
Simulating Domain Specific Visual Models by Observation
Javier Troya, José E. Rivera and Antonio Vallecillo

GISUM/Atenea Research Group. Universidad de Málaga, Spain
{javiertc,rivera,av}@lcc.uma.es

Keywords: Domain specific visual languages, behavioral
semantics, observers, Maude

Abstract

Domain Specific Visual Languages (DSVLs) are essential
elements in Model-Driven Engineering (MDE) for represent-
ing models and metamodels. In-place model transformations
provide an intuitive way to complement metamodels with be-
havioral specifications. Besides, they can be extended with
quantitative models of time and with mechanisms that facil-
itate the design of real-time complex systems. In this paper
we present an approach to simulate and analyze the behavior
of systems described by DSVLs using observers, which are
objects that can monitor both the state of the rest of the ob-
jects of the system, and the execution of the system actions.
Our proposal is supported by e-Motions, a graphical frame-
work and tool for defining timed behavioral specifications of
models. We also show how this approach enables the specifi-
cation and simulation of other important features of systems,
such as the automatic reconfiguration of the system when the
value of some of the observed properties change.

1. INTRODUCTION
Domain specific visual languages (DSVLs) play a cor-

nerstone role in Model-Driven Engineering (MDE) for rep-
resenting models and metamodels. The benefits of using
DSVLs is that they provide an intuitive notation, closer to
the language of the domain expert, and at the right level of
abstraction. The Software Engineering community’s efforts
have been progressively evolving from the specification of
the structural aspects of a system to modeling its behavioral
dynamics. Thus, several proposals already exist for modeling
the structure and behavior of a system. Some of these propos-
als also come with supporting environments for animating or
executing the specifications, based on the transformations of
the models into other models that can be executed [5, 6, 7].

The normal way in which the DSVL models are simu-
lated and analyzed (to obtain information about, e.g., mean-
time between failures, end-to-end throughput, or idle-time of
some of the system elements) is based on the idea of an-
notating the models with data related to the properties we
want to simulate, and then translating the annotated models
into models ready to be analyzed by the appropriate tools.
Most of these proposals exist only for UML-based nota-

tions, with UML Profiles such as UML-QoSFT, UML-SPT or
MARTE [8, 9, 10]. They allow annotating UML models with
time and QoS information and a set of requirements on the
behavior of the system (e.g., response time, jitter or through-
put).

In this paper we present an alternative approach to spec-
ify the properties that need to be simulated, integrating new
objects in the specifications that capture such properties. Our
proposal is based on the observation of the execution of the
system actions and of the state of its constituent objects. We
use this approach to simulation and analysis in the case of
DSVLs that specify behavior in terms of rules (which de-
scribe the evolution of the modeled artifacts along some time
model), and illustrate the proposal with the running exam-
ple of a Production Line system. We show how, given an ini-
tial specification of the system, the use of observer objects
enables the analysis of some of the properties usually pur-
sued by simulation, including mean and max cycle-time for
the produced parts, busy and idle cycles for every machine
in the system, mean-time between failures, etc. Analogously,
further properties can be easily simulated using this approach.

We show as well how this approach enables the specifica-
tion of other important features of systems, such as the auto-
matic reconfiguration of the system when the value of some
of the observed properties change.

2. MODELING BEHAVIOR
One way of specifying the dynamic behavior of a DSVL

is by describing the evolution of the modeled artifacts along
some time model. In MDE, this can be done using model
transformations supporting in-place update [3]. The behavior
of the DSVL is then specified in terms of the permitted ac-
tions, which are in turn modeled by the transformation rules.

There are several approaches that propose in-place model
transformations to deal with the behavior of a DSVL, from
textual to graphical (see [12] for a brief survey). This ap-
proach provides a very intuitive way to specify behavioral
semantics, close to the language of the domain expert and
the right level of abstraction [4]. In-place transformations
are composed of a set of rules, each of which represents a
possible action of the system. These rules are of the form
l : [NAC]∗ × LHS → RHS, where l is the rule’s label (its
name); and LHS (left-hand side), RHS (right-hand side), and
NAC (negative application conditions) are model patterns that
represent certain (sub-)states of the system. The LHS and

mailto:javiertc@lcc.uma.es
mailto:rivera@lcc.uma.es
mailto:av@lcc.uma.es


Figure 1. Production Line Metamodel.

Figure 2. Creation of the initial configuration of the system.

NAC patterns express the precondition for the rule to be ap-
plied, whereas the RHS one represents its postcondition, i.e.,
the effect of the corresponding action. Thus, a rule can be
applied, i.e., triggered, if an occurrence (or match) of the
LHS is found in the model and none of its NAC patterns oc-
curs. Generally, if several matches are found, one of them is
non-deterministically selected and applied, producing a new
model where the match is substituted by the appropriate in-
stantiation of its RHS pattern (the rule’s realization). The
model transformation proceeds by applying the rules in a non-
deterministic order, until none is applicable — although this
behavior can be usually modified by some execution control
mechanism [13].

Modeling Time-Dependent Aspects. In [11] we showed
how time-related attributes can be added to rules to represent
features like duration, periodicity, etc. We defined two types
of rules to specify time-dependent behavior, namely, atomic
and ongoing rules. The former ones represent atomic actions,
with a specific duration. They can be canceled, but cannot be
interrupted. Examples of this kind of actions include gener-
ating a piece, or collecting it from a tray. These rules can be
periodic, i.e., they admit a parameter that specifies an amount

of time after which the action is periodically triggered (if the
rule’s precondition holds, of course). Ongoing rules represent
interruptible continuous actions which progress along time
while the rule preconditions (LHS and not NACs) hold. This
kind of rules is used, for instance, to represent how the state
of some observers changes with time (Figs. 10 and 11). Both
atomic and ongoing rules can be scheduled, or be given an
execution interval.

We have also included the explicit representation of action
executions, which describe actions currently executing. They
specify the type of the action (i.e., the name of the atomic
rule), the identifier of the action execution, its starting and
ending time, and the set of objects involved in the action. This
provides a very useful mechanism when we want to check
whether an object is participating in an action or not, or if an
action has already been executed, for instance.

Finally, a special kind of object, named Clock, represents
the current global time elapse. Designers are allowed to use
it in their timed rules (using its attribute time) to look up the
amount of time that the system has been working. Further
clocks can be specified by users, according to the require-
ments of their systems (to model, for instance, systems with
distributed clocks).



A running example. To illustrate how the behavior of a
system can be modeled using our approach, we will show
an example of a hammer production line. The metamodel
for such system is depicted in Fig. 1. There are different
kinds of machines (head generators, handle generators and
assemblers), containers (trays, conveyors and users) and parts
(head, handles, and hammers), and they all have a position.
Generators produce parts and deposit them in trays; convey-
ors move parts from machines to trays; assemblers consume
parts from trays to create hammers, which are deposited in
conveyors, and finally collected by users. Trays contain parts
up to their capacity. For creating an initial model of the sys-
tem, we create a rule (Fig. 2) whose LHS pattern is empty
(and not shown here) and where the initial model is created
in the RHS pattern. For this rule to be applied, it must not
have been executed before. This is modeled by an action ex-
ecution, cim, in the NAC pattern NAC1 that indicates that the
action CreateInitialModel was executed before (see the past
attribute).

Figure 3. Carry Rule

As an example of the rules that describe the possible ac-
tions of the system, Fig. 3 shows the atomic Carry rule, which
specifies how a Part is transported through a Conveyor to the
Tray connected to the end of it. This action takes 5 time units.

3. NON-FUNCTIONAL PROPERTIES
Once we count on languages for specifying models and

their behavior, the next step is to try to simulate the system,
and/or to reason about it. There are three main issues associ-
ated to this simulation. Firstly, we need to be able to express
the properties that we want to simulate (e.g., delays, mean-
time between failure, or end-to-end throughput). Secondly,
once we have specified such properties we need to have a
simulation engine that executes the specifications. Finally, we
have to introduce somehow this simulation engine in the be-
havior of our system. In this section we describe our proposal
to model the simulation properties of the system as well as
the execution engine.

3.1. Properties to simulate
Let us suppose then that we want to analyze the following

five parameters of the Production Line system:

Throughput: number of pieces produced by the system per
unit of time.

Mean time between failures (MTBF): mean time between
pieces lost (parts can fall from conveyors when the des-
tination tray is full).

Idle-time: Amount of time that a machine has not been
working (i.e., idle or waiting) so far.

Mean Idle-time: Average idle time of all machines.

Cycle time (of a produced hammer): Amount of time be-
tween the first part of the hammer is generated, and the
hammer is finally collected by the user.

Mean cycle time (MCT): Average cycle time of all pro-
duced hammers so far.

3.2. Observers
To calculate the value of these simulation parameters we

propose the use of observers. An observer is an object whose
purpose is to monitor the state of the system: the state of the
objects, of the actions, or both. For this particular example
we will use two kinds of observers, depending on whether
they monitor the state of the complete system, or the state of
individual objects. In the former case, observers are created
with the system and remain during its whole life. In the latter
case, observers are created with the objects they monitor, and
destroyed with them.

Figure 4. Observers Metamodel

Observers, as any other objects, have a state and a well-
defined behavior. The attributes of the observers capture their
state, and are used to store the variables that we want to
monitor. We have defined an Observers metamodel, which is
shown in Fig. 4. There are six different observers which in-
herit from a general Observer class. The ThroughPutOb ob-
server stores in its attributes the throughput and the number
of produced pieces. The MTBFOb observer stores the mean
time between failures and the number of lost pieces. Then we



Figure 5. Creation of the initial configuration of the system with Observers

have the TimeBusyOb and TimeStampOb observers, which
are associated to machines and parts, respectively. The for-
mer stores the time the associated machine is busy and idle.
The latter stores the time its associated part appears in the
system. One MTBOb observer stores the mean time that all
the machines in the system have been working and waiting,
and also stores the number of machines in the system. Finally,
the MCTOb observer computes the mean cycle time of every
produced piece, and also stores the addition of all the cycle
times of every piece.

Note that TimeBusyOb and TimeStampOb observers have
a reference to an EObject, which is the interface implemented
by every model object in Eclipse. In this way, any of these two
observers can be associated to any of the elements of another
metamodel.

3.3. Observers’ behavior
The idea for simulating the system with observers is to

combine the two metamodels (Figs. 1 and 4) to be able to
use the observers in our production line language. In fact,
since e-Motions allows users to merge several metamodels
in the definition of a DSVL behavior, we can define the Ob-
servers metamodel in a non-intrusive way, i.e., we do not need
to modify the system metamodel to add observers in their
rules. Furthermore, this approach also enables the reuse of
observers across different DSVLs.

So firstly, we modify our CreateInitialRule rule, which
creates the inital model, by adding observers to our initial
model (Fig 5). There are four observers for the whole system
(ThroughPutOb, MTBFOb, MTBOb and MCTOb), and three
TimeBusyOb observers, each of them associated to a machine
to control the time it is working.

Then, the behavior of the observers is specified using rules,
too. Hence, not only the model of the system is enriched with
observers, but also the rules are. Consequently, hereafter these

rules will not only describe how the system behaves, but also
how the observers monitor the system.

It has to be taken into account that, with our e-Motions
tool [11], we are able to specify the duration of in-place rules
with any OCL expression. In particular, statistical distribu-
tions can be used to specify rule durations.

Figure 6. GenHandle Rule

For example, Fig. 6 shows the atomic rule GenHan-
dle, which creates handles following an Exponential dis-
tribution with parameter λ = 1/3, i.e., the average time
between two produced parts is 3 time units. (Exp(λ) =
− ln(random(0,1))/λ). For this rule to be applied, the LHS
pattern indicates that the system has to have a HandleGen
generator which has to be, in turn, connected to a Conveyor.
Note that this rule is only applied if the attribute counter of the
GenHandle is bigger than 0. In the RHS pattern a new Han-
dle is generated, and it acquires the position of the Conveyor
connected to the HandleGen machine. The counter value of
the GenHandle is decreased in 1 unit, which models that a
new handle has been created. A TimeStampOb observer has
been created and it is associated to the Handle, storing in its



Figure 7. Assemble Rule

Figure 8. Overflow Rule

ts attribute the time at which the Handle has appeared in the
system. Finally, the tBusy attribute of the TimeBusyOb is in-
creased in t = Exp(1/3) times unit, as the HandleGen spends
this time in producing a new Handle. Analogously, a Gen-
Head rule (not shown here for space reasons) creates a new
Head according to an exponential distribution with parame-
ter λ = 1/5 (we suppose that it takes more time to generate a
head).

The Assemble rule is shown in Fig. 7. This rule models
the behavior of generating a Hammer from one Head and one
Handle. We can see in the LHS pattern that the Tray which is
connected to the Assembler has to contain a Head and a Han-
dle. In the RHS pattern we can see how the Head, the Han-
dle and their associated observers have all disappeared and a
new Hammer has been created in the position of the Conveyor
connected to the assembler. It has a TimeStampOb observer
associated whose ts attribute is the lower value between the
time stamp of the Head and the Handle. The time spent by
this rule depends on the speed attribute of the Assembler. So
we can see how the TimeBusyOb observer associated to the
Assembler has increased its tBusy value according to the As-
sembler’s speed, since it has been working that time. (For
illustration purposes this rule takes a fixed amount of time,
instead of following a statistical distribution.)

The Overflow rule (Fig. 8) models the behavior of the sys-

tem when a part is lost. The LHS pattern indicates that this
rule is triggered when a part is placed in a Tray that contains
more parts than its capacity allows. The MTBFOb observer is
present because it will be modified in the RHS pattern. In this
pattern the number of lost pieces of the observer is increased
and the Part is not in the Tray anymore. Nevertheless, the Part
does not disappear from the system, so it gets associated to
the Plant floor.

Figure 9. Collect Rule

Fig. 9 shows the Collect rule. This rule models the behav-
ior of the system when the User finally takes an assembled
Hammer. The User acquires the position of the Hammer and
gets associated to it. We see as well the presence of three
observers. The produced attribute of the ThroughPutOb ob-
server is increased in one unit, since a new Hammer has been
successfully produced and collected by the User. The mean
cycle time of every produced Hammer has to be updated ev-
ery time a new one is produced. This is why the two attributes
of the MCTOb observer are updated by this rule. The first one,
ct, is increased with the cycle time of the new Hammer, which
is Clock.time− ts.ts (here, ts.ts is the time stamp of the Ham-
mer). Then, the mct attribute divides the ct value by the total
number of produced Hammers. Note that every attribute that
appears in the RHS pattern refers to its LHS pattern value.
The time this rule spends is the Manhattan distance between



the Hammer and the User. There is also a NAC in this rule,
which forbids users collect more than one hammer at a time.
This is expressed by an action execution that represents the
action (Collect) being executed by the same user (u).

In two previous rules (Fig. 6 and Fig. 7) we showed how
TimeBusyOb observers update their tBusy attributes. Now we
show with an ongoing rule how the tIdle attribute of the Time-
BusyOb observer associated to the Assembler is updated. This
rule is shown in Fig. 10. It is executed as long as the As-
sembler is not assembling a Hammer, as it is specified in the
NAC1. In the LHS we see the Assembler and its associated
observer. In the RHS pattern, the tIdle attribute is updated by
adding its previous tIdle value to the amount of time that the
Assembler is not working (which is the duration of the rule).
Since this is an ongoing rule and the LHS pattern is always
present, it is executing whenever the Assembler is not work-
ing, so the amount of time this rule is executing is the amount
of time that no Hammer is being assembled by this machine.

Figure 10. UpdatetIdle Rule

Another ongoing rule is used to keep the state of the
ThroughPutOb, MTBFOb and MTBOb observers updated
(Fig. 11). The Clock is present in the rule because we need to
know the amount of time that the system has been working.
Thus, the mtbf attribute of the MTBFOb observer is obtained
by dividing this value by the number of lost parts, which is
also stored by this observer. The thp attribute of the Through-
PutOb observer is calculated by diving the number of pro-
duced hammers, stored by this observer, by the amount of
time the system has been working. Regarding the MTBOb, it
keeps the mean time that all the machines of the system have
been working and waiting. To obtain those values, we use
two OCL expressions which collect all the instances of Time-
BusyOb observers (which are associated to machines) present
in the system and calculate the addition of their tBusy and tI-
dle values, respectively. Then, the obtained values are divided
by the number of machines of the system. This way we keep
the state of these three observers of the whole system updated
all the time (note that the LHS pattern is always present in the
model).

Figure 11. Update Observers Rule

4. ANALYSIS OF THE SYSTEM
The kind of rules described in the previous section allow

users to model the behavior of their systems. We have de-
veloped an Eclipse environment called e-Motions [11] that
supports the specification of such kind of models and rules.

Once the specifications are written, our environment sup-
ports their translation (using ATL model transformations) into
the corresponding formal specifications in Maude [2]. The
goal of such formal specifications is to provide formal se-
mantics to the visual specifications of the system. In addition,
since the Maude rewriting logic specifications are executable,
they can be used as a prototype of the system, which allows
us to simulate and analyze it. Maude offers tool support for
interesting possibilities such as model simulation, reachabil-
ity analysis and model checking of this kind of specifica-
tions [13].

Simulation. Maude also offers different possibilities for re-
alizing the simulation, including step-by-step execution, sev-
eral execution strategies, etc. In particular, Maude provides
two different rewrite commands, namely rewrite and frewrite,
which implement two different execution strategies, a top-
down rule-fair strategy, and a depth-first position-fair strat-
egy, respectively [2]. The result of the process is the final con-
figuration of objects reached after the rewriting steps, which
is nothing but a model. As an example, Fig. 12 shows the re-
sulting model after simulating the system for 16 time units. It
contains the current state of the objects in the system.

Reachability analysis. Executing the system using the
rewrite and frewrite commands means exploring just one pos-
sible behavior of the system. However, a rewrite system do
not need to be Church-Rosser and terminating,1 and there

1For membership equational logic specifications, being Church-Rosser
and terminating means not only confluence—a unique normal form will be
reached—but also a sort decreasingness property, namely that the normal
form will have the least possible sort among those of all other equivalent



Figure 12. Resulting model of the simulation after 16 time units.

might be many different execution paths. Although these
commands are enough in many practical situations where an
execution path is sufficient for testing executability, the user
might be interested in exploring all possible execution paths
from the starting model, a subset of these, or a specific one.

Maude search command allows us to explore (following
a breadthfirst strategy up to a specified bound) the reachable
state space in different ways. For example, we could look for
certain states of special interest, such as deadlock states—
i.e., states in which no further rewrite may take place. Maude
allows us to specify a model of the system and search for
final configurations that contain it. Interestingly, even with
this small Production example we could find some deadlock
states. One of these final models has tray t1 full of items of the
same type, not allowing the assembler machine to proceed. It
happens when a generator works much faster than the other
one. When it happens, both generators keep generating pieces
until the have generated 10, and all the pieces produced after
the overload will overflow.Other possibilities would include
searching for any state (given by a model) in the execution
tree, let it be final or not.

Currently the formal analysis of the specifications needs
to be done in Maude, although we are working on the inte-
gration of parts of the Maude toolkit within the e-Motions
environment. This would allow system modelers to be able
to conduct different kinds of analysis to the system without
leaving the e-Motions tool, and being unaware of the formal
representation of their specifications in Maude.

Self-adaptive systems. Apart from computing the values of
the properties that we want to simulate and analyze in the
system, observers can be very useful for defining alternative
behaviors of the system, depending on specific thresholds lev-
els. For instance, the system can self-adapt under certain con-
ditions, since we are able to search, as discussed above, for

terms.

states of the system in which some attributes of the observers
take certain values, or go above or below some limits.

As an example, consider the speed of assemblers, which
depends on its speed attribute (Fig. 7). It would be easy to
define a rule that toggles between two speeds when needed by
changing the value of the attribute. This way Fig. 13 shows a
rule, Self-adapt, which changes the assembler’s speed when
the mean cycle time of the pieces of the system is lower than a
threshold value, 10 in this case. After this rule is executed, the
Assembler only spends one time unit in assembling hammers.
The rule that reverts the speed to normal is analogous to that
rule. It is not shown here for space reasons.

Figure 13. Self-Adapt Rule

5. RELATED WORK
As mentioned in the introduction, the usual approach to

specifying the properties of the system that we want to
analyze through simulation consists of enriching the sys-
tem models with annotations. Although this might (partially)
work for UML models, the situation is different when the
models of the system are specified using ad-hoc domain spe-
cific visual languages. In these cases the annotations are nor-
mally done using languages which are completely alien to the
system designers, because such languages are normally influ-
enced by the analysis tools that need to be used, and written
in these tools’ languages. In addition, when several properties
want to be analyzed, the annotated models become cluttered



with a plethora of different annotations and marks (see, e.g.,
many of the diagrams shown in the MARTE specification).

Alternatively, other analysis tools (such as ARENA [1]) al-
low users to specify the models to simulate using visual nota-
tions, but just within the tools’ environment. In other words,
these tools cannot take as input models those produced by
different editors, nor to export their models so that they can
be analyzed by other tools. In our approach we separate the
visual specification of the system from the tool(s) that will be
finally used to simulate or analyze them.

Observers are not a new concept. They have been defined
in different proposals for monitoring the execution of systems
and to reason about some of their properties. In fact, the OMG
defines different kinds of observers in the MARTE specifica-
tion [10]. Among them, TimedObservers are conceptual enti-
ties that define requirements and predictions for measures de-
fined on an interval between a pair of user-defined observed
events. They must be extended to define the measure that they
collect (e.g., latency or jitter), and aim at providing a powerful
mechanism to annotate and compare timing constraints over
UML models against timing predictions provided by analy-
sis tools. In this sense they are similar to our observers. The
advantage of incorporating them into DSVLs using our ap-
proach is that we can also reason about their behavior, and
not only use them to describe requirements and constraints
on models. In addition, we can use our observers to dynam-
ically change the system behavior, in contrast with the more
“static” nature of MARTE observers.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed the use of special objects

(observers) that can be added to the graphical specification
of a system for describing and monitoring some of its non-
functional properties, and shown its application to simulation.
and when The example shown in this paper is rather simple,
but it shows the essence of what we can achieve with the in-
tegration of observers.

Observers extend the global state of the system with the
variables that the designer wants to analyze when running the
simulations. Another advantage of our proposal is that it can
serve to monitor not only the states of the objects of the sys-
tem, but also their actions. The fact that action executions are
first-class citizens of the e-Motions visual language enables
their monitorization by our observers.

In a previous work [14] we proposed the use of observers
for specifying and monitoring QoS properties. In this work
we have shown how it is possible to use them to monitor the
system parameters that we are interested in when simulating
the specifications.

As part of our future work we want to extend e-Motions
with direct connection to Maude’s reachability analysis tools,
so that the search facilities previously described can be made

available to users from the e-Motions environment. Another
line of future work is to study in more detail the expressive-
ness of this approach, investigating which kinds of properties
can be analyzed and simulated using observers, and which
ones cannot.

Acknowledgements. This work has been supported by
Spanish Research Projects TIN2008-03107 and P07-TIC-
03184. The authors would like to thank the referees for their
helpful comments and suggestions.

REFERENCES
[1] Arena simulation software. Rockwell automation, 2010.

http://www.arenasimulation.com/.
[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,

J. Meseguer, and C. Talcott. All About Maude – A High-
Performance Logical Framework. Number 4350 in LNCS.
Springer, Heidelberg, Germany, 2007.

[3] K. Czarnecki and S. Helsen. Classification of model transfor-
mation approaches. In OOPSLA’03 Workshop on Generative
Techniques in the Context of MDA, 2003.

[4] J. de Lara and H. Vangheluwe. Translating model simulators
to analysis models. In Proc. of FASE 2008, number 4961 in
LNCS, pages 77–92. Springer, 2008.

[5] S. Efroni, D. Harel, and I. R. Cohen. Reactive animation:
Realistic modeling of complex dynamic systems. Computer,
38(1):38–47, 2005.

[6] C. Ermel and H. Ehrig. Behavior-preserving simulation-
to-animation model and rule transformations. ENTCS,
213(1):55–74, 2008.

[7] C. Ermel, K. Holscher, S. Kuske, and P. Ziemann. Ani-
mated simulation of integrated uml behavioral models based
on graph transformation. In Proc. of VL/HCC ’05, pages 125–
133, Washington, DC, USA, 2005. IEEE Computer Society.

[8] OMG. UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. OMG, Needham
(MA), USA, Sept. 2004. ptc/04-09-01.

[9] OMG. UML Profile for Schedulability, Performance, and Time
Specification. OMG, Needham (MA), USA, Jan. 2005.

[10] OMG. A UML Profile for MARTE: Modeling and Analyzing
Real-Time and Embedded Systems. OMG, Needham (MA),
USA, June 2008.

[11] J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach
for modeling time-dependent behavior of DSLs. In Proc. of
VL/HCC’09, Corvallis, Oregon (US), Sept. 2009.

[12] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. An-
alyzing rule-based behavioral semantics of visual modeling
languages with Maude. In Proc. of SLE’08, number 5452 in
LNCS, pages 54–73, Tolouse, France, 2008. Springer.

[13] J. E. Rivera, A. Vallecillo, and F. Durán. Formal specifica-
tion and analysis of domain specific languages using Maude.
Simulation: Transactions of the Society for Modeling and Sim-
ulation International, 85(11/12):778–792, 2009.

[14] J. Troya, J. E. Rivera, and A. Vallecillo. On the specifica-
tion of non-functional properties of systems by observation.
In Proc. of the 2nd International Workshop of Non-functional
System Properties in Domain Specific Modeling Languages
(NFPinDSML’09), Denver, Colorado (US), Oct. 2009.

http://www.arenasimulation.com/

	Introduction
	Modeling Behavior
	Non-functional properties
	Properties to simulate
	Observers
	Observers' behavior

	Analysis of the system
	Related Work
	Conclusions and Future Work



