
On the Specification of Non-functional Properties of
Systems by Observation

Javier Troya, José E. Rivera, and Antonio Vallecillo

GISUM/Atenea Research Group. Universidad de Málaga, Spain
{javiertc,rivera,av}@lcc.uma.es

Abstract. Domain specific languages play a cornerstone role in Model-Driven
Engineering (MDE) for representing models and metamodels. So far, most of
the MDE community efforts have focused on the specification of the functional
properties of systems. However, the correct and complete specification of
some of their non-functional properties is critical in many important distributed
application domains, such as embedded systems, multimedia applications or
e-commerce services. In this paper we present an approach to specify QoS re-
quirements, based on the observation of the system actions and of the state of
its objects. We show how this approach can be used to extend languages which
specify behavior in terms of rules, and how QoS characteristics can be easily ex-
pressed and reused across models. We show as well how this approach enables
the specification of other important properties of systems, such as automatic re-
configuration of the system when some of the QoS properties change.

1 Introduction

Domain specific languages (DSLs) play a cornerstone role in Model-Driven Engineer-
ing (MDE) for representing models and metamodels. The Software Engineering com-
munity’s efforts have been progressively evolving from the specification of the struc-
tural aspects of a system to modeling its dynamics, a current hot topic in MDE. Thus, a
whole set of proposals already exist for modeling the structure and behavior of a system.
Their goal is not only to generate code, but also to conduct different kinds of analysis
on the system being modeled including, e.g., simulation, animation or model checking.

The correct and complete specification of a system also includes other aspects. In
particular, the specification and analysis of its non-functional properties, such as QoS
usage and management constraints (performance, reliability, etc.), is critical in many
important distributed application domains, such as embedded systems, multimedia ap-
plications or e-commerce services and applications.

In order to fill this gap, in the last few years the research has faced the challenge of
defining quantitative models for non-functional specification and validation from soft-
ware artifacts [2]. Several methodologies have been introduced, all sharing the idea
of annotating software models with data related to non functional aspects, and then
translating the annotated model into a model ready to be validated [3]. However, most

of these proposals specify QoS characteristics and constraints using a prescriptive ap-
proach, i.e., they annotate the models with a set of requirements on the behavior of
the system (response time, throughput, etc). These requirements state how the system
should behave. Examples of these approaches include the majority of the UML Profiles
for annotating UML models with QoS information, e.g., [4,5,6].

In this paper we present an alternative approach to specify QoS requirements, based
on the observation of the system actions and of the state of its constituent objects. We
show how this approach can be used to extend DSLs which specify behavior in terms of
rules (that describe the evolution of the modeled artifacts along some time model), and
how QoS characteristics can be easily expressed and reused across models. In particular,
we focus on performance and reliability characteristics.

We show as well how this approach enables the specification of other important
features of systems, such as the automatic reconfiguration of the system when the value
of some of the QoS properties change.

Finally, the approach has an additional benefit when it comes to generate the system
code. The “observers” that monitor the system behavior and compute the QoS metrics
can be used to generate the instrumentation code that monitors the actual behavior of
the system, too.

After this introduction, Section 2 briefly describes one proposal for modeling the
functional aspects of systems, which also contemplates time-dependent behavior. It
presents an example that will be used throughout the paper to illustrate our approach.
Section 3 introduces the main concepts of our proposal, and how they can be used to
specify QoS properties. In particular, we show how the throughput, jitter and mean-time
between failures of the system are specified. Then, Section 4 shows how the specifica-
tions produced can be used to analyse the system, to specify self-adaptation mecha-
nisms for alternative behaviors of the system, and to generate probes. Finally, Section 5
compares our work with other related proposals and Section 6 draws some conclusions.

2 Specifying Functional Properties

One way of specifying the dynamic behavior of a DSL is by describing the evolution of
the modeled artifacts along some time model. In MDE, this can be done using model
transformations supporting in-place update [7]. The behavior of the DSL is then speci-
fied in terms of the permitted actions, which are in turn modeled by the transformation
rules.

There are several approaches that propose in-place model transformations to deal
with the behavior of a DSL, from textual to graphical (see [8] for a brief survey). This
approach provides a very intuitive way to specify behavioral semantics, close to the
language of the domain expert and the right level of abstraction [9]. In-place transfor-
mations are composed of a set of rules, each of which represents a possible action of
the system. These rules are of the form l : [NAC]∗×LHS → RHS, where l is the rule’s
label (its name); and LHS (left-hand side), RHS (right-hand side), and NAC (negative
application conditions) are model patterns that represent certain (sub-)states of the sys-
tem. The LHS and NAC patterns express the precondition for the rule to be applied,
whereas the RHS one represents its postcondition, i.e., the effect of the corresponding

Fig. 1. Sound System metamodel

action. Thus, a rule can be applied, i.e., triggered, if an occurrence (or match) of the
LHS is found in the model and none of its NAC patterns occurs. Generally, if several
matches are found, one of them is non-deterministically selected and applied, produc-
ing a new model where the match is substituted by the appropriate instantiation of its
RHS pattern (the rule’s realization). The model transformation proceeds by applying
the rules in a non-deterministic order, until none is applicable — although this behavior
can be usually modified by some execution control mechanism [10].

In [11] we also showed how time-related attributes can be added to rules to rep-
resent features like duration, periodicity, etc. Moreover, we also included the explicit
representation of action executions, which describe actions currently executing.

We have two types of rules to specify time-dependent behavior, namely, atomic and
ongoing rules. Atomic rules represent atomic actions, with a specific duration. They
can be cancelled, but cannot be interrupted. Ongoing rules represent interruptible con-
tinuous actions. Atomic rules can be periodic, and atomic and ongoing rules can be
scheduled, or be given an execution interval, by rules’ lower and upper bounds.

A special kind of object, named Clock, represents the current global time elapse. This
allows designers to use it in their timed rules.

A running example

Let us show a very simple example to illustrate how the behavior of a system can be
modeled using our visual language. The system models the transmission of a sound
via a media, the Internet for instance. It consists of a soundmaker (e.g., a person) who,
periodically, transmits a sound to a microphone. This one is connected to a media (the
Internet), which transports the sound to a speaker. Finally, when the sound reaches the

Fig. 2. Initial model of the system

Fig. 3. GenSound rule

speaker, it is amplified. Fig. 1 shows the metamodel of the system. For the time being,
Coder and Decoder metaclasses can be ignored; they will be mentioned in Sect. 4. The
initial state of the system is shown in Fig. 2. The position of objects in the initial model
has been omitted for simplicity reasons.

In addition to the metamodel and the initial model of our system, we also need to
describe the behavior of the system. This is done in terms of the possible actions, which
in our proposal are represented by in-place transformation rules.

The GenSound periodic rule (Fig. 3) makes the soundmaker emit a sound every 3
time units. This rule makes use of an action execution element. This way, we explicitly
forbid the execution of the rule (see the NAC1 pattern) if the same soundmaker is emit-
ting another sound. This action execution states that the element sm (the soundmaker)
is participating in an execution of the rule GenSound, so the rule cannot be applied if
there is a match of this NAC. In the RHS, we can see that the sound is now in the micro-
phone, so it acquires its position. The sound has 20 decibels. The duration of the action
modeled by this rule is one time unit.

Fig. 4 shows the rule which makes the sound reach the speaker. As we can see in the
LHS pattern, this rule is executed when the microphone has a sound. This microphone

Fig. 4. SoundFlowSlow rule

Fig. 5. OverLoad rule

has to be connected to a media which should be, in turn, connected to a speaker. The
number of sounds that the media is currently transporting has to be lower than its ca-
pacity. When the rule is realized, the sound reaches the speaker (RHS pattern). When
this happens, the sound decibels are quadruplicated and the position of the sound is
changed to be the same as the position of the speaker. The time the media consumes in
transporting the sound (i.e., the time consumed by the rule) is given by the Manhattan
distance between the microphone and the speaker.

Fig. 5 shows the OverLoad rule. It is triggered when the soundmaker has produced
a sound which is now at the microphone, and the media is already transporting more
sounds than its capacity allows. Thus, the sound appearing in the LHS pattern cannot
be transported and it is lost (i.e., it is not included in the RHS pattern).

So far, these three rules are enough for modeling the behavior of this simple system.
Let us see now how to add QoS information to these specifications about the perfor-
mance and reliability properties of the system.

3 Specifying QoS Properties by Observation

The correct and complete specification of a system should include the specification and
analysis of its non-functional properties. An approach to specify QoS requirements,
based on the observation of the system actions and of the state of its constituent objects,
is presented in this section. In particular, we introduce three QoS parameters which have
to be updated with the passing of time.

– Throughput (th): The amount of work that can be performed or the amount of
output that can be produced by a system or component in a given period of time.
Throughput is defined as th = n/t , where n is the amount of work the system
has performed and t is the time the system has been working. The work the system
performs depends on the kind of system we are dealing with. In our example, it is
the number of successful packets transmitted.

– Mean time between failures (MTBF): the arithmetic mean (average) time between
failures of a system. MTBF = t/f , where t is the time the system has been working
and f is the number of failures of the system.

– Jitter (j): in the context of voice over IP, it is defined as a statistical variance of
the RTP data package inter-arrival time [12]. RTP (Real Transport Protocol) pro-
vides end-to-end network transport functions suitable for applications transmitting
real-time data, such as audio, video or simulation data, over multicast or unicast
network services. To estimate the jitter after we receive an i-th packet, we calculate
the change of inter-arrival time, divide it by 16 to reduce noise, and add it to the
previous jitter value. The division by 16 helps to reduce the influence of large ran-
dom changes. The formula used is: j (i) = j (i−1)+(| D(i−1, i) | −j (i−1))/16,
where j (i) is the current jitter value and j (i − 1) is the previous jitter value. In this
jitter estimator formula, the value D(i , j) is the difference of relative transit times
for the two packets. The difference is computed as D(i , j) = (Rj −Ri)−(Sj −Si),
where Sj (Sendj) is the time the package j appears in the system (that is, the time
at which it is sent by the transmitter) and Rj (Receivej) is the time the package
j leaves the system because it has been processed (that is, the time at which it is
received by the receiver).

3.1 Defining Observers

To calculate the value of these QoS properties we propose the use of observers. An
observer is an object whose objective is to monitor the value of one of these parameters.
We identify two kinds of observers, depending on whether they monitor specific objects
or the state and behavior system as a whole. In the first case, observers are created
with the objects they monitor, and destroyed with them. In the second case, observers
are present for the whole life of the system. As a first approach, we have created a
metamodel of observers (Fig. 6) with four observers, which inherit from an Observer
class. Each of them has a specific purpose:

– ThroughPutOb. Calculates the current value of throughput in the system, which
is stored in its variable tp. Attribute packages counts the number of successful
packages, i.e., those that have reached their destinations.

Fig. 6. Observers Metamodel

Fig. 7. Initial model of the system with observers

– MTBFOb. Calculates the MTBF of the system (mtbf attribute). Attribute fails stores
the number of lost packages.

– JitterOb. This is a general observer that is used to compute the jitter of the system.
It has three attributes: prevJitter contains the latest jitter value, prevTS stores the
time the latest package appeared in the system, and prevArrival stores the time the
latest package left the system.

– JitterIndOb. This observer has a reference to an EObject, which is at the top of the
class hierarchy. In this way, it can be associated to any of the elements of the Sound
System metamodel. In our example, this observer is associated to individual sounds.
It computes the jitter when its associated sound reaches its destination.

The idea for including observers in our system is to combine the two metamodels
(Fig. 1 and 6) to be able to use the defined observers in our sound system language. In
fact, since our modeling tool e-Motions [11] allows users to merge several metamod-
els in the definition of a DSVL behavior, we can define the Observers metamodel in a

Fig. 8. GenSound with observers

non-intrusive way, i.e., we do not need to modify the system metamodel to add ob-
servers in their rules. Furthermore, this approach also enables the reuse of observers
across different DSVLs.

Thus, we have added to the initial model depicted in Fig. 2 a set of initial observers
(see Fig. 7). They will be present throughout the execution of the system and their
values will be changing depending on the state of the system. The other elements are
the same as shown in Fig. 2.

3.2 Describing the Behavior of the Observers

Once the observers have been added to a system, we can define their behavior using the
rules described in Section 2. In this section we show how the throughput, jitter and mean
time between failures can be updated by means of the rules that specify the behavior of
the system.

In Fig. 8, an observer has been added to action GenSound. Now, the rule associates
a JitterIndOb observer to a newly generated sound. The time this sound appears in the
system is stored in attribute timeStamp. In Fig. 9, the MTBFOb observer has been added
to action OverLoad, to be able to update its attribute fails every time a sound disappears.

Fig. 10 shows how the value of the jitter is calculated when a sound reaches its
destination and how the number of successful packages is updated. As we can see, a
JitterIndOb observer is associated to the sound. Observers ThroughPutOb and JitterOb
appear in the LHS part of the rule. When the sound reaches the speaker (RHS part),
the number of successful packages of the system is increased. The jitter attribute of
the JitterIndOb associated to the sound is computed, using the value of its timeStamp
attribute and the three attributes of the JitterOb observer.

Fig. 9. OverLoad with observers

Fig. 10. SoundFlowSlow with observers

Fig. 11 shows an atomic rule which has been added to this new system with ob-
servers. It is triggered when a sound reaches the speaker, i.e., after the SoundFlowSlow
rule has been executed. In the LHS part, the JitterIndOb associated with the sound con-
tains the current jitter. This rule updates the values of the attributes of JitterOb in the
RHS part and makes the sound disappear (because it has reached its destination).

Fig. 12 shows an ongoing rule, required to calculate the throughput and MTBF of the
global system. It is an ongoing rule and therefore it progresses with time. In this way
both observers always store correct and up-to-date QoS values at any moment in time.

Fig. 11. New rule: ConsumeSound

Fig. 12. New rule: UpdateObservers

4 Making Use of the Observers

Apart from computing the QoS values for the system, observers can be very useful for
defining alternative behaviors of the system, depending on the QoS levels. For instance,
the system can self-adapt under certain conditions, since we are able to search for states
of the system in which some attributes of the observers take certain values.

Fig. 13 shows a rule where the media that transmits the sound changes when the
throughput value is less than a threshold value (1.5 in this case). In particular, we add
one coder and one decoder to the system. Thus, when there is a match of the LHS part,
the system self-adapts to accomplish the requirements.

Fig. 14 shows the behavior of the sound flow with the presence of coders and de-
coders. It is very similar to the SoundFlowSlow rule. The main difference is the time
both rules consume. This new rule, with the coder and decoder added to the system,
consumes half the time the other rule does. In this way, the throughput value increases
notably, improving the system performance.

Fig. 13. New rule: ChangeMedia

Fig. 14. SoundFlowFast with observers

Fig. 15. ChangeMedia2: Restoring the change made by ChangeMedia

Similarly, Fig. 15 shows a rule that specifies the opposite transformation. That is,
when the throughput goes above 1.5, the system returns to its original configuration.
In this way the configuration of the system can toggle between these two options, self-
adapting according to the overall performance.

5 Related Work

Several approaches have proposed a procedure for monitoring and measuring non-
functional properties of a system. Some of them are similar to the one presented here,
although all of them have a different focus. For example, Liao and Cohen [13] intro-
duced a high level program monitoring and measuring system which supported very
high level languages. In [14] and [15] they propose two frameworks for performance
measurement. In the first case, Mike et al. designed and implemented Pinpoint, a frame-
work for problem determination in Internet service environments. It was implemented
on top of the J2EE middleware platform, a network sniffer, and an analyzer based on
standard data clustering techniques. In the second one, Matthias Rohr et al. present
Kieker, which allows continuous monitoring, analysis, and visualization of Java ap-
plications. It supports to create Sequence Diagrams, Markov chains, Timing Diagrams,
and Component Dependency Graphs from monitoring data. Our approach contains sim-
ilar characteristics to these frameworks. On the one hand, it can be used to determine
problems in systems by looking up the state of the observers. In our example, the sound
system changed when the throughput was too low. On the other hand, our approach
allows continuous monitoring of the system, as observers are constantly updated.

Compilers supporting aspect-oriented programming (AOP), such as AspectJ [16] and
AspectC++ [17], may be considered source-level instrumentation tools. In AOP, it con-
cerns that cross-cut modules are factored out into modular aspects. AOP tools have
been used to instrument programs with debugging and monitoring code [18], as well
as to instrument programs with code to check temporal invariants [19]. As a shortcom-
ing, AOP techniques can only be applied at well-defined join points and can be used
for instrumentation only. With our approach, instead, non-functional parameters can be
measured at any time and at any point in the system. In addition, our proposal remains
at a very high level of abstraction, without being tied to any programming language or
concrete technology platform.

Observers are not a new concept. They have been defined in different proposals for
monitoring the execution of systems and to reason about some of their properties. For
example, the OMG defines different kinds of observers in the MARTE specification [6].
Among them, TimedObservers are conceptual entities that define requirements and pre-
dictions for measures defined on an interval between a pair of user-defined observed
events. They must be extended to define the measure that they collect (e.g., latency or
jitter), and aim at providing a powerful mechanism to annotate and compare timing con-
straints over UML models against timing predictions provided by analysis tools. In this
sense they are similar to our observers. The advantage of incorporating them into DSLs
using our approach is that we can also reason about their behavior, and not only use
them to describe requirements and constraints on models. In addition, we can use our
observers to dynamically change the system behavior, in contrast with the more “static”
nature of MARTE observers.

General frameworks for self-adaptive systems are presented in [20] and [21], fea-
turing inter-related monitoring, analysis and adaptation tiers. Diaconescu et al. [22]
add a transparent software layer between components and middleware. This framework
aligns with [20] and [21], while specifically targeting enterprise applications based on
contextual composition middleware. Our approach presents a way to make systems

self-adaptive as well, although we deal with the monitoring of QoS parameters using
observers at high level of abstraction, and again independently from the underlying
platform or language.

In both cases we see that our approach could be easily mapped to the ones mentioned
here, hence provided platform-independent models that could be transformed into these
platform-specific approaches, as we plan to do as part of our future work.

6 Conclusions and Future Work

The correct and complete specification of the non-functional properties of a system
is critical in many important distributed application domains. In this paper we have
presented a platform independent approach to specify QoS properties and requirements,
and shown its use to specify three of them: throughput, jitter and mean time between
failures. In particular, we have shown that the use of observers that monitor the state and
behavior of the system can be very useful to enrich some kinds of high-level behavioral
specifications with QoS information.

The QoS parameters calculated by observers can be used for many additional pur-
poses. We have shown how our approach can also serve to easily specify self-adaptive
behaviors depending on the values of the system QoS properties. Please also note that
our proposal is built on top of the underlying language (e-Motions [11] in this case),
hence allowing users to make use of all the analysis possibilities available for that envi-
ronment [10] for free. Another advantage of our proposal is that it can serve to monitor
not only the states of the objects of the system, but also their actions. The fact that
action executions are first-class citizens of the e-Motions visual language enables their
monitorization by our observers.

As part of our future work we would like to define additional observers, with the
advantage that once defined they can be re-used across models. For this purpose, we
would like to create libraries into e-Motions with these observers. This way, design-
ers could merge several metamodels: their original ones and the metamodels with ob-
servers provided by the libraries. This makes the designers tasks easier when including
QoS properties to their systems. We would also like to study the connection of these
specifications with other notations (e.g., SysML or MARTE) so that transformations
can be defined between them. In addition, we would also like to explore the automatic
instrumentation of the standard code generated by model-transformation approaches,
with the aim of being able to generate monitors and probes associated to the code, too.

Acknowledgements. The authors would like to thank the anonymous referees for their
insightful comments and very constructive suggestions. This work has been supported
by Spanish Research Projects TIN2008-031087 and P07-TIC-03184.

References

1. Troya, J., Rivera, J.E., Vallecillo, A.: On the specification of non-functional properties of sys-
tems by observation. In: Proc. of the 2nd International Workshop on Non-Functional Proper-
ties for DSMLs (NFPinDSML 2009), Denver, CO. CEUR Workshop Proceedings, vol. 553
(2009), http://CEUR-WS.org/Vol-553/paper1.pdf

2. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: A survey 30(5), 295–310 (2004)

http://CEUR-WS.org/Vol-553/paper1.pdf

3. Cortellessa, V., Marco, A.D., Inverardi, P.: Integrating performance and reliability analysis
in a non-functional MDA framework. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 57–71. Springer, Heidelberg (2007)

4. OMG: UML Profile for Schedulability, Performance, and Time Specification. OMG, Need-
ham (MA), USA (2005)

5. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms. OMG, Needham (MA), USA, ptc/04-09-01 (2004)

6. OMG: A UML Profile for MARTE: Modeling and Analyzing Real-Time and Embedded
Systems. OMG, Needham (MA), USA (2008)

7. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOPSLA
2003 Workshop on Generative Techniques in the Context of MDA (2003)

8. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral semantics
of visual modeling languages with Maude. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.)
SLE 2008. LNCS, vol. 5452, pp. 54–73. Springer, Heidelberg (2009)

9. de Lara, J., Vangheluwe, H.: Translating model simulators to analysis models. In: Fiadeiro,
J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 77–92. Springer, Heidelberg (2008)

10. Rivera, J.E., Vallecillo, A., Durán, F.: Formal specification and analysis of Domain Specific
Languages using Maude. Simulation: Transactions of the Society for Modeling and Simula-
tion International 85(11/12), 778–792 (2009)

11. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-dependent
behavior of DSLs. In: Proc. of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2009), Corvallis, Oregon (US). IEEE Computer Society, Los
Alamitos (2009)

12. Toncar, V.: VoIP Basics: About Jitter (2007),
http://toncar.cz/Tutorials/VoIP/VoIP_Basics_Jitter.html

13. Liao, Y., Cohen, D.: A specification approach to high level program monitoring and measur-
ing 18(11), 969–978 (1992)

14. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pintpoint: Problem determination in
large, dynamic internet services. In: Proceedings of the 2002 International Conference on De-
pendable Systems and Networks, pp. 595–604. IEEE Computer Society, Washington (2002)

15. Rohr, M., van Hoorn, A., Matevska, J., Sommer, N., Stoever, L., Giesecke, S., Hasselbring,
W.: Kieker: Continuous monitoring and on demand visualization of Java software behavior.
In: Proceedings of the IASTED International Conference on Software Engineering 2008, pp.
80–85. ACTA Press (2008)

16. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An overview
of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353. Springer,
Heidelberg (2001)

17. Spinczyk, O., Gal, A., Schroder-Preikschat, W.: AspectC++: an aspect-oriented extension to
the C++ programming language. In: Proc. of 40th International Conference on Tools Pacific,
pp. 53–60 (2002)

18. Mahrenholz, D., Spinczyk, O., Schroeder-Preikschat, W.: Program instrumentation for de-
bugging and monitoring with Aspectc++. In: Proc. of ISORC 2002, pp. 249–256 (2002)

19. Gibbs, T., Malloy, B.: Weaving aspects into C++ applications for validation of temporal
invariants. In: Proc. of SMR 2003 (2003)

20. Garlan, D., Cheng, S., Schmerl, B.: Increasing system dependability through architecture-
based self-repair. In: Architecting Dependable Systems. Springer, Heidelberg (2003)

21. Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-adaptive software. In:
IEEE Intelligent Systems (1999)

22. Diaconescu, A., Mos, A., Murphey, J.: Automatic performance management in component
based systems. In: Proc. of ICAC 2004, pp. 214–221 (2004)

http://toncar.cz/Tutorials/VoIP/VoIP_Basics_Jitter.html

	On the Specification of Non-functional Properties of Systems by Observation*
	Introduction
	Specifying Functional Properties
	Specifying QoS Properties by Observation
	Defining Observers
	Describing the Behavior of the Observers

	Making Use of the Observers
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

