
Search-Based Model Transformations
with MOMoT

Martin Fleck1, Javier Troya2, and Manuel Wimmer1

1 Business Informatics Group, TU Wien, Vienna, Austria
{fleck,wimmer}@big.tuwien.ac.at

2 ISA Research Group, ETS de Ingenieŕıa Informática,
Universidad de Sevilla, Seville, Spain

jtroya@us.es

Abstract. Many scenarios require flexible model transformations as
their execution should of course produce models with the best possible
quality. At the same time, transformation problems often span a very
large search space with respect to possible transformation results. Thus,
guidance for transformation executions to find good solutions without
enumerating the complete search space is a must.

This paper presents MOMoT, a tool combining the power of model
transformation engines and meta-heuristics search algorithms. This
allows to develop model transformation rules as known from existing
approaches, but for guiding their execution, the transformation engi-
neers only have to specify transformation goals, and then the search
algorithms take care of orchestrating the set of transformation rules to
find models best fulfilling the stated, potentially conflicting transforma-
tion goals. For this, MOMoT allows to use a variety of different search
algorithms. MOMoT is available as an open-source Eclipse plug-in pro-
viding a non-intrusive integration of the Henshin graph transformation
framework and the MOEA search algorithm framework.

Keywords: Search-Based Software Engineering · Model
transformation · Henshin · MOEA

1 Introduction

Model transformations are the key technology to manipulate models in Model-
Driven Engineering (MDE) [4]. As the applicability of MDE is expanding in soft-
ware engineering and beyond, model transformations have to cope with many
challenges. One of these challenges is how to deal with the large search spaces of
many transformation problems. Of course, one approach is to develop problem-
specific heuristics which allow to deal with the associated search space without
having to enumerate all possible solutions, which is mostly not possible due
to practical space and time restrictions. However, finding such problem-specific
heuristics is challenging. Therefore, an alternative approach is the usage of meta-
heuristics that are problem-independent. This line is investigated by Search-
Based Software Engineering (SBSE) [11], which is a lively research field applying

search-based optimization techniques to software engineering problems. Search-
based optimization techniques deal with large or even infinite search spaces in
an efficient manner. Concrete algorithms include local search methods such as
Tabu Search [10] and Simulated Annealing [14], or genetic algorithms [12] such
as NSGA-II [6] and NSGA-III [5]. Especially in recent years, SBSE has been
applied successfully in the area of MDE [13]. Very recently, several approaches
have been proposed to provide more efficient search capabilities for model trans-
formations [1,8,9].

MOMoT is one of these emerging approaches and was first presented in [9]. It
is based on Henshin [2] as base model transformation framework and MOEA1 as
base meta-heuristic search framework. Thus, MOMoT combines different search
techniques with model transformations to produce output models that optimize
one or more potentially conflicting quality criteria. Reusing the existing func-
tionality of these base frameworks as much as possible is the central principle of
our framework. The MOEA framework is an open-source Java library that pro-
vides a set of multi-objective evolutionary algorithms with additional analytical
performance measures and that can be easily extended with new algorithms as
we have already done for introducing local searchers such as Hill Climbing [9].
While in the rest of the paper we discuss our framework in the light of Henshin
and MOEA, the conceptual approach itself is generic so that it may be used for
other framework cobminations.

MOMoT is the subject for the proposed tool demonstration. Therefore, in this
paper we highlight the integration of Henshin and MOEA from an architectural
viewpoint and show the concrete tool support for specifying search-based model
transformations by using the Search Configuration Modeling Language (SCML).

The remainder of this paper is structured as follows. First, we introduce
MOMoT based on its architecture and provided features in Sect. 2. Then, we
present the running example for this paper and the accompanying tool demon-
stration in Sect. 3. Section 4 illustrates how to configure the search at design
time, while Sect. 5 shows the runtime results obtained by MOMoT and how the
results are analyzed. Finally, Sect. 6 concludes this paper with an outlook on
future work.

2 Features and Architecture of MOMoT

MOMoT offers the following features for developing search-based model trans-
formations: (i) a generic way to describe the problem domain and the con-
crete problem instance, (ii) an encoding for the solution of the concrete problem
instance based on model transformation solutions, (iii) a random solution gen-
erator that is used for the generation of an initial, random individual or random
population, and (iv) a set of search-based algorithms to execute the search. To
further support the use of multi-objective evolutionary algorithms, we addition-
ally provide (v) generic objectives and constraints for our solution encoding,
(vi) generic mutation operators that can modify the respective solutions, and
1 http://www.moeaframework.org.

http://www.moeaframework.org

Fig. 1. Overview of MOMoT’s workflow

(vii) a configuration language that also provides feedback about the specified
search configuration. Since our approach combines MDE techniques with SBSE
techniques, the key building blocks are an environment to enable the creation of
metamodels and models, a model transformation engine and language to manip-
ulate those models and a set of meta-heuristic algorithms that perform a search
to find transformation orchestrations that optimize the given objectives and ful-
fil the specified constraints. Figure 1 shows the typical MOMoT workflow as well
as the involved artifacts which are explained in the following sections.

Fig. 2. MOMoTs architecture

To unify the MDE and SBSE worlds in a
single framework, we bridge the Eclise Mod-
eling Framework (EMF), the Henshin graph
transformation framework, and the MOEA
framework. For realizing the MOMoT’s SCML,
we build on the functionality of XBase for hav-
ing a model-based representation of search con-
figurations to provide dedicated support for
transformation engineers to make use of search-
based algorithms. The resulting technology stack is depicted in Fig. 2. The com-
plete source code of MOMoT with further explanations as well as the case studies
currently realized with MOMoT can be found on our project website2.

3 Running Example

In this section, we introduce the running example for demonstrating MOMoT.
We selected the example from the model quality assurance domain. It is well-
known that the quality of an object-oriented design has a direct impact on the
quality of the code produced. The Class Responsibility Assignment (CRA) prob-
lem [3] deals with the creation of such high-quality object-oriented models. When
solving the CRA problem, one has to decide where responsibilities, under the
form of class methods and attributes they manipulate, belong and how objects
should interact [15].

Modeling the CRA Problem . For this paper, we propose a simplified ver-
sion of the CRA problem. As given elements we have a set of methods and
attributes as well as dependencies between them. Such structure is also referred
to as responsibilities dependency graph (RDG). Based on the RDG, the goal is

2 http://martin-fleck.github.io/momot/.

http://martin-fleck.github.io/momot/

Fig. 3. RDG/CD metamodel. (Color figure online)

to generate a high-quality class diagram (CD). For this purpose, a RDG2CD
model transformation is needed to evolve a RDG into a CD. Figure 3 depicts
the metamodel that is used to represent both, the RDG and the CD. The RDG
is the subgraph of the metamodel containing only the features and their depen-
dencies (shown in black), while the additional class and relationships are needed
to produce a CD (shown in green).

Transformation Goals. The goal is to produce high-quality CDs from RDGs.
The CRA problem is a problem with a fast growing search space of potential
class partitions given by the Bell number Bn+1 =

∑n
k=0

(
n
k

)
Bk. Already starting

from a low number of features, the number of possible partitions is unsuitable
for exhaustive search, e.g., 15 features yields 190899322 possible ways to create
classes.

For determining the quality of the obtained CDs, we use two common met-
rics for considering the quality of grouping functionality into classes: coupling
and cohesion [3]. Coupling refers to the number of external dependencies a spe-
cific group has, whereas cohesion refers to the dependencies within one group.
Typically, low coupling is preferred as this indicates that a group covers sepa-
rate functionality aspects of a system. On the contrary, the cohesion within one
group should be maximized to ensure that it does not contain parts that are not
part of its functionality. Mapping these definitions to our problem, we can cal-
culate coupling and cohesion as the sum of external and internal dependencies,
respectively. The formulae to calculate all necessary metrics and values are given
below (taken from [15])3. Please note that M(c) and A(c) refer to all methods
and attributes of class c, respectively, and MMI(ci, cj) and MAI(ci, cj) indi-
cate the number of method-method and method-attribute interactions between
classes ci and cj , respectively.

CohesionRatio =
∑

ci∈Classes

MAI(ci, ci)
|M(ci)| × |A(ci)| +

MMI(ci, ci)
|M(ci)| × |M(ci) − 1|

CouplingRatio =
∑

ci,cj∈Classes
ci �=cj

MAI(ci, cj)
|M(ci)| × |A(cj)| +

MMI(ci, cj)
|M(ci)| × |M(cj) − 1|

3 Zero is assigned to the result of a division whenever its denominator is zero.

Summing up, the challenge of this case study is to find a way to properly orches-
trate transformation rules to optimize the quality of the produced CDs.

4 Developing Transformations with MOMoT

This section describes how transformations are developed with MOMoT based
on the CRA case study.

Transformation Rules. First, MOMoT reuses Henshin to develop the neces-
sary transformation rules. Furthermore, since in our approach we separate the
objectives from the rules, no further adaptations to those rules are necessary.
The rule required for the CRA case study is depicted in Fig. 44. As we start with
a random CRA solution which is improved by running the transformation, we
simply need one rule which is re-assigning the features between different classes.

Fig. 4. Implementation of the reassign rule in Henshin.

Objectives. In addition to the rules, the objectives for the transformation have
to be defined (cf. Listing 1.1). The calculation of the objective values given before
as mathematical formulae have been implemented in Java for computing the
coupling ratio and the cohesion ratio. An alternative provided by MOMoT as
well would be to use OCL directly in the objective definitions. We also provide
default objectives such as done for the solution length, i.e., the length of rule
application sequences of the computed solutions. Moreover, constraints may be
defined for determining the fitness of a solution. However, due to space restriction
we do not further show this aspect for this case study and refer the interested
reader to [9].

Listing 1.1. Specifying the Search Objectives

1 fitness = {
2 objectives = {
3 CouplingRatio : minimize { FitnessCalculator.calculateCoupling(root) }
4 CohesionRatio : maximize { FitnessCalculator.calculateCohesion(root) }
5 SolutionLength : minimize new TransformationLengthDimension } }

4 Please note that MOMoT supports different Henshin transformation units and more
complex transformations. However, for the purpose of the tool demonstration, we
simply use one transformation rule and put the emphasis on the MOMoT specific
features.

Search Configuration . After defining the objectives, the concrete search con-
figuration used to find solutions best fulfilling the objectives is needed. For tack-
ling this case study, we use three algorithms which are executed sequentially (cf.
Listing 1.2). Specifically, we use NSGA-III and ε-MOEA [7] for multi-objective
search which is needed as we have three partially conflicting objectives (cf. List-
ing 1.1). In addition, we use random search as a baseline comparison to demon-
strate the need for a meta-heuristic search. As we are using population-based
algorithms, we have to configure the population size for each generation as well as
the stopping criteria as maximum evaluations per run. As meta-heuristic search
includes some randomness, one may also define that the algorithms are executed
several times to allow to draw statistical conclusions about the performance of
the different algorithms.

Listing 1.2. Configuring the Search Algorithms and Parameters
1 algorithms = {
2 Random:moea.createRandomSearch()
3 NSGAIII:moea.createNSGAIII()
4 eMOEA:moea.createEpsilonMOEA()}

5 experiment = {
6 populationSize = 100
7 maxEvaluations = 10000
8 nrRuns = 30 }

5 Running and Analysing Transformations with MOMoT

In this section, we show how the developed MOMoT transformation is executed
and discuss the transformation’s output.

Transformation Input . The execution of MOMoT transformations are started
with dedicated run configurations that execute the compiled MOMoT search con-
figurations, as shown in Listing 1.3. Please note that input models are modeled in
EMF and encoded in XMI. In order to allow for an efficient search, a preprocess-
ing is possible to prepare an initial structure beneficial to perform the search (as
done for the CRA case study by adding some new classes with random feature
assignment) or to slice the model to reduce the memory consumption during the
search process.

Listing 1.3. Defining the Transformation Input and Preprocessing

1 model = {
2 file = "problem/Cart_Item.xmi"
3 adapt = { var cm = root as ClassModel
4 for(i:0 ..< cm.features.size - cm.classes.size) ... // add classes
5 for(feature : cm.features) ... // distribute features randomly
6 return cm } }

Transformation Results. MOMoT provides as transformation results: (i) the
set of orchestrated transformation sequences leading to (ii) the set of Pareto-
optimal output models with (iii) their respective objective values. The objective
values may give an overview of how well the objectives are optimized. Listing 1.4
provides an excerpt of this configuration, and in addition, shows how results may
be postprocessed and how specific solutions are selected.

Listing 1.4. Defining the Transformation Output and Postprocessing

1 results = {
2 adaptModels = { //remove empty classes
3 root.classes.removeAll(cm.classes.filter[c | c.encapsulates.size == 0])}
4 objectives = { outputFile = "output/objectives/objective_values.txt"}
5 solutions = { outputDirectory = "output/solutions/" }
6 models = { outputDirectory = "output/models/" }
7 models = { //select kneepoint models for further inspection
8 neighborhoodSize = maxNeighborhoodSize
9 outputDirectory = "output/models/kneepoints/"}}

Results Analysis. MOMoT produces additional analysis to give more insights
into the computed solutions and the relative algorithm performance (cf. List-
ing 1.5). For instance, we can statistically analyze dedicated performance indica-
tors, such as Hypervolume, to compare the performance of different algorithms.
This data can also be used to plot graphs to give a better overview about the
analysis.

Listing 1.5. Defining the Statistical Analysis Methods

1 analysis = {
2 indicators = [hypervolume invertedGenerationalDistance]
3 significance = 0.01
4 show = [aggregateValues statisticalSignificance individualValues] ...}

We use three algorithms in our case study, ε-MOEA, NSGA-III and Random
Search (RS), and execute each algorithm 30 times. The results of the analysis
are depicted in Fig. 5. We can clearly see that for the Hypervolume indicator, RS
has the lowest and therefore worst value, while ε-MOEA has the highest value.
A similar result is produced for the inverted generational distance, where lower
values are considered better. The fact that a meta-heuristic search outperforms
RS is a good indicator that the problem is suitable for SBSE techniques. In order
to investigate the results further, MOMoT provides several other features to test
and compare different algorithms [9].

(a) Hypervolume Indicator (b) Inverted Generational Distance

Fig. 5. Statistical analysis for the CRA case study results.

6 Conclusion and Future Work

In this paper we have shown the search capabilities of MOMoT for the CRA
problem. We also contribute a tool for the scientific community to perform
experimental research focusing on the usage of different meta-heuristic search
algorithms for MDE problems.

While we already provide a wide spectrum of different search algorithms for
orchestrating transformation rules, there is still room for future work. First, as
we currently provide different algorithms but not their combination, we plan to
incorporate Memetic Algorithms which allow for combined usage of global and
local searchers. Second, we would like to explore the combination of search-based
and approximate model transformations [16], i.e., how much precision may be
traded for performance.

References

1. Abdeen, H., Varró, D., Sahraoui, H.A., Nagy, A.S., Debreceni, C., Hegedüs, Á.,
Horváth, Á.: Multi-objective optimization in rule-based design space exploration.
In: Proceedings of ASE (2014)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Rouquette,
N., Haugen, Ø., Petriu, D.C. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 121–135. Springer, Heidelberg (2010)

3. Bowman, M., Briand, L., Labiche, Y.: Solving the class responsibility assignment
problem in object-oriented analysis with multi-objective genetic algorithms. IEEE
TSE 36(6), 817–837 (2010)

4. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool, San Rafael (2012)

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Deb, K., Mohan, M., Mishra, S.: A fast multi-objective evolutionary algorithm
for finding well-spread pareto-optimal solutions. Technical report, Indian Inst. of
Technology Kanpur (2003)

8. Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based model optimiza-
tion using model transformations. In: Amyot, D., Fonseca i Casas, P., Mussbacher,
G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 80–95. Springer, Heidelberg (2014)

9. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of NasBASE (2015)

10. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(5), 533–549 (1986)

11. Harman, M.: The current state and future of search based software engineering.
In: Proceedings of FOSE @ ICSE (2007)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge (1992)

13. Kessentini, M., Langer, P., Wimmer, M.: Searching models, modeling search: on
the synergies of SBSE and MDE. In: Proceedings of CMSBSE @ ICSE (2013)

14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

15. Masoud, H., Jalili, S.: A clustering-based model for class responsibility assignment
problem in object-oriented analysis. JSS 93, 110–131 (2014)

16. Troya, J., Wimmer, M., Burgueño, L., Vallecillo, A.: Towards approximate model
transformations. In: Proceedings of AMT @ MODELS (2014)

	Search-Based Model Transformations with MOMoT
	1 Introduction
	2 Features and Architecture of MOMoT
	3 Running Example
	4 Developing Transformations with MOMoT
	5 Running and Analysing Transformations with MOMoT
	6 Conclusion and Future Work
	References

