele-
ments extracted from rule Rj, as shown in Fig. 5a. In this
case, the CC metric for this pair is 1. However, since the set
of common elements is very small in comparison with the
size of the set of rule elements, the RCR metric is also very
small. Despite there being some common elements in the
rule and in the constraint, it does not mean that, in this case,
the rule is covering the constraint. In most cases where the
set of common elements is much smaller than the set of rule
elements (even if the CC metric is 1), it is normally because
our metamodels are small and the same element may be
present in several rules and constraints, and not because
there is a relevant relationship. In such cases, when a value
is lower than the threshold, we consider that it is not rele-
vant and therefore we do not take it into account. In Fig. 5b,
all the elements in the set Ci are also a subset of the elements
in rule Rk. The difference lies in the fact that the ratio
jCij=jRkj is higher and thus, a relevant value. This means
that it is more likely that the rule Rk is implementing the
use case that constraint Ci is specifying and, therefore, we
should consider the alignment between them as being rele-
vant for our purposes. In fact, in order for the constraint to
be properly covered, there should exist a rule that covers
the constraint with a large portion. In such a case, the RCR
metric would be higher than the threshold and the CC met-
ric shall be considered. Similarly for metric RC, let us sup-
pose that rule Rj is completely covered by constraint Ci, as
in Fig. 5c. In this case, the RC metric is 1, since all the ele-
ments of Rj are included in Ci. However, as very few ele-
ments of Ci are present in Rj, the RCR metric is very small,
so the RC metric should not be taken into account. There
should exist, consequently, a constraint that has a larger
portion of its elements in common with Rj. Fig. 5d shows

Fig. 4. Possible overlaps for Ci and Rj. Fig. 5. Situations with differently sized rule/constraint footprints.



an example where the value of RCR is above the threshold
and, thus, metric RC is considered.

In summary, this threshold is needed to eliminate the
consideration of matches with very low probability, which
only cause interferences when looking for the rules that
cause the fault. The need for this threshold is based on our
experiments with the tables. The current value for the
threshold is 0:1. This means that, at least, 10 percent of the
elements that appear in a rule must be present in a con-
straint in order to consider the CC metric between both.
Similarly, at least 10 percent of the elements in a constraint
must be covered by a rule in order to take their RC metric
into account. This value has proved to be the most effective
threshold for obtaining the highest recall and precision in
all the case studies we have analyzed. Research is currently
in progress to provide a theoretical justification for such a
value. In any case, this value is currently a configuration
parameter in our toolkit to allow easy tuning.

Example. Table 2 shows the metrics computed for the
Families2Persons example, presented in Section 2. Note that,
for a small example like this, the metrics provide informa-
tion that can be easily interpreted by just looking at the con-
straints and the rules. The second and third columns express
the constraint coverage, the fourth and fifth ones the rule
coverage, and the sixth and seventh ones the relatedness.

3.4.2 Matching Tables for UML2ER

The Families2Persons case study presented so far is a
rather small example, although sufficient for demonstrat-
ing the basic process of computing the different metrics.
Let us analyze here a bigger transformation, namely the
UML2ER project, from the structural modeling domain. It
generates Entity Relationship (ER) diagrams from UML
Class Diagrams.

We have extended the metamodels for the UML2ER case
study presented in [23]. They are illustrated in Fig. 6, and
the Tracts we have defined for it are shown in Listing 4.
Please note the black triangle symbol used in the Listing for
the sake of brevity. It is used for marking the place in a con-
straint (triangle down) that may be extended by another
constraint (triangle up). For instance, constraint C2 is
extending constraint C1.

The transformation (shown in Listing 5) contains eight
rules, where three of them are abstract. There is a large
number of inheritance relationships between the rules:
R8; R7 < R6;R6; R5 < R4;R4; R3; R2 < R1.

Listing 4. Tracts for the UML2ER Case Study.

– C1: SRC_TRG_Package2ERModel

Package.allInstances->forAll(p|ERModel.allIn-

stances->one(e|p.name=e.name ½!�))
– C2: C1 + Class2EntityType + Nesting

C1½~� and p.ownedElements-> forAll(class|e.enti-

ties->one(entity|entity.name=class.name ½!�))
– C3: C2 + Property2Feature + Nesting

C2½~� and class.ownedProperty->forAll(p|entity.

features->forAll(f|f.name=p.name))

– C4: SRC_TRG_NamedElement2Element

NamedElement.allInstances->size=Element.allIn-

stances->size

– C5: SRC_TRG_Package2ERModel

Package.allInstances->size=ERModel.allInstan-

ces->size

– C6: SRC_TRG_Class2EntityType

Class.allInstances->size=EntityType.allInstan-

ces->size

– C7: SRC_TRG_Property2Feature

Property.allInstances->size=Feature.allInstan-

ces->size

– C8: C2 + Property2Attribute + Nesting

C2½~� and class.ownedProperty->forAll(p|p.primi-

tiveType<> null implies entity.features->select

(f|f.oclIsTypeOf(Attribute))->one(f|f.name=p.

name))

– C9: C2 + Property2WeakReference + Nesting

C2½~� and class.ownedProperty->forAll(p|p.com-

plexType<> null implies entity.features->select

(f|f.oclIsTypeOf(Reference))->one(f|f.name=p.

name and p.isContainment implies f.oclIsTypeOf

(WeakReference)))

– C10: C2 + Property2StrongReference + Nesting

C2½~� and class.ownedProperty->forAll(p|p.com-

plexType<> null implies entity.features->select

(f|f.oclIsTypeOf(Reference))->one(f|f.name=p.

name and not p.isContainment implies f.oclIsTy-

peOf(StrongReference)))

Tables 3, 4, and 5 illustrate the corresponding matching
tables for the transformation and the given Tracts (please
ignore for the moment the square brackets enclosing some
numbers). Those cells without a number indicate there is no
alignment between the constraint and the rule. The follow-
ing section explains how the information in these matching
tables is to be interpreted.

TABLE 2
Families2PersonsMatching Tables

CC RC RCR

R1 R2 R1 R2 R1 R2

C1 0.33 0.33 0.25 0.25 0.17 0.17
C2 0.33 0.67 0.50 1.00 0.25 0.67
C3 0.33 0.67 0.50 1.00 0.25 0.67
C4 0.67 0.33 1.00 0.50 0.67 0.25
C5 0.33 0.67 0.50 1.00 0.25 0.67
C6 0.67 0.33 1.00 0.50 0.67 0.25
C7 1.00 1.00 0.50 0.50 0.4 0.4
C8 1.00 1.00 0.50 0.50 0.33 0.33

Fig. 6. The UML and ER metamodels.



Listing 5. UML2ER ATL Transformation.

module UML2ER;

create OUT : ER from IN : SimpleUML;

abstract rule NamedElement{ –R1

from s : SimpleUML!NamedElement

to t : ER!Element(name <- s.name)

}

rule Package extends NamedElement{ –R2

from s: SimpleUML!Package

to t: ER!ERModel(entities<-s.ownedElements)

}

rule Class extends NamedElement{ –R3

from s: SimpleUML!Class

to t: ER!EntityType(features<-s.ownedPropert

ies)

}

abstract rule Property extends NamedElement{ –R4

from s: SimpleUML!Property

to t: ER!Feature ()

}

rule Attributes extends Property{ –R5

from s: SimpleUML!Property(

not s.primitiveType.oclIsUndefined())

to t: ER!Attribute (type <- s.primitiveType)

}

abstract rule References extends Property{ –R6

from s: SimpleUML!Property(

not s.complexType.oclIsUndefined())

to t: ER!Reference (type <- s.complexType)

}

rule WeakReferences extends References{ –R7

from s: SimpleUML!Property (not s.

isContainment)

to t: ER!WeakReference

}

rule StrongReferences extends References{ –R8

from s: SimpleUML!Property (s.isContainment)

to t: ER!StrongReference}

3.5 UML2ER Case Study: Pragmatics

Recall that the purpose of the matching tables is to help
find the rule(s) that caused the fault when a constraint is
not satisfied. To show how these rules are located, let us
suppose that we have executed the UML2ER transforma-
tion for a certain input model and checked the satisfaction
of the constraints, something that can be done with our

TractsTool [8] quite straightforwardly. Let us assume the
outcome given by the tool is that constraint C7 is not satis-
fied. In Table 3 we can see that there is a complete cover-
age of C7 by rule R4 (as mentioned in Section 3.4, this
table is to be consulted by rows). Consequently, it is very
likely that the constraint fails due to this rule, so we should
start by checking R4. Nevertheless, it does not always
mean that R4 is the guilty rule. In fact, there are other can-
didate rules (all of them except R2, since the value in cell
C7/R2 is 0) that could be the cause of the fault. Among
them, R5, R6, R7 and R8 have the same CC value for con-
straint C7. In order to establish a priority order among
these rules, we need to have a look at the RCR metric in
Table 5. The higher the number in a cell in this table, the
higher the priority for the rule to be guilty. The same thing
occurs with R1 and R3, so we need to check their RCR
metric for constraint C7. After checking both tables, the
error tracking process for constraint C7 should follow the
sequence of rules: R4, R8, R7, R5, R6, R3, R1.

Metric RC can be used to check whether the constraints
may offer a full coverage for the complete transformation or
not. RC tables (e.g., Table 4) are to be consulted by columns:
if all the values in a column are 0 or close to 0, it is very
likely that the rule represented by such a column is not cov-
ered by any constraint. The RC metric is also useful for iden-
tifying the constraint that is more probably aligned with a
certain rule. As with the CC metric, the higher the value in a
cell is, the more likely the constraint represented by such a
cell will cover the rule. When there is a draw in this table
within a column, the corresponding cell in the RCR table
should then be consulted.

TABLE 3
Matching Table Using CC Metric

R1 R2 R3 R4 R5 R6 R7 R8

C1 0.25 0.5
C2 0.2 0.6 0.4 [0.4]
C3 0.25 0.25 0.5 0.38 0.38 0.38 0.38
C4 1.0 1.0 0.75 0.5 0.5 1 0.5 0.5
C5 0.5 1.0
C6 0.5 0.5 1.0 [1.0]
C7 0.5 0.5 1.0 0.75 0.75 0.75 0.75
C8 0.25 0.17 0.33 0.5 [0.25] [0.25] [0.25]
C9 0.28 0.22 0.22 [0.17] 0.44 0.33 [0.22]
C10 0.28 0.22 0.22 [0.17] 0.44 [0.33] 0.22

TABLE 4
Matching Table Using RC Metric

R1 R2 R3 R4 R5 R6 R7 R8

C1 0.25 0.33
C2 0.25 0.5 0.5 [0.33]
C3 0.25 0.25 1.0 0.38 0.25 0.5 0.75
C4 0.5 0.33 0.38 0.5 0.25 0.33 0.33 0.5
C5 0.25 0.33
C6 0.25 0.33 0.5 [0.33]
C7 0.25 0.25 1.0 0.38 0.25 0.5 0.75
C8 0.38 0.25 1.0 0.75 [0.25] [0.5] [0.75]
C9 0.63 0.5 1.0 [0.38] 0.67 1.0 [1.0]
C10 0.63 0.5 1.0 [0.38] 0.67 [1.0] 1.0

TABLE 5
Matching Table Using RCR Metric

R1 R2 R3 R4 R5 R6 R7 R8

C1 0.13 0.25
C2 0.11 0.38 0.29 [0.22]
C3 0.13 0.14 0.5 0.21 0.17 0.25 0.3
C4 0.5 0.25 0.25 0.25 0.17 0.25 0.2 0.25
C5 0.17 0.33
C6 0.17 0.33 0.5 [0.33]
C7 0.17 0.2 1.0 0.3 0.21 0.38 0.5
C8 0.15 0.11 0.33 0.43 [0.14] [0.19] [0.21]
C9 0.19 0.18 0.22 [0.13] 0.36 0.33 [0.2]
C10 0.19 0.18 0.22 [0.13] 0.36 [0.3] 0.22



3.6 Putting the Approach into Context

Once we have an approach to automatically locate the rules
of a model transformation that may be the cause of a faulty
behavior, it is very important to clarify how and where this
approach fits in the overall process of a model transforma-
tion development [3]. As in the construction of any other
software artifact, we should start with its specification. We
believe that specifications should be defined in a modular
and iterative manner: it is impossible to build the specifica-
tions of any complex system or artifact, and assume they
will be complete, accurate and correct without testing them
too. This is why in our context we use Tracts, because they
allow the software engineer to focus on particular scenarios
of special interest, and then build the specifications modu-
larly and progressively.

In turn, the implementation of the model transformation
can be built at the same time as the Tracts, or once they
have been developed, depending on whether we want the
specifications to guide the implementation or just to docu-
ment its expected behavior. Although in theory the former
approach is better, in practice implementations are devel-
oped at the same time as specifications (or even before), by
different teams, and with different usages in mind (mostly
analysis in the case of specifications, and execution in the
case of implementations). This is particularly true in the
case of specification methods that use precise and formal
notations, and require specialized skills.

Once the specifications and the implementation are in
place, the debugging process starts [9]. In our view, formal
specifications and implementation should be debugged at
the same time, assuming that both are complex artifacts and
therefore potential subject to errors. The first step would be
to discard as soon as possible all small mistakes (in one or
the other) in a quick and cost-effective manner, something
that can be done with the aid of the appropriate tools [11],
before diving into more expensive and complex tests (such
as model checking, formal validation, dynamic tests, etc.).
And this is precisely where our approach represents a valu-
able asset.

The first step is to check, using the a-priori applicabil-
ity test (Section 5.4), if our approach will work with the
transformation. In the case it is amenable to be analyzed
with it, it is a matter of building the matching tables with
our toolkit.

The next step is to execute the transformation with the
input models provided by the Tract test suites, using the
TractsTool environment. In case a constraint is not fulfilled,
our tool will provide the list of ATL rules that may have
caused the faulty behavior, ordered according to the chan-
ces they have of being blamed. The developer can then look
for errors on these rules, until one that can explain the con-
straint violation is found. But it may also be the case that the
specifications are wrong, as it is often the case when they
have not been tested before (cf. [24]). In any case, what we
have now is a tool that is able to uncover, in a quick and
easy manner, many of the errors that happen during the
early stage of the testing process, and to help locate the rules
that cause the faults.

This process will continue until the transformation
works, respecting all the Tracts defined for it, which means
that the implementation works for (at least) all the

constraints and conditions that specify (at this level) its
behavior. Now will be the moment to start going through a
more detailed and thorough testing phase, that will help
uncover more subtle errors in the transformation—but at a
most expensive cost, both time and resource-wise.

4 IMPLEMENTATION

In order to extract the footprints of constraints and rules, as
well as to build the matching tables, having automation
support is essential because this is a rather complex and
error-prone task, especially in the case of large model
transformations.

4.1 Footprint Extraction from OCL Constraints

The first step is to extract the footprints for each OCL con-
straint. This is achieved by using the API of the UML based
Specification Environment (USE ) tool [25].

Firstly, we translate the input and output metamodels to
the USE representation by means of a model-to-text trans-
formation. As both the Ecore and the USE meta-metamodels
are similar, the translation is straightforward. The relevant
differences between both languages are the requirement
that all relationships must be bidirectional in USE, and its
lack of packages. Furthermore, USE only accepts one meta-
model and one model, so we have to merge the input and
output metamodels. This limitation implies the need to
modify the name of each class and association in order to
guarantee unique names. We have done so by adding a pre-
fix to the name of the element: src if it belongs to the source
metamodel, and trg if it belongs to the target metamodel.

Once both metamodels have been merged into a single
file, we add to it the OCL expressions that compose the
constraints and load the file into USE. For every OCL
expression, USE builds a parse tree representing each sub-
expression with an explicit node which also provides the
return type for each subexpression. To take advantage of
this, we have built a small program that uses the aforemen-
tioned API. This API allows navigation through the parse
tree and extracts the relevant information about the foot-
prints, as explained in Section 3.3.

4.2 Footprint Extraction from ATL Rules

Apart from the extraction of the footprints for some ATL-
specific elements, such as input pattern or output pattern,
which is quite straightforward, the extraction of footprints
from ATL transformations is conceptually mostly analogous
to the OCL constraints, since it mainly affects the OCL
expressions of the ATL rules. However, in practice the foot-
print extraction process for ATL rules is rather challenging
because the USE tool cannot be used directly. First, there are
some subtle but significant differences between the versions
of OCL used by USE and by ATL concerning predefined
types and operations. Second, the OCL expressions allow to
reference variables which are bound by the rules. Thus we
decided to implement a higher-order transformation (HOT)1

[26], [27] for extracting the footprints from the ATL rules,
because the cost of building and maintaining two individual
tools (one for ATL and one for OCL) was less than for devel-
oping one common tool. The precise footprint extraction
process for ATL rules is described in detail in [8], [28].



4.3 Matching Function

Once we have the types and features used in the constraints
and the rules, we apply the matching functions to obtain the
measures explained in Section 3.4.

These functions have been implemented in Java and each
one calculates the values of the corresponding matching
table. The output of the computation is represented in a
comma-separated value (csv) format, so that it can be read by
spreadsheet-based applications.

5 EVALUATION

In this section, we discuss the accuracy and limitations of
our approach, and introduce a method for checking if a
transformation is amenable to be used with it, based on the
concept of footprint similarity matrix. To evaluate the accu-
racy of our approach we performed a case study [29] by fol-
lowing the guidelines for conducting empirical explanatory
case studies by Roneson and H€orst [30]. In particular, we
report on applying our approach to detect the alignments
between Tracts and ATL transformations for four different
transformation projects. In addition, we also present the
results of a controlled experiment for locating faults in
faulty transformations by applying mutations to the four
different transformation projects.

5.1 Research Questions (RQs)

The study was performed to quantitatively assess the com-
pleteness, correctness, and usefulness of our approach
when applied to a real-world scenario. More specifically,
we aimed to answer the following research questions:

1) RQ1—Correctness. Are the detected alignments
between constraints and rules correct in the sense
that all reported alignments are representing real
alignments? If our approach reports incorrect align-
ments, what is the reason for this?

2) RQ2—Completeness. Are the detected alignments
complete in the sense that all expected alignments
are correctly detected? If the set of detected align-
ments is incomplete, what is the reason for missed
alignments?

3) RQ3—Usefulness. In those cases where more than one
alignment is reported for a constraint or a rule, are the
correctly identified alignments outperforming the
falsely identified alignments in terms of the calculated
similarity value? We provide this additional question,
because the first two questions only consider the eval-
uation of alignments as true/false, but they do not
take theweights of the alignments into account.

5.2 Case Study Design

Before we present the results of our case study, we elaborate
on its design.

5.2.1 Requirements

As appropriate inputs we require transformation projects that
consist of a set of constraints and a set of rules. We also need
the source and target metamodels in order to extract the foot-
prints of constraints and rules. Apart from these artifacts, we
further require the alignments between the constraints and

the rules given by transformation engineers; otherwise, we
would not be able to compare the results obtained by our
approach with the expected correct set of alignments. To
accomplish an appropriate coverage of different scenarios,
the transformations should comprise different intrinsic prop-
erties, e.g., having different design complexitymeasures.

5.2.2 Setup

We analyzed the alignments between transformation
requirements and implementations in four different real-
world transformation projects.

First, and as already presented in Section 3.4, we selected
the transformation project dealing with the generation of
Entity Relationship Diagrams from UML Class Diagram
Models (UML2ER for short).

Second, we selected a transformation project that deals
with behavioral models. Models conforming to Call Proc-
essing Language (CPL) [31] are transformed into models
conforming to Session Processing Language (SPL) [32]. The
CPL2SPL transformation [33] is a relatively complex exam-
ple available from the ATL zoo (http://www.eclipse.org/
atl/atlTransformations).

Third, we considered a model transformation project that
does not operate on modeling languages but rather on
markup languages. More specifically, we considered the
BT2DB transformation of BibTeX documents into DocBook
documents, also available from the ATL zoo. BibTeXML is
an XML-based format for the BibTeX bibliographic tool.
DocBook, in turn, is an XML-based format for document
composition.

Finally, we experimented with a very large transforma-
tion called Ecore2Maude (or E2M for short) which is used
by a tool called e-Motions [34]. It converts models conform-
ing to the Ecore metamodel into models that conform to the
Maude [35] metamodel, in order to apply some formal rea-
soning on them afterwards.

Tables 6 and 7 summarize the main size metrics for the
ATL transformations and the corresponding metamodels.

We developed the Tracts for the given transformations.
Constraints were written by a member of our team who
knows OCL but who was unaware of the ATL implementa-
tions. They have been written based on the textual specifica-
tion of the transformations. For example, the UML2ER case
study comprises 10 constraints (previously shown in Listing
4) of two different kinds: one for comparing the number of
instances of certain source and target classes, and one for
checking equivalent elements based on containment rela-
tionships and value correspondences. There are 16

TABLE 6
Transformation Metrics Overview

Metric UML2ER CPL2SPL BT2DB Ecore2Maude

ATL LoC 77 348 286 1,397

#Elements 86 497 449 2,403
#Links 201 1,114 1,052 5,270

#Rules 8 15 9 40
#Helpers 0 6 4 40
#Bindings 5 73 25 329



constraints in the CPL2SPL case study, checking that the
proper object types in SPL are created from specific object
types in CPL. Furthermore, they check that the number of
objects in the target model is correct, and that the URIs are
correctly created. The 16 constraints in the BT2DB case
study make sure that the proper book is created for the dif-
ferent possible entries in BibTeX, and that all entries are
properly transformed. Finally, for the E2M case study, three
kinds of constraints have been developed to check that the
number of elements in the output model is correct, that the
Operation entities in the output model have been created
from the appropriate input elements, and that from each
Class entity, the corresponding Sort has been created in the
target model.

The input data including the Tracts constraints, the ATL
transformations, the alignments between them, the results
and the accuracy of these four projects (and several others)
are available on our project’s website [8].

5.2.3 Measures

To assess the accuracy of our approach, we compute the pre-
cision and recall measures originally defined in the area of
information retrieval [36]. In the context of our study, preci-
sion denotes the fraction of correctly detected alignments
among the set of all detected alignments (i.e., how many
detected alignments are in fact correct). Recall indicates the
fraction of correctly detected alignments among the set of all
actually occurring alignments (i.e., how many alignments
have not been missed). These two measures may also be
thought of as probabilities: the precision denotes the proba-
bility that a detected alignment is correct and the recall is
the probability that an actually occurring alignment is
detected. Thus, both values range from 0 to 1.

Precision is used to answer RQ1 and recall to answer
RQ2. There is a natural trade-off between precision and
recall. Thus, these two metrics may be further combined
inside the so-called f-measure to avoid having only isolated
views on both aspects [36]. To answer RQ3, we use the util-
ity-average metric, which serves to reason about the relative
difference between false positives (FPs) and true positives
(TPS) for one row (in the CC and RCR tables) or for one col-
umn (in the RC and RCR tables).

To check whether or not our approach is accurate for a
given model transformation and a given set of constraints,
we have manually obtained the alignments between rules
and constraints, reflected in a table called expected alignment
table. An example is shown in Table 8 for the UML2ER
transformation. There is a cross mark, �, in the cells where
there is a direct alignment between constraints and rules,
and a cross mark in brackets, (�), when the alignment is
due to inheritance relationships between meta-classes or

transformation rules (cf. Section 3.4). The value of empty
cells is 0.

For computing precision and recall, we extract the true-
positive values, false-positive values and false-negative val-
ues (FNs), with the help of the expected alignment table. A
cell contains a TP when ðiÞ its value is above the threshold,
ðiiÞ there is an alignment in the expected alignment table,
and ðiiiÞ the alignment is also identified in the RCR table for
the same cell (in the case of CC and RC tables, see Section
3.4). There is an FP when our approach identifies that there
is an alignment (CC/RC and RCR cell values above the
threshold), but the expected alignment table does not indi-
cate so. Finally, there is an FN between a constraint and a
rule when our approach identifies that there is no alignment
between them and there is a mark in the equivalent cell in
the expected alignment table.

From the TP, FP and FN values we compute the precision,
recall and f-measuremetrics as follows:

precision ¼ TP

TP þ FP
; (4)

recall ¼ TP

TP þ FN
; (5)

f-measure ¼ 2� precision� recall

precisionþ recall
: (6)

The utility-average metric permits reasoning about the
relative value difference between FPs and TPs. For example,
if there are five alignments in a row in the CC table and four
of them are falsely created (which means that there is only
one TP and four FPs), but the TP has the highest value, then
the four FPs are disregarded because the TP is the first one
checked. We have calculated this metric by rows for the CC
metric and by columns for the RC metric. The result is the
mean of the values obtained in each row/column. As for
the RCR metric, since it can be consulted by columns or by
rows, we have considered both situations. The utility-aver-
age metric, UAM, is computed as follows:

UAM ¼
Pn

i¼1 ui
n

; (7)

where ui ¼ 1 if there are neither FNs nor FPs in the row/col-
umn, or there are no FNs and the value of all FPs is less than

TABLE 7
Metamodel Metrics Overview

Metric UML ER CPL SPL BT DB Ecore Maude

#Class 4 8 31 77 21 8 18 45
#Atts 3 1 42 33 10 1 31 17
#Refs 4 2 16 62 2 5 34 46
#Inhs 3 6 32 76 31 4 16 38

TABLE 8
Expected Alignments for the UML2ER Transformation (“�”
Means Direct Relation, “(�)” Means Relation via Inheritance)

R1 R2 R3 R4 R5 R6 R7 R8

C1 (�) �
C2 (�) � �
C3 � � � (�) (�) (�) (�)
C4 � (�) (�) (�) (�) (�) (�) (�)
C5 (�) �
C6 (�) � �
C7 (�) � � (�) (�) (�) (�)
C8 (�) � (�) �
C9 (�) � (�) (�) �
C10 (�) � (�) (�) �



the value of the TPs; ui ¼ 1	 jF j
jF jþjTP j if there are no FNs but

there are FPs which are bigger than or equal to at least one
of the TPs in the row/colum (in the formula, TP is the set of
all true positives in the row/column, and F ¼ fx 2
FP j 9y 2 TP with x >¼ yg); finally, ui ¼ 0 if there are FNs
in the row/column.

5.3 Results

We now present the results of applying our approach to the
four different model transformation projects. A summary of
these results is shown in Table 9. Detailed results can be
found on our project’s website [8]. In the matching tables
(e.g., Tables 3, 4, and 5), TPs are shown in normal font, FPs
within square brackets, and FNs within curly brackets.
These values are obtained by comparing the expected align-
ment tables for the four projects, with the matching tables
obtained by our approach.

As shown in Table 9, the values obtained for the preci-
sion, recall and f-measure metrics are acceptable in three of
the projects: UML2ER, CPL2SPL and Ecore2Maude. With
these accuracy results, we can conclude that our approach
works well with these projects, since the alignments found
statically are quite reliable. Recall is acceptable in all proj-
ects, because the number of FNs is low. However, the num-
ber of FPs is very high in the BT2DB project, resulting in a
poor precision ð0:25Þ. The reasons for this low performance
are discussed in next section.

5.4 A-Priori Applicability Test

After carefully studying the model transformation that
scored a low precision of our approach, we discovered that
the footprints of its rules were very similar, i.e., they shared
many types and features. This led us to introduce a new
measure, based on the concept of footprint similarity matrix
for model transformation rules. A similarity matrix gives us
an indication of how rules are related with each other, i.e.,
the factor of common types/features they share. The simi-
larity matrix for the UML2ER case study is shown in
Table 10 (many more similarity matrixes for different trans-
formations taken from the ATL zoo can be found on our
project website [8]).

Evidently, similarity matrixes are symmetric. To com-
pute the aggregated application indicators, we extract the
mean and the standard deviation of the rule similarities.
The lower both values are (especially the mean), the fewer
types and features the rules have in common, and thus,
the higher the chance for a successful application of our
approach is.

For the matrix shown in Table 10, both metrics have a
value of 0:1. This means that rules are separated enough, and
thus our approach works well because there is no confusion
possible when establishing the alignments between the con-
straints and the rules.

However, the similarity matrix for the BT2DB transfor-
mation shows quite different values. The mean is 0:41 and
the standard deviation is 0:24. Consequently, it is difficult to
distinguish among them when looking for the “guilty rule”,
and this results in the occurrence of many false positives in
the matching tables. If we look at the ATL transformation,
we find the explanation for such a high value. Since the tar-
get metamodel is rather small, many rules create objects of
the same target types. For example, eight rules out of nine
create Paragraph elements, and 33 percent of the rules con-
tain a TitleEntry element in their input part.

We have automated the process for obtaining the foot-
prints of any ATL transformation, as well as the computa-
tion of the similarity matrixes. With this, we have obtained
the similarity matrixes for the transformations in the ATL
zoo, in order to investigate the applicability of our
approach. Out of the 41 model transformations studied, the
mean and standard deviation turned out to be below 0:15 in
21 of them, which means that our approach is perfectly fit
for use with around half of the transformations. A summary
of these results is available in a technical report [28], while
all similarity matrixes obtained, as well as the software that
computes them, are available on our project’s website [8].
The threshold that we used for the mean and the standard
deviation of the similarity matrix, 0:15, is to ensure that pre-
cision is above 0:8.

It is important to note that this fitness test ensures
good results (since the transformation rules are separated
enough to be distinguishable by our proposed approach),
but it may be that the fitness test scores low and still our
approach works well because of the way in which the
constraints are written. In any case, there is no guarantee
that our approach is fit for use when the applicability test
provides results below 0:15.

We also discovered that the number of rules in the trans-
formations has no impact in the applicability of our
approach. In fact, the number of rules used in the set of
transformations studied ranged from 3 up to 40. As an
example, the similarity matrix of a small transformation
(PetriNet2PathExp, 3 rules) gave bad results, while the one
obtained from the largest transformation (Ecore2Maude, 40
rules) gave good results. Contrarily, we obtained adverse
results for another large transformation (R2ML2XML, 55

TABLE 9
Accuracy of Case Studies

Metric UML2ER CPL2SPL BT2DB Ecore2Maude

TPs 46 37 29 11
FPs 9 9 85 3
TNs - 1 3 -

Precision 0.84 0.80 0.25 0.79
Recall 1.00 0.97 0.91 1.00
F-measure 0.91 0.88 0.40 0.88
Utility average 0.80 0.81 0.60 0.94

TABLE 10
Similarity Matrix for the Rules in UML2ER

R8 R7 R6 R5 R4 R3 R2 R1

R1 0 0 0 0 0 0 0 1
R2 0 0 0.2 0 0 0.25 1
R3 0 0 0.25 0 0.2 1
R4 0.33 0.25 0.14 0.2 1
R5 0.2 0.17 0.11 1
R6 0.14 0.13 1
R7 0.25 1
R8 1



rules), while we got good results for small transformations
(such as PetriNet2Grafcet, five rules). We have applied the
Pearson correlation coefficient, a measure of the linear correla-
tion between two variables, on the results, when the first
variable is the number of rules in the transformations and
the second is the mean obtained from the similarity
matrixes. The obtained value was 	0:13, meaning that this
dependence is minimal.

5.5 Experimenting with Faulty Transformations

So far, we have illustrated our approach with correct model
transformations. However, given that it has been devised to
detect errors in faulty transformations, it is essential to test
its effectiveness when the transformations are indeed faulty.

Setup. For this reason we have used mutation analysis
[37] to systematically inject faults into model transforma-
tions [38], and then used our approach to locate the bugs.
The purpose of a mutated transformation is to emulate a
transformation that contains bugs, and then see if our
approach detects them.

To define the possible mutations of ATL transformations,
we use the list of transformation change types presented in
[39], which are summarized in Table 11. For more informa-
tion on the precise mutations and the results obtained for the
case studies presented in this paper we kindly refer to [40].

Example. As an example, we have applied the following
mutations for the CPL2SPL transformation mentioned
above:

1) Addition of an OutPatternElement in R1, which
results in the creation of unexpected additional ele-
ments in the target model.

2) Modification of the feature of a binding in R3, result-
ing in incorrectly initialized features in the target
model.

3) Modification of the condition of the filter in R5,
changing the amount of produced target model
elements.

4) Modification of a binding and addition of OutPatter-
nElement in R6, thus producing more target model
elements.

5) Deletion of a binding and an OutPatternElement,
along with its binding, in R8; emulating the circum-
stance in which a transformation produces not
enough target elements.

6) Addition of a filter in R9, making the application of
the rule more restricted, thus creating less elements
in the target model.

7) Feature modification in a binding and deletion of a
binding in R11, resulting in wrongly assigned values
and missing values in the target model.

Measures. For each mutation, we collect: ðiÞ the con-
straints violated when the mutation is applied; ðiiÞ if the
user was able to find the guilty rule using our approach;
and ðiiiÞ the number of steps needed for finding the guilty
rule. By number of steps we mean the number of rules that
the user needs to check in order to find the one that was
mutated (including that one).

Results. The results in Table 12 show that all mutations
were detected by our approach for the given example. Each
mutation caused one or more constraints to fail, and the
guilty rule was correctly identified for all constraints but
one (C3). This happened because of false negatives, given
that the relation between rule CPL2SPL_1 and constraint C3
was quite loose. However, the mutation caused several con-
straints to fail and our approach was able to identify the
mutated rule in the rest of the cases, so the guilty rule was
eventually identified.

The overall results obtained for all four projects,
described in our technical report [40], show similar effec-
tiveness. We injected a total of 21mutations, causing 48 con-
straints to fail. All mutants were killed, i.e., all guilty rules
were correctly identified by our approach. Only for three
constraints that failed we could not identify the rule causing
it but, in all cases, these rules caused the violation of several
constraints, and the guilty rule was already identified as the
one responsible for the violation of a different constraint
that failed with the same mutation, such is the case with C3
in CPL2SPL_1, so the guilty rule was eventually identified.
Regarding how many rules need to be checked before iden-
tifying the guilty one, our proposed approach needed an
average of 1:78 rules to be checked.

5.6 Threats to Validity

In this section, we elaborate on several factors that may
jeopardize the validity of our results.

Internal validity—Are there factors which might affect the
results of this case study? The quality of the data appearing in

TABLE 11
Possible Mutations for ATL Transformations (from [39])

Concept Mutation
Operators

Concept Mutation
Operators

Matched
Rule

Addition
Deletion

Name Change

Filter Addition
Deletion

Condition Change

In/Out
Pattern
Element

Addition
Deletion

Type Change
Name Change

Binding Addition
Deletion

Feature Change
Value Change

TABLE 12
Summary of Mutations and Fault Localization

Results (CPL2SPL Project)

Mutation Constraints
Violated

Guilty Rule
Located?

Number
of Steps

C1 @ 1
CPL2SPL_1 C2 @ 1

C3 ‘ -
C11 @ 1

CPL2SPL_2 C4 @ 1
C5 @ 1

CPL2SPL_3 C6 @ 1
C14 @ 1

CPL2SPL_4 C12 @ 1

CPL2SPL_5 C15 @ 2

CPL2SPL_6 C5 @ 3

C13 @ 3
CPL2SPL_7 C10 @ 1



the matching tables, as well as the usefulness and accuracy
of these, are crucial for the internal validity due to three
main factors. First, the Tracts need to be manually defined.
If they do not contain valuable restrictions, then the match-
ing tables are not useful. Defining constraints is not a trivial
task, and the person responsible for doing so needs to have
knowledge of OCL, of the transformation to check, and of
what should be checked.

Second, the way in which footprints are extracted is cru-
cial for building the tables. As explained in Section 3.3, there
may be very long navigation paths expressed in OCL both
in the Tracts and in the rules. From them, we extract the
types and features discarding some elements because they
are not considered as relevant by giving a higher priority to
the results than to the paths used in the computations.

Third, in order to study the accuracy of our tables, we
have manually defined the expected alignment tables.
Should we have failed to properly identify these alignments,
the value of precision and recall would have been incorrectly
calculated. In any case, they were written by amember of the
team and double-checked by another, in order to minimize
this risk. We have also made some assumptions in the imple-
mentation of our approach. For instance, we have chosen 0:1
as the threshold value for considering alignments relevant,
as mentioned in Section 3.4. We also decided not to take con-
stants and primitive types into account (Section 3.3).
Although our experiences have shown that these decisions
seem to be correct, they need to be further validated with
more experiments and case studies.

Fourth, different styles of Tracts definition may have an
effect on the outcomes. As mentioned in Section 5.2.2, the
Tracts constraints were written by a member of our team.
Of course, if they had been written by other people, or by
the developers of the transformations themselves, the
results presented here may have been slightly different.
Here we assumed the underlying hypothesis that the con-
straints and rules are more heterogenous if they are devel-
oped by different persons, thus resulting in a more difficult
matching problem.

Finally, concerning the experiment with faulty trans-
formations, we relied on the state-of-the-art of mutation
operators for model transformations, but further opera-
tors may be required in the future to deal with more fine-
grained OCL expression mutations. Thus, these addi-
tional operators may have an impact on the results gained
in our experiments.

External validity—To what extent is it possible to generalize
the findings? As a proof of concept of our approach, we have
extracted the matching tables for model transformations
written in the ATL language. The metamodel of ATL com-
prises, amongst others, a package for OCL. Currently, the
footprint extraction operates on this representation, and
thus, works only for ATL transformations. Nevertheless, it
would be possible to reuse parts of the ATL footprint extrac-
tion for other rule-based transformation languages that also
integrate OCL as a sublanguage. Another threat to external
validity would be considering further features of model
transformations, such as reflection [41]. Finally, our studies
are focussing for out-place transformation scenarios, and
thus, additional studies are needed for in-place transforma-
tion scenarios. As part of our future work we plan to

investigate these issues, and also try to define a minimal set
of requirements on the kinds of specification notations and
implementation languages which are amenable to be
directly addressed by our approach.

6 RELATED WORK

With respect to the contribution of this paper, three threads
of related work are discussed: ðiÞ general traceability
approaches in software engineering as well as specific
approaches for tracking “guilty” transformation rules, i.e.,
those whose behavior violates the transformation specifica-
tions, ðiiÞ approaches for generating test cases for model
transformations, andðiiiÞ approaches that build on model
footprints as does our approach.

6.1 Tracing Faults in Model Transformations

IEEE [42] defines traceability as the degree to which a rela-
tionship between two or more artifacts can be established.
Most tracing approaches are dedicated to establishing trace-
ability links between artifacts that are in a predecessor/suc-
cessor relationship with respect to their creation time in the
software development process, e.g., between requirements,
features, design, architecture, and code. Our approach for
automatically finding the alignments between constraints
and transformation rules is in the spirit of traceability rules
as presented in [43], [44]. A survey dedicated to traceability
in the field of MDE is presented in [45], where the possibili-
ties of using trace links established by model transforma-
tions are discussed. However, this survey does not report
on tracing approaches between transformation specifica-
tions and implementations.

Tracking guilty transformation rules using a dynamic
approach, i.e., by executing the model transformation under
testing, has been subject to investigations. Hibberd et al. [9]
present forensic debugging techniques for model transfor-
mations based on the trace information of model transfor-
mation executions for determining the relationship between
source elements, target elements, and the transformation
logic involved. With the help of such trace information, it is
possible to answer debugging questions implemented as
queries. In [46], we used OCL-based queries for the back-
wards debugging of model transformations using an
explicit runtime model based on the trace model between
the source and target models. Aranega et al. [47] present an
approach for locating transformations errors by also exploit-
ing the traces between the source and target models. The
dynamic approach is also used in [48] to build slices of
model transformations and in [49] following a white-box
testing approach. A complementary approach to model
transformation testing has been proposed by Kessentini
et al. [50], using a generic oracle function. The idea of this
approach is that the traces between the source and target
models of a transformation should be similar to existing
example traces. Specifically, the oracle function checks how
large a derivation there is of the generated traces of a model
transformation from existing traces in the example base.
While all these approaches track transformation rules using
specific test input models, our aim is to statically build
more general traceability models between transformations’
specifications and their implementations for enabling static



analysis (the pros and cons of dynamic vs. static approaches
have already been discussed in Section 3.1).

In addition to Tracts, other approaches have been pro-
posed that build on the notion of transformation contracts
to specify transformation specifications [24]. While other
OCL-based specification approaches, e.g., [51], are obvi-
ously supported by the approach presented in this paper,
for non OCL-based approaches, e.g., [52], additional trans-
formations for computing the metamodel footprints may be
developed or these specifications may be internally trans-
lated to OCL to reuse the existing footprint computation.
Analogously, if other transformation implementation lan-
guages such as RubyTL [53], ETL [54], or QVT [55] need to
be supported, additional higher-order transformations like
those for ATL need to be developed.

There are some other transformation testing approaches
that directly annotate assertions inside transformation
implementations [56], [57]. Thus, these approaches have no
need to compute the alignments between the specification
and the implementation, as they are already provided by
the transformation engineer. However, the specification
and implementation of the transformation is intermingled,
and thus, specifications are specific to a certain transforma-
tion implementation.

There are several approaches that define contracts for
model transformations by defining a set of input/output
model pairs and employing model comparison techniques
to look for differences between the expected output models
(provided by the engineer) and the actual outputs of the
transformation [58], [59]. In this context, basic support for a
failure trace is provided, since the different elements
(added, updated, and deleted elements) between an actual
target model and an expected target model may be calcu-
lated, but the tracing to the corresponding source model ele-
ments as well as to the transformation rules is left open.

6.2 Test Generation for Model Transformations

For tracking guilty rules, the availability of appropriate
test input models is assumed in our approach. Many
research efforts have been investigated in software engi-
neering, in this area including black-box, gray-box and
white-box approaches.

K€uster et al. [60], Gonzalez & Cabot [49], and S�anchez
Cuadrado et al. [61] focus on white-box methods. In the for-
mer, the existence of a high-level design of model transfor-
mations, consisting of conceptual transformation rules, is
assumed. In [49], a white-box based testing approach for
ATL transformations is provided by extracting OCL con-
straints and using a model finder to compute test input
models fulfilling certain path conditions. Finally, S�anchez
Cuadrado et al. discuss the generation of test input models
for confirming and explaining errors reported by a static
checker for ATL transformations.

Many approaches have been proposed for black-box test-
ing, whereby test source models are generated either on the
basis of the source metamodel (e.g. [14], [62], [63]) or on the
basis of specified requirements [56], [64]. For the actual test
source model generation, most of these approaches rely on
constraint satisfaction, e.g., by means of SAT solvers. Fur-
thermore, an approach has been proposed, which allows
automatically completing test input models, i.e., the

transformation engineer has to specify an intention by
defining a model fragment only, and an algorithm comple-
ments this fragment for a valid test input model [65].

6.3 Model Transformation Footprinting

Recently, some approaches for computing and utilizing
model footprints have been presented. In [66], the footprints
of model operations are statically computed by introducing
the idea of metamodel footprints. We pursue this idea of
computing metamodel footprints from transformation spec-
ifications and implementations for establishing traceability
links instead of reasoning solely on model footprints. Mottu
et al. [67] compute the input metamodel footprints for ATL
transformations in order to slice the input metamodels as a
prerequisite step for computing test input models for the
transformations being studied with Alloy. Compared to our
work, the work of Mottu et al. is orthogonal in the sense
that their approach could complement ours. While we focus
on fault localization, Mottu et al. are concerned with test
model generation.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a static approach to trace
errors in model transformations. Taking as input elements
an ATL model transformation and a set of constraints that
specify its expected behavior, our approach automatically
extracts the footprints of both artifacts and compares trans-
formation rules and constraints one by one, obtaining the
overlap of common footprints. Subsequently, it returns
three matching tables where the alignments between rules
and constraints are recorded. By using these tables, the
transformation engineer is able to trace the rules that can be
the cause of broken constraints due to faulty behavior.

Our evaluation shows that the presented approach is
expected to be accurate for a large set of model transforma-
tions. By using the similarity matrixes, an automated and
instant fitness test is available to check a-priori whether the
approach will be helpful for a given transformation. Several
executables of our approach are available on our website [8].

For future work we aim to explore the usage of similarity
matrixes for other use cases, such as to reason about the
maintainability of transformations in the case of evolving
metamodels or to reason about the completeness of trans-
formations. Furthermore, the footprint extraction for trans-
formation contracts in OCL is currently supported, but
other contract languages such as [52] may be employed as
well. Similarly, the application of the ideas presented here
to other transformation languages which do not use OCL,
like graph-based languages (e.g., AGG) or other kinds of
languages (e.g., Tefkat), opens the way to further lines of
research. Finally, we would like to explore how dynamic
approaches could complement our static approach for trac-
ing guilty transformation rules.
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