Trabajo de Fin de Máster Máster en Sistemas de Energía Eléctrica

Flujo de Cargas Óptimo para Redes de Baja Tensión Desequilibradas

Autor: Adolfo Gastalver Rubio Tutor: Esther Romero Ramos

> Dep. Ingeniería Eléctrica Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2017

Trabajo de Fin de Máster Máster en Sistemas de Ingeniería Eléctrica

Flujo de Cargas Óptimo para Redes de Baja Tensión Desequilibradas

Autor:

Adolfo Gastalver Rubio

Tutor: Esther Romero Ramos Profesora titular

Dep. de Ingeniería Eléctrica Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2017

Proyecto Fin de Carrera: Flujo de Cargas Óptimo para Redes de Baja Tensión Desequilibradas

Autor: Adolfo Gastalver Rubio

Tutor: Esther Romero Ramos

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2017

El Secretario del Tribunal

Flujo de Cargas Óptimo para Redes de Baja Tensión Desequilibradas

Adolfo Gastalver Rubio

Entregado al Departamento de Ingeniería Eléctrica a fecha de Diciembre, 2017, en cumplimiento parcial de los requisitos para el título de Máster en Sistemas de Energía Eléctrica

Abstract

Este documento se centra en el uso de la funcionalidad de control total de la potencia de los inversores, es decir, su capacidad de suministrar corrientes tanto de secuencia negativa como cero para mitigar los desequilibrios, pero desde el punto de vista de las compañias de distribución.

Esta perspectiva implica incluir toda la red de baja tensión en el problema de optimización que intenta equilibrar el sistema al completo. En la literatura que se ha revisado, este problema nunca se ha planteado ni resuelto previamente.

Este punto de vista muestra a la empresa una nueva perspectiva atractiva en relación con los generadores distribuidos, BESS y EV, ya que estas tecnologías no se convierten en una desventaja, sino en una oportunidad para mejorar todo el sistema.

Agradecimientos

A mi familia y amigos.

A mis compañeros de trabajo.

A mis tutores.

Índice general

Índice de figuras			VIII	
Ín	dice	de tab	las	XI
1.	Intr	oducci	ón	3
	1.1.	Motiva	ación	3
	1.2.	Estado	del arte	4
	1.3.	Propós	sito principal y objetivos	6
	1.4.	Estruc	tura del documento	6
2.	Rev	isión d	le la literatura y conceptos de desequilibrio	9
	2.1.	Conce	ptos básicos	9
		2.1.1.	Desequilibrio	9
		2.1.2.	Componentes simétricas	10
		2.1.3.	Índices de desequilibrio	11
	2.2.	Causas	s del desequilibrio de tensiones e intensidades	12
		2.2.1.	(1) Distribución desigual de los consumidores monofásicos $\ .$.	13
		2.2.2.	(2) Variaciones en la demanda	13
		2.2.3.	(3) Propagación des de las redes de alta tensión	14
		2.2.4.	(4) Asimetría en impedancias $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	14
		2.2.5.	(5)Variaciones en la demanda debido a la penetración de tec-	
			nologías bajas en carbono	14
		2.2.6.	(6) Múltiples tecnologías en cada fase $\ldots \ldots \ldots \ldots \ldots$	15

	2.3.	Efectos del desequilibrio de tensiones e intensidades $\ldots \ldots \ldots \ldots$	15
		2.3.1. (a) Utilización ineficiente de la red	16
		2.3.2. (b) Mayores corrientes de neutro	16
		2.3.3. (c) Mayores corrientes a tierra	17
		2.3.4. (d) Mayores pérdidas en transformadores, cables y líneas aéreas	17
		2.3.5. (e) Desplazamiento del neutro	17
		2.3.6. (f) Tensión fase-neutro fuera de los límites legales $\ .\ .\ .$.	18
		2.3.7. (g) Dificultad para mantener la regulación de tensión $\ . \ . \ .$	18
		2.3.8. (h) Propagación del desequilibrio de tensión e intensidad $\ .$.	19
		2.3.9. (i), (j), (k) Efectos en equipos trifásicos	19
3.	Mo	delo de Red de Baja Tensión Desquilibrada	21
	3.1.	Vista general del modelo	22
	3.2.	Modelo del generador de cabecera	24
	3.3.	Modelo de las ramas	26
		3.3.1. Modelo de las líneas	27
		3.3.2. Modelo de los transformadores	29
	3.4.	Modelo de las puestas a tierra	33
	3.5.	Modelo de las cargas o consumidores	34
	3.6.	Modelo de los generadores distribuidos	35
	3.7.	Modelo de los nudos	39
4.	Flu	jo de Cargas Óptimo Desequilibrado	41
	4.1.	Descripción del problema	42
	4.2.	Variables	42
	4.3.	Ecuaciones del sistema	45
	4.4.	Cardinalidad	46
	4.5.	Límites de operación	47
	4.6.	Función objetivo	48
	4.7.	Indicadores clave de rendimiento	49

5.	Imp	lementación y validación	51
	5.1.	Herramientas de simulación y optimización	52
	5.2.	Caso de prueba	53
		5.2.1. Topología	54
		5.2.2. Escenario de demanda	56
		5.2.3. Límites de operación	57
	5.3.	Flujo de cargas	57
	5.4.	Flujo de cargas óptimo	61
	5.5.	Control equilibrado vs desequilibrado	67
6.	Con	aclusiones y Trabajo Futuro	71
A.	Cas	os: Power Flow	73
	A.1.	Caso OpenDSS (PF)	73
	A.2.	Caso $\# 0$ (PF)	78
В.	Cas	os: Optimal Power Flow	87
	B.1.	Caso # 1 (OPF, w/o BESS, Bal, Pmax) $\ldots \ldots \ldots \ldots \ldots$	87
	B.2.	Caso # 2 (OPF, w/o BESS, Bal, Curt)	97
	B.3.	Caso # 3 (OPF, w/o BESS, Unbal, Pmax)	107
	B.4.	Caso # 4 (OPF, w/o BESS, Unbal, Curt) $\ldots \ldots \ldots \ldots \ldots$	117
	B.5.	Caso # 5 (OPF, w BESS, Bal, Pmax) $\ldots \ldots \ldots \ldots \ldots \ldots$	127
	B.6.	Caso # 6 (OPF, w BESS, Bal, Curt) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	137
	B.7.	Caso # 7 (OPF, w BESS, Unbal, Pmax) $\ldots \ldots \ldots \ldots \ldots$	147
	B.8.	Caso $\# 8$ (OPF, w BESS, Unbal, Curt)	157

Índice de figuras

2-1.	Desequilibrios en magnitud y ángulo basado en fasores, [1]	10
2-2.	Desequilibrios en magnitud y ángulo basado en fasores, $[1]$ $\ .$	10
2-3.	Esquema de las causas principales del desequilibrio en tension e inten-	
	sidades en redes de baja tensión, $[1]$	12
2-4.	Esquema de los efectos del desequilibrio en tension e intensidades en	
	redes de baja tensión, $[1]$	16
3-1.	Unifilar de red de baja tensión de ejemplo	22
3-2.	Esquema eléctrico desarrollado de la red de ejemplo	23
3-3.	Modelo eléctrico del generador de cabecera	24
3-4.	Modelo eléctrico de las líneas	28
3-5.	Modelo eléctrico del transformador de distribución Dyn11 con puesta	
	a tierra en el devanado secundario	29
3-6.	Modelo eléctrico de puesta a tierra	33
3-7.	Modelo eléctrico de cargas	34
3-8.	Modelo eléctrico de un generador	36
3-9.	Modelo eléctrico de un nudo	39
5-1.	Unifilar de la red de prueba, $[2]$	53
5-2.	Conexiones y parámetros de líneas del alimentador residencial de la	
	red de prueba, [2] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	54
5-3.	Impedancia de los cable subterraneos para redes europeas de baja ten-	
	sión, [2] \ldots	55

5-4.	Parámetros del transformador de la red de prueba, [2]	55
5-5.	Resistencias de puesta a tierra de la red de prueba, $[2]$	55
5-6.	Parámetros de la red de media tensión equivalente de la red de prueba, [2]	56
5-7.	Comparativa de pérdidas del caso equilibrado vs desequilibrado	68

Índice de tablas

5.1.	Parámetros de las cargas de la red de prueba	56
5.2.	Límites de operación de los generadores distribuidos en la red de prueba	57
5.3.	Límites de operación de tensiones de baja tensión en la red de prueba	57
5.4.	Error relativo porcentual de la magnitud de las tensiones en el flujo de	
	cargas	59
5.5.	Error relativo porcentual del ángulo de las tensiones en el flujo de cargas	60
5.6.	Comparativa de pérdidas del flujo de cargas, flujo de cargas óptimo	
	equilibrado y desequilibrado	61
5.7.	Errores absolutos porcentuales de los factores de desequilibrio en ten-	
	siones para el caso equilibrado	63
5.8.	Errores absolutos porcentuales de los factores de desequilibrio en in-	
	tensidades para el caso equilibrado	64
5.9.	Errores absolutos porcentuales de los factores de desequilibrio en ten-	
	siones para el caso desequilibrado	65
5.10.	Errores absolutos porcentuales de los factores de desequilibrio en in-	
	tensidades para el caso desequilibrado	66
5.11.	Resumen de casos ejecutados	67
5.12.	Datos de pérdidas de los casos de prueba	68
A.1.	Caso OpenDSS (PF): pérdidas	73
A.2	Caso OpenDSS (PF): potencias en cabecera	73
A 3	Caso OpenDSS (PF): potencias generadas	74
· · · · · ·		

A.4. Caso OpenDSS (PF): potencias consumidas	75
A.5. Caso OpenDSS (PF): módulos de las tensiones	76
A.6. Caso OpenDSS (PF): ángulos de las tensiones	77
A.7. Caso # 0 (PF): pérdidas	78
A.8. Caso # 0 (PF): potencias en cabecera	78
A.9. Caso # 0 (PF): potencias generadas	79
A.10.Caso # 0 (PF): potencias consumidas	80
A.11.Caso # 0 (PF): factores de desequilibrio en tensiones $\ldots \ldots \ldots$	81
A.12.Caso # 0 (PF): factores de desequilibrio en intensidades $\ldots \ldots \ldots$	82
A.13.Caso # 0 (PF): módulos de las tensiones	83
A.14.Caso # 0 (PF): ángulos de las tensiones $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	84
A.15.Caso # 0 (PF): módulos de las corrientes	85
A.16.Caso # 0 (PF): ángulos de las corrientes $\ldots \ldots \ldots \ldots \ldots \ldots$	86
B.1. Caso # 1 (OPF, w/o BESS, Bal, Pmax): pérdidas	87
B.2. Caso # 1 (OPF, w/o BESS, Bal, Pmax): potencias en cabecera $\ .$	87
B.3. Caso # 1 (OPF, w/o BESS, Bal, Pmax): potencias generadas \dots	88
B.4. Caso # 1 (OPF, w/o BESS, Bal, Pmax): potencias consumidas \dots	89
B.5. Caso # 1 (OPF, w/o BESS, Bal, Pmax): factores de desequilibrio en	
tensiones	90
B.6. Caso # 1 (OPF, w/o BESS, Bal, Pmax): factores de desequilibrio en	
intensidades	91
B.7. Caso # 1 (OPF, w/o BESS, Bal, Pmax): módulos de las tensiones	92
B.8. Caso # 1 (OPF, w/o BESS, Bal, Pmax): ángulos de las tensiones $% \mathcal{A}$.	93
B.9. Caso # 1 (OPF, w/o BESS, Bal, Pmax): módulos de las corrientes $% f(x)=0$.	94
B.10. Caso # 1 (OPF, w/o BESS, Bal, Pmax): ángulos de las corrientes	95
B.11.Caso # 2 (OPF, w/o BESS, Bal, Curt): pérdidas $\dots \dots \dots \dots \dots$	97
B.12.Caso # 2 (OPF, w/o BESS, Bal, Curt): potencias en cabecera \hdots	97
B.13.Caso # 2 (OPF, w/o BESS, Bal, Curt): potencias generadas \ldots	98

B.14. Caso # 2 (OPF, w/o BESS, Bal, Curt): potencias consumidas $\ . \ . \ .$	99
B.15. Caso $\#$ 2 (OPF, w/o BESS, Bal, Curt): factores de desequilibrio en	
tensiones	100
B.16. Caso $\#$ 2 (OPF, w/o BESS, Bal, Curt): factores de desequilibrio en	
intensidades	101
B.17. Caso # 2 (OPF, w/o BESS, Bal, Curt): módulos de las tensiones $\ . \ .$	102
B.18. Caso # 2 (OPF, w/o BESS, Bal, Curt): ángulos de las tensiones	103
B.19. Caso # 2 (OPF, w/o BESS, Bal, Curt): módulos de las corrientes	104
B.20. Caso # 2 (OPF, w/o BESS, Bal, Curt): ángulos de las corrientes $~$	105
B.21.Caso # 3 (OPF, w/o BESS, Unbal, Pmax): pérdidas $\dots \dots \dots \dots$	107
B.22. Caso # 3 (OPF, w/o BESS, Unbal, Pmax): potencias en cabecera $% \pi^{-1}$.	107
B.23.Caso # 3 (OPF, w/o BESS, Unbal, Pmax): potencias generadas	108
B.24.Caso # 3 (OPF, w/o BESS, Unbal, Pmax): potencias consumidas $\ . \ .$	109
B.25.Caso # 3 (OPF, w/o BESS, Unbal, Pmax): factores de desequilibrio	
en tensiones	110
B.26. Caso $\#$ 3 (OPF, w/o BESS, Unbal, Pmax): factores de des equilibrio	
en intensidades	111
B.27. Caso # 3 (OPF, w/o BESS, Unbal, Pmax): módulos de las tensiones	112
B.28. Caso # 3 (OPF, w/o BESS, Unbal, Pmax): ángulos de las tensiones .	113
B.29. Caso # 3 (OPF, w/o BESS, Unbal, Pmax): módulos de las corrientes	114
B.30. Caso # 3 (OPF, w/o BESS, Unbal, Pmax): ángulos de las corrientes	115
B.31.Caso # 4 (OPF, w/o BESS, Unbal, Curt): pérdidas	117
B.32. Caso # 4 (OPF, w/o BESS, Unbal, Curt): potencias en cabecera	117
B.33.Caso # 4 (OPF, w/o BESS, Unbal, Curt): potencias generadas	118
B.34.Caso # 4 (OPF, w/o BESS, Unbal, Curt): potencias consumidas	119
B.35. Caso $\#$ 4 (OPF, w/o BESS, Unbal, Curt): factores de desequilibrio en	
tensiones	120
B.36. Caso # 4 (OPF, w/o BESS, Unbal, Curt): factores de desequilibrio en	
intensidades	121

B.37. Caso # 4 (OPF, w/o BESS, Unbal, Curt): módulos de las tensiones $% f(x)=0$.	122
B.38. Caso # 4 (OPF, w/o BESS, Unbal, Curt): ángulos de las tensiones $% f(x)=0$.	123
B.39. Caso # 4 (OPF, w/o BESS, Unbal, Curt): módulos de las corrientes .	124
B.40. Caso # 4 (OPF, w/o BESS, Unbal, Curt): ángulos de las corrientes $% f(x)=0$.	125
B.41.Caso # 5 (OPF, w BESS, Bal, Pmax): pérdidas $\ldots \ldots \ldots \ldots$	127
B.42.Caso # 5 (OPF, w BESS, Bal, Pmax): potencias en cabecera	127
B.43.Caso # 5 (OPF, w BESS, Bal, Pmax): potencias generadas	128
B.44.Caso # 5 (OPF, w BESS, Bal, Pmax): potencias consumidas	129
B.45.Caso $\#$ 5 (OPF, w BESS, Bal, Pmax): factores de desequilibrio en	
tensiones	130
B.46. Caso $\#$ 5 (OPF, w BESS, Bal, Pmax): factores de desequilibrio en	
intensidades	131
B.47. Caso # 5 (OPF, w BESS, Bal, Pmax): módulos de las tensiones	132
B.48. Caso # 5 (OPF, w BESS, Bal, Pmax): ángulos de las tensiones $\ . \ . \ .$	133
B.49.Caso # 5 (OPF, w BESS, Bal, Pmax): módulos de las corrientes	134
B.50. Caso # 5 (OPF, w BESS, Bal, Pmax): ángulos de las corrientes $\ . \ . \ .$	135
B.51.Caso # 6 (OPF, w BESS, Bal, Curt): pérdidas	137
B.52. Caso # 6 (OPF, w BESS, Bal, Curt): potencias en cabecera $\hfill\hfill$	137
B.53.Caso # 6 (OPF, w BESS, Bal, Curt): potencias generadas $\ldots \ldots$	138
B.54.Caso # 6 (OPF, w BESS, Bal, Curt): potencias consumidas $\ldots \ldots$	139
B.55. Caso $\#$ 6 (OPF, w BESS, Bal, Curt): factores de desequilibrio en	
tensiones	140
B.56. Caso $\#$ 6 (OPF, w BESS, Bal, Curt): factores de desequilibrio en	
intensidades	141
B.57.Caso # 6 (OPF, w BESS, Bal, Curt): módulos de las tensiones	142
B.58. Caso # 6 (OPF, w BESS, Bal, Curt): ángulos de las tensiones $\ . \ . \ .$	143
B.59.Caso # 6 (OPF, w BESS, Bal, Curt): módulos de las corrientes $\ . \ .$	144
B.60. Caso # 6 (OPF, w BESS, Bal, Curt): ángulos de las corrientes	145
B.61.Caso # 7 (OPF, w BESS, Unbal, Pmax): pérdidas	147

B.62.Caso # 7 (OPF, w BESS, Unbal, Pmax): potencias en cabecera $\ .\ .$.	147
B.63.Caso # 7 (OPF, w BESS, Unbal, Pmax): potencias generadas \ldots	148
B.64.Caso # 7 (OPF, w BESS, Unbal, Pmax): potencias consumidas \dots	149
B.65.Caso # 7 (OPF, w BESS, Unbal, Pmax): factores de desequilibrio en	
tensiones	150
B.66. Caso $\#$ 7 (OPF, w BESS, Unbal, Pmax): factores de desequilibrio en	
intensidades	151
B.67. Caso # 7 (OPF, w BESS, Unbal, Pmax): módulos de las tensiones	152
B.68. Caso $\#$ 7 (OPF, w BESS, Unbal, Pmax): ángulos de las tensiones $% \pi$.	153
B.69.Caso # 7 (OPF, w BESS, Unbal, Pmax): módulos de las corrientes $% f(x)=0$.	154
B.70. Caso $\#$ 7 (OPF, w BESS, Unbal, Pmax): ángulos de las corrientes	155
B.71.Caso # 8 (OPF, w BESS, Unbal, Curt): pérdidas $\dots \dots \dots \dots \dots$	157
B.72.Caso # 8 (OPF, w BESS, Unbal, Curt): potencias en cabecera	157
B.73.Caso # 8 (OPF, w BESS, Unbal, Curt): potencias generadas	158
B.74.Caso # 8 (OPF, w BESS, Unbal, Curt): potencias consumidas	159
B.75. Caso $\#$ 8 (OPF, w BESS, Unbal, Curt): factores de desequilibrio en	
tensiones	160
B.76. Caso $\#$ 8 (OPF, w BESS, Unbal, Curt): factores de desequilibrio en	
intensidades	161
B.77. Caso # 8 (OPF, w BESS, Unbal, Curt): módulos de las tensiones $\ . \ .$	162
B.78. Caso # 8 (OPF, w BESS, Unbal, Curt): ángulos de las tensiones	163
B.79. Caso $\#$ 8 (OPF, w BESS, Unbal, Curt): módulos de las corrientes	164
B.80. Caso # 8 (OPF, w BESS, Unbal, Curt): ángulos de las corrientes $\ . \ .$	165

Capítulo 1

Introducción

1.1. Motivación

El denominado diseño europeo para planificar redes de distribución de baja tensión consiste en una red trifásica de cuatro hilos que alimenta cargas desde un transformador trifásico de distribución secundaria conectado a un nivel de media tensión. Este es el diseño más utilizado no solo en la mayoría de Europa, sino también en otros muchos países de todo el mundo [3]. Uno de los principales problemas en estos sistemas son los desequilibrios en las tensiones y, más notablemente, en las corrientes; es bien sabido que estos desequilibrios son causados principalmente por la distribución desigual de cargas monofásicas entre las tres fases, así como la diferencia en los patrones de consumo de los clientes [4], [5].

Estos desequilibrios están empeorando debido al despliegue masivo de tecnologías bajas en carbono: generadores fotovoltaicos (PV), vehículos eléctricos (EV), sistemas de almacenamiento de energía (BESS), etc. [6], [7]. Por un lado, los pequeños generadores fotovoltaicos monofásicos pueden aumentar la distribución desigual del consumo entre las tres fases. Por otro lado, las tecnologías bajas en carbono pueden tener una mayor influencia en la variación de la demanda del consumidor, aumentando o disminuyendo la demanda en diferentes momentos del día [1]. Algunas empresas han comenzado a monitorear sus redes de baja tensión, confirmando que los desequilibrios de voltaje y corriente son mayores de lo que se piensa [8], [9].

Los desequilibrios de corriente significativos pueden dar lugar a varios problemas, como la utilización ineficiente de la red, mayores pérdidas y corrientes de neutro y de tierra, deslplazamiento del neutro, voltaje fuera de los límites legales, desequilibrios de tensión, etc. [1].

Este documento se centra en el uso de la funcionalidad de control total de la potencia de los inversores, es decir, su capacidad de suministrar corrientes tanto de secuencia negativa como cero para mitigar los desequilibrios, pero desde el punto de vista de las compañias de distribución. Esta perspectiva implica incluir toda la red de baja tensión en el problema de optimización que intenta equilibrar el sistema al completo. En la literatura que se ha revisado, este problema nunca se ha planteado ni resuelto previamente. Este punto de vista muestra a la empresa una nueva perspectiva atractiva en relación con los generadores distribuidos, BESS y EV, ya que estas tecnologías no se convierten en una desventaja, sino en una oportunidad para mejorar todo el sistema.

1.2. Estado del arte

Los operadores del sistema de distribución han propuesto varias medidas para mitigar estos desequilibrios en el lado de baja tensión, siendo el más popular el intento de equilibrar la carga entre las tres fases al cambiar manualmente la fase de cada consumidor [10], así como asignar correctamente los recursos energéticos distribuidos monofásicos (DER) para que se conecten a la fase más conveniente [11], [12]. Otra solución práctica consiste en utilizar equilibradores estáticos [1], [13], que reducen la corriente de neutro y las caídas de tensión. En la literatura se han propuesto medidas dinámicas más avanzadas, opuestas a las estáticas anteriores, como las mencionadas en [14] y [11], donde se sugiere una automatización de los estados de los conmutadores estáticos controlables para reorganizar la conexión de las cargas monofásicas a cada fase de la red. Recientemente, varios autores también han propuesto utilizar los inversores asociados a los recursos energéticos distribuidos (DER), EVs y BE, [15], [16], [17], [18], [19], [20], siendo esta medida bastante prometedora gracias a la alta flexibilidad de operación de los dispositivos electrónicos de potencia y la continua disminución de sus costes.

El uso de inversores vinculados a tecnologías de baja emisión de carbono como filtros de potencia activa es bien conocido, aunque esta capacidad se ha limitado generalmente a su control de tensión basado en la potencia reactiva [21], [22], [23], [12], [24], [25], [26], [27]. [28] propone un doble control al usar no solo la capacidad de potencia reactiva mencionada previamente, sino también la reducción de potencia activa de los generadores fotovoltaicos (PV) cuando sea necesario. Surge un nuevo nivel de control al agregar el control de activa al de potencia reactiva, es decir, la posibilidad de generar más potencia en una fase que en las otras dos fases de las tecnologías trifásicas bajas en carbono [15], [16], [17], [18], [19], [20].

Esta posibilidad implica olvidar la práctica común de suministrar solo una corriente de secuencia positiva del inversor y avanzar hacia un control más ambicioso donde los convertidores de potencia pueden suministrar corrientes positivas, negativas y cero [16]. Las topologías de convertidores de potencia más apropiadas para ejecutar este control total de potencia se presentan en [15], donde se considera que los inversores de conexión de células de combustible compensan las corrientes de secuencia cero. Los autores de [20] se centran en las estrategias de control de los inversores DG para optimizar el desequilibrio de tensión en el punto de conexión (POC) y en el punto de acoplamiento común (PCC). También se presenta un modo de control local para un inversor DER trifásico asignado en el PCC en [17], buscando compensar los desequilibrios de corriente aguas abajo deel PCC en este caso. Los BESSs se consideran en [18], donde los autores analizan la influencia del control del inversor BESS en el diseño, con objeto de minimizar los desequilibrios de tensión y la potencia máxima de un sistema de baja tensión. El trabajo realizado en [19] muestra las mejoras en el equilibrio de carga mediante el uso de cargadores EV e inversores PV cuya operación se deduce al minimizar la suma de varianzas de carga de cada fase.

1.3. Propósito principal y objetivos

Este documento tiene como propósito principal el uso del control de potencia activa y reactiva de los inversores de los recursos energéticos distribuidos (DER) para mitigar los desequilibrios, desde el punto de vista de las compañias de distribución. Con este punto de vista, se pretende minimizar las pérdidas de la red de baja tensión y, con ello, minimizar los desequilibrios entre las fases.

Para esta investigación, se proponen los siguientes objetivos:

- (a) Modelar de manera adecuada y precisa redes de distribución de baja tensión desequilibradas.
- (b) Diseño y desarrollo de un flujo de cargas óptimo desequilibrado.
- (c) Analizar el comportamiento y cuantificar los beneficios del flujo de cargas desequilibrado utilizando redes propuestas en estándares del sector.

1.4. Estructura del documento

El **capítulo 2** es una revisión de la literatura sobre conceptos básicos en torno al desequilibrio de tensiones e intensidades cubriendo conceptos básicos, causas y efectos.

El **capítulo 3** es el primer capítulo del desarrollo. Se centra en cubrir el objetivo (a), el cual es un prerequisito para el resto de objetivos. En el capítulo se describe el

modelo utilizado para la red de baja tensión desequilibrada, definiendo: nudos, líneas de baja tensión, transformador, generador de cabecera, generadores, cargas y puestas a tierra.

El **capítulo 4** se centra en el objetivo (b), la definición matemática del flujo de cargas óptimo desequilibrado: variables, ecuaciones, límites de operación y función objetivo. Además, se discute sobre la cardinalidad del modelo y los indicadores clave de rendimiento de la optimización.

En el **capítulo 5** se cierran los objetivos (a) y (b), y se completa el objetivo (c), realizando la validación del modelo de baja tensión desarrollado y su optimización en diferentes escenarios, para una red de prueba propuesta.

El **capítulo 6** presenta las conclusiones del trabajo realizado y define posibles líneas de trabajo futuro.

Los **apéndices** muestran los resultados obtenidos en los flujos de carga y flujos de carga óptimos realizados durante el proyecto.

Capítulo 2

Revisión de la literatura y conceptos de desequilibrio

Previo al modelado de una red trifásica desequilibrada, es necesario revisar los conceptos en torno a los desequilibrios, [29], [30], [31] y causas, [1].

En este capítulo se abarca:

- Resumen de los conceptos básicos acerca del desequilibrio en redes trifásicas.
- Resumen de las principales causas del desequilibrio de tensiones e intensidades.

2.1. Conceptos básicos

2.1.1. Desequilibrio

Un sistema trifásico se llama desequilibrado cuando los fasores de tensión y corriente no son de igual magnitud o los ángulos no se diferencian con sus ángulos consecutivos en 120° exactamente. En la figura 2-1 se puede observar el estado ideal con los diferentes tipos de estado desequilibrado.

Figura 2-1: Desequilibrios en magnitud y ángulo basado en fasores, [1]

Donde M_a , M_b y M_c hacen referencia a los fasores de tensión o corriente.

2.1.2. Componentes simétricas

Las componentes simétricas fueron desarrolladas por Fortescue en 1918. Se trata de un método usado para representar cualquier sistema de fasores desequilibrados como tres conjuntos de fasores equilibrados:

- Secuencia directa (positiva) en el orden (a-b-c).
- Secuencia inversa (negativa) en el orden (a-c-b).
- Secuencia homopolar (cero) en la misma dirección

Figura 2-2: Desequilibrios en magnitud y ángulo basado en fasores, [1]

En la figura 2-2 puede observarse estos conjuntos.

La relación entre los fasores desequilibrados y las secuencias equilibradas se expresa matemáticamente en la ecuación 2.1.

$$\begin{bmatrix} M_0 \\ M_1 \\ M_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} M_a \\ M_b \\ M_c \end{bmatrix}$$
(2.1)

donde $a = e^{\frac{2}{3}\pi j} = 1 \angle 120$.

Un grupo de fasores trifásicos equilibrados se traduce en una única secuencia positiva, o negativa; y cualquier desequilibrio se verá reflejado en las secuencias negativa, o positiva, y cero.

2.1.3. Índices de desequilibrio

Existen ratios que miden los desequilibrios usando las componentes simétricas. Estos índices de desequilibrio son ratios de la secuencia negativa o la secuencia cero con respecto a la secuencia positiva. Expresado matemáticamente en las ecuaciones 2.2 y 2.3, respectivamente.

$$UF_2 = \left|\frac{M_2}{M_1}\right| \tag{2.2}$$

$$UF_0 = \left| \frac{M_0}{M_1} \right| \tag{2.3}$$

En este trabajo denotaremos los índices de desequilibrio en tensiones como VUF_2 y VUF_0 ; y los índices de desequilibrio en corriente como IUF_2 y IUF_0 .

2.2. Causas del desequilibrio de tensiones e intensidades

Las principales causas, [1], de desequilibrio de intensidades presentes en las redes de baja tensión se ilustran en la figura 2-3. Esta sección hace una breve presentación de estas causas, así como la estrecha relación con el desequilibrio de tensiones, a través del tranformador de distribución y las impedancias de la red.

Figura 2-3: Esquema de las causas principales del desequilibrio en tension e intensidades en redes de baja tensión, [1]

2.2.1. (1) Distribución desigual de los consumidores monofásicos

Hace décadas, cuando se construyeron los alimentadores de baja tensión actuales, los operadores de la red de distribución habrían intentado conectar un número igual de consumidores en cada una de las fases. Lograr esto, sin embargo, no es una tarea fácil.

Cada consumidor debe estar conectada a dos cables: un cable de fase y el cable neutro. En la práctica, se muestra la tendencia a usar uno de los dos cables de fase más cercanos al cable neutro. Esto significa que el cable de fase diagonalmente opuesto al neutro puede ser el cable menos utilizado.

Además, normalmente, no se mantienen registros de la fase a la que está conectado cada consumidor o el número total de consumidores por fase. Esto significa que la fase elegida para cualquier nuevo consumidor también puede depender de lo que sea más práctico durante la instalación.

2.2.2. (2) Variaciones en la demanda

La demanda de cada consumidor monofásico varía minuto a minuto, por ejemplo, en el caso residencial, varia a medida que se utilizan los electrodomésticos. La influencia de estas variaciones en la demanda agregada por fase es más pronunciada cuando hay menos consumidores (por ejemplo, un alimentador rural de baja tensión). Con más consumidores (por ejemplo, un alimentador urbano de baja tensión), las variaciones de la demanda del consumidor individual tendrán una menor influencia en la demanda agregada por fase [32].

2.2.3. (3) Propagación desde las redes de alta tensión

Los desequilibrios de tensión en la red de alta tensión se propagan a través de los devanados del transformador de distribución a la red de baja tensión. Además, cualquier cambio en las tensiones fase-neutro también afectará a las corrientes de fase en el alimentador de baja tensión.

Se aprecia que, dado que la red de media tensión está diseñada en triángulo, solo estará presente y se propagará, a la baja tensión, el desequilibrio de tensión de secuencia negativa.

2.2.4. (4) Asimetría en impedancias

Como se menciona en los conceptos básicos, el desequilibrio de intensidades está relacionado con el desequilibrio de tensiones a través de las impedancias de la red. Si las impedancias de la red, que incluye la de los cables y el transformador de distribución, son asimétricas, puede producirse un desequilibrio de tensión aunque las corrientes estén perfectamente equilibradas. El desequilibrio de tensión causado por las impedancias asimétricas de la red contribuye a un desequilibrio de tensión de fondo, que rara vez supera el 0.5 % [33].

2.2.5. (5) Variaciones en la demanda debido a la penetración de tecnologías bajas en carbono

Las variaciones en la demanda de los consumidores individuales o grupos de consumidores que comparten tecnologías similares bajas en carbono pueden tener una mayor influencia en la demanda agregada por fase. En comparación con los dispositivos de consumo existentes, muchas tecnologías bajas en carbono tienen:

Mayores intensidades. Los dispositivos monofásicos con valores de corriente

más altos ocuparán una mayor proporción de la corriente total observada en una fase determinada del alimentador de baja tensión. Su influencia será mayor en momentos de demanda mínima, como en los valles de consumo.

• Tiempos de uso más largos. Cuanto mayor sea el tiempo de funcionamiento de un dispositivo, mayores serán las posibilidades de que coincida con otros elementos. La influencia de los dispositivos que tienen una ventana de uso más limitada será mayor. Por ejemplo, la mayoría de los consumidores usarán sus vehículos eléctricos durante el día y los cargarán por la noche. Durante esta ventana de uso, habrá una mayor posibilidad de coincidir con otros usuarios que carguen la batería de sus vehículos. Del mismo modo, la producción de energía a partir de la microgeneración fotovoltaica (PV) se correlaciona con la irradiancia solar y se limita a las horas de sol.

2.2.6. (6) Múltiples tecnologías en cada fase

No se puede predecir la aceptación de diferentes tecnologías bajas en carbono por parte de los consumidores. El uso de diferentes tecnologías bajas en carbono pueden afectar los perfiles de demanda agregados por fase de manera diferente, aumentando o disminuyendo la demanda en diferentes momentos del día. En [32] se utiliza un modelo de demanda que muestra el desequilibrio que puede crearse mediante la combinación de múltiples tecnologías bajas en carbono.

2.3. Efectos del desequilibrio de tensiones e intensidades

Las efectos, [1], de desequilibrio de intensidades en las redes de baja tensión se ilustran en la figura 2-4. Esta sección hace una breve presentación de estos efectos.

Figura 2-4: Esquema de los efectos del desequilibrio en tension e intensidades en redes de baja tensión, [1]

2.3.1. (a) Utilización ineficiente de la red

Debido a que existe un reparto desproporcionado de la demanda total, una fase puede sobrecargarse mientras las otras dos fases permanecen subutilizadas. Esto puede ocasionar que el equipamiento eléctrico se reemplace, aún pudiendo cubrir las necesidades del momento si se gestionase adecuadamente. Por lo tanto, para el operador de la red de distribución, la inversión realizada en la capacidad del transformador o del cable nunca se aprovecha completamente.

2.3.2. (b) Mayores corrientes de neutro

Como el conductor neutro es la ruta de retorno principal, transporta la mayor parte de la corriente desequilibrada, es decir, la suma de fasores de las corrientes de fase. Esto puede sobrecargar potencialmente el conductor del neutro, especialmente si tiene una sección menor que la de los conductores de fase.
2.3.3. (c) Mayores corrientes a tierra

Los desequilibrios en intensidad también dan como resultado corrientes a tierra más altas. Esta corriente depende de las impedancias relativas de las trayectorias de retorno por neutro y por tierra. Afecta a las redes de comunicaciones y también plantea un problema de seguridad [34].

2.3.4. (d) Mayores pérdidas en transformadores, cables y líneas aéreas

Como las pérdidas dependen del cuadrado de las corrientes que pasan por todos los cables, serán más altas que en condiciones ideales donde las corrientes de fase estén perfectamente equilibradas y la corriente neutra sea cero. Esto resulta en:

- un coste adicional para suministrar la misma cantidad de energía (en comparación con las condiciones ideales); y
- reducción de la vida útil de los transformadores de distribución [35] y los cables subterráneos [36] debido al estrés térmico en el aislamiento.

2.3.5. (e) Desplazamiento del neutro

El desplazamiento de la tensión de neutro se debe a las corrientes que fluyen a través del conductor del neutro [37]. Esto puede ocasionar que se reduzca la tensión fase-neutro de una fase, mientras que las de las otras dos fases aumentan o se aumenta la tensión fase-neutro de una fase, mientras que las otras dos disminuyen. Esto puede aumentar el riesgo de que las tensiones percibidas por los consumidores monofásicos estén fuera de los límites legales.

2.3.6. (f) Tensión fase-neutro fuera de los límites legales

Los voltajes fase-neutro inferiores son el resultado de mayores caídas de tensión en las fases más cargadas (y también tensiones fase-neutro mayores en las fases menos cargadas) que si se suministra la misma demanda trifásica total pero equilibrada. Esto puede aumentar el riesgo de que existan tensiones para el consumidor que están fuera de los límites legales.

2.3.7. (g) Dificultad para mantener la regulación de tensión

Adicionalmente, relacionado con (f), existe el aumento de la diferencia entre las tensiones fase-neutro de las fases de más y menos carga. Esto puede aumentar la complejidad de mantener una regulación de tensión adecuada. En las redes actuales de baja tensión, la posición de toma del transformador de distribución se establece para mantener los niveles de tensión adecuados hacia el extremo del alimentador de baja tensión. El ajuste de la posición de la toma, que generalmente se realiza sin carga, aumenta o reduce las tres tensiones fase-neutro simultáneamente. Con ello, existe el riesgo de que las tensiones fase-neutro se puedan mejorar en algunas fases, pero empeoren en otras. Esto puede resultar en:

- un mayor riesgo de que los operadores establezcan incorrectamente la posición de la toma del transformador de distribución, especialmente si el ajuste se basa en lecturas de una única fase en la que se recibieron las quejas de los consumidores;
- posibles reducciones a la carga máxima que el transformador de distribución puede suministrar de manera adecuada.

2.3.8. (h) Propagación del desequilibrio de tensión e intensidad

El desequilibrio de tensión de un alimentador de baja tensión puede verse en otros alimentadores de baja tensión alimentados desde el mismo transformador de distribución. Además, el desequilibrio en intensidad se puede propagar a través del transformador de distribución a la red de media tensión [38]. Esto depende de la configuración del devanado del transformador. En una configuración de devanado de estrella / estrella (puestas a tierra), las corrientes de secuencia negativa y de cero se propagarán mientras que con un triángulo / estrella (puesta a tierra), solo se propaga la corriente de secuencia negativa. El desequilibrio de intensidad que se propaga producirá desequilibrios en las tensiones en la red de media tensión. Otros alimentadores de baja tensión alimentados desde la misma red de media tensión verán estas tensiones desequilibradas.

2.3.9. (i), (j), (k) Efectos en equipos trifásicos

Los flujos de corriente desiguales en el alimentador de baja tensión también producen tensiones de línea desequilibradas. Los efectos sobre un equipo de consumo trifásico, como máquinas de inducción (i), rectificadores AC / DC (j) e inversores (k), son principalmente el resultado de tensiones de línea desequilibradas, ya que la carga generalmente se suministran en triángulo o estrella con neutro aislado. Esto se observa como un desequilibrio de tensiones de secuencia negativa. De hecho, el desequilibrio de tensiones de secuencia negativa se propuso como una definición estándar para el desequilibrio debido a las preocupaciones sobre sus efectos en máquinas de inducción en 1954 [39]. Además, gran parte de la literatura sobre el desequilibrio hace referencia a las máquinas de inducción.

Capítulo 3

Modelo de Red de Baja Tensión Desquilibrada

El primer paso para estudiar la red de baja tensión es diseñar un modelo matemático que incluya todas las variables e interacciones entre ellas dentro del sistema.

Con respecto a otras redes eléctricas, las redes de baja tensión presentan la dificultad de modelar el desequilibrio, esto es, incluir las tres fases y el neutro de manera acoplada. Por lo cual, muchas de las simplificaciones utilizadas comúnmente en redes equilibradas, no pueden asumirse en un modelo matemático para redes de distribución de baja tensión, [1]. En este capítulo se definen:

- El modelo del generador de cabecera (slack) en media tensión.
- El modelo de las ramas (líneas y transformadores).
- El modelo de las resistencias de puesta a tierra.
- El modelo de las cargas o consumidores.
- El modelo de los generadores distribuidos.
- El modelo de los nudos.

3.1. Vista general del modelo

La topología de las redes de baja tensión suele ser radial con varias puestas a tierra a lo largo del alimentador. En la figura 3-1 se proporciona una red general de ejemplo que incluye: un generador representando la red conectado al primer nudo (slack), un conjunto de nudos (buses), un transformador Dyn11 con puesta a tierra en el secundario (trf), una serie de ramas (branch), dos cargas desequilibradas conectadas a nudos (load), un generador distribuido conectado a un nudo (generator) y una puesta a tierra (grounding/earthing).

Figura 3-1: Unifilar de red de baja tensión de ejemplo

Esta red contiene los elementos básicos utilizados en este trabajo. Desde un punto de vista más específico, se puede definir cada uno de los elementos y magnitudes por fase implicados en la red. En la figura 3-2 se muestra el esquema eléctrico desarrollado de la red de ejemplo.

Figura 3-2: Esquema eléctrico desarrollado de la red de ejemplo

Debida a la limitación temporal del trabajo, sólo se modela el transformador Dyn11 con puesta a tierra en el devanado secundario y no se incluye la red de distribución de media tensión.

3.2. Modelo del generador de cabecera

Se define el generador de cabecera como fuentes ideales de tensión línea a línea conectadas en triángulo en el lado de media tensión. Representan las tensiones en el devanado principal del transformador de distribución.

El modelo eléctrico del generador de cabecera puede observarse en la figura 3-3.

Figura 3-3: Modelo eléctrico del generador de cabecera

Las variables contenidas en el modelo son:

- $U_{ab}^{\ slack}, U_{bc}^{\ slack}, U_{ca}^{\ slack}$: tensiones línea a línea del generador de cabecera.
- U_aⁱ, U_bⁱ, U_cⁱ: tensiones fase-tierra del nudo, i, al que se conecta el generador de cabecera.
- $I_a^{slack}, I_b^{slack}, I_c^{slack}$: intensidad por fase que salen del generador de cabecera.
- S_a^{slack} , S_b^{slack} , S_c^{slack} : potencias generadas (o consumidas) en el generador de cabecera.

Con objeto de calcular las potencias generadas por el generador de cabecera, se define la potencia del generador de cabecera por la fase ph como S_{ph}^{slack} . Estas potencias se pueden calcular utilizando la ecuación 3.1

$$S_{ph}^{\ slack} = U_{ph}^{\ i} I_{ph}^{\ slack^*}, \qquad ph \in \{a, b, c\}$$

$$(3.1)$$

La conexión en triángulo del modelo eléctrico desarrollado y la segunda ley de Kirchhoff (KVL), permiten definir varias relaciones entre las tensiones según las ecuaciones 3.2, 3.3, 3.4, y 3.5.

$$U_{ab}^{\ slack} = U_a^{\ i} - U_b^{\ i} \tag{3.2}$$

$$U_{bc}^{\ slack} = U_b^{\ i} - U_c^{\ i} \tag{3.3}$$

$$U_{ca}^{\ slack} = U_c^{\ i} - U_a^{\ i} \tag{3.4}$$

$$U_a^{\ i} + U_b^{\ i} + U_c^{\ i} = 0 \tag{3.5}$$

En el modelo, se considera que las tensiones están equilibradas y con su magnitud a tensión nominal de la red de media tensión, U_{nom}^{MT} . Esta consideración se presenta en las ecuaciones 3.6, 3.7, y 3.8.

$$U_{ab}{}^{slack} = U_{nom}{}^{MT} \angle 0^{\circ} \tag{3.6}$$

$$U_{bc}^{\ slack} = U_{nom}^{\ MT} \angle -120^{\circ} \tag{3.7}$$

$$U_{ca}^{slack} = U_{nom}^{MT} \angle 120^{\circ} \tag{3.8}$$

Nótese que, dada la ecuación 3.5, sólo es necesario definir dos de las tres ecuaciones que definen el valor de las tensiones línea a línea: 3.6, 3.7, y 3.8.

3.3. Modelo de las ramas

Las ramas son aquellos elementos que permiten conectar dos nudos, o buses. En el modelo propuesto, se definen dos tipos de ramas: las líneas y los transformadores. Las líneas representan el conjunto de cuatro cables, uno por fase y el neutro, que forman la red; y los transformadores representan al transformador de distribución que conecta la red de media tensión con la red de baja tensión.

3.3.1. Modelo de las líneas

Las líneas representan las impedancias del cable junto con el retorno a tierra de Carson. Se utilizan las impedancias primitivas y mutuas para representar las fases, el neutro y la tierra.

Esta impedancia se representa como una matriz 5x5 simétrica, tal y como se muestra en la ecuación 3.9.

$$Z_{i,j} = \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} & Z_{an} & Z_{ag} \\ Z_{ba} & Z_{bb} & Z_{bc} & Z_{bn} & Z_{ag} \\ Z_{ca} & Z_{cb} & Z_{cc} & Z_{cn} & Z_{cg} \\ Z_{na} & Z_{nb} & Z_{nc} & Z_{nn} & Z_{ng} \\ Z_{ga} & Z_{gb} & Z_{gc} & Z_{gn} & Z_{gg} \end{bmatrix}$$
(3.9)

Este modelo se puede simplificar utilizando la reducción de Kron. Esta reducción se lleva a cabo en arreglos matriciales en los cuales el respectivo valor nodal de la variable independiente es cero. En este caso, se considera la tensión de tierra de los nudos con valor nulo.

Esta suposición, aplicada a la ley de Ohm, nos permite representar la matriz de impedancias como una matriz 4x4 simétrica, como se muestra en la ecuación 3.10.

$$Z_{i,j} = \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} & Z_{an} \\ Z_{ba} & Z_{bb} & Z_{bc} & Z_{bn} \\ Z_{ca} & Z_{cb} & Z_{cc} & Z_{cn} \\ Z_{na} & Z_{nb} & Z_{nc} & Z_{nn} \end{bmatrix}$$
(3.10)

El resto del documento, asume el modelo 4x4 para las impedancias de las líneas. De forma que el modelo eléctrico que representa una línea del nudo i al nudo j se muestra en la figura 3-4.

Figura 3-4: Modelo eléctrico de las líneas

Las variables contenidas en el modelo son:

- U_a^{i} , U_b^{i} , U_c^{i} , U_n^{i} : tensiones fase-tierra del nudo origen, *i*, de la línea (i, j).
- $U_a^{j}, U_b^{j}, U_c^{j}, U_n^{j}$: tensiones fase-tierra del nudo destino, j, de la línea (i, j).
- $I_a^{i,j}$, $I_b^{i,j}$, $I_c^{i,j}$, $I_n^{i,j}$: intensidad por fase de la línea (i, j) con origen en el nudo *i* y destino en el nudo *j*.
- Z^{i,j}: la matriz de impedancias de la línea (i, j). Es una matriz simétrica de 4x4 con las impedancias entre fases y el neutro.

En el caso de las ramas, se aplica la ley de Ohm, que define una relación directa entre las tensiones y las intensidades a través de su impedancia.

Luego para toda línea (i, j) se definen la ecuación 3.11.

$$\begin{bmatrix} U_a{}^i \\ U_b{}^i \\ U_c{}^i \\ U_n{}^i \end{bmatrix} - \begin{bmatrix} U_a{}^j \\ U_b{}^j \\ U_c{}^j \\ U_n{}^j \end{bmatrix} = Z^{i,j} \begin{bmatrix} I_a{}^{i,j} \\ I_b{}^{i,j} \\ I_c{}^{i,j} \\ I_c{}^{i,j} \\ I_n{}^{i,j} \end{bmatrix}$$
(3.11)

3.3.2. Modelo de los transformadores

El modelo del transformador representa al transformador de distribución que conecta la red de media tensión con la red de baja tensión. Este modelo se puede definir como una matriz, $Y_{bus}{}^{i,j}$, de que relaciona las tensiones y las intensidades de los devanados primario y secundario del transformador.

El modelo eléctrico desarrollado del transformador Dyn11, con puesta a tierra del neutro en el devanado secundario, que representa al transformador de distribución se muestra en la figura 3-5.

Figura 3-5: Modelo eléctrico del transformador de distribución Dyn11 con puesta a tierra en el devanado secundario

Las variables contenidas en el modelo son:

- $U_a^{\ i}, U_b^{\ i}, U_c^{\ i}, U_n^{\ i}$: tensiones fase-tierra del nudo origen, *i*, y del devanado primario del transformador (i, j).
- U_a^{j} , U_b^{j} , U_c^{j} , U_n^{j} : tensiones fase-tierra del nudo destino, j, y del devanado secundario del transformador (i, j).
- $I_a^{p\ i,j}, I_b^{p\ i,j}, I_c^{p\ i,j}$: intensidad por fase del devanado primario del transformador (i, j) con origen en el nudo i y destino en la entrada al transformador.
- $I_a^{s\ i,j}, I_b^{s\ i,j}, I_c^{s\ i,j}, I_n^{s\ i,j}$: intensidad por fase del devanado secundario del transformador (i, j) con origen en la salida del transformador y destino en el nudo j.
- $I_g^{s \ i,j}$: intensidad de la puesta a tierra del devanado secundario del transformador (i, j) con origen en el neutro y destino en tierra.
- Y_{bus}^{i,j}: la matriz de relación de tensiones e intensidades del transformador (i, j).
 Es una matriz simétrica de 6x6.
- $Z_g^{s i,j}$: resistencia de puesta a tierra del devanado secundario.

Debida a la limitación temporal del trabajo realizado, se ha tomado el transformador Dyn11, con puesta a tierra del neutro en el devanado secundario, como transformador en los casos de prueba de este desarrollo. Sin embargo, el mismo proceso se puede repetir para cualquier topología del transformador.

Típicamente, [2], los parámetros del transformador no incluyen la matriz de relación definida, sino que se proporciona una impedancia carasterística del transformador, Z_{tr} , las tensiones nominales en el primario y secundario, U_{nom}^{p} y U_{nom}^{s} , y la potencia nominal del transformador, S_{nom} . Esta impedancia permite calcular la matriz de relación, Y_{bus} , para el transformador Dyn11, como se define en las ecuaciones 3.12, 3.13, y 3.14. Z_{tr} se define en el primario, y a es la relación de transformación monofásica.

$$Y_{bus} = \left[\frac{Y_{pp} \mid Y_{ps}}{Y_{sp} \mid Y_{ss}}\right] = \left[\begin{array}{ccccccccc} 2Y_{tr} & -Y_{tr} & -AY_{tr} & aY_{tr} & 0\\ -Y_{tr} & 2Y_{tr} & -Y_{tr} & 0 & -aY_{tr} & aY_{tr}\\ -Y_{tr} & -Y_{tr} & 2Y_{tr} & aY_{tr} & 0 & -aY_{tr}\\ -aY_{tr} & 0 & aY_{tr} & a^{2}Y_{tr} & 0 & 0\\ aY_{tr} & -aY_{tr} & 0 & 0 & a^{2}Y_{tr} & 0\\ 0 & aY_{tr} & -aY_{tr} & 0 & 0 & a^{2}Y_{tr} \end{array}\right]$$
(3.12)

$$a = \frac{U_{nom}{}^p}{U_{nom}{}^s/\sqrt{3}} \tag{3.13}$$

$$Y_{tr} = Z_{tr}^{-1} (3.14)$$

Esta matriz de relación permite definir la ecuación 3.15.

$$\begin{bmatrix} I_{a}^{p\ i,j} \\ I_{b}^{p\ i,j} \\ \hline I_{c}^{p\ i,j} \\ \hline -I_{a}^{s\ i,j} \\ -I_{b}^{s\ i,j} \\ -I_{c}^{s\ i,j} \end{bmatrix} = Y_{bus}^{i,j} \begin{bmatrix} U_{a}^{i} \\ U_{b}^{i} \\ U_{c}^{i} \\ \hline U_{a}^{j} - U_{n}^{j} \\ U_{b}^{j} - U_{n}^{j} \\ U_{c}^{j} - U_{n}^{j} \end{bmatrix}$$
(3.15)

Dado que el devanado primario está en triángulo, surge el interés de pasar las tensiones fase-tierra a tensiones línea a línea. De esta manera y utilizando la ecuación 3.16, se puede reducir la matriz 6x6 a una matriz 5x5, tal y como se muestra en la ecuación 3.17.

$$U_{ca}{}^{i} = -U_{ab}{}^{i} - U_{bc}{}^{i} \tag{3.16}$$

$$\begin{bmatrix} I_a^{p\ i,j} \\ I_b^{p\ i,j} \\ \hline -I_a^{s\ i,j} \\ -I_b^{s\ i,j} \\ -I_c^{s\ i,j} \end{bmatrix} = \begin{bmatrix} 2Y_{tr} & -Y_{tr} & -aY_{tr} & 0 & aY_{tr} \\ -Y_{tr} & Y_{tr} & aY_{tr} & -aY_{tr} & 0 \\ \hline -aY_{tr} & 0 & a^2Y_{tr} & 0 & 0 \\ 0 & -aY_{tr} & 0 & a^2Y_{tr} & 0 \\ aY_{tr} & aY_{tr} & 0 & 0 & a^2Y_{tr} \end{bmatrix} \begin{bmatrix} U_a b^i \\ U_b c^i \\ \hline U_a^j - U_n^j \\ U_b^j - U_n^j \\ U_c^j - U_n^j \end{bmatrix}$$
(3.17)

En cuanto a la puesta a tierra del devanado secundario, se puede utilizar la ley de Ohm para definir la ecuación 3.18.

$$U_n{}^i = I_g{}^{s\ i,j} Z_g{}^{s\ i,j} \tag{3.18}$$

Por último, se puede utilizar la primera ley de Kirchhoff de las intensidades (KCL) para definir las ecuaciones, 3.19 y 3.20, que relacionan las intensidades en cada uno de los devanados del transformador.

$$\sum_{ph}^{\{a,b,c\}} I_{ph}{}^{p\ i,j} = 0 \tag{3.19}$$

$$\sum_{ph}^{\{a,b,c,n,g\}} I_{ph}{}^{s\ i,j} = 0 \tag{3.20}$$

3.4. Modelo de las puestas a tierra

En cada nudo existe la posibilidad de realizar una puesta a tierra. Esta casuística se representa con resistencias de puesta a tierra, Z_g^i . En la práctica, se suele conectar a tierra al principio y final del alimentador; además, se propone la conexión a tierra cada cierta cantidad de metros, [2].

El modelo de una puesta a tierra en un nudo i se representa en la figura 3-6.

Figura 3-6: Modelo eléctrico de puesta a tierra

El modelo propuesto de puesta a tierra incluye las variables:

- $U_a^{i}, U_b^{i}, U_c^{i}, U_n^{i}$: tensiones fase-tierra del nudo, *i*, al que se encuentra conectado la puesta a tierra E_i .
- $I_g^{E_i}$: intensidad de puesta a tierra E_i con origen en el neutro y destino en tierra.
- $Z_g^{E_i}$: impedancia de puesta a tierra E_i .

Se puede utilizar la ley de Ohm en la puesta a tierra para definir la ecuación 3.21.

$$U_n^{\ i} = I_q^{\ E_i} Z_q^{\ E_i} \tag{3.21}$$

Se puede definir una puesta rígida a tierra utilizando impedancia cero, $Z_g^{E_i} = 0$.

3.5. Modelo de las cargas o consumidores

Las cargas trifásicas están compuestas de tres cargas monofásicas y representan la demanda de potencia de los consumidores en un nudo. El comportamiento de estas cargas puede realizarse con uno o con una combinación de estos tipos: potencia constante, impedancia constante o corriente constante. En el modelo propuesto las cargas se definen como cargas de potencia constante.

El modelo eléctrico de carga en un nudo i se muestra en la figura 3-7.

Figura 3-7: Modelo eléctrico de cargas

Las variables contenidas en el modelo son:

- $U_a^{i}, U_b^{i}, U_c^{i}, U_n^{i}$: tensiones fase-tierra del nudo, *i*, al que se encuentra conectado la carga L_i .
- $I_a^{L_i}, I_b^{L_i}, I_c^{L_i}, I_n^{L_i}$: intensidad por fase y el neutro que salen de la carga L_i .
- $S_a^{L_i}, S_b^{L_i}, S_c^{L_i}$: potencias consumidas por fase por la carga L_i .

En este caso, se puede aplicar la primera ley de Kirchhoff (KCL) y la definición de potencia, para definir las ecuaciones 3.22 y 3.23, asociadas a la carga L_i .

$$\sum_{ph}^{\{a,b,c,n\}} I_{ph}{}^{L_i} = 0 \tag{3.22}$$

$$S_{ph}{}^{L_i} = \left(U_{ph}{}^{L_i} - U_n{}^{L_i} \right) I_{ph}{}^{L_i^*}, \qquad ph \in \{a, b, c\}$$
(3.23)

Las potencias asumidas estarán desequilibradas. En caso de querer utilizar una carga trifásica equilibrada, se define: $S_a{}^{L_i} = S_b{}^{L_i} = S_c{}^{L_i}$.

3.6. Modelo de los generadores distribuidos

La generación distribuida se define, al igual que la carga, con el modelo de potencia constante; por lo que las corrientes de las fases serán positivas cuando se genere potencia y negativa cuando se absorbe. Los generadores pueden ser generación fotovoltaica, generación eólica o, incluso, sistemas de almacenamiento (BESS). Las potencias o intensidades serán uno de los elementos de control que se calcula con el flujo de cargas óptimo; por lo que estas pueden ser desequilibradas.

El modelo eléctrico de un generador en un nudo i se representa en la figura 3-8.

Figura 3-8: Modelo eléctrico de un generador

Las variables contenidas en el modelo son:

- $U_a^i, U_b^i, U_c^i, U_n^i$: tensiones fase-tierra del nudo, *i*, al que se encuentra conectado el generador distribuido G_i .
- $I_a{}^{G_i}$, $I_b{}^{G_i}$, $I_c{}^{G_i}$, $I_n{}^{G_i}$: intensidad por fase y el neutro que salen del generador distribuido G_i .
- S_a^{G_i}, S_b^{G_i}, S_c^{G_i}: potencias generadas (o consumidas) por fase por el generador distribuido G_i.

Al igual que el modelo de las cargas, se puede aplicar la primera ley de Kirchhoff (KCL) y la definición de potencia, para definir las ecuaciones 3.24 y 3.25, asociadas al generador G_i .

$$\sum_{ph}^{\{a,b,c,n\}} I_{ph}{}^{G_i} = 0 \tag{3.24}$$

$$S_{ph}{}^{G_i} = \left(U_{ph}{}^{G_i} - U_n{}^{G_i}\right) I_{ph}{}^{G_i^*}, \qquad ph \in \{a, b, c\}$$
(3.25)

Dada la potencia nominal del generador o sistema de almacenamiento, $S_{nom}{}^{G_i}$, y la capacidad de transporte de cada fase del inversor, $I_{nom}{}^{G_i}$, se pueden definir las inecuaciones 3.26 y 3.27, relativas a los límites del inversor. Esta última permite variar la capacidad de transporte de cada fase del inversor para valorar si el sobrecoste beneficia en el control desequilibrado.

$$\sum_{ph}^{\{a,b,c,n\}} \left| S_{ph}^{G_i} \right| \le S_{nom}^{G_i}$$
(3.26)

$$\left|I_{ph}^{G_i}\right| \le I_{nom}^{G_i}, \qquad ph \in \{a, b, c\}$$

$$(3.27)$$

Las potencias asumidas estarán desequilibradas. En caso de querer utilizar un generador trifásico equilibrado, se define: $S_a{}^{G_i} = S_b{}^{G_i} = S_c{}^{G_i}$.

En el caso de los **generadores distribuidos fotovoltáicos y eólicos**, se suele disponer de una potencia activa máxima, $P_{max}{}^{G_i}$, debida a las circustancias meteorológicas, como la irradiancia o el viento. Teniendo esto en consideración, se define la ecuación 3.28.

$$\sum_{ph}^{\{a,b,c,n\}} P_{ph}{}^{G_i} = P_{max}{}^{G_i}$$
(3.28)

Donde, $P_{ph}^{G_i}$, es la potencia activa por fase del generador G_i , es decir, el valor real de la variable compleja $S_{ph}^{G_i}$. Además, para el caso de los generadores distribuidos fotovoltaicos y eólicos, no se permite absorber potencia activa, por lo que se define la inecuación 3.29.

$$P_{ph}^{G_i} \ge 0, \qquad ph \in \{a, b, c\}$$
 (3.29)

Opcionalmente, se puede añadir la posibilidad de limitar la potencia activa generada (curtailment) sustituyendo la ecuación 3.28 con la inecuación 3.30.

$$\sum_{ph}^{\{a,b,c,n\}} P_{ph}^{G_i} \le P_{max}^{G_i}$$
(3.30)

Además, en [2] se define un factor de potencia al que opera el inversor de cada uno de los **sistemas de almacenamiento**, pf^{G_i} , aplicable a las tres fases. Esta limitación se puede modelar definiendo la ecuación 3.31, y es aplicable también a los inversores de los generadores distribuidos fotovoltáicos y eólicos si se requiere. Por tanto, se trata de una limitación del inversor opcional.

$$\left|S_{ph}^{G_{i}}\right|pf^{G_{i}} = P_{ph}^{G_{i}}, \qquad ph \in \{a, b, c\}$$
(3.31)

El factor de potencia, por definición, puede tomar valores comprendidos entre el cero y el uno. Sin embargo, existe la posibilidad de indicar si el factor de potencia es capacitivo (genera potencia reactiva) o inductivo (absorbe potencia reactiva), dándole el valor positivo o negativo respectivamente. Por ello, para un factor de potencia capacitivo (positivo), se define la ecuación 3.32, y para un factor de potencia inductivo (negativo), se define la ecuación 3.33.

$$Q_{ph}^{G_i} \ge 0, \qquad ph \in \{a, b, c\}$$
 (3.32)

$$Q_{ph}^{G_i} \le 0, \qquad ph \in \{a, b, c\}$$
 (3.33)

Donde, $Q_{ph}^{G_i}$, es la potencia reactiva por fase del generador G_i , es decir, el valor imaginario de la variable compleja $S_{ph}^{G_i}$.

3.7. Modelo de los nudos

Una vez definidos el resto de elementos del modelo, es necesario modelar la conexión entre estos. Un nudo eléctrico es el punto donde varias componentes tienen una conexión común y corresponde a una unión con una impedancia eléctrica cercana a cero.

El modelo eléctrico de un nudo i se representa en la figura 3-9.

Figura 3-9: Modelo eléctrico de un nudo

Las variables contenidas en el modelo son:

• $U_a^{\ i}, U_b^{\ i}, U_c^{\ i}, U_n^{\ i}$: tensiones fase-tierra del nudo *i*.

Sin embargo, el interés de definir el nudo eléctrico reside en la aplicación de la primera ley de Kirchhoff (KCL) para todos los elementos que se encuentran conectados a este. Esto se representa en las ecuaciones 3.34 y 3.35.

$$\sum_{j \in C_{i}}^{j \in C_{i}} \begin{bmatrix} I_{a}^{i,j} \\ I_{b}^{i,j} \\ I_{c}^{i,j} \end{bmatrix} = \begin{bmatrix} I_{a}^{k,i} \\ I_{b}^{k,i} \\ I_{c}^{k,i} \end{bmatrix} + \sum_{L_{i}}^{\{L_{i}\}} \begin{bmatrix} I_{a}^{L_{i}} \\ I_{b}^{L_{i}} \\ I_{c}^{L_{i}} \end{bmatrix} + \sum_{G_{i}}^{\{G_{i}\}} \begin{bmatrix} I_{a}^{G_{i}} \\ I_{b}^{G_{i}} \\ I_{c}^{G_{i}} \end{bmatrix}$$
(3.34)
$$\sum_{j}^{j \in C_{i}} I_{n}^{i,j} = I_{n}^{k,i} + \sum_{L_{i}}^{\{L_{i}\}} I_{n}^{L_{i}} + \sum_{G_{i}}^{\{G_{i}\}} I_{n}^{G_{i}} - \sum_{E_{i}}^{\{E_{i}\}} I_{g}^{E_{i}}$$
(3.35)

Donde C_i es el conjunto de hijos del nudo i, k es el nudo padre, $\{L_i\}$ es el conjunto de cargas conectadas al nudo i, $\{G_i\}$ es el conjunto de generadores distribuido conectados al nudo i, y $\{E_i\}$ es el conjunto de puestas a tierra conectadas en el nudo i.

En el caso del nudo al que se conecta el generador de cabecera, la primera ley de Kirchhoff sólo incluye el generador de cabecera y los transformadores a los que se conecte. De manera que la ecuación se define como 3.36.

$$\sum_{j=C_{i}}^{j\in C_{i}} \begin{bmatrix} I_{a}^{i,j} \\ I_{b}^{i,j} \\ I_{c}^{i,j} \end{bmatrix} = \begin{bmatrix} I_{a}^{slack} \\ I_{b}^{slack} \\ I_{c}^{slack} \end{bmatrix}$$
(3.36)

Capítulo 4

Flujo de Cargas Óptimo Desequilibrado

Una vez descrito el modelo es necesario definir el problema de optimización a resolver. El flujo de cargas óptimo aplicado a redes de baja tensión desequilibradas, permite minimizar las pérdidas de la red de baja tensión mediante el control de potencia activa y reactiva de los inversores de los recursos energéticos distribuidos (DER).

Debida a la minimización de pérdidas, se espera una reducción general de los desequilibrios de la red. En este apartado se define:

- Una breve descripción del problema de optimización.
- Las variables del sistema.
- Las ecuaciones implicadas de nudos, ramas, cargas y generación.
- Los límites de operación.
- La función a optimizar.
- Los índices clave de rendimiento (KPIs).

4.1. Descripción del problema

Dada una red de baja tensión con sus parámetros eléctricos definidos, medidas de tensión en cabecera, medidas de potencia en las cargas y un máximo de potencia generada por los generadores distribuidos; definir qué potencia (o corriente) debe generarse por cada una de las fases de los generadores distribuidos para reducir las pérdidas de potencia en la red.

Con esta definición, se espera también reducir el desequilibrio de tensiones en los nudos y de intensidades en las ramas.

De forma general, se dispone una red de distribución de baja tensión con un escenario de demanda desequilibrada y se pretende reducir pérdidas controlando la potencia por fase de los generadores distribuidos, siguiendo una serie de limitaciones de operación.

4.2. Variables

La topología de la red está definida por nudos y ramas. Cada nudo puede tener una carga trifásica desequilibrada, un generador trifásico desequilibrado y una puesta a tierra. Además se dispone de un generador de cabecera y un transformador de distribución.

Para medir el número de variables en el modelo se definen las siguientes constantes:

- N^{MT}: número de nudos de media tensión de la red. Sólo se considera un único nudo de media tensión, al que está conectado el slack. Por lo que: N^{MT} = 1
- N^{BT} : número de nudos de baja tensión de la red.
- T: número de transformadores de distribución. El devanado primario siempre está conectado al nudo de media tensión.

- B: número de líneas de la red de baja tensión. Siendo una red radial conexa se cumple que: $B = N^{BT} T$.
- L: número de cargas o consumos en la red de baja tensión.
- G: número de generadores distribuidos en la red de baja tensión.
- E: número de nudos con puesta a tierra en la red de baja tensión. No incluye la posible puesta a tierra del transformador de distribución.

De esta manera se puede definir las variables implicadas en el sistema dividiéndolas en tres grupos: variables independientes (parámetros y datos del escenario), variables dependientes y variables de control. Todas las variables son complejas y se tratan con magnitudes en sistema internacional.

Las variables independientes del sistema son los parámetros de las líneas, trafos y puestas a tierra de la red de distribución de baja tensión, y los datos del escenario de demanda:

- $Y_{bus}^{i,j}$: la matriz de relación de cada transformador (i, j). Es una matriz simétrica de 6x6, es decir, 36 variables por cada transformador: $36 \cdot T$ variables.
- $Z_g^{i,j}$: la impedancia de puesta a tierra de cada transformador (i, j). Son un total de T variables.
- Z^{i,j}: la matriz de impedancias de cada rama (i, j). Es una matriz simétrica de 4x4, es decir, 16 variables por cada rama: 16 · B variables.
- Z_q^i : la impedancia de puesta a tierra de cada nudo *i*. Son un total de *E* variables.
- $U_{ph,ph}^{slack}$: las tensiones línea a línea del generador de cabecera. Son $3 \cdot N^{MT}$ variables.
- S_{ph}^{L_i}: potencia demandada por una carga del nudo *i*. Una potencia por fase *a*,
 b y *c*. Son 3 · *L* variables.

Las variables dependientes del sistema son aquellas variables que pueden adoptar diferentes valores según el modelo y las variables independientes introducidas:

- U_i^{ph} : tensiones de las tres fases en el nudo de media tensión. Son $3 \cdot N^{MT}$ variables complejas.
- U_i^{ph} , U_i^n : tensiones en cada nudo de todas las fases y el neutro. Son $4 \cdot N^{BT}$ variables complejas.
- I_{ph}^{slack} : intensidades por fase que salen del generador de cabecera. Son $3 \cdot N^{MT}$ variables complejas.
- $I_{ph}^{p\ i,j}$: intensidades por fase en el devanado primario de cada transformador (i, j). Estas son $3 \cdot T$ variables complejas.
- $I_{ph}{}^{s\ i,j}$, $I_n{}^{s\ i,j}$, $I_g{}^{s\ i,j}$: intensidades por fase, neutro y de puesta a tierra en el devanado secundario de cada transformador (i, j). Estas son $5 \cdot T$ variables complejas.
- $I_{ph}^{i,j}$, $I_n^{i,j}$: intensidad en cada rama de todas las fases y el neutro. Estas son $4 \cdot B$ variables complejas.
- I_g^{i} : intensidad del neutro a tierra en cada puesta a tierra. Son un total de E variables complejas.
- $I_{ph}^{L_i}$, $I_n^{L_i}$: intensidades por fase que salen de cada carga. Son $4 \cdot L$ variables complejas.
- $I_{ph}^{G_i}$, $I_n^{G_i}$: intensidades por fase que salen de cada generador. Son $4 \cdot G$ variables complejas.
- S_{ph}^{slack} : potencias generadas (o consumidas) en cada fase del generador de cabecera. Son $3 \cdot N^{MT}$ variables complejas.

Las variables de control del sistema son aquellas variables que pueden tomar cualquier valor dentro de los límites definidos y que permiten minizar la función objetivo: • $S_{ph}^{G_i}$: potencias generadas (o consumidas) en los generadores por fase. Son $3 \cdot G$ variables complejas.

En total se obtiene: $9 \cdot N^{MT} + 8 \cdot T + 4 \cdot N^{BT} + 4 \cdot B + E + 4 \cdot L + 7 \cdot G$ variables dependientes y de control en el sistema. Es necesario definir las ecuaciones de igualdad suficientes para resolver todas las variables que no sean de control.

4.3. Ecuaciones del sistema

Es necesario definir las ecuaciones que describen cómo las variables del sistema interactúan entre sí. Para ello hay que tener en cuenta cada una de los elementos del modelo implicados: nudos, ramas, puestas a tierra, cargas y generadores.

En un circuito eléctrico las leyes que definen el sistema son: las leyes de Kirchhoff y la ley de Ohm. Estas leyes se utilizan para generar las ecuaciones necesarias para completar el problema de optimización.

En el capítulo anterior, se han definido las ecuaciones para el modelo eléctrico propuesto de red de baja tensión. Se escogen las ecuaciones linealmente independientes:

- En el modelo del generador de cabecera, utilizando la segunda ley de Kirchhoff en el triángulo del generador, se definen las ecuaciones 3.2, 3.3, 3.4, 3.5, 3.6 y 3.7. Son 6 · N^{MT} ecuaciones de igualdad complejas.
- En el modelo de las líneas, utilizando la ley de Ohm, se define la ecuación 3.11.
 Son 4 · B ecuaciones de igualdad complejas.
- En el modelo de los transformadores, utilizando la ley de Ohm y la primera ley de Kirchhoff, se definen las ecuaciones 3.15, 3.18, y 3.20. Son $8 \cdot T$ ecuaciones de igualdad complejas.

- En el modelo de las puestas a tierra, utilizando la ley de Ohm, se define la ecuación 3.21. Son E ecuaciones de igualdad complejas.
- En el modelo de las cargas o consumidores, utilizando la primera ley de Kirchhoff y la definición de potencia, se definen la ecuaciones 3.22 y 3.23. Son $4 \cdot L$ ecuaciones de igualdad complejas.
- En el modelo de los generadores distribuidos, utilizando la primera ley de Kirchhoff y la definición de potencia, se definen la ecuaciones 3.24 y 3.25. Son $4 \cdot G$ ecuaciones de igualdad complejas.
- En el modelo de los nudos, utilizando la primera ley de Kirchhoff, se definen las ecuaciones 3.34 y 3.35 para los nudos de baja tensión y la ecuación 3.36 para el nuedo de media tensión. Son $4 \cdot N^{BT} + 3 \cdot N^{MT}$ ecuaciones de igualdad complejas.

En total, se han definido $9 \cdot N^{MT} + 8 \cdot T + 4 \cdot N^{BT} + 4 \cdot B + E + 4 \cdot L + 4 \cdot G$ ecuaciones de igualdad complejas.

4.4. Cardinalidad

Estudiar la cardinalidad del modelo permite conocer si las ecuaciones y variables del modelo son coherentes con el sistema de opteimización propuesto.

Si restamos el número de ecuaciones al número de variables se obtiene:

|variables| - |equations|

$$= (9 \cdot N^{MT} + 8 \cdot T + 4 \cdot N^{BT} + 4 \cdot B + E + 4 \cdot L + 7 \cdot G) - (9 \cdot N^{MT} + 8 \cdot T + 4 \cdot N^{BT} + 4 \cdot B + E + 4 \cdot L + 4 \cdot G)$$

De manera que se dispone de $3 \cdot G$ variables de control que se utilizarán para la optimización. Estas varaibles corresponden a la potencia generada (o consumida) por cada generador distribuido en cada una de las fases (a, b, c).

4.5. Límites de operación

Se pueden imponer límites de operación con ecuaciones de desigualdad. En el presente problema de optimización son necesarios definir:

- Límites a la potencia del generador distribuidos: se limita la potencia de los generadores distribuidos utilizando las ecuaciones definidas en el modelo según el tipo de generador disponible.
 - En los generadores distribuidos fotovoltaicos y eólicos, se dispone de una potencia activa máxima, $P_{max}{}^{G_i}$. En este caso, distinguimos si el generador distribuido debe generar toda la potencia activa, según la ecuación 3.28, o si podemos limitarla (curtailment), según la inecuación 3.30. En cualquier caso, es necesario evitar la absorción de potencia activa utilizando la inecuación 3.29.
 - En los sistemas de almacenamiento, se define un factor de potencia al que opera el inversor, pf^{G_i} , aplicable a las tres fases. Esta limitación se puede modelar definiendo la ecuación 3.31. Según el factor de potencia, distinguimos si el sistema de almacenamiento es capacitivo o inductivo aplicando las ecuaciones 3.32 o 3.33, respectivamente.
- Límites de tensiones en los nudos de baja tensión: límite impuesto por seguridad y fiabilidad de la red. Se define en las inecuaciones 4.1.

$$U^{min} \le \left| U_p h^i \right| \le U^{max}, \qquad ph \in \{a, b, c\}$$

$$(4.1)$$

Se pueden imponer más límites, como la capacidad máxima de las líneas, pero estos límites son suficientes para comprobar el funcionamiento del flujo de cargas óptimo que se propone.

4.6. Función objetivo

El objetivo marcado es minimizar el efecto de desequilibrio. Para ello, elegimos como función de optimización las pérdidas a lo largo del sistema.

Una de las formas más sencillas de calcular las pérdidas del sistema es a través de balance de potencias, tal y como se define en la ecuación 4.2.

$$P_{losses} = \sum_{ph}^{\{a,b,c\}} \left(P_{ph}^{slack} + \sum_{G_i}^{generators} P_{ph}^{G_i} + \sum_{L_i}^{loads} P_{ph}^{L_i} \right)$$
(4.2)

Donde P_{ph}^{e} es la potencia activa generada o consumida por el elemento e para la fase ph, o la parte real de la variable compleja S_{ph}^{e} . Nótese que las potencias consumidas se suman debido a la dirección de la intensidad tomada en el modelo.

La función de optimización se define en la ecuación 4.3.

$$minimize\left(P_{losses}\right) \tag{4.3}$$

4.7. Indicadores clave de rendimiento

Para medir la reducción del desequilibrio se utilizan los índices de desequilibrio que se mencionan en el capítulo 2.

En cada nudo i se calcula los índices de desequilibrio en tensiones. Tal y como se definen en las ecuaciones 4.4 y 4.5.

$$VUF_2{}^i = \left|\frac{U_2{}^i}{U_1{}^i}\right| \tag{4.4}$$

$$VUF_0{}^i = \left|\frac{U_0{}^i}{U_1{}^i}\right| \tag{4.5}$$

Mientras que para cada línea (i, j) se calcula los índices de desequilibro en corriente. Estos se definen en las ecuaciones 4.6 y 4.7.

$$IUF_{2}{}^{i,j} = \left| \frac{I_{2}{}^{i,j}}{I_{1}{}^{i,j}} \right|$$
(4.6)

$$IUF_{0}^{i,j} = \left| \frac{I_{0}^{i,j}}{I_{1}^{i,j}} \right|$$
(4.7)

Capítulo 5

Implementación y validación

Una vez definido el modelo y el problema de optimización, es necesario poner en práctica esta metodología y crear un escenario de prueba que nos permita validarla.

Como punto de referencia, utilizamos las redes estándares definidas en [2]. En el trabajo, se utiliza la red de baja tensión estándar para redes europeas de baja tensión.

En este apartado se muestra:

- Herramientas de simulación y optimización utilizadas.
- El escenario de prueba adoptado.
- Prueba de funcionamiento como flujo de cargas.
- Prueba de funcionamiento como flujo de cargas óptimo.
- Comparativa del control desequilibrado con respecto al equilibrado.

5.1. Herramientas de simulación y optimización

El problema de optimización se ha implementado utilizando el lenguage de programación Python¹ dentro del framework para la definición de problemas de optimización Pyomo².

Pyomo ofrece un lenguaje de modelado de problemas de optimización abierto parecido al ofrecido por *GAMS*³, pero de código abierto. Sin embargo, a diferencia de *GAMS*, *Pyomo* no ofrece ningún *solver* de optimización, sino que se adapta a los ofrecidos en el mercado.

Dado que el problema de optimización es no lineal, se opta por utilizar un *solver* de punto interior, *Ipopt*⁴. *Ipopt* es un paquete software para resolver problemas de optimización no lineales de gran dimensión.

El punto interior nos permite encontrar soluciones locales al problema planteado. Por ello, y para ampliar el rango de búsqueda, se realizan varias (configurable) optimizaciones variando el punto inicial y se opta por aquella solución con el valor mínimo de la función objetivo.

Una vez implementado y con objeto de realizar una comparativa fiable de los resultados, se utiliza OpenDSS ⁵ como herramienta de simulación de la red de baja tensión desequilibrada. A diferencia de otras herramientas, como DigSilent o PSS/E, OpenDSS trabaja con valores en sistema internacional en vez de en por unidad, parecido al modelo planteado.

En general, se opta por herramientas de código abierto y con buena aceptación en la comunidad de desarrolladores. Esto ha permitido resolver dudas de implementación del punto interior y evitar posibles limitaciones por licencias comerciales.

¹https://www.python.org/

²http://www.pyomo.org/

³https://www.gams.com/

 $^{^{4}} https://projects.coin-or.org/Ipopt$

⁵https://sourceforge.net/projects/electricdss/
5.2. Caso de prueba

El grupo C6.04 de CIGRE ofrece una serie de sistemas de prueba, [2], para la integración de renovables y generación distribuida en redes de media y baja tensión. En este trabajo, se utiliza la configuración de red propuesta para redes europeas de baja tensión.

Se muestra el unifilar de la topología en la figura 5-1.

Figura 5-1: Unifilar de la red de prueba, [2]

La red propuesta, define un escenario residencial de baja tensión de 18 nodos conectados en árbol a través de líneas subterráneas, un transformador que conecta a la red de media tensión Dyn11 con puesta a tierra en el devanado secundario, cinco cargas desequilibradas, dos generadores fotovoltáicos y uno eólico, dos sistemas de alacenamiento, y diez puestas a tierra a lo largo del alimentador.

5.2.1. Topología

Line	Node	Node	Node Conductor to ID		Installation
segment	from	to			
1	R 1	R2	UG1	35	UG 3-ph
2	R2	R3	UG1	35	UG 3-ph
3	R3	R 4	UG1	35	UG 3-ph
4	R4	R5	UG1	35	UG 3-ph
5	R5	R6	UG1	35	UG 3-ph
6	R6	R7	UG1	35	UG 3-ph
7	R 7	R8	UG1	35	UG 3-ph
8	R8	R9	UG1	35	UG 3-ph
9	R9	R10	UG1	35	UG 3-ph
10	R3	R11	UG3	30	UG 3-ph
11	R4	R12	UG3	35	UG 3-ph
12	R12	R13	UG3	35	UG 3-ph
13	R13	R14	UG3	35	UG 3-ph
14	R14	R15	UG3	30	UG 3-ph
15	R6	R16	UG3	30	UG 3-ph
16	R9	R17	UG3	30	UG 3-ph
17	R10	R18	UG3	30	UG 3-ph

Los datos de instalación se definen en la figura 5-2.

Figura 5-2: Conexiones y parámetros de líneas del alimentador residencial de la red de prueba, [2]

Las líneas subterraneas se definen utilizando los tipo de linea UG1, UG2 y UG3 de la red de baja tensión europea propuesta en [2]. En la figura 5-3 se puede ver una tabla con las impedancias de dichos cables.

Conductor ID/		The primitive impedance matrix $[\Omega/km]$				
Installation		А	В	С	Ν	
	Α	0.211 + j0.747	0.049 + j0.673	0.049 + j0.651	0.049 + j0.673	
UC1/2 mb	В	0.049 + j0.673	0.211 + j0.747	0.049 + j0.673	0.049 + j0.651	
001/3-ph	C	0.049 + j0.651	0.049 + j0.673	0.211 + j0.747	0.049 + j0.673	
	Ν	0.049 + j0.673	0.049 + j0.651	0.049 + j0.673	0.211 + j0.747	
	Α	0.314 + j0.762	0.049 + j0.687	0.049 + j0.665	0.049 + j0.687	
UG2/2 nh	В	0.049 + j0.687	0.314 + j0.762	0.049 + j0.687	0.049 + j0.665	
00275-pii	C	0.049 + j0.665	0.049 + j0.687	0.314 + j0.762	0.049 + j0.687	
	Ν	0.049 + j0.687	0.049 + j0.665	0.049 + j0.687	0.314 + j0.762	
	Α	0.871 + j0.797	0.049 + j0.719	0.049 + j0.697	0.049 + j0.719	
UC2/2 nh	B	0.049 + j0.719	0.871 + j0.797	0.049 + j0.719	0.049 + j0.697	
003/3-pi	C	0.049 + j0.697	0.049 + j0.719	0.871 + j0.797	0.049 + j0.719	
	Ν	0.049 + j0.719	0.049 + j0.697	0.049 + j0.719	0.871 + j0.797	

Figura 5-3: Impedancia de los cable subterraneos para redes europeas de baja tensión, [2]

Los parámetros del transformador y las resistencias de puesta a tierra se muestran en las figuras 5-4 y 5-5, respectivamente. En el caso de prueba utilizado, sólo se utiliza el transformador de 500kVA y la resistencia de puesta a tierra de los nudos es de 80Ω

Node	Node	Connection	V_1	V_2	$Z_{ m tr}\dagger$	$S_{\rm rated}$
from	to	Connection	[kV]	[kV]	[Ω]	[kVA]
R0	R1	3-ph Dyn1	20	0.4	0.0032+j0.0128	500
I 0	I1	3-ph Dyn1	20	0.4	0.0107+j0.0427	150
C0	C1	3-ph Dyn1	20	0.4	0.0053+j0.0213	300
		5-ph Dyni	20	0.4	0.00000-j0.0210	500

 \dagger refers to V_2 side

Figura 5-4: Parámetros del transformador de la red de prueba, [2]

Pole grounding Z _{pole}	Transformer grounding Z_{tx}
[Ω]	[Ω]
40	3

Figura 5-5: Resistencias de puesta a tierra de la red de prueba, [2]

Por último, en la figura 5-6 se define la tensión nominal y la potencia de corto circuito de la red de media tensión equivalente.

Nominal system voltage	Short circuit power, S _{SC}	R/X ratio
[kV]	[MVA]	
20 LL	100	1

Figura 5-6: Parámetros de la red de media tensión equivalente de la red de prueba, [2]

5.2.2. Escenario de demanda

Disponemos de cinco cargas distribuidas entre los nodos. A cada carga se le asigna una potencia activa y reactiva consumida por esta en cada fase. En la tabla 5.1 se muestra dicha asignación.

Load <i>i</i>	$S_a \ (kVA)$	$S_b \ (kVA)$	$S_c \ (kVA)$
R11	1.0	2.0	2.7
R15	4.8	6.4	8.0
R16	4.8	6.4	8.0
R17			2.7
R18	1.6	3.2	4.0
Load i	$cos(\varphi_a)$	$cos(\varphi_b)$	$cos(\varphi_c)$
R11	0.85	0.85	0.85
R15	0.85	0.85	0.85
R16	0.85	0.85	0.85
R17	•	•	0.85
R18	0.85	0.85	0.85

Tabla 5.1: Parámetros de las cargas de la red de prueba

5.2.3. Límites de operación

Por último, definimos los límites de operación de los generadores y las tensiones en los nodos, tal y como se muestra en las tablas 5.2 y 5.3. Las capacidades de transporte de los tres inversores monofásicos asociados a un generador distribuido, se suponen mayoradas respecto a la potencia nominal del generador entre tres, en un 20 %.

Generador	Tipo	$S_{nom} (kVA)$	pf	$I_{nom}(A)$	$P_{max} (kW)$
R6	BESS	35	0.85	60.62	•
R10	BESS	25	0.85	43.30	
R15	WIND	10		17.32	5.5
R16	PV	5	•	8.66	4
R18	PV	5		8.66	3

Tabla 5.2: Límites de operación de los generadores distribuidos en la red de prueba

Tabla 5.3: Límites de operación de tensiones de baja tensión en la red de prueba

Nodo	$U_{min} (pu)$	U_{max} (pu)
R*	0.9	1.1

Esta red de validación se somete a pruebas de flujos de cargas para validar el modelo matemático de la red y a flujos de carga óptimo para comprobar si mejoramos el desequilibrio utilizando los generadores de forma equilibrada y desequilibrada.

5.3. Flujo de cargas

Para validar el modelo matemático de la red propuesta, se realiza un flujo de carga con el caso de prueba propuesto, suponiendo la generación equilibrada y con factor de potencia unidad, con la herramienta de simulación *OpenDSS*. Los resultados detallados de este flujo de cargas pueden encontrarse en la sección A.1 de los apéndices.

Una vez obtenido el flujo de cargas con la herramienta comercial, se compara con nuestra implementación limitando los valores de los generadores distribuidos al indicado en el flujo de carga, es decir, generación equilibrada y con factor de potencia unidad. Los sistemas de almacenamiento se mantienen desactivados durante la simulación. Los resultados detallados de este flujo de cargas pueden encontrarse en la sección A.2 de los apéndices.

Para comparar ambos flujos de carga, se calcula el error absoluto porcentual del estado de la red, en concreto, de las magnitudes y ángulos de las tensiones en cada nudo. Este error se calcula utilizando la ecuación 5.1.

$$Error = \left| \frac{M^{software} - M^{proposed}}{M^{software}} \right|$$
(5.1)

Calculando dicho error para las magnitudes y ángulos de las tensiones del flujo de cargas, se obtienen los resultados mostrados en las tablas 5.4 y 5.5, respectivamente.

Como se puede observar el máximo error obtenido en la comparación de magnitudes y ángulos de los flujos de carga son, 0,3920% y 0,3257%, respectivamente. Con errores menores del 0,4% se puede decir que ambos modelos son similares, validando así el modelo propuesto.

Tabla 5.4: Error relativo porcentual de la magnitud de las tensiones en el flujo de cargas

Nodo	U_a (%)	$U_b (\%)$	$U_c (\%)$	U_n (%)
R0	0.0000%	0.0000%	0.0000%	
R1	0.1281%	0.1964%	0.2932%	0.2777%
R2	0.1295%	0.1976%	0.2966%	0.3920%
R3	0.1309%	0.1987%	0.2956%	0.1647%
R4	0.1304%	0.1992%	0.2997%	0.2186%
R5	0.1279%	0.1982%	0.3002%	0.2507%
R6	0.1297%	0.2016%	0.3007%	0.2671%
R7	0.1310%	0.1999%	0.3016%	0.2893%
R8	0.1279%	0.2024%	0.2982%	0.3096%
R9	0.1291%	0.2008%	0.2991%	0.3215%
R10	0.1298%	0.2012%	0.3017%	0.3274%
R11	0.1293%	0.2001%	0.2956%	0.1022%
R12	0.1296%	0.2007%	0.3007%	0.2034%
R13	0.1290%	0.2026%	0.3021%	0.1865%
R14	0.1286%	0.2047%	0.3040%	0.1842%
R15	0.1315%	0.2035%	0.3053%	0.1788%
R16	0.1304 %	0.1999%	0.2986%	0.2522%
R17	0.1302 %	0.1990%	0.3016%	0.3350%
R18	0.1317 %	0.2014%	0.3005%	0.3461%

Nodo	U_a (%)	U_b (%)	U_c (%)	U_n (%)
R0	0.0000%	0.0000%	0.0000%	
R1	0.0333%	0.0238%	0.1816%	0.2243%
R2	0.0746%	0.0416%	0.2244%	0.0823%
R3	0.1160%	0.0595%	0.2674%	0.2383%
R4	0.0105%	0.0207%	0.1405%	0.2128%
R5	0.0124%	0.0310%	0.1660%	0.1776%
R6	0.0353%	0.0413%	0.1915%	0.2332%
R7	0.0437%	0.0459%	0.2042%	0.3084%
R8	0.0521%	0.0505%	0.2170%	0.2899%
R9	0.0604%	0.0551%	0.2299%	0.3257%
R10	0.0685%	0.0586%	0.2390%	0.2656%
R11	0.1358%	0.0730%	0.1533%	0.2662%
R12	0.1117%	0.0179%	0.1682%	0.2408%
R13	0.0677%	0.0710%	0.1969%	0.1285%
R14	0.0238%	0.0688%	0.2268%	0.1778%
R15	0.1298%	0.0591%	0.2295%	0.1403%
R16	0.1378 %	0.0307%	0.1894%	0.2059%
R17	0.0606 %	0.0561%	0.2852%	0.2106%
R18	0.1054 %	0.0260%	0.1571%	0.2605%

Tabla 5.5: Error relativo porcentual del ángulo de las tensiones en el flujo de cargas

5.4. Flujo de cargas óptimo

Para finalizar la validación, se procede a realizar dos casos de flujos de cargas óptimos, uno equilibrado y otro desequilibrado. Estos casos nos permiten valorar si se consigue mejorar el sistema controlando la potencia de los generadores distribuidos.

Para estos casos, y con objeto de comparación con el caso sin controlar los inversores (flujo de cargas), se utiliza únicamente la generación fotovoltáica y eólica, ignorando los sistemas de almacenamiento, y sin posibilidad de limitar la potencia activa generada por esta.

Los resultados detallados de los casos equilibrado y desquilbrado se encuentran en las secciones B.1 y B.3 respectivamente.

Las pérdidas obtenidas en cada uno de los tres casos se muestran en la tabla 5.6, junto con el ahorro con respecto al flujo de cargas.

Tabla 5.6: Comparativa de pérdidas del flujo de cargas, flujo de cargas óptimo equilibrado y desequilibrado

Caso	Pérdidas (W)	Ahorro (W)	Ahorro (%)
Flujo de cargas	638.25		
OPF equilibrado	440.55	197.70	30.97
OPF desequilibrado	369.24	269.01	42.15

El flujo de cargas óptimo desequilibrado con respecto al equilibrado tiene un ahorro de 71,31W, que corresponde a una mejora del 16,19%. Un ahorro significativo si se aplica en un entorno de operación masivo.

Para comprobar la mejora en los índices de desequilibrio, se realiza el error relativo porcentual para cada uno de estos índices. Este error se calcula utilizando la ecuación 5.2.

$$Error = \frac{M^{pf} - M^{opf}}{M^{pf}} \tag{5.2}$$

Los cálculos de estos errores pueden observarse en las tablas 5.7 y 5.8 para el caso equilibrado, y 5.9 y 5.10 para el caso desequilibrado.

Es interesante observar cómo el caso desequilibrado mejora significativamente los desequilibrios con respecto al caso equilibrado, especialmente en el caso de la secuencia cero.

En general, los resultados indican una mejora significativa en la operación de la red de baja tensión, tanto en las pérdidas obtenidas como en los factores de desequilibrio en tensiones e intensidades.

Nodo	VUF_2	VUF_0
r1	1.6290%	-0.0989%
r2	6.2428%	-0.1885%
r3	5.8258%	-0.2374%
r4	5.5908%	-0.2949%
r5	5.1262%	-0.3373%
r6	4.7796%	-0.3731%
r7	4.5723%	-0.4170%
r8	4.3958%	-0.4542%
r9	4.2531%	-0.4882%
r10	4.0767%	-0.4589%
r11	3.3098%	-0.3168%
r12	2.9080%	-0.4611%
r13	1.8221%	-0.5403%
r14	1.3548%	-0.5778%
r15	1.1636%	-0.5908%
r16	2.6127%	-0.5197%
r17	3.4404%	-0.8577%
r18	2.5578%	-0.4589%
media	3.6479%	-0.4262 %

Tabla 5.7: Errores absolutos porcentuales de los factores de desequilibrio en tensiones para el caso equilibrado

Tabla 5.8: Errores absolutos porcentuales de los factores de desequilibrio en intensidades para el caso equilibrado

Nodo <i>i</i>	Nodo j	IUF_2	IUF_0
r1	r2	-24.8179%	-26.1971%
r2	r3	-24.8179%	-26.1971%
r3	r4	-28.4436%	-30.0113%
r4	r5	-22.9898%	-23.7710%
r5	r6	-22.9898%	-23.7710%
r6	r7	-31.9989%	-32.7018%
r7	r8	-31.9989%	-32.7018%
r8	r9	-31.9989%	-32.7018%
r9	r10	-39.4957%	-42.3271%
r3	r11	0.0269%	-0.0239%
r4	r12	-31.8002%	-35.5409%
r12	r13	-31.8002%	-35.5409%
r13	r14	-31.8002%	-35.5409%
r14	r15	-31.8002%	-35.5409%
r6	r16	-16.4671%	-17.4362%
r9	r17	0.0000%	0.0000%
r10	r18	-39.4957%	-42.3271%
	media	-26.0405%	-27.7842 %

Nodo	VUF_2	VUF_0
r1	1.2066%	66.0308%
r2	-2.7673%	65.7574%
r3	-4.1535%	65.5771%
r4	-5.1646%	66.4007%
r5	-7.3089%	65.8861%
r6	-8.8852%	65.4475%
r7	-8.7811%	64.8812%
r8	-8.6918%	64.3592%
r9	-8.6039%	63.8757%
r10	-8.7609%	65.2289%
r11	-1.7019%	60.1274%
r12	1.8432%	70.8476%
r13	6.4574%	73.9544%
r14	9.4719%	76.1555%
r15	11.2830%	77.5366%
r16	-11.0134%	63.9423%
r17	-6.5266%	57.2729%
r18	-9.0446%	69.5571%
media	-3.3967%	66.8244%

Tabla 5.9: Errores absolutos porcentuales de los factores de desequilibrio en tensiones para el caso desequilibrado

Nodo <i>i</i>	Nodo j	IUF_2	IUF_0
r1	r2	-19.7229%	47.6704%
r2	r3	-19.7229%	47.6704%
r3	r4	-23.7677%	55.1078%
r4	r5	-25.2352%	46.2437%
r5	r6	-25.2352%	46.2437%
r6	r7	-20.9402%	40.8542%
r7	r8	-20.9402%	40.8542%
r8	r9	-20.9402%	40.8542%
r9	r10	-17.1378%	68.5390%
r3	r11	0.7939%	-0.1208%
r4	r12	-7.7697%	74.2137%
r12	r13	-7.7697%	74.2137%
r13	r14	-7.7697%	74.2137%
r14	r15	-7.7697%	74.2137%
r6	r16	-40.2299%	44.0150%
r9	r17	0.0000%	0.0000%
r10	r18	-17.1378 %	68.5390%
	media	-16.5468%	49.6074%

Tabla 5.10: Errores absolutos porcentuales de los factores de desequilibrio en intensidades para el caso desequilibrado

5.5. Control equilibrado vs desequilibrado

Al observar la mejoría que supuso el caso desequilibrado con respecto al equilibrado en la sección anterior. Surge la necesidad de comprobar esta mejora en otros casos de control. Para ello, se definen ocho casos que permiten revisar el funcionamiento del flujo de cargas óptimo.

Estos casos se definen en la tabla 5.11.

Apéndice	Caso	Tipo	BESS	Curtailment
A.2	# 0	Flujo de cargas	no	no
B.1	# 1	OPF equilibrado	no	no
B.2	# 2	OPF equilibrado	no	si
B.3	# 3	OPF desequilibrado	no	no
B.4	# 4	OPF desequilibrado	no	si
B.5	# 5	OPF equilibrado	si	no
B.6	# 6	OPF equilibrado	si	si
B.7	# 7	OPF desequilibrado	si	no
B.8	# 8	OPF desequilibrado	si	si

Tabla 5.11: Resumen de casos ejecutados

Se puede acceder a los resultados detallados en las secciones correspondientes de los apéndices.

Para comparar los casos equilibrados con los desequilibrados, se puede utilizar las pérdidas obtenidas en cada caso y compararlas con aquel que coincida en BESS y Curtailment, es decir, comparar: $\# 1 \operatorname{con} \# 3$, $\# 2 \operatorname{con} \# 4$, $\# 5 \operatorname{con} \# 7$ y # 6 con # 8.

La figura 5-7 muestra la comparativa de pérdidas en cada uno de los casos.

Figura 5-7: Comparativa de pérdidas del caso equilibrado vs desequilibrado

La tabla 5.12 contiene los valores representados.

Caso	Pérdidas (W)	Ahorro (W)	Ahorro (%)
Caso $\# 0$	638.25		
Caso $\# 1$	440.55	197.70	30.97%
Caso $\# 2$	440.55	197.70	30.97%
Caso $\# 3$	369.25	269.00	42.15%
Caso $\# 4$	369.25	269.00	42.15%
Caso $\# 5$	280.35	357.90	56.08%
Caso $\# 6$	280.35	357.90	56.08%
Caso $\# 7$	155.10	483.15	75.70%
Caso $\# 8$	155.10	483.15	75.70%

Tabla 5.12: Datos de pérdidas de los casos de prueba

Aunque la batería debería estar acoplada en el tiempo para calcular el estado de carga y definir cuáles son sus límites de operación, es intersante ver cómo cuánto más elementos de control estén disponibles, más importante es la mejora del control desequilibrado con respecto al equilibrado.

Capítulo 6

Conclusiones y Trabajo Futuro

Durante el trabajo se ha realizado un proceso de investigación extenso acerca de las redes desequilibradas de baja tensión que ha resultado en la generación de un modelo de red de distribución de baja tensión desequilibrado y la definición del flujo de cargas óptimo, también, desequilibrado para estas redes.

En la fase de validación, se ha observado un buen comportamiento del modelo para la red de prueba y hay resultados interesantes que aún quedan por analizar, especialmente en el comportamiento de los desequilibrios. Este es un primer paso para aplicar esta metodología a redes de mayor dimensión y buscar otros escenarios, tanto de topología como de demanda desequilibrada.

Este trabajo abre nuevas líneas de trabajo futuro:

- Desarrollar índices de rendimiento que permitan analizar el desequilibrio de forma conjunta en una red. Los índices de desequilibrio por nudo y rama siempre mejoran realizando una media global, pero hay algunos valores en los que no se observa mejora o, incluso, se empeora.
- Se pretende ampliar los elementos modelados, en especial, las posibles configuraciones de los transformadores. Esto permitirá probar un mayor número de

topologías.

- Analizar el comportamiento en redes de mayor dimensión. Esto puede ayudar a identificar problemas numéricos que puedan existir en redes con un mayor número de nudos y plantear la posibilidad de pasar a un modelo en por unidad.
- Incluir un modelo más exacto de los generadores y las baterías. Incluyendo posibles pérdidas y comportamientos diferentes al modelo ideal.
- Probar la metodología en redes de baja tensión americanas.
- Acoplar las baterías en el tiempo para conseguir otros objetivos de optimización. Incluyendo el estado de carga de la batería y trabajar en una estrategia que permita operar con una planificación diaria previa.

A título personal, el trabajo me ha ayudado a mejorar mi entendimiento de las redes eléctricas de baja tensión y a poder diferenciar la problemática que conllevan los desequilibrios en esta. Además, me ha permitido aplicar tecnologías que desconocía y que pueden ser útiles para otros desarrollos y para la continuación de este trabajo.

Apéndice A

Casos: Power Flow

A.1. Caso OpenDSS (PF)

Tabla A.1: Caso OpenDSS (PF): pérdidas

Losses	(kW)
0.63	09

Tabla A.2: Caso OpenDSS (PF): potencias en cabecera

Slack <i>i</i>	$P_a \ (kW)$	$P_b \ (kW)$	$P_c \ (kW)$
r0	-9.7	-15.8	-9.9
Slack <i>i</i>	$Q_a \ (kvar)$	$Q_b \ (kvar)$	$Q_c \; (kvar)$
r0	-6.5	-9.7	-13.5
Slack <i>i</i>	$S_a \ (kVA)$	$S_b \ (kVA)$	$S_c \ (kVA)$
r0	11.6	18.6	16.7
Slack <i>i</i>	$cos(\varphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$
r0	0.8298	0.852	0.5939

Generator i	$P_a (kW)$	$P_b (kW)$	$P_c (kW)$
r10	0	0	0
r15	1.8	1.8	1.8
r16	1.3	1.3	1.3
r18	1	1	1
r6	0	0	0
Generator i	$Q_a \; (kvar)$	$Q_b \; (kvar)$	$Q_c \; (kvar)$
r10	0	0	0
r15	0	0	0
r16	0	0	0
r18	0	0	0
r6	0	0	0
Generator i	$S_a \ (kVA)$	$S_b \ (kVA)$	$S_c \; (kVA)$
r10	0	0	0
r15	1.8	1.8	1.8
r16	1.3	1.3	1.3
r18	1	1	1
r6	0	0	0
Generator i	$cos(\varphi_a)$	$cos(arphi_b)$	$cos(\varphi_c)$
r10	1	1	1
r15	1	1	1
r16	1	1	1
r18	1	1	1
11			

Tabla A.3: Caso OpenDSS (PF): potencias generadas

Load $i = P_a(kW)$		$P_b (kW)$	$P_c \ (kW)$
r11 0.8		1.7	2.3
r15	4	5.4	6.8
r16	4.1	5.4	6.8
r17	0	0	2.3
r18	1.4	2.7	3.4
Load i	$Q_a \ (kvar)$	$Q_b (kvar)$	$Q_c \; (kvar)$
r11	0.5	1.1	1.4
r15	2.5	3.3	4.3
r16	2.5	3.3	4.2
r17	0	0	1.4
r18	0.8	1.7	2.1
Load i	$S_a \ (kVA)$	$S_b \ (kVA)$	$S_c \ (kVA)$
r11	1	2	2.7
r15	4.8	6.4	8.1
r16	4.8	6.4	8
r17	0	0	2.7
r18	1.6	3.2	4
Load i	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(\varphi_c)$
r11	0.8495	0.8508	0.8497
r15	0.8469	0.8537	0.8494
r16	0.8483	0.8524	0.8493
r17	1	1	0.8494
r18	0.8479	0.8532	0.8489

Tabla A.4: Caso OpenDSS (PF): potencias consumidas

Nodo	$U_a \ (kV)$	$U_b \ (kV)$	$U_c \ (kV)$	$U_n \ (kV)$
r0	11.547	11.547	11.547	
r1	0.23075	0.23034	0.2296	0.00034823
r2	0.23045	0.22992	0.22901	0.000080332
r3	0.23015	0.2295	0.22843	0.00020455
r4	0.22989	0.22914	0.22791	0.00044243
r5	0.22974	0.22892	0.22757	0.00061795
r6	0.22958	0.22869	0.22723	0.00079408
r7	0.22954	0.22862	0.22707	0.00090935
r8	0.22951	0.22854	0.22692	0.0010251
r9	0.22947	0.22847	0.22676	0.0011412
r10	0.22944	0.2284	0.22667	0.0011906
r11	0.23005	0.2293	0.22817	0.00035252
r12	0.22956	0.22863	0.22722	0.00077152
r13	0.22923	0.22812	0.22653	0.0011095
r14	0.2289	0.22761	0.22584	0.0014503
r15	0.22861	0.22718	0.22525	0.0017433
r16	0.22924	0.22821	0.2266	0.0010728
r17	0.22946	0.22847	0.22649	0.0013663
r18	0.22938	0.22819	0.22639	0.0014142

Tabla A.5: Caso OpenDSS (PF): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30	-150	90	
r1	-60.1	180	59.8	-103.4
r2	-60.1	180	59.8	-123.2
r3	-60.1	-180	59.8	92.1
r4	-60	-179.9	59.9	86
r5	-60	-179.9	59.9	83.6
r6	-60	-179.9	59.9	82.2
r7	-60	-179.9	59.9	80.7
r8	-60	-179.9	59.9	79.6
r9	-60	-179.9	59.9	78.7
r10	-60	-179.9	59.9	79.6
r11	-60.1	-180	59.9	82.3
r12	-60	-179.8	60	76.2
r13	-59.9	-179.8	60.1	72.4
r14	-59.8	-179.7	60.2	70.3
r15	-59.8	-179.6	60.3	69.2
r16	-60	-179.8	60	77.2
r17	-60	-179.9	59.9	69.9
r18	-60	-179.8	60	78.8

Tabla A.6: Caso OpenDSS (PF): ángulos de las tensiones

A.2. Caso # 0 (PF)

Tabla A.7: Caso # 0 (PF): pérdidas

Losses (W) 638.2481546973286

Tabla A.8: Caso #0 (PF): potencias en cabecera

Slack i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	9635.7615943	15810.6121357	9951.8744247
Slack <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r0	6471.0078804	9671.0438473	13418.6032973
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	11606.9739592	18533.8756120	16706.2479035
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r0	0.8301700	0.8530656	0.5956978

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	0.0000000	0.0000000	0.0000000
r15	1833.3333333	1833.3333333	1833.3333333
r16	1333.33333333	1333.3333333	1333.33333333
r18	1000.0000000	1000.0000000	1000.0000000
r6	0.0000000	0.0000000	0.0000000
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	0.0000000	0.0000000	0.0000000
r15	0.0000000	0.0000000	0.0000000
r16	0.0000000	0.0000000	0.0000000
r18	0.0000000	0.0000000	0.0000000
r6	0.0000000	0.0000000	0.0000000
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	0.0000000	0.0000000	0.0000000
r15	1833.3333333	1833.3333333	1833.3333333
r16	1333.33333333	1333.3333333	1333.33333333
r18	1000.0000000	1000.0000000	1000.0000000
r6	0.0000000	0.0000000	0.0000000
Generator i	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	1.0000000	1.0000000	1.0000000
r15	1.0000000	1.0000000	1.0000000
r16	1.0000000	1.0000000	1.0000000
r18	1.0000000	1.0000000	1.0000000
r6	1.0000000	1.0000000	1.0000000

Tabla A.9: Caso # 0 (PF): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
Load <i>i</i> r11	$\frac{S_a (VA)}{997.5000000}$	$ S_b (VA) \\ 2000.7000000 $	$\frac{S_c (VA)}{2701.8000000}$
Load <i>i</i> r11 r15	$ \begin{array}{c} S_a (VA) \\ 997.5000000 \\ 4800.0000000 \end{array} $	$ \begin{array}{c} S_b (VA) \\ \hline 2000.7000000 \\ 6393.6000000 \end{array} $	$ S_c (VA) 2701.8000000 8006.4000000 $
Load <i>i</i> r11 r15 r16	$S_a (VA)$ 997.5000000 4800.0000000 4800.0000000	$S_b (VA)$ 2000.7000000 6393.6000000 6393.6000000	$ S_c (VA) 2701.8000000 8006.4000000 8006.4000000 $
Load <i>i</i> r11 r15 r16 r17	$\begin{array}{c} S_a \; (VA) \\ \\ 997.5000000 \\ \\ 4800.0000000 \\ \\ 4800.0000000 \\ \\ 0.0000000 \end{array}$	$S_b (VA)$ 2000.7000000 6393.6000000 6393.6000000 0.0000000	$S_c (VA)$ 2701.8000000 8006.4000000 2700.0000000
Load <i>i</i> r11 r15 r16 r17 r18	$\begin{array}{c} S_a \; (VA) \\ \\ 997.5000000 \\ \\ 4800.0000000 \\ \\ 4800.0000000 \\ \\ 0.0000000 \\ \\ 1601.6000000 \end{array}$	$\begin{array}{c} S_b \; (VA) \\ \hline 2000.7000000 \\ \hline 6393.6000000 \\ \hline 0.0000000 \\ \hline 3203.2000000 \end{array}$	$S_c (VA)$ 2701.8000000 8006.4000000 2700.0000000 3995.2000000
Load <i>i</i> r11 r15 r16 r17 r18 Load <i>i</i>	$S_a (VA) \\997.5000000 \\4800.0000000 \\4800.0000000 \\0.0000000 \\1601.6000000 \\cos(\varphi_a)$	$\begin{array}{c} S_b \; (VA) \\ \hline 2000.7000000 \\ \hline 6393.6000000 \\ \hline 6393.6000000 \\ \hline 0.0000000 \\ \hline 3203.2000000 \\ \hline cos(\varphi_b) \end{array}$	$S_{c} (VA)$ 2701.8000000 8006.4000000 2700.0000000 3995.2000000 $cos(\varphi_{c})$
Load <i>i</i> r11 r15 r16 r17 r18 Load <i>i</i> r11	$S_a (VA) \\997.5000000 \\4800.0000000 \\0.0000000 \\0.0000000 \\1601.6000000 \\cos(\varphi_a) \\0.8500000 \\$	$S_b (VA) \\ 2000.7000000 \\ 6393.6000000 \\ 6393.6000000 \\ 0.0000000 \\ 3203.2000000 \\ cos(\varphi_b) \\ 0.8500000 \\ \end{cases}$	$S_{c} (VA)$ 2701.8000000 8006.4000000 2700.0000000 3995.2000000 $cos(\varphi_{c})$ 0.8500000
Load <i>i</i> r11 r15 r16 r17 r18 Load <i>i</i> r11 r15	$S_a (VA) \\997.5000000 \\4800.0000000 \\0.0000000 \\1601.6000000 \\1601.6000000 \\cos(\varphi_a) \\0.85000000 \\0.85000000 \\0.85000000 \\0.85000000 \\0.8500000000 \\0.85000000 \\0.85000000000000000 \\0.8500000000000000000000000000000000000$	$S_b (VA)$ 2000.7000000 6393.6000000 6393.6000000 0.0000000 3203.2000000 $cos(\varphi_b)$ 0.8500000 0.8500000	$S_{c} (VA)$ 2701.8000000 8006.4000000 2700.0000000 3995.2000000 $cos(\varphi_{c})$ 0.8500000 0.8500000
Load <i>i</i> r11 r15 r16 r17 r18 Load <i>i</i> r11 r15 r16	$S_a (VA) \\997.5000000 \\4800.0000000 \\4800.0000000 \\0.0000000 \\1601.6000000 \\1601.6000000 \\0.85000000 \\0.8500000 \\0.85000000 \\0.85000000 \\0.85000000 \\0.85000000000 \\0.85000000 \\0.85000000000000000 \\0.8500000000000000000000000000000000000$	$S_b (VA)$ 2000.7000000 6393.6000000 6393.6000000 0.0000000 3203.2000000 $cos(\varphi_b)$ 0.8500000 0.8500000 0.8500000	$S_{c} (VA)$ 2701.8000000 8006.4000000 2700.0000000 3995.2000000 $cos(\varphi_{c})$ 0.8500000 0.8500000 0.8500000
Load <i>i</i> r11 r15 r16 r17 r18 Load <i>i</i> r11 r15 r16 r17	$S_a (VA)$ 997.5000000 4800.0000000 4800.0000000 0.0000000 1601.6000000 cos(φ_a) 0.8500000 0.8500000 0.8500000 -1.0000000	$S_b (VA)$ 2000.7000000 6393.6000000 6393.6000000 0.0000000 3203.2000000 cos(φ_b) 0.8500000 0.8500000 0.8500000 -1.0000000	$S_{c} (VA)$ 2701.8000000 8006.4000000 2700.0000000 3995.2000000 cos(φ_{c}) 0.8500000 0.8500000 0.8500000 0.8500000

Tabla A.10: Caso #0 (PF): potencias consumidas

Nodo	VUF_2	VUF ₀
r0	0.0000000	0.0000000
r1	0.0003315	0.0017195
r2	0.0006071	0.0021225
r3	0.0009149	0.0025271
r4	0.0011966	0.0028825
r5	0.0014065	0.0031430
r6	0.0016173	0.0034041
r7	0.0017606	0.0035733
r8	0.0019041	0.0037429
r9	0.0020479	0.0039126
r10	0.0021071	0.0039878
r11	0.0010635	0.0027465
r12	0.0016059	0.0033613
r13	0.0020581	0.0038494
r14	0.0025317	0.0043444
r15	0.0029478	0.0047731
r16	0.0019558	0.0038100
r17	0.0024561	0.0042088
r18	0.0023340	0.0043143

Tabla A.11: Caso # 0 (PF): factores de desequilibrio en tensiones

Nodo <i>i</i>	Nodo j	IUF_2	IUF_0
r1	r2	0.2612005	0.2546317
r2	r3	0.2612005	0.2546317
r3	r4	0.2610058	0.2539774
r4	r5	0.2981475	0.2921263
r5	r6	0.2981475	0.2921263
r6	r7	0.5039744	0.4985285
r7	r8	0.5039744	0.4985285
r8	r9	0.5039744	0.4985285
r9	r10	0.3366415	0.3277209
r3	r11	0.2641146	0.2608711
r4	r12	0.1992276	0.1907682
r12	r13	0.1992276	0.1907682
r13	r14	0.1992276	0.1907682
r14	r15	0.1992276	0.1907682
r6	r16	0.1824180	0.1761108
r9	r17	1.0000000	1.0000000
r10	r18	0.3366415	0.3277209

Tabla A.12: Caso # 0 (PF): factores de desequilibrio en intensidades

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	231.0456894	230.7924149	230.2731643	0.3472628
r2	230.7483982	230.3742423	229.6892335	0.0800171
r3	230.4511722	229.9561242	229.1053458	0.2042131
r4	230.1897622	229.5964974	228.5930082	0.4414628
r5	230.0337549	229.3738105	228.2531115	0.6164006
r6	229.8777608	229.1511478	227.9132311	0.7919588
r7	229.8406769	229.0769049	227.7549401	0.9067195
r8	229.8035947	229.0026667	227.5966532	1.0219258
r9	229.7663034	228.9287157	227.4382891	1.1375316
r10	229.7378892	228.8594478	227.3538157	1.1867022
r11	230.3474838	229.7588141	228.8443666	0.3521597
r12	229.8575819	229.0889725	227.9032508	0.7699504
r13	229.5257789	228.5820809	227.2144452	1.1074312
r14	229.1943549	228.0758267	226.5266002	1.4476291
r15	228.9105801	227.6424053	225.9377899	1.7401827
r16	229.5388701	228.6661098	227.2766429	1.0700949
r17	229.7587138	228.9246830	227.1730848	1.3617230
r18	229.6821734	228.6495337	227.0703651	1.4093061

Tabla A.13: Caso # 0 (PF): módulos de las tensiones

Nodo	ϕ_a (°)	$\phi_b~(^\circ)$	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0799764	-179.9572076	59.9086042	-103.1680321
r2	-60.0551654	-179.9251095	59.9341908	-123.0986062
r3	-60.0302882	-179.8928913	59.9599019	92.3194473
r4	-60.0062914	-179.8628019	59.9841689	86.1830147
r5	-59.9925554	-179.8442355	59.9994096	83.7485002
r6	-59.9788008	-179.8256329	60.0146957	82.3917064
r7	-59.9737757	-179.8173708	60.0223310	80.9488640
r8	-59.9687489	-179.8091033	60.0299770	79.8307559
r9	-59.9637743	-179.8008489	60.0377068	78.9563634
r10	-59.9589296	-179.7946642	60.0431706	79.8114451
r11	-60.0183566	-179.8686222	59.9918175	82.5190452
r12	-59.9329881	-179.7677511	60.1009072	76.3834792
r13	-59.8594728	-179.6722785	60.2183537	72.4930526
r14	-59.7857448	-179.5763817	60.3365140	70.4249922
r15	-59.7223795	-179.4938453	60.4383665	69.2970884
r16	-59.9173090	-179.7448186	60.1136159	77.3589763
r17	-59.9636579	-179.7990689	60.0708195	70.0472328
r18	-59.9367834	-179.7532841	60.0942470	79.0052703

Tabla A.14: Caso # 0 (PF): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	38.7830454	63.8863995	97.3453987	50.7426308
r2	r3	38.7830454	63.8863995	97.3453987	50.7416322
r3	r4	34.6071636	55.2843112	85.5862942	44.3757915
r4	r5	19.9027009	33.6905756	56.5279899	32.0260136
r5	r6	19.9027009	33.6905756	56.5279899	32.0260136
r6	r7	3.9776294	10.5336039	25.9931277	19.9014406
r7	r8	3.9776294	10.5336039	25.9931277	19.9014406
r8	r9	3.9776294	10.5336039	25.9931277	19.9120108
r9	r10	3.9776294	10.5336039	14.1270655	9.2492089
r3	r11	4.3251637	8.7060492	11.8230808	6.4795822
r4	r12	14.7057476	21.5998827	29.0787310	12.4312937
r12	r13	14.7057476	21.5998827	29.0787310	12.4312937
r13	r14	14.7057476	21.5998827	29.0787310	12.4312937
r14	r15	14.7057476	21.5998827	29.0787310	12.4312937
r6	r16	16.2088997	23.1838458	30.5357498	12.2949796
r9	r17	0.0000000	0.0000000	11.9557862	11.9431073
r10	r18	3.9776294	10.5336039	14.1270655	9.2637573

Tabla A.15: Caso # 0 (PF): módulos de las corrientes

Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-106.1012713	140.1900441	22.5795836	-126.2792956
r2	r3	-106.1012713	140.1900441	22.5795836	-126.2793582
r3	r4	-107.8631484	138.8967812	21.8085595	-127.7388874
r4	r5	-107.4387575	139.5808748	22.7062313	-129.8336906
r5	r6	-107.4387575	139.5808748	22.7062313	-129.8336906
r6	r7	-126.9808730	136.1862484	23.0542384	-134.3399764
r7	r8	-126.9808730	136.1862484	23.0542384	-134.3399764
r8	r9	-126.9808730	136.1862484	23.0542384	-134.3193315
r9	r10	-126.9808730	136.1862484	18.6818915	-111.4545970
r3	r11	-91.8599016	148.4300748	28.1696588	-116.2333755
r4	r12	-108.4375217	137.8297249	20.0633199	-122.3211072
r12	r13	-108.4375217	137.8297249	20.0633199	-122.3211072
r13	r14	-108.4375217	137.8297249	20.0633199	-122.3211072
r14	r15	-108.4375217	137.8297249	20.0633199	-122.3211072
r6	r16	-102.7303069	141.1225106	22.4099957	-122.5024572
r9	r17	-152.1330386	55.5518375	28.2226365	-151.8318180
r10	r18	-126.9808730	136.1862484	18.6818915	-111.4366730

Tabla A.16: Caso # 0 (PF): ángulos de las corrientes

Apéndice B

Casos: Optimal Power Flow

B.1. Caso # 1 (OPF, w/o BESS, Bal, Pmax)

Tabla B.1: Caso # 1 (OPF, w/o BESS, Bal, Pmax): pérdidas

Losses (W) 440.5514467717949

Tabla B.2: Caso # 1 (OPF, w/o BESS, Bal, Pmax): potencias en cabecera

Slack i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	9569.3556952	15679.8605642	9951.3351873
Slack i	$Q_a (var)$	Q_b (var)	$Q_c \ (var)$
r0	-257.9205408	2828.9091650	6577.3467585
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	9572.8308994	15933.0083279	11928.5607846
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r0	-0.9996370	0.9841117	0.8342444

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	0.0000000	0.0000000	0.0000000
r15	1833.33333333	1833.3333333	1833.3333333
r16	1333.33333333	1333.33333333	1333.33333333
r18	1000.0000000	1000.0000000	1000.0000000
r6	0.0000000	0.0000000	0.0000000
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	0.0000000	0.0000000	0.0000000
r15	3547.0353568	3547.0353568	3547.0353568
r16	1488.6965324	1488.6965324	1488.6965324
r18	1735.3214288	1735.3214288	1735.3214288
r6	0.0000000	0.0000000	0.0000000
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	0.0000000	0.0000000	0.0000000
r15	3992.8149135	3992.8149135	3992.8149135
r16	1998.4982220	1998.4982220	1998.4982220
r18	2002.8331087	2002.8331087	2002.8331087
r6	0.0000000	0.0000000	0.0000000
Generator i	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	1.0000000	1.0000000	1.0000000
r15	0.4591581	0.4591581	0.4591581
r16	0.6671676	0.6671676	0.6671676
10			a (aaaaa -
r18	0.4992927	0.4992927	0.4992927

Tabla B.3: Caso # 1 (OPF, w/o BESS, Bal, Pmax): potencias generadas
Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load <i>i</i>	$Q_a \ (var)$	$Q_b \ (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r11	997.5000000	2000.7000000	2701.8000000
r15	4800.0000000	6393.6000000	8006.4000000
r16	4800.0000000	6393.6000000	8006.4000000
r17	0.0000000	0.0000000	2700.0000000
r18	1601.6000000	3203.2000000	3995.2000000
Load <i>i</i>	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$
r11	0.8500000	0.8500000	0.8500000
r15	0.8500000	0.8500000	0.8500000
r16	0.8500000	0.8500000	0.8500000
r17	-1.0000000	-1.0000000	0.8500000
r18	0.8500000	0.8500000	0.8500000

Tabla B.4: Caso # 1 (OPF, w/o BESS, Bal, Pmax): potencias consumidas

Tabla B.5: Caso # 1 (OPF, w/o BESS, Bal, Pmax): factores de desequilibrio en tensiones

	1	
Nodo	VUF_2	VUF_0
r0	0.0000000	0.0000000
r1	0.0003261	0.0017212
r2	0.0005692	0.0021265
r3	0.0008616	0.0025331
r4	0.0011297	0.0028910
r5	0.0013344	0.0031536
r6	0.0015400	0.0034168
r7	0.0016801	0.0035882
r8	0.0018204	0.0037599
r9	0.0019608	0.0039317
r10	0.0020212	0.0040061
r11	0.0010283	0.0027552
r12	0.0015592	0.0033768
r13	0.0020206	0.0038702
r14	0.0024974	0.0043695
r15	0.0029135	0.0048013
r16	0.0019047	0.0038298
r17	0.0023716	0.0042449
r18	0.0022743	0.0043341

Tabla B.6: Caso # 1 (OPF, w/o BESS, Bal, Pmax): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	0.3260250	0.3213379
r2	r3	0.3260250	0.3213379
r3	r4	0.3352453	0.3301992
r4	r5	0.3666910	0.3615676
r5	r6	0.3666910	0.3615676
r6	r7	0.6652409	0.6615561
r7	r8	0.6652409	0.6615561
r8	r9	0.6652409	0.6615561
r9	r10	0.4696005	0.4664357
r3	r11	0.2640435	0.2609335
r4	r12	0.2625823	0.2585689
r12	r13	0.2625823	0.2585689
r13	r14	0.2625823	0.2585689
r14	r15	0.2625823	0.2585689
r6	r16	0.2124569	0.2068179
r9	r17	1.0000000	1.0000000
r10	r18	0.4696005	0.4664357

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	231.1572473	230.9416392	230.3904869	0.3516477
r2	230.9475673	230.6025885	229.8970972	0.0801615
r3	230.7379411	230.2635255	229.4037134	0.2035888
r4	230.5640738	229.9828114	228.9817644	0.4444070
r5	230.4498521	229.7975920	228.6847354	0.6219058
r6	230.3356353	229.6123726	228.3877070	0.7997416
r7	230.3209073	229.5581912	228.2524214	0.9166255
r8	230.3061827	229.5040103	228.1171362	1.0338195
r9	230.2912332	229.4501094	227.9817900	1.1513201
r10	230.2851241	229.4008820	227.9201904	1.2003772
r11	230.6343850	230.0664963	229.1430465	0.3545345
r12	230.2790328	229.5242591	228.3454667	0.7795174
r13	229.9940999	229.0657240	227.7091715	1.1207951
r14	229.7092755	228.6072062	227.0728790	1.4639332
r15	229.4652270	228.2142049	226.5274875	1.7587072
r16	230.0143039	229.1445582	227.7698339	1.0831373
r17	230.2836778	229.4460824	227.7171214	1.3863786
r18	230.2488629	229.2104228	227.6575479	1.4241673

Tabla B.7: Caso # 1 (OPF, w/o BESS, Bal, Pmax): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0925029	-179.9648803	59.9063828	-106.9403272
r2	-60.1137551	-179.9738586	59.8949597	-123.8083433
r3	-60.1350438	-179.9828598	59.8834816	86.2619808
r4	-60.1573043	-179.9941176	59.8703972	80.5021070
r5	-60.1656550	-179.9953355	59.8677532	78.7131726
r6	-60.1740139	-179.9965554	59.8651023	77.7191945
r7	-60.1808979	-179.9989618	59.8630488	76.5210410
r8	-60.1877827	179.9986306	59.8609929	75.5942011
r9	-60.1947188	179.9961982	59.8590096	74.8731231
r10	-60.2017802	179.9916947	59.8547695	75.6172445
r11	-60.1231414	-179.9586563	59.9153091	79.0266797
r12	-60.1965133	179.9902018	59.8765016	72.4131739
r13	-60.2358196	179.9744583	59.8826402	69.2148105
r14	-60.2752233	179.9586517	59.8888131	67.5123749
r15	-60.3090758	179.9450527	59.8941318	66.5825274
r16	-60.1532691	-179.9560016	59.9238665	73.7484319
r17	-60.1946083	179.9979746	59.8919461	66.7573212
r18	-60.2268861	179.9863307	59.8590957	75.2985181

Tabla B.8: Caso #1 (OPF, w/o BESS, Bal, Pmax): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	26.9605499	49.8963697	82.3602941	50.4957330
r2	r3	26.9605499	49.8963697	82.3602941	50.4947319
r3	r4	23.5375180	41.7318517	70.8055239	44.1351533
r4	r5	13.4892914	26.6025083	49.1049886	31.9090987
r5	r6	13.4892914	26.6025083	49.1049886	31.9090987
r6	r7	4.1599920	7.5068354	22.1911568	19.8267970
r7	r8	4.1599920	7.5068354	22.1911568	19.8267970
r8	r9	4.1599920	7.5068354	22.1911568	19.8379900
r9	r10	4.1599920	7.5068354	10.7130849	9.2151054
r3	r11	4.3200018	8.6936119	11.8081493	6.4725396
r4	r12	10.7005215	15.7509820	22.3200749	12.3073656
r12	r13	10.7005215	15.7509820	22.3200749	12.3073656
r13	r14	10.7005215	15.7509820	22.3200749	12.3073656
r14	r15	10.7005215	15.7509820	22.3200749	12.3073656
r6	r16	12.7267845	19.6613681	26.9710204	12.2549863
r9	r17	0.0000000	0.0000000	11.9289172	11.9153967
r10	r18	4.1599920	7.5068354	10.7130849	9.2299993

Tabla B.9: Caso # 1 (OPF, w/o BESS, Bal, Pmax): módulos de las corrientes

Nodo <i>i</i>	Nodo j	$\phi_a~(^\circ)$	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-57.2730313	166.6404541	39.1104296	-126.3103869
r2	r3	-57.2730313	166.6404541	39.1104296	-126.3104365
r3	r4	-51.2762158	170.3910733	40.9359955	-127.7717133
r4	r5	-63.1268081	162.8514297	35.8598875	-129.8590134
r5	r6	-63.1268081	162.8514297	35.8598875	-129.8590134
r6	r7	7.4640983	-178.0761236	38.9071453	-134.4005428
r7	r8	7.4640983	-178.0761236	38.9071453	-134.4005428
r8	r9	7.4640983	-178.0761236	38.9071453	-134.3818841
r9	r10	7.4640983	-178.0761236	51.0011034	-111.3553819
r3	r11	-91.9690140	148.3396543	28.0979118	-116.2964114
r4	r12	-36.2725217	-176.8053232	52.1606796	-122.3408239
r12	r13	-36.2725217	-176.8053232	52.1606796	-122.3408239
r13	r14	-36.2725217	-176.8053232	52.1606796	-122.3408239
r14	r15	-36.2725217	-176.8053232	52.1606796	-122.3408239
r6	r16	-81.0832006	155.6845127	33.3530535	-122.4771236
r9	r17	-104.9634373	0.3153203	28.0616643	-151.9904328
r10	r18	7.4640983	-178.0761236	51.0011034	-111.3440748

Tabla B.10: Caso # 1 (OPF, w/o BESS, Bal, Pmax): ángulos de las corrientes

B.2. Caso # 2 (OPF, w/o BESS, Bal, Curt)

Tabla B.11: Caso # 2 (OPF, w/o BESS, Bal, Curt): pérdidas

Losses (W) 440.5514447375899

Tabla B.12: Caso # 2 (OPF, w/o BESS, Bal, Curt): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	9569.3556535	15679.8605219	9951.3351449
Slack <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c \ (var)$
r0	-257.9205144	2828.9091919	6577.3467847
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	9572.8308569	15933.0082910	11928.5607637
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r0	-0.9996370	0.9841117	0.8342444

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	0.0000000	0.0000000	0.0000000
r15	1833.3333516	1833.3333516	1833.3333516
r16	1333.3333466	1333.3333466	1333.3333466
r18	1000.0000099	1000.0000099	1000.0000099
r6	0.0000000	0.0000000	0.0000000
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	0.0000000	0.0000000	0.0000000
r15	3547.0353475	3547.0353475	3547.0353475
r16	1488.6965206	1488.6965206	1488.6965206
r18	1735.3214231	1735.3214231	1735.3214231
r6	0.0000000	0.0000000	0.0000000
		$(\mathbf{T}, \mathbf{T}, \mathbf{A})$	
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	$ \begin{array}{c} S_a \ (VA) \\ \hline 0.0000000 \end{array} $	$\frac{S_b (VA)}{0.0000000}$	$ S_c (VA) \\ 0.0000000 $
r10 r15	$ \begin{array}{c} S_a \ (VA) \\ \hline 0.0000000 \\ 3992.8149137 \end{array} $	$\frac{S_b (VA)}{0.0000000}$ 3992.8149137	$S_c (VA)$ 0.0000000 3992.8149137
Generator <i>i</i> r10 r15 r16	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220	$S_b (VA)$ 0.0000000 3992.8149137 1998.4982220	$S_c (VA)$ 0.0000000 3992.8149137 1998.4982220
Generator i r10 r15 r16 r18	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087	$S_b (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087	$S_{c} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087
Generator i r10 r15 r16 r18 r6	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000	$S_b (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000	$S_c (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000
Generator ir10r15r16r18r6Generator i	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_a)$	$S_{b} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{b})$	$S_{c} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{c})$
Generator i r10 r15 r16 r18 r6 Generator i r10	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_a)$ 1.0000000	$S_{b} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{b})$ 1.0000000	$S_{c} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{c})$ 1.0000000
Generator i r10 r15 r16 r18 r6 Generator i r10 r13	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_a)$ 1.0000000 0.4591581	$S_{b} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{b})$ 1.0000000 0.4591581	$S_{c} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{c})$ 1.0000000 0.4591581
Generator i r10 r15 r16 r18 r6 Generator i r10 r15 r16 r17	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_a)$ 1.0000000 0.4591581 0.6671676	$S_b (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_b)$ 1.0000000 0.4591581 0.6671676	$S_{c} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{c})$ 1.0000000 0.4591581 0.6671676
Generator i r10 r15 r16 r18 r6 Generator i r10 r15 r16 r18 r6 Generator i r10 r15 r16 r18	$S_a (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_a)$ 1.0000000 0.4591581 0.6671676 0.4992927	$S_{b} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{b})$ 1.0000000 0.4591581 0.6671676 0.4992927	$S_{c} (VA)$ 0.0000000 3992.8149137 1998.4982220 2002.8331087 0.0000000 $cos(\varphi_{c})$ 1.0000000 0.4591581 0.6671676 0.4992927

Tabla B.13: Caso # 2 (OPF, w/o BESS, Bal, Curt): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r11	997.5000000	2000.7000000	2701.8000000
r15	4800.0000000	6393.6000000	8006.4000000
r16	4800.0000000	6393.6000000	8006.4000000
r17	0.0000000	0.0000000	2700.0000000
r18	1601.6000000	3203.2000000	3995.2000000
Load <i>i</i>	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$
r11	0.8500000	0.8500000	0.8500000
r15	0.8500000	0.8500000	0.8500000
r16	0.8500000	0.8500000	0.8500000
r17	-1.0000000	-1.0000000	0.8500000
r18	0.8500000	0.8500000	0.8500000

Tabla B.14: Caso # 2 (OPF, w/o BESS, Bal, Curt): potencias consumidas

Tabla B.15: Caso # 2 (OPF, w/o BESS, Bal, Curt): factores de desequilibrio en tensiones

Nodo	VUF_2	VUF ₀
r0	0.0000000	0.0000000
r1	0.0003261	0.0017212
r2	0.0005692	0.0021265
r3	0.0008616	0.0025331
r4	0.0011297	0.0028910
r5	0.0013344	0.0031536
r6	0.0015400	0.0034168
r7	0.0016801	0.0035882
r8	0.0018204	0.0037599
r9	0.0019608	0.0039317
r10	0.0020212	0.0040061
r11	0.0010283	0.0027552
r12	0.0015592	0.0033768
r13	0.0020206	0.0038702
r14	0.0024974	0.0043695
r15	0.0029135	0.0048013
r16	0.0019047	0.0038298
r17	0.0023716	0.0042449
r18	0.0022743	0.0043341

Tabla B.16: Caso # 2 (OPF, w/o BESS, Bal, Curt): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	0.3260250	0.3213379
r2	r3	0.3260250	0.3213379
r3	r4	0.3352453	0.3301992
r4	r5	0.3666910	0.3615676
r5	r6	0.3666910	0.3615676
r6	r7	0.6652409	0.6615561
r7	r8	0.6652409	0.6615561
r8	r9	0.6652409	0.6615561
r9	r10	0.4696005	0.4664357
r3	r11	0.2640435	0.2609335
r4	r12	0.2625823	0.2585689
r12	r13	0.2625823	0.2585689
r13	r14	0.2625823	0.2585689
r14	r15	0.2625823	0.2585689
r6	r16	0.2124569	0.2068179
r9	r17	1.0000000	1.0000000
r10	r18	0.4696005	0.4664357

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	231.1572473	230.9416392	230.3904869	0.3516477
r2	230.9475673	230.6025885	229.8970972	0.0801615
r3	230.7379411	230.2635255	229.4037134	0.2035888
r4	230.5640738	229.9828114	228.9817644	0.4444070
r5	230.4498521	229.7975920	228.6847355	0.6219058
r6	230.3356353	229.6123726	228.3877070	0.7997416
r7	230.3209073	229.5581912	228.2524214	0.9166255
r8	230.3061827	229.5040103	228.1171362	1.0338195
r9	230.2912332	229.4501094	227.9817900	1.1513201
r10	230.2851241	229.4008820	227.9201904	1.2003772
r11	230.6343850	230.0664963	229.1430465	0.3545345
r12	230.2790328	229.5242591	228.3454667	0.7795174
r13	229.9940999	229.0657240	227.7091715	1.1207951
r14	229.7092755	228.6072062	227.0728790	1.4639332
r15	229.4652270	228.2142049	226.5274875	1.7587072
r16	230.0143039	229.1445582	227.7698339	1.0831373
r17	230.2836778	229.4460824	227.7171214	1.3863786
r18	230.2488629	229.2104228	227.6575479	1.4241673

Tabla B.17: Caso # 2 (OPF, w/o BESS, Bal, Curt): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0925029	-179.9648803	59.9063828	-106.9403271
r2	-60.1137551	-179.9738586	59.8949597	-123.8083433
r3	-60.1350438	-179.9828598	59.8834816	86.2619808
r4	-60.1573043	-179.9941176	59.8703972	80.5021070
r5	-60.1656550	-179.9953355	59.8677532	78.7131726
r6	-60.1740139	-179.9965554	59.8651023	77.7191945
r7	-60.1808979	-179.9989618	59.8630488	76.5210410
r8	-60.1877827	179.9986306	59.8609929	75.5942011
r9	-60.1947188	179.9961982	59.8590096	74.8731231
r10	-60.2017802	179.9916947	59.8547695	75.6172445
r11	-60.1231414	-179.9586563	59.9153091	79.0266798
r12	-60.1965133	179.9902018	59.8765016	72.4131739
r13	-60.2358196	179.9744583	59.8826402	69.2148105
r14	-60.2752233	179.9586517	59.8888131	67.5123749
r15	-60.3090757	179.9450527	59.8941318	66.5825274
r16	-60.1532691	-179.9560016	59.9238665	73.7484319
r17	-60.1946083	179.9979746	59.8919461	66.7573212
r18	-60.2268861	179.9863307	59.8590957	75.2985181

Tabla B.18: Caso # 2 (OPF, w/o BESS, Bal, Curt): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	26.9605497	49.8963695	82.3602939	50.4957330
r2	r3	26.9605497	49.8963695	82.3602939	50.4947319
r3	r4	23.5375178	41.7318516	70.8055238	44.1351533
r4	r5	13.4892913	26.6025082	49.1049885	31.9090987
r5	r6	13.4892913	26.6025082	49.1049885	31.9090987
r6	r7	4.1599919	7.5068353	22.1911568	19.8267970
r7	r8	4.1599919	7.5068353	22.1911568	19.8267970
r8	r9	4.1599919	7.5068353	22.1911568	19.8379900
r9	r10	4.1599919	7.5068353	10.7130848	9.2151054
r3	r11	4.3200018	8.6936119	11.8081493	6.4725396
r4	r12	10.7005214	15.7509819	22.3200748	12.3073656
r12	r13	10.7005214	15.7509819	22.3200748	12.3073656
r13	r14	10.7005214	15.7509819	22.3200748	12.3073656
r14	r15	10.7005214	15.7509819	22.3200748	12.3073656
r6	r16	12.7267844	19.6613681	26.9710204	12.2549863
r9	r17	0.0000000	0.0000000	11.9289172	11.9153967
r10	r18	4.1599919	7.5068353	10.7130848	9.2299993

Tabla B.19: Caso # 2 (OPF, w/o BESS, Bal, Curt): módulos de las corrientes

Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-57.2730315	166.6404539	39.1104295	-126.3103869
r2	r3	-57.2730315	166.6404539	39.1104295	-126.3104365
r3	r4	-51.2762160	170.3910731	40.9359953	-127.7717133
r4	r5	-63.1268085	162.8514295	35.8598873	-129.8590134
r5	r6	-63.1268085	162.8514295	35.8598873	-129.8590134
r6	r7	7.4640987	-178.0761238	38.9071452	-134.4005428
r7	r8	7.4640987	-178.0761238	38.9071452	-134.4005428
r8	r9	7.4640987	-178.0761238	38.9071452	-134.3818841
r9	r10	7.4640987	-178.0761238	51.0011032	-111.3553819
r3	r11	-91.9690140	148.3396543	28.0979118	-116.2964114
r4	r12	-36.2725217	-176.8053234	52.1606794	-122.3408239
r12	r13	-36.2725217	-176.8053234	52.1606794	-122.3408239
r13	r14	-36.2725217	-176.8053234	52.1606794	-122.3408239
r14	r15	-36.2725217	-176.8053234	52.1606794	-122.3408239
r6	r16	-81.0832009	155.6845125	33.3530534	-122.4771236
r9	r17	42.2654712	0.3153201	28.0616643	-151.9904328
r10	r18	7.4640987	-178.0761238	51.0011032	-111.3440748

Tabla B.20: Caso # 2 (OPF, w/o BESS, Bal, Curt): ángulos de las corrientes

B.3. Caso # 3 (OPF, w/o BESS, Unbal, Pmax)

Tabla B.21: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): pérdidas

Losses (W) 369.24739772205066

Tabla B.22: Caso#3 (OPF, w/o BESS, Unbal, Pmax): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	9203.9283181	15628.8442237	10296.4748559
Slack i	$Q_a (var)$	$Q_b (var)$	$Q_c \ (var)$
r0	1821.5483767	4269.4112290	8609.6201943
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	9382.4482399	16201.5012888	13421.7344016
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r0	0.9809730	0.9646541	0.7671494

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	0.0000000	0.0000000	0.0000000
r15	1111.1264553	1670.8966330	2717.9769117
r16	1445.9980759	904.8389966	1649.1629274
r18	486.2907446	899.6657089	1614.0435465
r6	0.0000000	0.0000000	0.0000000
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	0.0000000	0.0000000	0.0000000
r15	2007.0273431	3587.3061947	2842.0838434
r16	640.8355616	1767.2183395	1080.8354652
r18	-80.0847387	1771.3227810	1132.3790407
r6	0.0000000 0.0000000		0.0000000
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	0.0000000	0.0000000	0.0000000
r15	2294.0707826	3957.3553407	3932.5359586
r16	1581.6385973	1985.3952426	1971.7869216
r18	492.8410025	1986.7014829	1971.6538393
r6	0.0000000	0.0000000	0.0000000
Generator i	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	1.0000000	1.0000000	1.0000000
r15	0.4843471	0.4222256	0.6911512
r16	0.9142405	0.4557475	0.8363799
r18	-0.9867092	0.4528439	0.8186242
r6	1.0000000	1.0000000	1.0000000

Tabla B.23: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$	
r11	r11 -847.8750000 -1700.595000		-2296.5300000	
r15	-4080.0000000	-5434.5600000	-6805.4400000	
r16	-4080.0000000	-5434.5600000	-6805.4400000	
r17	-0.0000000	-0.0000000	-2295.0000000	
r18	-1361.3600000	-2722.7200000	-3395.9200000	
Load <i>i</i>	$Q_a \ (var)$	$Q_b (var)$	$Q_c (var)$	
r11	-525.4657309	-1053.9341232	-1423.2614655	
r15	-2528.5569007	-3368.0377917	-4217.6329103	
r16	r16 -2528.5569007	-3368.0377917	-4217.6329103	
r17	r17 -0.0000000	-0.0000000 -0.0000000		-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937	
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$	
r11	997.5000000	2000.7000000	2701.8000000	
r15	4800.0000000	6393.6000000	8006.4000000	
r16	16 4800.000000 6393.6000000 17 0.0000000 0.0000000		8006.4000000	
r17			2700.0000000	
r18	1601.6000000	3203.2000000	3995.2000000	
Load <i>i</i>	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$	
r11	0.8500000	0.8500000	0.8500000	
r15	0.8500000	0.8500000	0.8500000	
r16	0.8500000	0.8500000	0.8500000	
r17	-1.0000000	-1.0000000	0.8500000	
r18	0.8500000	0.8500000	0.8500000	

Tabla B.24: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): potencias consumidas

Tabla B.25: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): factores de desequilibrio en tensiones

1		· · · · · ·
Nodo	VUF_2	VUF_0
r0	0.0000000	0.0000000
r1	0.0003275	0.0005841
r2	0.0006239	0.0007268
r3	0.0009529	0.0008699
r4	0.0012584	0.0009685
r5	0.0015093	0.0010722
r6	0.0017610	0.0011762
r7	0.0019152	0.0012549
r8	0.0020696	0.0013340
r9	0.0022241	0.0014134
r10	0.0022917	0.0013866
r11	0.0010816	0.0010951
r12	0.0015763	0.0009799
r13	0.0019252	0.0010026
r14	0.0022919	0.0010359
r15	0.0026152	0.0010722
r16	0.0021712	0.0013738
r17	0.0026164	0.0017983
r18	0.0025451	0.0013134

Tabla B.26: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	0.3127167	0.1332477
r2	r3	0.3127167	0.1332477
r3	r4	0.3230410	0.1140161
r4	r5	0.3733857	0.1570364
r5	r6	0.3733857	0.1570364
r6	r7	0.6095075	0.2948589
r7	r8	0.6095075	0.2948589
r8	r9	0.6095075	0.2948589
r9	r10	0.3943343	0.1031043
r3	r11	0.2620179	0.2611863
r4	r12	0.2147070	0.0491921
r12	r13	0.2147070	0.0491921
r13	r14	0.2147070	0.0491921
r14	r15	0.2147070	0.0491921
r6	r16	0.2558045	0.0985957
r9	r17	1.0000000	1.0000000
r10	r18	0.3943343	0.1031043

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	230.8848526	230.9082504	230.5936347	0.1179036
r2	230.6011873	230.5767573	230.1246757	0.0265232
r3	230.3175302	230.2452791	229.6557115	0.0792321
r4	230.0696670	229.9721360	229.2580716	0.1439295
r5	229.9156456	229.7894457	228.9704586	0.2139849
r6	229.7616284	229.6067582	228.6828469	0.2840437
r7	229.7141378	229.5586994	228.5548556	0.3378671
r8	229.6666480	229.5106417	228.4268645	0.3922423
r9	229.6190548	229.4626779	228.2988819	0.4470008
r10	229.5803968	229.4192021	228.2444146	0.4283505
r11	230.2137351	230.0483144	229.3954061	0.2336267
r12	229.6752622	229.5013292	228.7309226	0.1649098
r13	229.2808607	229.0305441	228.2038337	0.2103902
r14	228.8864625	228.5597806	227.6768052	0.2681829
r15	228.5484095	228.1562865	227.2251149	0.3225788
r16	229.4424060	229.0990913	228.0958821	0.4178807
r17	229.6114086	229.4588232	228.0351121	0.7241772
r18	229.4713415	229.2247255	228.0422466	0.3753740

Tabla B.27: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0557785	179.9721973	59.9392979	-124.5885372
r2	-60.0530825	179.9565787	59.9404299	-158.0449476
r3	-60.0503804	179.9409170	59.9415650	77.0670596
r4	-60.0486032	179.9229779	59.9411480	64.3199174
r5	-60.0409380	179.9165135	59.9455518	64.6419124
r6	-60.0332625	179.9100388	59.9499666	64.8050717
r7	-60.0299503	179.9060985	59.9520830	62.0849437
r8	-60.0266368	179.9021567	59.9542017	60.1155056
r9	-60.0233345	179.8981975	59.9563517	58.6434612
r10	-60.0201138	179.8921896	59.9562357	58.3358291
r11	-60.0384419	179.9651472	59.9732939	72.1345819
r12	-60.0417359	179.9054423	59.9704260	38.1822763
r13	-60.0348450	179.8878346	59.9998393	20.6424239
r14	-60.0279303	179.8701545	60.0293887	9.9628360
r15	-60.0219845	179.8549419	60.0548259	4.0163603
r16	-59.9891925	179.9416126	60.0196950	68.2764114
r17	-60.0232626	179.8999539	59.9890566	48.7481913
r18	-59.9975716	179.8849194	59.9771569	61.3066019

Tabla B.28: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	36.1064735	52.5887829	77.7275818	21.9334665
r2	r3	36.1064735	52.5887829	77.7275818	21.9331597
r3	r4	31.7887770	44.5500642	65.9682706	15.9784355
r4	r5	19.5759666	28.4873840	47.2924353	14.7358272
r5	r6	19.5759666	28.4873840	47.2924353	14.7358272
r6	r7	5.5403993	7.9553155	20.7856049	9.6779445
r7	r8	5.5403993	7.9553155	20.7856049	9.6779445
r8	r9	5.5403993	7.9553155	20.7856049	9.6821054
r9	r10	5.5403993	7.9553155	8.9158852	2.1867010
r3	r11	4.3299787	8.6941611	11.7896542	6.4781330
r4	r12	13.1971786	16.5006911	18.9949626	2.3603943
r12	r13	13.1971786	16.5006911	18.9949626	2.3603943
r13	r14	13.1971786	16.5006911	18.9949626	2.3603943
r14	r15	13.1971786	16.5006911	18.9949626	2.3603943
r6	r16	14.1078582	20.9561222	26.5082169	6.0256059
r9	r17	0.0000000	0.0000000	11.8772750	11.8687971
r10	r18	5.5403993	7.9553155	8.9158852	2.1820639

Tabla B.29: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): módulos de las corrientes

Nodo i	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-87.8201229	168.7431929	31.9599152	-135.7819225
r2	r3	-87.8201229	168.7431929	31.9599152	-135.7815944
r3	r4	-87.2689584	172.6641246	32.6362856	-143.5951279
r4	r5	-98.7752446	166.5872136	29.0790435	-136.0974011
r5	r6	-98.7752446	166.5872136	29.0790435	-136.0974011
r6	r7	-106.6287053	-177.3967435	29.5745037	-151.8284630
r7	r8	-106.6287053	-177.3967435	29.5745037	-151.8284630
r8	r9	-106.6287053	-177.3967435	29.5745037	-151.8131116
r9	r10	-106.6287053	-177.3967435	31.3573059	28.3720045
r3	r11	-91.8698358	148.2321915	28.1726582	-116.1894634
r4	r12	-70.0579929	-176.8049446	41.5227747	161.8899925
r12	r13	-70.0579929	-176.8049446	41.5227747	161.8899925
r13	r14	-70.0579929	-176.8049446	41.5227747	161.8899925
r14	r15	-70.0579929	-176.8049446	41.5227747	161.8899925
r6	r16	-95.6992262	160.5750842	28.6905454	-110.2694901
r9	r17	5.5468247	72.0677262	28.2363062	-151.7790060
r10	r18	-106.6287053	-177.3967435	31.3573059	28.3017847

Tabla B.30: Caso # 3 (OPF, w/o BESS, Unbal, Pmax): ángulos de las corrientes

B.4. Caso # 4 (OPF, w/o BESS, Unbal, Curt)

Tabla B.31: Caso # 4 (OPF, w/o BESS, Unbal, Curt): pérdidas

Losses (W) 369.24739624037466

Tabla B.32: Caso # 4 (OPF, w/o BESS, Unbal, Curt): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$	
r0 9203.92826		15628.8441957	10296.4748108	
Slack i $Q_a (var)$		$Q_b (var)$	$Q_c \ (var)$	
r0	1821.5483875	4269.4112453	8609.6202290	
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$	
r0	9382.4481905	16201.5012661	13421.7343893	
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$	
r0	0.9809730	0.9646541	0.7671493	

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	0.0000000	0.0000000	0.0000000
r15	1111.1264789	1670.8966516	2717.9769245
r16	1445.9981016	904.8390065	1649.1629315
r18	486.2907600	899.6657190	1614.0435506
r6	0.0000000	0.0000000	0.0000000
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	0.0000000	0.0000000	0.0000000
r15	2007.0273351	3587.3061862	2842.0838312
r16	640.8355560	1767.2183345	1080.8354589
r18	-80.0847443	1771.3227759	1132.3790348
r6	0.0000000 0.0000000		0.0000000
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	0.0000000	0.0000000	0.0000000
r15	2294.0707870	3957.3553409	3932.5359586
r16	1581.6386185	1985.3952426	1971.7869215
r18	492.8410185	1986.7014829	1971.6538392
r6	0.0000000	0.0000000	0.0000000
Generator i	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	1.0000000	1.0000000	1.0000000
r15	0.4843471	0.4222256	0.6911512
r16	0.9142405	0.4557475	0.8363799
r18	-0.9867092	0.4528439	0.8186242
C	1 000000	1 000000	1 000000

Tabla B.33: Caso # 4 (OPF, w/o BESS, Unbal, Curt): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$	
r11	-847.8750000	-1700.5950000	-2296.5300000	
r15	-4080.0000000	-5434.5600000	-6805.4400000	
r16	-4080.0000000	-5434.5600000	-6805.4400000	
r17	-0.0000000	-0.0000000	-2295.0000000	
r18	-1361.3600000	-2722.7200000	-3395.9200000	
Load <i>i</i>	$Q_a \ (var)$	$Q_b (var)$	$Q_c (var)$	
r11	-525.4657309	-1053.9341232	-1423.2614655	
r15	-2528.5569007	-3368.0377917	-4217.6329103	
r16	-2528.5569007	-3368.0377917	-4217.6329103	
r17	-0.0000000	-0.0000000	-1422.3132566 -2104.6021937	
r18	-843.6951525	-1687.3903051		
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$	
r11	997.5000000	2000.7000000	2701.8000000	
r15	4800.0000000	6393.6000000	8006.4000000	
r16	4800.0000000	6393.6000000	8006.4000000	
r17	0.0000000	0.0000000	2700.0000000	
r18	1601.6000000	3203.2000000	3995.2000000	
Load <i>i</i>	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$	
r11	0.8500000	0.8500000	0.8500000	
r15	0.8500000	0.8500000	0.8500000	
r16	0.8500000	0.8500000	0.8500000	
r17	-1.0000000	-1.0000000	0.8500000	
r18	0.8500000	0.8500000	0.8500000	

Tabla B.34: Caso # 4 (OPF, w/o BESS, Unbal, Curt): potencias consumidas

Tabla B.35: Caso # 4 (OPF, w/o BESS, Unbal, Curt): factores de desequilibrio en tensiones

Nodo	VUF_2	VUF ₀
r0	0.0000000	0.0000000
r1	0.0003275	0.0005841
r2	0.0006239	0.0007268
r3	0.0009529	0.0008699
r4	0.0012584	0.0009685
r5	0.0015093	0.0010722
r6	0.0017610	0.0011762
r7	0.0019152	0.0012549
r8	0.0020696	0.0013340
r9	0.0022241	0.0014134
r10	0.0022917	0.0013866
r11	0.0010816	0.0010951
r12	0.0015763	0.0009799
r13	0.0019252	0.0010026
r14	0.0022919	0.0010359
r15	0.0026152	0.0010722
r16	0.0021712	0.0013738
r17	0.0026164	0.0017983
r18	0.0025451	0.0013134

Tabla B.36: Caso # 4 (OPF, w/o BESS, Unbal, Curt): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	0.3127167	0.1332477
r2	r3	0.3127167	0.1332477
r3	r4	0.3230410	0.1140161
r4	r5	0.3733857	0.1570364
r5	r6	0.3733857	0.1570364
r6	r7	0.6095075	0.2948589
r7	r8	0.6095075	0.2948589
r8	r9	0.6095075	0.2948589
r9	r10	0.3943343	0.1031043
r3	r11	0.2620179	0.2611863
r4	r12	0.2147070	0.0491921
r12	r13	0.2147070	0.0491921
r13	r14	0.2147070	0.0491921
r14	r15	0.2147070	0.0491921
r6	r16	0.2558045	0.0985957
r9	r17	1.0000000	1.0000000
r10	r18	0.3943343	0.1031043

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	230.8848526	230.9082504	230.5936347	0.1179036
r2	230.6011873	230.5767573	230.1246757	0.0265232
r3	230.3175302	230.2452791	229.6557115	0.0792321
r4	230.0696670	229.9721360	229.2580716	0.1439295
r5	229.9156457	229.7894457	228.9704586	0.2139849
r6	229.7616284	229.6067582	228.6828469	0.2840437
r7	229.7141378	229.5586994	228.5548556	0.3378671
r8	229.6666480	229.5106417	228.4268645	0.3922423
r9	229.6190549	229.4626779	228.2988819	0.4470008
r10	229.5803968	229.4192021	228.2444146	0.4283505
r11	230.2137351	230.0483144	229.3954060	0.2336267
r12	229.6752622	229.5013293	228.7309226	0.1649098
r13	229.2808607	229.0305441	228.2038337	0.2103902
r14	228.8864625	228.5597806	227.6768052	0.2681829
r15	228.5484096	228.1562865	227.2251149	0.3225788
r16	229.4424060	229.0990913	228.0958821	0.4178807
r17	229.6114086	229.4588232	228.0351121	0.7241772
r18	229.4713415	229.2247255	228.0422466	0.3753740

Tabla B.37: Caso # 4 (OPF, w/o BESS, Unbal, Curt): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0557785	179.9721973	59.9392979	-124.5885367
r2	-60.0530825	179.9565787	59.9404299	-158.0449471
r3	-60.0503804	179.9409170	59.9415650	77.0670600
r4	-60.0486032	179.9229779	59.9411480	64.3199180
r5	-60.0409380	179.9165135	59.9455518	64.6419129
r6	-60.0332625	179.9100388	59.9499666	64.8050723
r7	-60.0299503	179.9060985	59.9520830	62.0849443
r8	-60.0266368	179.9021567	59.9542017	60.1155060
r9	-60.0233345	179.8981975	59.9563517	58.6434617
r10	-60.0201138	179.8921896	59.9562357	58.3358296
r11	-60.0384419	179.9651472	59.9732939	72.1345820
r12	-60.0417359	179.9054423	59.9704260	38.1822771
r13	-60.0348450	179.8878346	59.9998393	20.6424249
r14	-60.0279303	179.8701545	60.0293887	9.9628371
r15	-60.0219845	179.8549419	60.0548259	4.0163613
r16	-59.9891925	179.9416126	60.0196950	68.2764119
r17	-60.0232626	179.8999539	59.9890566	48.7481916
r18	-59.9975716	179.8849194	59.9771569	61.3066026

Tabla B.38: Caso # 4 (OPF, w/o BESS, Unbal, Curt): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	36.1064733	52.5887828	77.7275818	21.9334666
r2	r3	36.1064733	52.5887828	77.7275818	21.9331598
r3	r4	31.7887768	44.5500641	65.9682705	15.9784356
r4	r5	19.5759665	28.4873839	47.2924353	14.7358273
r5	r6	19.5759665	28.4873839	47.2924353	14.7358273
r6	r7	5.5403993	7.9553154	20.7856049	9.6779446
r7	r8	5.5403993	7.9553154	20.7856049	9.6779446
r8	r9	5.5403993	7.9553154	20.7856049	9.6821055
r9	r10	5.5403993	7.9553154	8.9158852	2.1867009
r3	r11	4.3299787	8.6941611	11.7896542	6.4781330
r4	r12	13.1971785	16.5006910	18.9949625	2.3603943
r12	r13	13.1971785	16.5006910	18.9949625	2.3603943
r13	r14	13.1971785	16.5006910	18.9949625	2.3603943
r14	r15	13.1971785	16.5006910	18.9949625	2.3603943
r6	r16	14.1078582	20.9561222	26.5082169	6.0256059
r9	r17	0.0000000	0.0000000	11.8772750	11.8687971
r10	r18	5.5403993	7.9553154	8.9158852	2.1820639

Tabla B.39: Caso # 4 (OPF, w/o BESS, Unbal, Curt): módulos de las corrientes
Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-87.8201232	168.7431928	31.9599151	-135.7819223
r2	r3	-87.8201232	168.7431928	31.9599151	-135.7815941
r3	r4	-87.2689588	172.6641244	32.6362854	-143.5951274
r4	r5	-98.7752451	166.5872134	29.0790434	-136.0974007
r5	r6	-98.7752451	166.5872134	29.0790434	-136.0974007
r6	r7	-106.6287060	-177.3967436	29.5745036	-151.8284628
r7	r8	-106.6287060	-177.3967436	29.5745036	-151.8284628
r8	r9	-106.6287060	-177.3967436	29.5745036	-151.8131115
r9	r10	-106.6287060	-177.3967436	31.3573057	28.3720036
r3	r11	-91.8698358	148.2321915	28.1726582	-116.1894634
r4	r12	-70.0579931	-176.8049447	41.5227745	161.8899934
r12	r13	-70.0579931	-176.8049447	41.5227745	161.8899934
r13	r14	-70.0579931	-176.8049447	41.5227745	161.8899934
r14	r15	-70.0579931	-176.8049447	41.5227745	161.8899934
r6	r16	-95.6992265	160.5750842	28.6905453	-110.2694897
r9	r17	-25.4765908	-6.7403069	28.2363062	-151.7790060
r10	r18	-106.6287060	-177.3967436	31.3573057	28.3017838

Tabla B.40: Caso # 4 (OPF, w/o BESS, Unbal, Curt): ángulos de las corrientes

B.5. Caso # 5 (OPF, w BESS, Bal, Pmax)

Tabla B.41: Caso # 5 (OPF, w BESS, Bal, Pmax): pérdidas

Losses (W) 280.34677808154083

Tabla B.42: Caso # 5 (OPF, w BESS, Bal, Pmax): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
rO	894.7902844	6858.7875649	1241.1174984
Slack <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
rO	-3917.6511235	-874.2399085	2769.0276370
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	4018.5370445	6914.2795921	3034.4499830
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
rO	-0.2226657	-0.9919743	0.4090090

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	2277.5196340	2277.5196340	2277.5196340
r15	1833.3333333	1833.3333333	1833.3333333
r16	1333.33333333	1333.33333333	1333.33333333
r18	1000.0000000	1000.0000000	1000.0000000
r6	6404.3641762	6404.3641762	6404.3641762
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	1411.4798987	1411.4798987	1411.4798987
r15	3260.1125635	3260.1125635	3260.1125635
r16	1507.5749696	1507.5749696	1507.5749696
r18	312.1041654	312.1041654	312.1041654
r6	3969.0684392	3969.0684392	3969.0684392
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	2679.4348635	2679.4348635	2679.4348635
r15	3740.2466547	3740.2466547	3740.2466547
r16	2012.6003247	2012.6003247	2012.6003247
r18	1047.5729140	1047.5729140	1047.5729140
r6	7534.5460896	7534.5460896	7534.5460896
Generator i	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	0.8500000	0.8500000	0.8500000
r15	0.4901638	0.4901638	0.4901638
r16	0.6624929	0.6624929	0.6624929
r18	0.9545875	0.9545875	0.9545875
r6	0.8500000	0.8500000	0.8500000

Tabla B.43: Caso # 5 (OPF, w BESS, Bal, Pmax): potencias generadas

Load i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
11		2000 700000	2701 8000000
r11	997.5000000	2000.7000000	2101:0000000
r11 r15	997.5000000 4800.0000000	6393.6000000	8006.4000000
r11 r15 r16	997.5000000 4800.0000000 4800.0000000	6393.6000000 6393.6000000	8006.4000000 8006.4000000
r11 r15 r16 r17	997.5000000 4800.0000000 4800.0000000 0.0000000	6393.6000000 6393.6000000 0.0000000	2101.0000000 8006.4000000 8006.4000000 2700.0000000
r11 r15 r16 r17 r18	997.5000000 4800.0000000 4800.0000000 0.0000000 1601.6000000	2000.7000000 6393.6000000 0.0000000 3203.2000000	2700.0000000 8006.4000000 2700.0000000 3995.2000000
r11 r15 r16 r17 r18 Load <i>i</i>	$997.5000000 \\ 4800.0000000 \\ 4800.0000000 \\ 0.0000000 \\ 1601.6000000 \\ cos(\varphi_a)$	$\begin{array}{c} 2000.7000000\\ 6393.6000000\\ 0.0000000\\ 3203.2000000\\ \hline cos(\varphi_b) \end{array}$	$ \begin{array}{c} 8006.4000000\\ 8006.4000000\\ 2700.0000000\\ 3995.2000000\\ cos(\varphi_c) \end{array} $
r11 r15 r16 r17 r18 Load <i>i</i> r11	$997.5000000 \\ 4800.0000000 \\ 4800.0000000 \\ 0.0000000 \\ 1601.6000000 \\ cos(\varphi_a) \\ 0.8500000$	$\begin{array}{c} 2000.7000000\\ 6393.6000000\\ 0.0000000\\ 3203.2000000\\ \hline cos(\varphi_b)\\ 0.8500000 \end{array}$	$\frac{2700.0000000}{8006.4000000}$ $\frac{2700.00000000}{3995.2000000}$ $\frac{cos(\varphi_c)}{0.8500000}$
r11 r15 r16 r17 r18 Load <i>i</i> r11 r15	997.5000000 4800.0000000 4800.0000000 0.0000000 1601.6000000 $cos(\varphi_a)$ 0.8500000 0.8500000	$\begin{array}{c} 2000.7000000\\ 6393.6000000\\ 6393.6000000\\ 0.0000000\\ 3203.2000000\\ \hline cos(\varphi_b)\\ 0.8500000\\ 0.8500000\\ \end{array}$	$\frac{2101.0000000}{8006.4000000}$ $\frac{8006.4000000}{2700.0000000}$ $\frac{3995.2000000}{cos(\varphi_c)}$ $\frac{0.8500000}{0.8500000}$
r11 r15 r16 r17 r18 Load <i>i</i> r11 r15 r16	$997.5000000 \\ 4800.0000000 \\ 4800.0000000 \\ 0.0000000 \\ 1601.6000000 \\ cos(\varphi_a) \\ 0.85000000 \\ 0.8500000 \\ 0.85000000000 \\ 0.850000000 \\ 0.85000000000000000 \\ 0.850000000 \\ 0.850000000$	$\begin{array}{c} 2000.7000000\\ \hline \\ 6393.6000000\\ \hline \\ 0.0000000\\ \hline \\ 3203.2000000\\ \hline \\ cos(\varphi_b)\\ \hline \\ 0.8500000\\ \hline \\ 0.8500000\\ \hline \\ 0.8500000\\ \hline \end{array}$	$\frac{2101.0000000}{8006.4000000}$ $\frac{8006.4000000}{2700.0000000}$ $\frac{2700.00000000}{3995.2000000}$ $\frac{\cos(\varphi_c)}{0.8500000}$ 0.8500000 0.8500000
r11 r15 r16 r17 r18 Load <i>i</i> r11 r15 r16 r17	$\begin{array}{c} 997.5000000\\ 4800.0000000\\ 4800.0000000\\ 0.0000000\\ 1601.6000000\\ \hline cos(\varphi_a)\\ 0.8500000\\ 0.8500000\\ 0.8500000\\ -1.0000000\\ \end{array}$	$\begin{array}{c} 2000.7000000\\ \hline \\ 6393.6000000\\ \hline \\ 6393.6000000\\ \hline \\ 0.0000000\\ \hline \\ 3203.2000000\\ \hline \\ cos(\varphi_b)\\ \hline \\ 0.8500000\\ \hline \\ 0.8500000\\ \hline \\ 0.8500000\\ \hline \\ -1.0000000\\ \hline \end{array}$	$\frac{2}{8006.4000000}$ $\frac{8006.4000000}{2700.0000000}$ $\frac{2700.0000000}{3995.2000000}$ $\frac{\cos(\varphi_c)}{0.8500000}$ 0.8500000 0.8500000 0.8500000

Tabla B.44: Caso # 5 (OPF, w BESS, Bal, Pmax): potencias consumidas

Tabla B.45: Caso # 5 (OPF, w BESS, Bal, Pmax): factores de desequilibrio en tensiones

Nodo	VUE	VIIE
Nouo	V U I 2	V U I 0
r0	0.0000000	0.0000000
r1	0.0003188	0.0018554
r2	0.0006208	0.0022989
r3	0.0009896	0.0027428
r4	0.0013335	0.0031377
r5	0.0016111	0.0034372
r6	0.0018895	0.0037367
r7	0.0020476	0.0039161
r8	0.0022058	0.0040957
r9	0.0023640	0.0042751
r10	0.0024470	0.0043574
r11	0.0011685	0.0029648
r12	0.0017808	0.0036232
r13	0.0022486	0.0041153
r14	0.0027276	0.0046126
r15	0.0031439	0.0050423
r16	0.0022710	0.0041485
r17	0.0027688	0.0045884
r18	0.0027163	0.0046815

Tabla B.46: Caso # 5 (OPF, w BESS, Bal, Pmax): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	1.2579178	1.2562296
r2	r3	1.2579178	1.2562296
r3	r4	1.5525704	1.5527145
r4	r5	0.8313752	0.8383996
r5	r6	0.8313752	0.8383996
r6	r7	4.9528513	4.9710468
r7	r8	4.9528513	4.9710468
r8	r9	4.9528513	4.9710468
r9	r10	0.8833636	0.8857127
r3	r11	0.2642605	0.2610748
r4	r12	0.2637082	0.2590313
r12	r13	0.2637082	0.2590313
r13	r14	0.2637082	0.2590313
r14	r15	0.2637082	0.2590313
r6	r16	0.2133753	0.2075300
r9	r17	1.0000000	1.0000000
r10	r18	0.3723734	0.3639721

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	231.2854095	231.0623715	230.4688487	0.3841049
r2	231.3613798	230.9790215	230.2160097	0.0838279
r3	231.4373975	230.8956558	229.9631687	0.2267259
r4	231.5490566	230.8704837	229.7815889	0.4962507
r5	231.7236983	230.9437177	229.7282763	0.7026816
r6	231.8983442	231.0169518	229.6749647	0.9094771
r7	231.9458933	231.0185506	229.5904288	1.0329948
r8	231.9934425	231.0201506	229.5058949	1.1566645
r9	232.0407326	231.0220629	229.4213003	1.2805455
r10	232.0967755	231.0286593	229.4100241	1.3360087
r11	231.3341645	230.6991597	229.7031093	0.3782439
r12	231.2617315	230.4100924	229.1434148	0.8316103
r13	230.9744694	229.9497042	228.5052564	1.1719370
r14	230.6872704	229.4893193	227.8671138	1.5138847
r15	230.4411504	229.0947062	227.3201470	1.8075758
r16	231.5795018	230.5521852	229.0605026	1.1930286
r17	232.0332512	231.0180246	229.1581716	1.5150963
r18	232.0451641	230.8241157	229.1324744	1.5578018

Tabla B.47: Caso # 5 (OPF, w BESS, Bal, Pmax): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0635734	-179.9215961	59.9415570	-107.4086284
r2	-60.0822942	-179.9286304	59.9379446	-122.7057511
r3	-60.1010004	-179.9356663	59.9343181	83.8350061
r4	-60.1206220	-179.9449232	59.9291348	78.8240672
r5	-60.1283656	-179.9459435	59.9327781	77.0576090
r6	-60.1360977	-179.9469632	59.9364232	76.0938590
r7	-60.1356349	-179.9428614	59.9417957	75.3104269
r8	-60.1351723	-179.9387596	59.9471721	74.6944271
r9	-60.1347648	-179.9346855	59.9526364	74.2144278
r10	-60.1344850	-179.9326591	59.9558839	74.9818962
r11	-60.0891682	-179.9115994	59.9659930	78.0446240
r12	-60.1504806	-179.9516400	59.9440485	72.0224529
r13	-60.1804135	-179.9583837	59.9590456	69.1478985
r14	-60.2104209	-179.9651545	59.9741267	67.5693050
r15	-60.2362010	-179.9709796	59.9871207	66.6921157
r16	-60.1161150	-179.9074510	59.9940556	72.9025746
r17	-60.1346517	-179.9329278	59.9851730	66.9439258
r18	-60.1211283	-179.9003400	59.9977974	74.8990826

Tabla B.48: Caso #5 (OPF, w BESS, Bal, Pmax): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	20.2669027	11.5567609	40.8148630	50.0287563
r2	r3	20.2669027	11.5567609	40.8148630	50.0277105
r3	r4	24.1844443	9.4926700	29.4792650	43.6823192
r4	r5	29.0500544	15.4230022	7.0978146	31.4905503
r5	r6	29.0500544	15.4230022	7.0978146	31.4905503
r6	r7	9.0493895	2.3899680	13.2580077	19.6517497
r7	r8	9.0493895	2.3899680	13.2580077	19.6517497
r8	r9	9.0493895	2.3899680	13.2580077	19.6643765
r9	r10	9.0493895	2.3899680	1.7683728	9.0883998
r3	r11	4.3066976	8.6693563	11.7805789	6.4587349
r4	r12	10.2049559	15.6770277	22.4519032	12.2755566
r12	r13	10.2049559	15.6770277	22.4519032	12.2755566
r13	r14	10.2049559	15.6770277	22.4519032	12.2755566
r14	r15	10.2049559	15.6770277	22.4519032	12.2755566
r6	r16	12.6090757	19.5034109	26.7945568	12.2016641
r9	r17	0.0000000	0.0000000	11.8600873	11.8453322
r10	r18	2.7569543	9.5328583	13.1453276	9.1901911

Tabla B.49: Caso # 5 (OPF, w BESS, Bal, Pmax): módulos de las corrientes

Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	61.0977902	-157.9004471	41.5116433	-126.2924079
r2	r3	61.0977902	-157.9004471	41.5116433	-126.2924830
r3	r4	65.7289401	-110.5001151	46.8111892	-127.7690390
r4	r5	85.2132300	-36.8058849	39.7670956	-129.9030460
r5	r6	85.2132300	-36.8058849	39.7670956	-129.9030460
r6	r7	94.9720206	-3.5448504	23.2005161	-134.4682083
r7	r8	94.9720206	-3.5448504	23.2005161	-134.4682083
r8	r9	94.9720206	-3.5448504	23.2005161	-134.4476802
r9	r10	94.9720206	-3.5448504	-12.1599493	-111.4287220
r3	r11	-91.9399453	148.3919103	28.1483385	-116.2559575
r4	r12	-42.5575830	178.7262206	49.0330194	-122.2745467
r12	r13	-42.5575830	178.7262206	49.0330194	-122.2745467
r13	r14	-42.5575830	178.7262206	49.0330194	-122.2745467
r14	r15	-42.5575830	178.7262206	49.0330194	-122.2745467
r6	r16	-80.7221088	155.9746159	33.5801611	-122.3981225
r9	r17	-159.0699364	-179.5882421	28.1506439	-151.9067486
r10	r18	-116.1850128	141.8709944	23.0951108	-111.5213098

Tabla B.50: Caso # 5 (OPF, w BESS, Bal, Pmax): ángulos de las corrientes

B.6. Caso # 6 (OPF, w BESS, Bal, Curt)

Tabla B.51: Caso #6 (OPF, w BESS, Bal, Curt): pérdidas

Losses (W) 280.3467768935152

Tabla B.52: Caso#6 (OPF, w BESS, Bal, Curt): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	894.7902691	6858.7875492	1241.1174827
Slack <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r0	-3917.6511102	-874.2398951	2769.0276500
Slack i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	4018.5370282	6914.2795748	3034.4499884
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
rO	-0.2226657	-0.9919743	0.4090090

Generator i	$P_a(W)$	$P_b(W)$	$P_c(W)$
r10	2277.5196215	2277.5196215	2277.5196215
r15	1833.3333516	1833.3333516	1833.3333516
r16	1333.3333465	1333.3333465	1333.3333465
r18	1000.0000096	1000.0000096	1000.0000096
r6	6404.3641628	6404.3641628	6404.3641628
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	1411.4798910	1411.4798910	1411.4798910
r15	3260.1125656	3260.1125656	3260.1125656
r16	1507.5749580	1507.5749580	1507.5749580
r18	312.1041777	312.1041777	312.1041777
r6	3969.0684310	3969.0684310	3969.0684310
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	2679.4348488	2679.4348488	2679.4348488
r15	3740.2466654	3740.2466654	3740.2466654
r16	2012.6003247	2012.6003247	2012.6003247
r18	1047.5729268	1047.5729268	1047.5729268
r6	7534.5460739	7534.5460739	7534.5460739
Generator i	$cos(\varphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	0.8500000	0.8500000	0.8500000
r15	0.4901638	0.4901638	0.4901638
r16	0.6624929	0.6624929	0.6624929
r18	0.9545875	0.9545875	0.9545875
r6	0.8500000	0.8500000	0.8500000

Tabla B.53: Caso#6 (OPF, w BESS, Bal, Curt): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r11	997.5000000	2000.7000000	2701.8000000
r15	4800.0000000	6393.6000000	8006.4000000
r16	4800.0000000	6393.6000000	8006.4000000
r17	0.0000000	0.0000000	2700.0000000
r18	1601.6000000	3203.2000000	3995.2000000
Load i	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$
r11	0.8500000	0.8500000	0.8500000
r15	0.8500000	0.8500000	0.8500000
r16	0.8500000	0.8500000	0.8500000
r17	-1.0000000	-1.0000000	0.8500000
r18	0.8500000	0.8500000	0.8500000

Tabla B.54: Caso # 6 (OPF, w BESS, Bal, Curt): potencias consumidas

Nodo	VUF_2	VUF ₀
r0	0.0000000	0.0000000
r1	0.0003188	0.0018554
r2	0.0006208	0.0022989
r3	0.0009896	0.0027428
r4	0.0013335	0.0031377
r5	0.0016111	0.0034372
r6	0.0018895	0.0037367
r7	0.0020476	0.0039161
r8	0.0022058	0.0040957
r9	0.0023640	0.0042751
r10	0.0024470	0.0043574
r11	0.0011685	0.0029648
r12	0.0017808	0.0036232
r13	0.0022486	0.0041153
r14	0.0027276	0.0046126
r15	0.0031439	0.0050423
r16	0.0022710	0.0041485
r17	0.0027688	0.0045884
r18	0.0027163	0.0046815

Tabla B.55: Caso#6 (OPF, w
 BESS, Bal, Curt): factores de desequilibrio en tensiones

Tabla B.56: Caso#6 (OPF, w
 BESS, Bal, Curt): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	1.2579178	1.2562296
r2	r3	1.2579178	1.2562296
r3	r4	1.5525704	1.5527145
r4	r5	0.8313752	0.8383997
r5	r6	0.8313752	0.8383997
r6	r7	4.9528514	4.9710469
r7	r8	4.9528514	4.9710469
r8	r9	4.9528514	4.9710469
r9	r10	0.8833636	0.8857127
r3	r11	0.2642605	0.2610748
r4	r12	0.2637082	0.2590313
r12	r13	0.2637082	0.2590313
r13	r14	0.2637082	0.2590313
r14	r15	0.2637082	0.2590313
r6	r16	0.2133753	0.2075300
r9	r17	1.0000000	1.0000000
r10	r18	0.3723734	0.3639721

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	231.2854095	231.0623715	230.4688487	0.3841049
r2	231.3613798	230.9790215	230.2160097	0.0838279
r3	231.4373975	230.8956558	229.9631687	0.2267259
r4	231.5490566	230.8704837	229.7815889	0.4962507
r5	231.7236983	230.9437177	229.7282763	0.7026816
r6	231.8983442	231.0169518	229.6749647	0.9094771
r7	231.9458933	231.0185506	229.5904288	1.0329948
r8	231.9934425	231.0201506	229.5058949	1.1566645
r9	232.0407326	231.0220629	229.4213003	1.2805455
r10	232.0967755	231.0286593	229.4100241	1.3360087
r11	231.3341645	230.6991597	229.7031093	0.3782439
r12	231.2617315	230.4100924	229.1434148	0.8316103
r13	230.9744694	229.9497042	228.5052565	1.1719370
r14	230.6872704	229.4893193	227.8671138	1.5138847
r15	230.4411504	229.0947062	227.3201470	1.8075758
r16	231.5795018	230.5521852	229.0605026	1.1930286
r17	232.0332512	231.0180246	229.1581716	1.5150963
r18	232.0451641	230.8241157	229.1324744	1.5578018

Tabla B.57: Caso#6 (OPF, w
 BESS, Bal, Curt): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0635734	-179.9215961	59.9415570	-107.4086284
r2	-60.0822942	-179.9286304	59.9379446	-122.7057511
r3	-60.1010004	-179.9356663	59.9343181	83.8350061
r4	-60.1206220	-179.9449232	59.9291348	78.8240672
r5	-60.1283656	-179.9459435	59.9327781	77.0576090
r6	-60.1360977	-179.9469632	59.9364232	76.0938590
r7	-60.1356349	-179.9428614	59.9417957	75.3104269
r8	-60.1351723	-179.9387596	59.9471721	74.6944271
r9	-60.1347648	-179.9346855	59.9526364	74.2144278
r10	-60.1344850	-179.9326591	59.9558839	74.9818962
r11	-60.0891682	-179.9115994	59.9659930	78.0446240
r12	-60.1504806	-179.9516400	59.9440485	72.0224529
r13	-60.1804135	-179.9583837	59.9590456	69.1478985
r14	-60.2104209	-179.9651545	59.9741267	67.5693050
r15	-60.2362010	-179.9709796	59.9871207	66.6921157
r16	-60.1161150	-179.9074510	59.9940556	72.9025746
r17	-60.1346517	-179.9329278	59.9851730	66.9439258
r18	-60.1211283	-179.9003400	59.9977974	74.8990826

Tabla B.58: Caso#6 (OPF, w
 BESS, Bal, Curt): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	20.2669027	11.5567608	40.8148629	50.0287563
r2	r3	20.2669027	11.5567608	40.8148629	50.0277105
r3	r4	24.1844443	9.4926699	29.4792650	43.6823192
r4	r5	29.0500544	15.4230022	7.0978147	31.4905503
r5	r6	29.0500544	15.4230022	7.0978147	31.4905503
r6	r7	9.0493895	2.3899680	13.2580077	19.6517497
r7	r8	9.0493895	2.3899680	13.2580077	19.6517497
r8	r9	9.0493895	2.3899680	13.2580077	19.6643765
r9	r10	9.0493895	2.3899680	1.7683728	9.0883998
r3	r11	4.3066976	8.6693563	11.7805789	6.4587349
r4	r12	10.2049559	15.6770276	22.4519031	12.2755566
r12	r13	10.2049559	15.6770276	22.4519031	12.2755566
r13	r14	10.2049559	15.6770276	22.4519031	12.2755566
r14	r15	10.2049559	15.6770276	22.4519031	12.2755566
r6	r16	12.6090757	19.5034109	26.7945568	12.2016641
r9	r17	0.0000000	0.0000000	11.8600873	11.8453322
r10	r18	2.7569543	9.5328583	13.1453276	9.1901911

Tabla B.59: Caso#6 (OPF, w BESS, Bal, Curt): módulos de las corrientes

Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	61.0977905	-157.9004472	41.5116432	-126.2924079
r2	r3	61.0977905	-157.9004472	41.5116432	-126.2924830
r3	r4	65.7289403	-110.5001148	46.8111891	-127.7690390
r4	r5	85.2132301	-36.8058847	39.7670951	-129.9030460
r5	r6	85.2132301	-36.8058847	39.7670951	-129.9030460
r6	r7	94.9720204	-3.5448508	23.2005162	-134.4682083
r7	r8	94.9720204	-3.5448508	23.2005162	-134.4682083
r8	r9	94.9720204	-3.5448508	23.2005162	-134.4476802
r9	r10	94.9720204	-3.5448508	-12.1599487	-111.4287220
r3	r11	-91.9399453	148.3919103	28.1483385	-116.2559575
r4	r12	-42.5575828	178.7262207	49.0330193	-122.2745467
r12	r13	-42.5575828	178.7262207	49.0330193	-122.2745467
r13	r14	-42.5575828	178.7262207	49.0330193	-122.2745467
r14	r15	-42.5575828	178.7262207	49.0330193	-122.2745467
r6	r16	-80.7221091	155.9746157	33.5801609	-122.3981225
r9	r17	-98.6179672	-179.5882420	28.1506439	-151.9067486
r10	r18	-116.1850129	141.8709945	23.0951109	-111.5213098

Tabla B.60: Caso #6 (OPF, w BESS, Bal, Curt): ángulos de las corrientes

B.7. Caso # 7 (OPF, w BESS, Unbal, Pmax)

Tabla B.61: Caso # 7 (OPF, w BESS, Unbal, Pmax): pérdidas

Losses (W) 155.09769743670768

Tabla B.62: Caso # 7 (OPF, w BESS, Unbal, Pmax): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	2282.3716293	3734.7807779	2388.4782982
Slack <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r0	-787.8770572	-71.8496720	827.9598548
Slack i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	2414.5331871	3735.4718356	2527.9133889
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r0	-0.9452641	-0.9998150	0.9448418

Generator i	$P_a(W)$	$P_b(W)$	$P_c (W)$
r10	1310.9814558	1543.1035680	3488.1765619
r15	1043.2452161	1801.3597929	2655.3949910
r16	965.1172856	1374.1975959	1660.6851185
r18	0.0000034	1304.8667263	1695.1332703
r6	5305.9737588	6210.3045656	8650.9270820
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	812.4733350	956.3296999	2161.7776756
r15	1918.5239617	3339.3929712	2935.4507817
r16	585.3355645	1448.9515486	1103.0775076
r18	-30.7196096	557.1189852	1057.4613316
r6	3288.3471967	3848.8010943	5361.3630810
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	1542.3311245	1815.4159624	4103.7371316
r15	2183.8257193	3794.2644240	3958.2816790
r16			
110	1128.7466935	1996.9676068	1993.6536937
r18	1128.7466935 30.7196096	1996.9676068 1418.8230112	1993.6536937 1997.9242408
r18 r6	1128.7466935 30.7196096 6242.3220692	1996.9676068 1418.8230112 7306.2406654	1993.6536937 1997.9242408 10177.5612729
r18 r6 Generator <i>i</i>	$\begin{array}{c} 1128.7466935\\ 30.7196096\\ 6242.3220692\\ \hline cos(\varphi_a) \end{array}$	$ \begin{array}{c} 1996.9676068\\ 1418.8230112\\ 7306.2406654\\ \hline cos(\varphi_b) \end{array} $	$\begin{array}{c} 1993.6536937\\ 1997.9242408\\ 10177.5612729\\ \hline cos(\varphi_c) \end{array}$
r18 r6 Generator <i>i</i> r10	$\begin{array}{c} 1128.7466935\\ 30.7196096\\ 6242.3220692\\ \hline cos(\varphi_a)\\ 0.8500000\\ \end{array}$	$\begin{array}{c} 1996.9676068 \\ 1418.8230112 \\ 7306.2406654 \\ \hline cos(\varphi_b) \\ 0.8500000 \end{array}$	$\begin{array}{c} 1993.6536937\\ 1997.9242408\\ 10177.5612729\\ \hline cos(\varphi_c)\\ 0.8500000\\ \end{array}$
r18 r6 Generator <i>i</i> r10 r15	$\begin{array}{c} 1128.7466935\\ 30.7196096\\ 6242.3220692\\ \hline cos(\varphi_a)\\ 0.8500000\\ 0.4777145 \end{array}$	$\begin{array}{c} 1996.9676068\\ 1418.8230112\\ 7306.2406654\\ \hline cos(\varphi_b)\\ 0.8500000\\ 0.4747586\end{array}$	$\begin{array}{c} 1993.6536937\\ 1997.9242408\\ 10177.5612729\\ \hline cos(\varphi_c)\\ 0.8500000\\ 0.6708454 \end{array}$
r18 r6 Generator <i>i</i> r10 r15 r16	$\begin{array}{c} 1128.7466935\\ 30.7196096\\ 6242.3220692\\ \hline cos(\varphi_a)\\ 0.8500000\\ 0.4777145\\ 0.8550344 \end{array}$	$\begin{array}{c} 1996.9676068\\ 1418.8230112\\ 7306.2406654\\ \hline cos(\varphi_b)\\ 0.8500000\\ 0.4747586\\ 0.6881422 \end{array}$	$\begin{array}{c} 1993.6536937\\ 1997.9242408\\ 10177.5612729\\ \hline cos(\varphi_c)\\ 0.8500000\\ 0.6708454\\ 0.8329858 \end{array}$
r18 r6 Generator <i>i</i> r10 r15 r16 r18	$\begin{array}{c} 1128.7466935\\ 30.7196096\\ 6242.3220692\\ \hline cos(\varphi_a)\\ 0.8500000\\ 0.4777145\\ 0.8550344\\ -0.000001\\ \end{array}$	$\begin{array}{c} 1996.9676068\\ 1418.8230112\\ 7306.2406654\\ \hline \\ cos(\varphi_b)\\ 0.8500000\\ 0.4747586\\ 0.6881422\\ 0.9196825\\ \end{array}$	$ \begin{array}{c} 1993.6536937\\ 1997.9242408\\ 10177.5612729\\ \hline cos(\varphi_c)\\ 0.8500000\\ 0.6708454\\ 0.8329858\\ 0.8484472\\ \end{array} $

Tabla B.63: Caso # 7 (OPF, w BESS, Unbal, Pmax): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load <i>i</i>	$Q_a \ (var)$	$Q_b (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r11	997.5000000	2000.7000000	2701.8000000
r15	4800.0000000	6393.6000000	8006.4000000
r16	4800.0000000	6393.6000000	8006.4000000
r17	0.0000000	0.0000000	2700.0000000
r18	1601.6000000	3203.2000000	3995.2000000
Load <i>i</i>	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$
r11	0.8500000	0.8500000	0.8500000
r15	0.8500000	0.8500000	0.8500000
r16	0.8500000	0.8500000	0.8500000
r17	-1.0000000	-1.0000000	0.8500000
r18	0.8500000	0.8500000	0.8500000

Tabla B.64: Caso # 7 (OPF, w BESS, Unbal, Pmax): potencias consumidas

Tabla B.65: Caso # 7 (OPF, w BESS, Unbal, Pmax): factores de desequilibrio en tensiones

Nodo	VUF_2	VUF_0
r0	0.0000000	0.0000000
r1	0.0000771	0.0000909
r2	0.0001434	0.0001015
r3	0.0002206	0.0001124
r4	0.0002649	0.0001087
r5	0.0002666	0.0001007
r6	0.0002687	0.0001041
r7	0.0002768	0.0001094
r8	0.0002854	0.0001215
r9	0.0002945	0.0001387
r10	0.0002208	0.0000939
r11	0.0003999	0.0003180
r12	0.0005740	0.0002063
r13	0.0008946	0.0003045
r14	0.0012187	0.0004031
r15	0.0014982	0.0004880
r16	0.0006117	0.0002685
r17	0.0006911	0.0005497
r18	0.0002274	0.0001221

Tabla B.66: Caso # 7 (OPF, w BESS, Unbal, Pmax): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	0.3336715	0.0754375
r2	r3	0.3336715	0.0754375
r3	r4	0.2939181	0.1845233
r4	r5	0.0711170	0.1374635
r5	r6	0.0711170	0.1374635
r6	r7	0.6524099	1.0446559
r7	r8	0.6524099	1.0446559
r8	r9	0.6524099	1.0446559
r9	r10	1.1224977	0.9608615
r3	r11	0.2610538	0.2606472
r4	r12	0.1800970	0.0498394
r12	r13	0.1800970	0.0498394
r13	r14	0.1800970	0.0498394
r14	r15	0.1800970	0.0498394
r6	r16	0.1804944	0.1122025
r9	r17	1.0000000	1.0000000
r10	r18	0.0239601	0.0985031

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	230.9283233	230.9601365	230.8936438	0.0226186
r2	230.8750099	230.8897809	230.8034094	0.0171706
r3	230.8217037	230.8194367	230.7131728	0.0143235
r4	230.8041169	230.8072536	230.6939082	0.0214972
r5	230.8827914	230.8854785	230.7843594	0.0456789
r6	230.9614662	230.9637052	230.8748108	0.0698620
r7	230.9575649	230.9634790	230.8586154	0.0514194
r8	230.9536636	230.9632531	230.8424199	0.0345282
r9	230.9497668	230.9630175	230.8262301	0.0229312
r10	230.9548064	230.9670980	230.8825957	0.0614224
r11	230.7181073	230.6229906	230.4541491	0.1571120
r12	230.4013401	230.3508229	230.1635957	0.0648309
r13	229.9985694	229.8943984	229.6333299	0.1304732
r14	229.5958047	229.4379801	229.1031112	0.1972885
r15	229.2505826	229.0467693	228.6486757	0.2547942
r16	230.5914400	230.5065752	230.2967445	0.0999930
r17	230.9421122	230.9593159	230.5658846	0.2941428
r18	230.7947475	230.8028045	230.6922732	0.0103395

Tabla B.67: Caso # 7 (OPF, w BESS, Unbal, Pmax): módulos de las tensiones

Nodo	ϕ_a (°)	$\phi_b~(^\circ)$	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0136871	179.9864018	59.9887186	-165.7676665
r2	-60.0203842	179.9740046	59.9829582	177.2456213
r3	-60.0270852	179.9616010	59.9771928	149.7972377
r4	-60.0347090	179.9469733	59.9698827	-103.8749954
r5	-60.0367358	179.9418714	59.9681480	-103.2914669
r6	-60.0387613	179.9367729	59.9664147	-103.1119121
r7	-60.0385253	179.9387066	59.9667819	-96.1899948
r8	-60.0382894	179.9406402	59.9671492	-82.0764165
r9	-60.0380512	179.9425737	59.9675144	-48.8963025
r10	-60.0378781	179.9425167	59.9656342	-107.8377747
r11	-60.0152063	179.9857222	60.0086214	74.9630900
r12	-60.0254579	179.9376591	59.9956361	-16.4563702
r13	-60.0161743	179.9283079	60.0215084	-6.9825759
r14	-60.0068583	179.9189196	60.0475005	-3.8820474
r15	-59.9988470	179.9108426	60.0698754	-2.5217013
r16	-59.9949270	179.9782159	60.0338975	33.4869572
r17	-60.0379954	179.9442809	59.9994694	29.2198898
r18	-60.0180846	179.9690971	59.9881086	-81.9942904

Tabla B.68: Caso # 7 (OPF, w BESS, Unbal, Pmax): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	7.7016504	13.7348134	15.6625757	2.7402143
r2	r3	7.7016504	13.7348134	15.6625757	2.7401062
r3	r4	4.9322085	9.6164790	6.0208514	3.7378761
r4	r5	10.7831543	12.4145890	15.3399229	5.2942382
r5	r6	10.7831543	12.4145890	15.3399229	5.2942382
r6	r7	0.3491160	0.9230781	2.6114656	3.1811177
r7	r8	0.3491160	0.9230781	2.6114656	3.1811177
r8	r9	0.3491160	0.9230781	2.6114656	3.1809403
r9	r10	0.3491160	0.9230781	9.1120830	8.5488196
r3	r11	4.3213773	8.6736641	11.7315340	6.4429843
r4	r12	13.5191458	15.8451460	19.0065722	2.3895515
r12	r13	13.5191458	15.8451460	19.0065722	2.3895515
r13	r14	13.5191458	15.8451460	19.0065722	2.3895515
r14	r15	13.5191458	15.8451460	19.0065722	2.3895515
r6	r16	15.9209064	19.4763010	26.1245556	6.8929479
r9	r17	0.0000000	0.0000000	11.7231654	11.7194891
r10	r18	7.0108203	7.8561595	8.6575180	2.3139816

Tabla B.69: Caso # 7 (OPF, w BESS, Unbal, Pmax): módulos de las corrientes

Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-55.5567982	-167.7681404	47.5784208	-122.9723698
r2	r3	-55.5567982	-167.7681404	47.5784208	-122.9684917
r3	r4	-24.3332440	-128.9745631	87.8334614	69.0929082
r4	r5	89.0196771	-37.9018747	-153.1195552	45.5728779
r5	r6	89.0196771	-37.9018747	-153.1195552	45.5728779
r6	r7	-110.5242333	54.4912796	29.1139300	-147.8126164
r7	r8	-110.5242333	54.4912796	29.1139300	-147.8126164
r8	r9	-110.5242333	54.4912796	29.1139300	-147.8197038
r9	r10	-110.5242333	54.4912796	-151.9994087	26.7862014
r3	r11	-91.8311230	148.2350837	28.2102042	-116.0055512
r4	r12	-71.4111525	179.4564193	42.9577268	-173.0583316
r12	r13	-71.4111525	179.4564193	42.9577268	-173.0583316
r13	r14	-71.4111525	179.4564193	42.9577268	-173.0583316
r14	r15	-71.4111525	179.4564193	42.9577268	-173.0583316
r6	r16	-91.9777264	154.6946806	28.8549531	-133.2524057
r9	r17	-90.0000000	0.0000000	28.2485850	-151.7517197
r10	r18	-92.7301516	141.4057238	28.3699020	-119.6161148

Tabla B.70: Caso # 7 (OPF, w BESS, Unbal, Pmax): ángulos de las corrientes

B.8. Caso # 8 (OPF, w BESS, Unbal, Curt)

Tabla B.71: Caso # 8 (OPF, w BESS, Unbal, Curt): pérdidas

Losses (W) 155.09769646683708

Tabla B.72: Caso#8 (OPF, w BESS, Unbal, Curt): potencias en cabecera

Slack <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r0	2282.3716088	3734.7807659	2388.4782824
Slack <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r0	-787.8770438	-71.8496590	827.9598753
Slack <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r0	2414.5331634	3735.4718233	2527.9133807
Slack <i>i</i>	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r0	-0.9452641	-0.9998150	0.9448418

Generator i	$P_a(W)$	$P_b(W)$	$P_c (W)$
r10	1310.9814537	1543.1035420	3488.1765637
r15	1043.2452418	1801.3598126	2655.3950004
r16	965.1173147	1374.1976003	1660.6851241
r18	0.0000034	1304.8667556	1695.1332697
r6	5305.9737259	6210.3045543	8650.9270771
Generator i	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r10	812.4733337	956.3296837	2161.7776767
r15	1918.5239573	3339.3929762	2935.4507732
r16	585.3355723	1448.9515444	1103.0774991
r18	-30.7196095	557.1189964	1057.4613325
r6	3288.3471764	3848.8010873	5361.3630780
Generator i	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r10	1542.3311219	1815.4159318	4103.7371338
r15	2183.8257278	3794.2644378	3958.2816790
r16	1128.7467224	1996.9676068	1993.6536937
r18	30.7196095	1418.8230426	1997.9242408
r6	6242.3220305	7306.2406521	10177.5612672
Generator i	$cos(arphi_a)$	$cos(arphi_b)$	$cos(arphi_c)$
r10	0.8500000	0.8500000	0.8500000
r15	0.4777145	0.4747586	0.6708454
r16	0.8550344	0.6881422	0.8329858
r18	-0.0000001	0.9196825	0.8484472
r6	0.8500000	0.8500000	0.8500000

Tabla B.73: Caso#8 (OPF, w BESS, Unbal, Curt): potencias generadas

Load <i>i</i>	$P_a(W)$	$P_b(W)$	$P_c(W)$
r11	-847.8750000	-1700.5950000	-2296.5300000
r15	-4080.0000000	-5434.5600000	-6805.4400000
r16	-4080.0000000	-5434.5600000	-6805.4400000
r17	-0.0000000	-0.0000000	-2295.0000000
r18	-1361.3600000	-2722.7200000	-3395.9200000
Load <i>i</i>	$Q_a (var)$	$Q_b (var)$	$Q_c (var)$
r11	-525.4657309	-1053.9341232	-1423.2614655
r15	-2528.5569007	-3368.0377917	-4217.6329103
r16	-2528.5569007	-3368.0377917	-4217.6329103
r17	-0.0000000	-0.0000000	-1422.3132566
r18	-843.6951525	-1687.3903051	-2104.6021937
Load <i>i</i>	$S_a (VA)$	$S_b (VA)$	$S_c (VA)$
r11	997.5000000	2000.7000000	2701.8000000
r15	4800.0000000	6393.6000000	8006.4000000
r16	4800.0000000	6393.6000000	8006.4000000
r17	0.0000000	0.0000000	2700.0000000
r18	1601.6000000	3203.2000000	3995.2000000
Load <i>i</i>	$cos(arphi_a)$	$cos(\varphi_b)$	$cos(arphi_c)$
r11	0.8500000	0.8500000	0.8500000
r15	0.8500000	0.8500000	0.8500000
r16	0.8500000	0.8500000	0.8500000
r17	-1.0000000	-1.0000000	0.8500000
r18	0.8500000	0.8500000	0.8500000

Tabla B.74: Caso#8 (OPF, w BESS, Unbal, Curt): potencias consumidas

Tabla B.75: Caso # 8 (OPF, w BESS, Unbal, Curt): factores de desequilibrio en tensiones

Nodo	VUF_{2}	VUF_0	
rO	0.000000		
10	0.0000000	0.0000000	
rl	0.0000771	0.0000909	
r2	0.0001434	0.0001015	
r3	0.0002206	0.0001124	
r4	0.0002649	0.0001087	
r5	0.0002666	0.0001007	
r6	0.0002687	0.0001041	
r7	0.0002768	0.0001094	
r8	0.0002854	0.0001215	
r9	0.0002945	0.0001387	
r10	0.0002208	0.0000939	
r11	0.0003999	0.0003180	
r12	0.0005740	0.0002063	
r13	0.0008946	0.0003045	
r14	0.0012187	0.0004031	
r15	0.0014982	0.0004880	
r16	0.0006117	0.0002685	
r17	0.0006911	0.0005497	
r18	0.0002274	0.0001221	
Tabla B.76: Caso # 8 (OPF, w BESS, Unbal, Curt): factores de desequilibrio en intensidades

Nodo i	Nodo j	IUF_2	IUF_0
r1	r2	0.3336715	0.0754375
r2	r3	0.3336715	0.0754375
r3	r4	0.2939181	0.1845233
r4	r5	0.0711170	0.1374635
r5	r6	0.0711170	0.1374635
r6	r7	0.6524099	1.0446559
r7	r8	0.6524099	1.0446559
r8	r9	0.6524099	1.0446559
r9	r10	1.1224977	0.9608615
r3	r11	0.2610538	0.2606472
r4	r12	0.1800970	0.0498394
r12	r13	0.1800970	0.0498394
r13	r14	0.1800970	0.0498394
r14	r15	0.1800970	0.0498394
r6	r16	0.1804944	0.1122025
r9	r17	1.0000000	1.0000000
r10	r18	0.0239601	0.0985031

Nodo	$U_a (V)$	$U_b(V)$	$U_c(V)$	$U_n(V)$
r0	11547.0053838	11547.0053838	11547.0053838	
r1	230.9283233	230.9601365	230.8936438	0.0226186
r2	230.8750099	230.8897809	230.8034094	0.0171706
r3	230.8217037	230.8194367	230.7131728	0.0143235
r4	230.8041169	230.8072536	230.6939082	0.0214972
r5	230.8827914	230.8854785	230.7843594	0.0456789
r6	230.9614662	230.9637052	230.8748108	0.0698620
r7	230.9575649	230.9634790	230.8586154	0.0514194
r8	230.9536636	230.9632531	230.8424199	0.0345282
r9	230.9497668	230.9630175	230.8262301	0.0229312
r10	230.9548064	230.9670980	230.8825957	0.0614224
r11	230.7181073	230.6229906	230.4541491	0.1571120
r12	230.4013401	230.3508229	230.1635957	0.0648309
r13	229.9985694	229.8943985	229.6333299	0.1304732
r14	229.5958047	229.4379801	229.1031112	0.1972885
r15	229.2505826	229.0467693	228.6486757	0.2547942
r16	230.5914400	230.5065752	230.2967445	0.0999930
r17	230.9421122	230.9593159	230.5658846	0.2941428
r18	230.7947475	230.8028045	230.6922732	0.0103395

Tabla B.77: Caso # 8 (OPF, w BESS, Unbal, Curt): módulos de las tensiones

Nodo	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r0	-30.0000000	-150.0000000	90.0000000	
r1	-60.0136871	179.9864018	59.9887186	-165.7676662
r2	-60.0203842	179.9740046	59.9829582	177.2456215
r3	-60.0270852	179.9616010	59.9771928	149.7972379
r4	-60.0347090	179.9469733	59.9698827	-103.8749959
r5	-60.0367358	179.9418714	59.9681480	-103.2914673
r6	-60.0387613	179.9367729	59.9664147	-103.1119124
r7	-60.0385253	179.9387066	59.9667819	-96.1899953
r8	-60.0382894	179.9406402	59.9671492	-82.0764174
r9	-60.0380512	179.9425737	59.9675144	-48.8963034
r10	-60.0378781	179.9425167	59.9656342	-107.8377752
r11	-60.0152063	179.9857222	60.0086214	74.9630900
r12	-60.0254579	179.9376591	59.9956361	-16.4563696
r13	-60.0161743	179.9283079	60.0215084	-6.9825754
r14	-60.0068583	179.9189196	60.0475005	-3.8820469
r15	-59.9988470	179.9108426	60.0698754	-2.5217008
r16	-59.9949270	179.9782159	60.0338975	33.4869585
r17	-60.0379954	179.9442809	59.9994694	29.2198899
r18	-60.0180846	179.9690971	59.9881086	-81.9942762

Tabla B.78: Caso # 8 (OPF, w BESS, Unbal, Curt): ángulos de las tensiones

Nodo <i>i</i>	Nodo j	$I_a(A)$	$I_b(A)$	$I_c(A)$	$I_n(A)$
r1	r2	7.7016503	13.7348133	15.6625757	2.7402143
r2	r3	7.7016503	13.7348133	15.6625757	2.7401062
r3	r4	4.9322084	9.6164789	6.0208514	3.7378761
r4	r5	10.7831542	12.4145890	15.3399229	5.2942382
r5	r6	10.7831542	12.4145890	15.3399229	5.2942382
r6	r7	0.3491161	0.9230781	2.6114656	3.1811177
r7	r8	0.3491161	0.9230781	2.6114656	3.1811177
r8	r9	0.3491161	0.9230781	2.6114656	3.1809403
r9	r10	0.3491161	0.9230781	9.1120830	8.5488196
r3	r11	4.3213773	8.6736641	11.7315340	6.4429843
r4	r12	13.5191457	15.8451459	19.0065722	2.3895516
r12	r13	13.5191457	15.8451459	19.0065722	2.3895516
r13	r14	13.5191457	15.8451459	19.0065722	2.3895516
r14	r15	13.5191457	15.8451459	19.0065722	2.3895516
r6	r16	15.9209063	19.4763010	26.1245556	6.8929479
r9	r17	0.0000000	0.0000000	11.7231654	11.7194891
r10	r18	7.0108203	7.8561594	8.6575180	2.3139816

Tabla B.79: Caso # 8 (OPF, w BESS, Unbal, Curt): módulos de las corrientes

Nodo <i>i</i>	Nodo j	ϕ_a (°)	ϕ_b (°)	ϕ_c (°)	ϕ_n (°)
r1	r2	-55.5567988	-167.7681405	47.5784205	-122.9723698
r2	r3	-55.5567988	-167.7681405	47.5784205	-122.9684917
r3	r4	-24.3332442	-128.9745629	87.8334609	69.0929083
r4	r5	89.0196773	-37.9018745	-153.1195551	45.5728778
r5	r6	89.0196773	-37.9018745	-153.1195551	45.5728778
r6	r7	-110.5242327	54.4912797	29.1139301	-147.8126163
r7	r8	-110.5242327	54.4912797	29.1139301	-147.8126163
r8	r9	-110.5242327	54.4912797	29.1139301	-147.8197037
r9	r10	-110.5242327	54.4912797	-151.9994087	26.7862014
r3	r11	-91.8311230	148.2350837	28.2102042	-116.0055512
r4	r12	-71.4111527	179.4564194	42.9577267	-173.0583313
r12	r13	-71.4111527	179.4564194	42.9577267	-173.0583313
r13	r14	-71.4111527	179.4564194	42.9577267	-173.0583313
r14	r15	-71.4111527	179.4564194	42.9577267	-173.0583313
r6	r16	-91.9777265	154.6946805	28.8549530	-133.2524051
r9	r17	57.8602641	160.7682533	28.2485851	-151.7517197
r10	r18	-92.7301516	141.4057235	28.3699021	-119.6161181

Tabla B.80: Caso # 8 (OPF, w BESS, Unbal, Curt): ángulos de las corrientes

Bibliografía

- [1] S. Beharrysingh. Phase unabalance on low-voltage electricity networks and its mitigation using static balancers. *Ph.D. dissertation, Loughborough University, Leicestershire, United Kingdom*, 2014.
- [2] Kai Strunz, Ehsan Abbasi, Chad Abbey, Christophe Andrieu, Udaya Annakkage, Stefano Barsali, Ryan C. Campbell, Robert Fletcher, Feng Gao, Trevor Gaunt, Ani Gole, Nikos Hatziargyriou, Reza Iravani, Géza Joos, Hiroo Konishi, Maren Kuschke, Erkki Lakervi, Chen-Ching Liu, Jean Mahseredjian, Farid Mosallat, Dharshana Muthumuni, Antje Orths, Stavros Papathanassiou, Krzysztof Rudion, Zbigniew Styczynski, and Suresh C. Verma. Benchmark systems for network integration of renewable and distributed energy resources. CIGRE Task Force C6.04.02, 2013.
- [3] H. Lee Willis. Power distribution planning reference book. ABB, Inc., 2004.
- [4] A. Ghosh and G. Ledwich. In power quality enhancement using custom power devices. *Kluwer Academic Publishers*, 2002.
- [5] T.A. Short. In electric power distribution handbook. CRC Press, 2004.
- [6] M. Elnozahy and M. Salama. A comprehensive study of the impacts of phevs on residential distribution networks. *IEEE Transactions on Sustainable Energy*, 2014.
- [7] M. Gray and W. Morsi. Power quality assessment in distribution systems embedded with plug-in hybrid and battery electric vehicles. *IEEE Transactions on Power Systems*, 2015.
- [8] R. Shaw, J. Simpson, D. Randles, T. Gozel, and L.N. Ochoa. Performance evaluation of the monitored lv networks. *University of Manchester*, 2014.
- [9] S. Lu, S. Repo, D.D. Giustina, F.A.C. Figuerola, A. Löf, and M. Pikkarainen. Real-time low voltage network monitoring—ict architecture and field test experience. *IEEE Transactions on Smart Grid*, 2015.

- [10] S. Weckx, C. Gonzalez De Miguel, P. Vingerhoets, and J. Driesden. Phase switching and phase balancing to cope with a massive photovoltaic penetration. Proceedings of the 2013 International Conference and Exhibition on Electricity Distribution (CIRED), 2013.
- [11] F. Shahnia, P. Wolfs, and A. Ghosh. Voltage unbalance reduction in low voltage feeders by dynamic switching of residential customers among three phases. *Proceedings of the 2013 IEEE Power Energy Society General Meeting*, 2013.
- [12] P.K.C. Wong, A. Kalam, and R. Barr. Modelling and analysis of practical options to improve the hosting capacity of low voltage networks for embedded photovoltaiv generation. *IET Renowable Power Generation*, 2017.
- [13] The Claude Lyons Group. Tec static balancers. Available online: http://www.claudelyons.co.uk/products/transformers?id=139, (accessed on 9 August 2017).
- [14] W.M. Siti, A. Jimoh, and D. Nicolae. Distribution network phase load balancing as a combinatorial optimization problem using fuzzy logic and newton raphson. *Electric Power Systems Research*, 2011.
- [15] H. Beltran, N. Aparicio, E. Belenguer, and Cervelló C. García. Fuel cell connection inverters used for unbalance compensation in low voltage distribution systems. Proceedings of the 2008 International Conference on Renewable Energies and Power Quality (ICREPQ), 2008.
- [16] B. Meersman, B. Renders, L. Degroote, T. Vandoorn, and L. Vandevelde. Threephase inverter-connected dg-units and voltage unbalance. *Electric Power Systems Research*, 2011.
- [17] R. Caldon, M. Coppo, and R. Turri. Voltage unbalance compensation in lv networks with inverter interfaced distributed energy resources. *Proceedings of the* 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), 2012.
- [18] F. Geth, J. Tant, R. Belmans, and J. Driesen. Balanced and unbalanced inverter strategies in battery storage systems for low-voltage grid support. *IET Generation, Transmission Distribution*, 2015.
- [19] S. Weckx and J. Driesden. Load balancing with ev chargers and pv inverters in unbalanced distribution grids. *IEEE Transactions on Sustainable Energy*, 2015.
- [20] B. Meersman, B. Renders, L. Degroote, T. Vandoorn, and L. Vandevelde. The influence of grid-connected three-phase inverters on voltage unbalance. *Proceedings* of the 2010 IEEE Power Energy Society General Meeting, 2010.
- [21] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration. *Proceedings of the 2010 IEEE Power Energy Society General Meeting*, 2010.

- [22] B. Bletterie, S. Kadam, A. Zegers, and Z. Miletic. On the effectiveness of voltage control with pv inverters in unbalanced low voltage networks. *Proceedings* of the 2015 International Conference and Exhibition on Electricity Distribution (CIRED), 2015.
- [23] F. Shahnia, R. Majumder, A. Ghosh, G. Ledwich, and F. Zare. Voltage imbalance analysis in residential low voltage distribution networks with rooftop pvs. *Electric Power Systems Research*, 2011.
- [24] E. Dall'Anese, S. V. Dhople, and G. B. Giannakis. Optimal dispatch of photovoltaic inverters in residential distribution systems. *IEEE Transactions on Sustainable Energy*, 2014.
- [25] P. Sulc, S. Backhaus, and M. Chertkov. Optimal distributed control of reactive power via the alternating direction method of multipliers. *IEEE Transactions* on Energy Conversion, 2014.
- [26] E. Demirok, P. C. González, K. H. B. Frederiksen, D. Sera, P. Rodriguez, and R. Teodorescu. Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids. *IEEE Journal of Photovoltaics*, 2011.
- [27] P. Jahangiri and Aliprantis. Distributed volt/var control by pv inverters. IEEE Transactions on Power Systems, 2013.
- [28] X. Su, M. A. S. Masoum, and P. J. Wolfs. Optimal pv inverter reactive power control and real power curtailment to improve performance of unbalanced fourwire lv distribution networks. *IEEE Transactions on Sustainable Energy*, 2014.
- [29] J. Willems. Elektrische netten. Wetenschappelijke uitgeverij en boekhandel, Gent, 1978.
- [30] J.D. Glover and M.S. Sarma. Power system: Analysis and design. Brooks/Cole, Pacific Groove, California USA, 2015.
- [31] J. Peuteman. Lokale productie: enkelfasig of driefasig? Vlaams Elektro Innovatiecentrum VEI, Technologiewacht, 2010.
- [32] I. Richardson. Integrated high-resolution modelling of domestic electricity demand and low voltage electricity distribution networks. *Ph.D. Thesis, Loughbo*rough University, 2010.
- [33] Energy Networks Association. Engineering recommendation p29: Planning limits for voltage unbalance in the united kingdom. *London: Energy Networks Association*, 1990.
- [34] C. Tsai-Hsiang and Y. Wen-Chih. Analysis of multi-grounded four-wire distribution systems considering the neutral grounding. *Power Delivery*, *IEEE Transactions on vol.* 16 (4), 2001.

- [35] M. A. Taghikhani and M. Rafiei. Thermal coefficient measurements of typical distribution transformers operating under imbalance conditions. *Power Distribution Networks (EPDC)*, 16th Conference, 2011.
- [36] J. Desmet, D. Putman, F. D'hulster, and R. Belmans. Thermal analysis of the influence of nonlinear, unbalanced and asymmetric loads on current conducting capacity of lv-cables. *Power Tech Conference Proceedings*, *IEEE*, 2003.
- [37] L. Degroote, B. Renders, B. Meersman, and L. Vandevelde. Neutral-point shifting and voltage unbalance due to single-phase dg units in low voltage distribution networks. *IEEE PowerTech*, 2009.
- [38] M. Chindris, A. Cziker, A. Miron, and H. Bălan. Propagation of unbalance in electric power systems. *Electrical Power Quality and Utilisation*, 9th International Conference, 2007.
- [39] A. S. Anderson and R. C. Ruete. Voltage unbalance in delta secondaries serving single-phase and 3-phase loads. *Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, vol. 73*, 1954.
- [40] M.J.E. Alam, K. M. Muttaqi, and D. Sutanto. Community energy storage for neutral voltage rise mitigation in four-wire multigrounded ly feeders with unbalanced solar pv allocation. *IEEE Transactions on Smart Grid*, 2015.
- [41] K.T. Mok, S. S. Ho, S. H. Tan, and S.Y. Hui. A comprehensive analysis and control strategy for nullifying negative- and zero-sequence currents in an unabalnced three-phase power system using electric springs. *IEEE Transactions on Power Electronics*, 2017.