
On the Reusable Specification of Non-functional
Properties in DSLs

Francisco Durán1, Steffen Zschaler2, and Javier Troya1

1 Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga

{duran,javiertc}@lcc.uma.es
2 Department of Informatics

King’s College London
szschaler@acm.org

Abstract. Domain-specific languages (DSLs) are an important tool for effective
system development. They provide concepts that are close to the problem do-
main and allow analysis as well as generation of full solution implementations.
However, this comes at the cost of having to develop a new language for every
new domain. To make their development efficient, we must be able to construct
DSLs as much as possible from reusable building blocks. In this paper, we dis-
cuss how such building blocks can be constructed for the specification and anal-
ysis of a range of non-functional properties, such as, for example, throughput,
response time, or reliability properties. We assume DSL semantics to be pro-
vided through a set of transformation rules, which enables a range of analyses
based on model checking. We demonstrate new concepts for defining language
modules for the specification of non-functional properties, show how these can
be integrated with base DSL specifications, and provide a number of syntactic
conditions that we prove maintain the semantics of the base DSL even in the
presence of non-functional–property specifications.

1 Introduction

Domain-specific languages (DSLs) are an important tool for reaping the proposed ben-
efits of model-driven engineering [1]. DSLs are languages based on concepts closer to
the problem domain than the technical solution. They are, therefore, a good way to al-
low domain-experts, who may lack programming skills, to construct or participate in
constructing substantial parts of new systems. In addition, because much more knowl-
edge of the domain is available when interpreting statements in a DSL, it is possible
to provide much more extensive code generation; this can enable complete generation
of running systems from a relatively simple DSL-based model [2]. However, for DSLs
to be effective, they may need to be implemented for very narrow domains [1], which
implies that a large number of DSLs needs to be implemented. This requires highly
efficient techniques for developing new DSLs, ideally based on an ability to reuse and
compose partial languages for new domains.

In the design of software systems, many researchers distinguish between functional
and non-functional properties (NFPs)—also sometimes referred to as extra-functional
properties or quality of service. While functional properties are constraints on what
the software system does, NFPs are constraints on how it does it—for example, how
much resources are used or how long it takes to process an individual request. NFPs
are important for the overall quality of a system, so they clearly need to be taken into
account throughout development. We need to be able to predict and analyse NFPs from
an early stage of development, so as to avoid costly re-design or re-implementation
at a later stage. When developing systems based on DSLs, these DSLs, consequently,
need to include an ability to express and analyse relevant NFPs. However, the analysis
of NFPs is difficult and usually requires substantial specialist expertise. Integrating an
ability to specify NFPs into DSLs can substantially increase the effort required to build
a DSL. In this paper, we propose a technique for allowing NFP specification to be
encapsulated into reusable DSL components. This way, the burden of specifying the
NFPs of DSLs is drastically reduced, and specialist expertise is mainly required when
the language component is constructed. Developing new DSLs capable of specifying
particular NFPs in the context of a particular domain then becomes a matter of weaving
in the NFP’s language component.

The e-Motions language and system allows the definition of visual DSLs and their se-
mantics through in-place model-transformation rules, providing support for their anal-
ysis through simulation or model checking in Maude [3]. In [4], Troya, Rivera, and
Vallecillo build on the ideas of the e-Motions framework [5, 6] to keep track of specific
NFPs by adding auxiliary objects to DSLs. However, their approach still requires the
NFP specification and analysis component to be redefined from scratch for every new
DSL. In this paper we build on their work, but aim to modularise the NFP part into
its own language component. To do so, we take inspiration from the work in [7] where
Zschaler introduced the notion of context models to provide an interface between TLA+

specifications of non-functional and functional properties. We will use parametrisation
over meta-models to achieve a similar effect for our language components. Specifically,
we present a formal framework for such language components, syntactic conditions for
their consistency and proofs of these conditions. We also present a basic prototype im-
plementing these ideas in the context of e-Motions. However, a full integration is not in
the scope of this current paper.

While our prototype and original motivation are for the case of e-Motions, both our
approach and formal framework are more general. They can be applied for any DSL
specification whose semantics are based on model transformations. Moreover, while
our work is clearly motivated from the need of modularising NFP specifications, the
formal framework covers arbitrary conservative extensions of such DSLs, guaranteeing
them to be spectative in the sense of [8].

The remainder of this paper is structured as follows: In Section 2, we discuss a de-
tailed motivating example to explain the vision of what we would like to achieve. Sec-
tion 3 then presents a formalisation of these ideas together with consistency conditions
and sketches of their proofs (see [9] for additional details on this). Section 4 briefly
discusses our initial prototype. Finally, Section 5 discusses related work followed by
conclusions and an outlook to future work in Section 6.

Fig. 1. Production line (a) metamodel and (b) concrete syntax (from [4])

2 Motivating Example

In this section, we present an example of what we want to achieve. This is based on
work presented by Troya, Rivera, and Vallecillo in [4]. Their work defines DSLs from
two parts: a meta-model of the language concepts and a set of transformation rules to
specify the behavioural semantics of the DSL.

Figure 1(a) shows the metamodel of a DSL for specifying production-line systems,
for producing hammers out of hammer heads and handles, which are generated in re-
spective machines, and transported along the production line via conveyors and trays.
As usual in MDE-based DSLs, this metamodel defines all the concepts of the language
and their interconnections; in short, it provides the language’s abstract syntax. In addi-
tion, a concrete syntax is provided. In the case of our example, this is sufficiently well
defined by providing icons for each concept (see Figure 1(b)); connections between
concepts are indicated through arrows connecting the corresponding icons.

Instances of this DSL are intended as token models [10]. That is, they describe a
specific situation and not the set of all possible situations (as is the case, e.g., for class
diagrams). The behavioural semantics of the DSL can, therefore, be given by specify-
ing how models can evolve; that is, what changes can occur in a particular situation.
This is specified through a set of model transformation rules. Figure 2 shows an ex-
ample of such a rule. The rule consists of a left-hand side matching a situation before
the execution of the rule and a right-hand side showing the result of applying the rule.1

Specifically, this rule shows how a new hammer is assembled: a hammer generator a

1 There are some other parts to the rule, but they are not relevant for our current discussion. For
a more detailed discussion, please refer to material on e-Motions [5, 6].

Fig. 2. Assemble rule indicating how a new hammer is assembled (from [4])

has an incoming tray of parts and is connected to an outgoing conveyor belt. Whenever
there is a handle and a head available, and there is space in the conveyor for at least
one part (specified by an OCL constraint in the left-hand side of the rule), the hammer
generator can assemble them into a hammer. The new hammer is added to the parts
set of the outgoing conveyor belt. The complete semantics of our production-line DSL
is constructed from a number of such rules covering all kinds of atomic steps that can
occur.2

For production line systems, we are interested in a number of non-functional prop-
erties. For example, we would like to assess the throughput of the product line or how
long it takes for a hammer to be produced.3 We can achieve this by extending our DSL
specification with observers [4]. Different from [4], here we suggest defining specifi-
cation languages for observers entirely separately from any specific DSL. We will use
the same mechanisms we used for defining the product line DSL to define a DSL that
enables us to specify throughput or production time of systems.

Figure 3(a) shows the meta-model for a DSL for specifying production time. Two
things should be noted about this meta-model:

2 The complete specification of the Production Line example can be found at
http://atenea.lcc.uma.es/E-motions/PLSExample.

3 We use this property as an example here. Other properties can be defined easily in a
similar vein as shown in [4] and on http://atenea.lcc.uma.es/index.php/
Main Page/Resources/E-motions/PLSObExample.

http://atenea.lcc.uma.es/E-motions/PLSExample
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/PLSObExample
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/PLSObExample

MMRespTime p Server, Queue,
Request

(a) Meta-model. (b) Concrete syntax.

Fig. 3. Meta-model and concrete syntax for response time observer

1. It defines no concept production time. Instead, it defines something called response
time, which is a more generic concept. Production time is really only meaningful in
the context of production systems. However, the general concept of response time
covers this sufficiently well.

2. It is a parametric model (i.e., a model template). The concepts of Server, Queue,
and Request and their interconnections are parameters of the meta-model, and
they are shaded in grey for illustration purposes. We use them to describe in which
situations response time can be specified, but these concepts will need to be mapped
to concrete concepts in a specific DSL.

Figure 3(b) shows the concrete syntax for the response time observer object. Whenever
that observer appears in a behavioural rule, it will be represented by that graphical
symbol.

Figure 4 shows an example transformation rule defining the semantics of the re-
sponse time observer. This states that if there is a server with an in queue and an out
queue and there initially are some requests (at least one) in the in queue, and the out
queue contains some requests after rule execution, the last response time should be
recorded to have been equal to the time it took the rule to execute. Similar rules need
to be written to capture other situations in which response time needs to be measured,
for example, where a request stays at a server for some time, or where a server does not
have an explicit in or out queue.

Note that the rule in Figure 4 looks different from the rule shown in Figure 2. This
is because the rule is actually a rule transformation, while Figure 2 is a transformation
rule. The upper part of Figure 4 (shaded in grey for illustration purposes) is a pattern or
query describing transformation rules that need to be extended to include response-time
accounting. The lower part describes the extensions that are required. So, in addition
to reading Figure 4 as a ‘normal’ transformation rule (as we have done in the previous
paragraph), we can also read it as a rule transformation stating: “Find all rules that match
the shaded pattern and add ResponseTime objects to their left and right-hand sides
as described.” In effect, observer models become higher-order transformations [11].

As the rules in observer models are rule transformations, we can allow some addi-
tional concepts to be expressed. For example, Figure 4 uses multiplicities to express that

Fig. 4. Sample response time rule

there may be an arbitrary number of requests (but at least one) associated with a queue.
This is not allowed in ‘normal’ transformation rules (there we need to explicitly show
each instance). However, using multiplicities allows expressing patterns to be matched
against transformation rules—a match is given by any rule that has the indicated number
of instances in its left- or right-hand side.

To use our response-time language to allow specification of production time of ham-
mers in our production-line DSL, we need to weave the two languages together. For
this, we need to provide a binding from the parameters of the response-time meta-model
(Figure 3(a)) to concepts in the production-line meta-model (Figure 1(a)). Specifically,
we bind:

– Server to Assemble as we are interested in measuring response time of this
particular machine;

– Queue to LimitedContainer as the Assemble machine is to be connected
to an arbitrary LimitedContainer for queuing incoming and outgoing parts;

– Request to Part as Assemble only does something when there are Parts to
be processed; and

– Associations:
• The in and out associations from Server to Queue are bound to the corre-

sponding in and out associations from Machine to Tray and Conveyor,
respectively; and

• The association from Queue to Request is bound to the association from
Container to Part.

Fig. 5. Woven meta-model for measuring production time of the hammer assembler (highlighting
added for illustration purposes)

Weaving the meta-models according to this binding produces the meta-model in Fig-
ure 5. The weaving process has added the ResponseTime concept to the meta-model.
Notice that the weaving process also ensures that only sensible woven meta-models can
be produced: for a given binding of parameters, there needs to be a match between the
constraints expressed in the observer meta-model and the DSL meta-model. We will
discuss this issue in more formal detail in Section 3.

The binding also enables us to execute the rule transformations specified in the ob-
server language. For example, the rule in Figure 2 matches the pattern in Figure 4, given
this binding: In the left-hand side, there is a Server (Assemble) with an in-Queue
(Tray) that holds two Requests (Handle and Head) and an out-Queue (Convey-
or). In the right-hand side, there is a Server (Assemble) with an in-Queue (Tray)
and an out-Queue (Conveyor) that holds one Request (Hammer). Consequently,
we can apply the rule transformation from Figure 4, which produces the rule shown in
Figure 6. This rule is equivalent to what would have been written manually.

Clearly, such a separation of concerns between a specification of the base DSL and
specifications of languages for non-functional properties is desirable. In the next sec-
tion, we discuss the formal framework required for this and how we can distinguish safe
bindings from unsafe ones.

3 Formal Framework

Graph transformation [12] is a formal, graphical and natural way of expressing graph
manipulation based on rules. In graph-based modelling (and meta-modelling), graphs
are used to define the static structures, such as class and object ones, which represent

Fig. 6. Result of weaving Figure 2 and Figure 4

visual alphabets and sentences over them. We formalise our approach using the typed
graph transformation approach, specifically the Double Pushout (DPO) algebraic ap-
proach, with positive and negative application conditions [13]. Our graphs are, in par-
ticular, typed attributed graphs [14]. We however carry on our formalisation for weak
adhesive high-level replacement (HLR) categories (see [15]).

The concepts of adhesive and (weak) adhesive HLR categories abstract the foun-
dations of a general class of models, and comes together with a collection of general
semantic techniques. Thus, e.g., given proofs for adhesive HLR categories of general
results such as the Local Church-Rosser, or the Parallelism and Concurrency Theorem,
they are automatically valid for any category which is proved an adhesive HLR cat-
egory. This framework has been a break-through for the DPO approach of algebraic
graph transformation, for which most main results can be proven in these categorical
frameworks, and instantiated to any HLR system. One of these cases is the one of in-
terest to us: the category of typed attributed graphs was proven to be an adhesive HLR
category in [14].

In this section, we present a formal framework of what it means to define specifi-
cation languages for non-functional properties separately to ‘normal’ DSLs, and in a
way that can be reused across such DSLs. To this end, we will first abstract away from
the concrete representation of languages and models in e-Motions [5, 6] that we have
used in Section 2. Instead, we will formally represent the key elements of which such
languages and models consist and the functions which are used to manipulate them.

MObs

MMObs RlsObs

MDSL

MMDSL RlsDSL

Binding

BMM BRls

MDSL

(MMDSL Binding MMObs) (RlsDSL Binding RlsObs)

Fig. 7. Architecture of the formal framework

Figure 7 provides a graphical overview of the formal framework we are proposing.
It can be seen that this consists of five parts:

1. MDSL: The specification of a DSL (without any notion of non-functional proper-
ties);

2. MObs : The specification of a language for modelling non-functional properties of
interest;

3. Binding: An artefact expressing how the parameters of MObs should be instantiated
with concepts from MDSL in order to weave the two languages;

4. ⊗: A function that performs the actual weaving; and
5. M

̂DSL
: A DSL that combines the specification of some functionality (as per MDSL)

and some non-functional properties (as per MObs).

3.1 The Models Involved and Their Relationships

Following the algebraic graph transformation approach, a DSL can be seen as a typed
graph grammar. A typed graph transformation system GTS = (TG , P) consists of
a type graph TG and a set of typed graph productions P . A typed graph grammar
GG = (GTS , S) consists of a typed graph transformation system GTS and a typed
start graph S. A language is then defined by the set of graphs reachable from S using
the transformation rules P .

Definition 1 (DSL) . The specification MX of a DSL X is given by a metamodel MMX ,
representing the structural concepts of the language, and a set of transformation rules
RlsX , defining its behavioural semantics. �

A metamodel is just a type graph, and a transformation rule associated to it is a graph
production typed over the type graph provided by such metamodel.

The languages MDSL and M
̂DSL

are DSL specifications. MObs is, essentially, also
a normal DSL specification. Notice that we assume a single observer model MObs for
each non-functional property. If we needed several of these properties, we could con-
sider MObs to be the combination of the specifications of these non-functional proper-
ties, or we could iterate the process by instantiating M

̂DSL
once obtained with a second

observers model MObs′ producing a resulting specification M
̂

̂DSL
, which could again

be instantiated by another observers model MObs′′ , etc.

Although MObs is, essentially, a normal DSL specification, it is however parame-
trised and has a dual interpretation:

1. As a specification language for non-functional properties; and
2. As a higher-order transformation specification [11] expressing how DSLs need to

be modified to enable the specification of a particular non-functional property.

Specifically, in the observer model MObs , we distinguish a parameter sub-model MPar

which specifies just enough information about real systems to define the semantics of
the non-functional property, but not more. This parameter sub-model MPar is a sub-
model of MObs in the sense that MMPar is a subgraph of MMObs , and each transfor-
mation rule in RlsPar is a sub-rule of a rule in RlsObs .

This notion of sub-model and that of binding are captured by the general notion of
DSL morphism, which can be defined as follows.

Definition 2 (DSL Morphism). Given DSL specifications MA and MB , a DSL mor-
phism MA → MB is a pair (δ, ω) where δ is a meta-model morphism MMA → MMB ,
that is, a mapping (or function) in which each class, attribute and association in the
meta-model MMA is mapped, respectively, to a class, attribute and association in MMB

such that

1. class maps in δ must be compatible with the inheritance relation, that is, if class C
inherits from class D in MMA, then δ(C) must inherit from class δ(D) in MMB ;

2. class maps and association maps in δ must be consistent, that is, the images of
the extremes of an association K in MMA must lead to classes associated by the
association δ(K);

3. attribute maps and class maps in δ must be consistent, that is, given an attribute a
of a class C, its image δ(a) must be an attribute of the class δ(C);

and where ω is a set of transformation rules such that for each rule r1 ∈ RlsA there is a
transformation rule σ : r1 → r2 for some r2 ∈ RlsB .

Rules r1 and r2 in a rule map σ : r1 → r2 must have the same time constraints
(ongoing or atomic, same duration, softness, periodicity, etc.). �

Definition 2 could be relaxed in several ways, e.g., condition 2 could be relaxed to allow
superclasses of the images of the extremes of an association K to be related by its image
δ(K); similarly for condition 3, since it could be that the attribute δ(a) is an attribute
inherited from some superclass of δ(C). However, we leave these relaxations, and a
study of their effects on the formal framework presented, to future work.

Note also that the role of the parameter model MPar is useful for establishing the
way in which the DSL’s metamodel and rules are to be modified. The binding DSL
morphism is key for it, since it says how the transformations are to be applied. An in-
clusion morphism (ι, ω) : MPar ↪→ MObs can be seen as a transformation rule, with the
binding indicating how such rule must be applied to modify the DSL system being in-
strumentalised. Specifically, the metamodel morphism ι : MMPar ↪→ MMObs indicates
how the metamodel MMDSL must be extended, and the family of higher-order trans-
formations (HOT) rules σi : r1,i ↪→ r2,i in ω indicate how the rules in RlsDSL must
be modified. Notice that these rule transformations match those presented in Section 2:

A transformation rule like the one in Figure 4 is interpreted as a rule transformation
where the parameter part (the shadowed sub-rule) is its left-hand side, and the entire
rule its right-hand side.

Since MPar is not intended for DSL specification, but only as constraints in the
different transformations involved, i.e., for matching, we can enrich its expressiveness,
for example, by allowing associations with multiplicity 1..n as in Figure 4. The left-
hand side of this HOT rule can in this way match rules whose queues have 1, 2, or any
number of request objects associated. Notice that this rule is woven with the Assemble
rule in Figure 2, which has a head and a handle associated to its in tray. It could be seen
as the inclusion and the binding happening on specific submodels, those defined by the
concrete match. We do not consider this additional flexibility in the formalisation below.
Notice however that the matches induce corresponding rules for which the formalisation
does work.

3.2 Model Weaving

MObs and MDSL are woven to produce a combined DSL, M
̂DSL

. This weaving is en-
coded as a function ⊗ : MObs × MDSL × Binding → M

̂DSL
, which is graphically

depicted in Figure 7. As indicated above, Binding is a DSL morphism, which expresses
how the parameters of MObs should be instantiated with concepts from MDSL in order
to weave the two languages. Intuitively, ⊗ works in two stages:

1. Binding stage. In this stage, Binding is used to produce an instantiated version of
MObs (and its parameter sub-model MPar), MObs′ = (MMObs′ ,RlsObs′), which is
the result of replacing each parameter element p ∈ MMPar by a corresponding
element from MMDSL in MObs in accordance with Binding. The resulting MMObs′

is used to construct the output meta-modelMM
̂DSL

= MMDSL �Binding MMObs′ .
The operator�Binding stands for disjoint union, where elements related by Binding

are identified and the rest are distinguished. Each rule σ′
i : r

′
1,i ↪→ r′2,i in RlsObs′ is

the result of a similar replacement of a rule σi : r1,i ↪→ r2,i in RlsObs .
2. Transformation stage. In this stage, RlsObs′ is used to transform RlsDSL. For each

inclusion morphism σ′
i : r

′
1,i ↪→ r′2,i, the corresponding rule r ∈ RlsDSL is identi-

fied and transformed according to σ′
i. This step produces Rls

̂DSL
.

Note that the rules and appropriate matches to apply the HOT rules should be guided
by Binding. Although there might be cases in which we can systematically apply the
HOT rules on the rules in RlsDSL, in general this is not the case. Note that each HOT
rule defined by a rule in RlsObs may be applicable to different rules in RlsDSL, and
for each of them there might be more than one match. Although there might be many
cases in which a partial binding might be enough, we however assume that the binding
is complete.

The semantics of the weaving operation, informally described above, is provided
by the pushout of DSL morphisms MPar ↪→ MObs and MPar ↪→ MDSL in the cat-
egory DSL of DSL specifications and DSL morphisms. Although the details of the
pushout construction can be found in [9], we sketch it here. Given DSL morphisms
(δ1, ω1) : A → B and (δ2, ω2) : A → C , with DSLs X = (MMX ,RlsX) for X = A,

B,C, the pushout object of (δ1, ω1) and (δ2, ω2) is, up to isomorphism, the DSL spec-
ification D = (MMD ,RlsD), together with DSL morphisms (δ′1, ω

′
1) : C → D and

(δ′2, ω′
2) : B → D, where δ′1 : MMC → MMD and δ′2 : MMB → MMD are the pushout

of δ1 : MMA → MMB and δ2 : MMA → MMC , and RlsD is the disjoint union of those
rules in RlsB and RlsC that are not targets of rules in RlsA, and the set of rules r̃A
resulting from the amalgamation of rule morphisms rA1 → rB2 in ω1 and rA1 → rC2 in
ω2 for all rules rA in RlsA. The rule injections from rules in RlsB and RlsC that are not
targets of rules in RlsA and the amalgamation-induced rule morphisms rB2 → r̃A and
rC2 → r̃A characterise the family of rule transformations ω′

2 (resp., ω′
1).

A
(δ2,ω2) ��

(δ1,ω1)

��
po

C

(δ′1,ω
′
1)

��
B

(δ′2,ω
′
2)

�� D

3.3 Semantic Consistency

The construction of Binding as a binding morphism (δ, ω) : MPar → MDSL ensures
basic syntactic consistency between the observer model and the DSL model to be wo-
ven. However, it does not ensure semantic consistency. We could, for instance, specify
a deadlock behaviour in the observers, changing the behaviour of the system DSL after
the weaving. While it will likely not be possible to provide sufficient conditions for
binding validity (see [7, pp. 9–11] for a discussion of the reasons), we should be able to
provide at least some necessary conditions. As a minimum, we require that the exten-
sion be conservative, not changing the very nature and behaviour of the original DSL,
namely:

M
̂DSL

|MMDSL
∼= MDSL (1)

We use M
̂DSL

|MMDSL
to denote the language specification that results from removing

any non-MMDSL elements from the meta-model and rule set of M
̂DSL

. Essentially, we
mean to say that adding observers does not change the basic structure and behaviour de-
fined by MDSL. This is the typical condition one would expect in this kind of situations,
and has been established in many different contexts before—perhaps first in [16].

Condition (1) is too hard to check directly, and therefore we need simpler, if possible
syntactic, conditions implying it. If we break (1) down into conditions for the meta-
model and the rule component of M

̂DSL
, we get the following two conditions:

MM
̂DSL

|MMDSL
∼= MMDSL (2)

Π
(
Rls

̂DSL

) |MMDSL
∼=stuttering Π (RlsDSL) (3)

We have again used the restriction operator |MMDSL
, although in this case applied both to

meta-models and traces, but with the same effect, namely, removing any non-MMDSL

elements (both from the meta-model MM
̂DSL

and rules in Rls
̂DSL

). Π (RlsX) denotes
the set of behaviours (possible executions, or traces) modelled by the transformation
rules of a DSL X ; that is, the set of all (potentially infinite) traces of model states

as rewritten by these transformation rules. For traces, we use ∼=stuttering to explicitly
state that the traces in Π

(
Rls

̂DSL

) |MMDSL
may in fact have more steps than those in

Π (RlsDSL), but because of the restriction down to MMDSL, these remaining extra steps
should all be identities (stuttering steps).

The above conditions (2) and (3) could only be checked by performing the weaving
and analysing the result. However, both the weaving and the checking on the resulting
specification are potentially expensive. Instead, we want to check the safety of an ob-
server model and a binding morphism simply by looking at the models themselves with-
out having to perform the weave. We are, therefore, looking for conditions on MObs and
the binding morphism, if possible syntactic, so that they can be automated, or at least,
performed once and for all. We in fact claim that analysing MObs , and simple syntactic
conditions on the parameter inclusions MPar ↪→ MObs and on the instantiating binding
(δ, ω) : MPar → MDSL are sufficient to imply the satisfaction of (2) and (3).

We first discuss conditions for the structural part encoded in MMObs , and then dis-
cuss the behavioural semantics.

Structural Conditions. In any adhesive category, the pushout of a monomorphism along
any map is a monomorphism [17, Proposition 2.1]. Therefore, since MMPar → MMObs

is a monomorphism, the induced morphism MMDSL → MM
̂DSL

is also a monomor-
phism. Notice that in addition to new classifiers, attributes and associations involving
observers, new attributes for classes in MMPar and new associations between classes
in MMPar may be introduced in MMObs . This might be convenient for modelling some
NFPs and does not cause problems from a semantic point of view.

Behavioural Conditions. We need to ensure that adding observers to a DSL specifica-
tion does not prevent any behaviour of any instance of that DSL that was previously
allowed, and, moreover, that no new behaviours are added.

It can be shown that we can have (3) by imposing a similar condition on the mor-
phism MPar → MObs . More precisely, it can be shown that

Π (RlsObs) |MMPar ≡stuttering Π (RlsPar) (4)

implies

Π
(
Rls

̂DSL

) |MMDSL
≡stuttering Π (RlsDSL)

We still need methods for checking (4). The formalisation of the construction in [9]
suggests some ideas in this direction, but we leave it as future work.

4 A Prototypical Implementation

For the implementation of our prototype we have used ATL [18], a hybrid model trans-
formation domain specific language that contains a mixture of declarative and impera-
tive constructs. ATL transformations are unidirectional, operating on read-only source

Fig. 8. Correspondences meta-model

models and producing write-only target models. During the execution of a transfor-
mation, source models may be navigated but changes are not allowed. Target models
cannot be navigated.

Following the proposal presented in Figure 7, we have split the binding process in
two ATL transformations: one for weaving the meta-models, MMDSL and MMObs , and
another one for weaving the behavioural rules, RlsDSL and RlsObs . In our example, the
former produces the meta-model shown in Figure 5, while the latter produces the woven
rule depicted in Figure 6 (plus the remaining rules in RlsDSL). For the remainder of this
section, let us clarify that by binding we mean the relations established between two
models. As for correspondence(s) and matching(s), we use them indistinctly when we
refer to one or more specific relations among the concepts in both models (either DSL
and observer meta-models or DSL and observer behavioural rules).

The binding between MDSL and MObs is given by a model that conforms to the
correspondences meta-model shown in Figure 8. Thus, both bindings, between meta-
models and between behavioural rules, are given in the same model. For the binding
between meta-models (Figures 1(a) and 3(a) in our example), we have the classes
MMMatching, ClassMatching and RefMatching that specify it. We will have
one object of type MMMatching for each pair of meta-models that we want to weave.
In our example, we have one object of this type, and its attributes contain the names of
the meta-models to weave. Objects of type MMMatching contain as many classes
(objects of type ClassMatching) as there are correspondences between classes in
both meta-models. Each object of type ClassMatching stores the names of the
classes in both meta-models that correspond. We have three objects of this type, as
described in Section 2. Regarding the objects of type RefMatching, contained in the
refs reference from MMMatching, they store the matchings between references in
both meta-models. Attributes obClassName and DSLClassName keep the names
of the source classes, while obRefName and DSLRefName contain the names of the
references. Once again, and as described in Section 2, there are three objects of this
type in our example.

WeaveMetaModels.atl

BMM

MMDSL

MMObs

GCSDSL

GCSObs

RlsDSL

RlsObs

BRls

MMDSL

GCSDSL

RlsDSLWeaveBeh.atl

Fig. 9. Transformations schema

Regarding the binding between rules (RlsDSL and RlsObs), there is an object of type
RuleMatching for each pair of rules to weave, so in our example there is only one.
It contains the names of both rules (Assemble and RespTime). Objects of types
ObjectMatching and LinkMatching contain the correspondences between ob-
jects and links, respectively, in the rules. Concretely, our correspondence models differ-
entiate between the bindings established between left- and right-hand side in rules, as
we describe later. In our behavioural rules described within e-Motions, which conform
to the Behavior meta-model (presented in [5]), the objects representing instances of
classes are of type Object and they are identified by their id attribute, and the links
between them are of type Link, identified by their name, input and output objects. Sim-
ilar to the binding between meta-models, objects of type ObjectMatching contain
the identifier of the objects matching, and instances of LinkMatching store informa-
tion about matchings between links (they store the identifier of the source classes of the
links as well as the name of the links). The correspondences between rules Assemble
and RespTime are those described at the end of Section 2.

A detailed documentation of the weaving process, performed by two ATL trans-
formations, is available in [19]. Here, we limit ourselves to a high-level overview of
the transformation architecture. As shown in Figure 9, we have split the overall weav-
ing function into two model transformations, one for weaving the metamodels and the
other for weaving the rules. Apart from the models already presented in Figure 7, GCS
models (graphical concrete syntax) also take part in the transformations. They store in-
formation about the concrete syntax of DSL and observer models. Both transformations
work in two stages to ensure the original DSL semantics are preserved. First, they copy
the original DSL model into the output model. Second, any additions from the observer
model are performed according to the binding information from the weaving model.

The first transformation, named WeaveMetaModels.atl, deals with the weave
of meta-models and GCSmodels. In the first step, the transformation copies both models
from the DSL into the output models. Next, it decorates the models created with the con-
cepts from the observer meta-model and GCS model. Regarding the output meta-model,
it adds the classes, references and attributes representing observers. In our example this

means inserting the ResponseTime class, adding its attributes and establishing the
respTime reference among Assemble and ResponseTime classes. As for the
output GCS file, it means adding all the necessary data regarding the concrete syntax of
the ResponseTime class.

Between its inputs, the second transformation, WeaveBeh.atl, takes the models
produced by the first transformation. It performs in a similar way. The first step is to
copy all those rules from RlsDSL in the output model with the behavioural rules. Next,
those rules having correspondences with rules in RlsObs are decorated with observer
objects, links and attributes.

5 Related Work

We discuss related work in two areas: modelling of non-functional properties and mod-
ular language definition.

5.1 Modelling of Non-Functional Properties

Modelling and analysis of non-functional properties has been an active research area for
a substantial amount of time already. Our work is related to other work aiming to sup-
port specification of a wide range of non-functional properties—for example, languages
such as QML [20], CQML [21], CQML+ [22], or SLAng [23]. These languages take a
meta-modelling approach to the specification of non-functional properties in a two-step
process: In a first step, modellers specify non-functional characteristics—for example,
performance. These characteristics are then used in a second step to express constraints
over application models; that is, non-functional properties. This is similar to our ap-
proach: An observer model MObs effectively defines a non-functional characteristic.
A woven DSL M

̂DSL
can then be used to model non-functional properties. The ap-

proaches mentioned above differ in their amount of formal rigor (increasing from QML
to CQML+ and SLAng) and the type of systems they support (all except SLAng are
aimed at component-based systems; SLAng is meant for service-based systems). They
typically do not provide extensive support for analysis of the models created.

More formal renderings of these concepts can be found in [16] and [7]. The former
presents a formal encoding of real-time properties using so-called history-determined
variables, which are then used to model non-functional characteristics that depend on
time. [7] extends this to a formal framework for specifying non-functional properties
of component-based systems. While these approaches can potentially enable proofs of
non-functional properties, it is not clear how well they are suited to predictive analysis
of system properties—for example through simulation.

The approach by Troya and Vallecillo [4] aims to address this issue by providing
a specification based on observers and transformations. This enables predictive anal-
ysis through simulation based on an encoding in e-Motions [5, 6], which is translated
into Maude. However, their approach requires the details of a non-functional character-
istic to be redefined completely for each DSL. Our proposal is an extension of this work

using ideas from [7, 16] to separate the specification of non-functional characteristics
from that of the functional behavioural semantics of a DSL.

5.2 Modular Languages, Models, and Transformations

We propose to weave two language definitions: One language enables the (abstract)
specification of a set of non-functional properties while the second language focuses
entirely on specifying relevant behaviours in a particular domain. Below we briefly re-
view some related work in the general area of modular definition of languages, models,
and transformations. We discuss selected related work in three areas:

1. Modular definition of languages;
2. Modular definition of models; and
3. Modular definition of model transformations.

Modular Definition of Languages. There is a large body of work on modularly defin-
ing computer languages. Most of this work (e.g., [24–26]) deals with textual languages
and in particular with issues of composing context-free grammars. While the general
idea of language composition is relevant for our work, this specific strand of research is
perhaps less related and will, therefore, not be discussed in more detail.

For languages based on meta-modelling, there is much less research on language
composition. Much of the work on model composition (see next sub-section) is of
course of relevance as meta-models are models themselves. Christian Wende’s work
on role-based language composition [27] is an approach that specifically addresses the
modularisation of meta-models. For a language module, Wende’s work allows the def-
inition of a composition interface by allowing language designers to use two types of
meta-model concepts: meta-classes and meta-roles. Meta-classes are used as in normal
meta-modelling to express the core meta-model concepts. Meta-roles are like meta-
classes, however they actually represent concepts to be provided by another language—
including definitions of operations and attributes, which are left abstract in the meta-
role. Meta-roles are, thus, similar to our use of meta-model parameters in MMObs .
However, Wende’s work uses meta-class operations to provide an operational view on
language semantics, while we use model transformations to encode language semantics.

Modular Modelling. Our notation for expressing parametrised meta-models is based
on how UML expresses parametrised models. Similar notations have been used in
aspect-oriented modelling (AOM) approaches—for example, Theme/UML [28] or RAM
[29]. More generally, our language composition technique is based on the notion of
model weaving from AOM. Theme/UML, RAM, or Reuseware [30] are examples of
aspect-oriented modelling techniques, which are asymmetric [31]; that is, they make a
distinction between a base model and an aspect model (the model that is parametrised)
that is woven into the base model. This is also true of our approach: MDSL is the base
model and MObs is the model that is woven into it. There is an alternative approach to
AOM that is more symmetric and considers all models to be woven as equal. This is
typically based on identifying corresponding elements in different models and merging
these. Examples are UML package merge or signature-based merging [32]. Most types

of AOM also consider syntactic weaving only, disregarding the semantics of the mod-
ular models. In contrast, we explicitly consider the model semantics and povide formal
notions ensuring that the composition does not restrict the set of behaviours modelled
in the base DSL.

Modular Model Transformations. The semantics of the languages we are discussing
are expressed using model transformations. As such, work on modularising model
transformations is of relevance to our work. Generally, this work can be distinguished
into work on external and on internal modularisation of model transformations: The
former considers a complete model transformation as the unit of modularity, while
the latter aims to provide modularity inside individual transformations [33]. As we are
modifying the internals of the base transformation by adding in detail described in the
observer transformation rules, our approach is an internal modularisation technique.
Nonetheless, ideas from external composition approaches are of interest to us. In par-
ticular, the work on model typing and reusable model transformations presented in [34]
shows how the set of meta-model concepts effectively used by a model transformation
can be computed and how this can be used to make the transformations more reusable.
This is similar to the way in which we use the parametrised part of MMObs to make the
observer transformation rules more reusable and to adapt them to different DSLs.

6 Conclusions and Outlook

We have presented a formal framework for language components for the specification
of non-functional properties (NFPs) in domain-specific languages (DSLs). Specifically,
this enables language designers to encapsulate the semantics of particular NFPs in a
reusable language specification that can be woven into a base DSL specification to
produce a DSL that also enables the modelling and analysis of that particular NFP in the
context of a specific domain. We have presented conditions for the consistency of such
language components; in particular these ensure that weaving a language component
with a DSL does not add neither remove valid behaviours from the semantics of any
expressions in that DSL.

Our work makes a number of assumptions about the structure of the base DSL as well
as about the NFPs to be specified. In the future, we aim to reduce these assumptions to
provide a more general framework for the specification of NFPs in DSLs. Most im-
portantly, we will further study the cases where there is no simple alignment between
RlsObs and RlsDSL. This will require more powerful pattern-expression constructs in
RlsObs |MMPar

and a more complex weaving algorithm that allows observer rules to be
bound to multiple DSL rules and vice versa. Our current formalisation also does not
consider the effect of well-formedness rules defined for any of the DSLs involved, al-
though their addition should be relatively straightforward.

Acknowledments. We would like to thank Antonio Vallecillo for fruitful discussions
throughout the work on this paper, and to Fernando Orejas for his collaboration in the
development of the formalisation of the proposal. This work has been partially sup-
ported by Spanish Government Project TIN2011-23795.

References

1. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of MDE
in industry. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) Proc. 33rd Int’l Conf. on Soft-
ware Engineering (ICSE 2011), pp. 471–480. ACM (2011)

2. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model transfor-
mation: A case study in transformation modularity. Software and Systems Modelling 9(3),
375–402 (2010); Published on-line first at www.springerlink.com

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All
About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Hei-
delberg (2007)

4. Troya, J., Rivera, J.E., Vallecillo, A.: Simulating domain specific visual models by observa-
tion. In: Proc. 2010 Spring Simulation Multiconference (SpringSim 2010), pp. 128:1–128:8.
ACM, New York (2010)

5. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-dependent be-
havior of DSLs. In: Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2009, pp. 51–55. IEEE (2009)

6. Rivera, J.E., Durán, F., Vallecillo, A.: On the Behavioral Semantics of Real-Time Do-
main Specific Visual Languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381,
pp. 174–190. Springer, Heidelberg (2010)

7. Zschaler, S.: Formal specification of non-functional properties of component-based software
systems: A semantic framework and some applications thereof. Software and Systems Mod-
elling (SoSyM) 9, 161–201 (2009)

8. Katz, S.: Aspect Categories and Classes of Temporal Properties. In: Rashid, A., Akşit, M.
(eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 106–134. Springer, Heidelberg (2006)

9. Durán, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based system speci-
fications (submitted for publication, 2012)

10. Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5, 369–385 (2006)
11. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use of Higher-Order Model

Transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS,
vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

12. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tions. Foundations, vol. 1. World Scientific (1997)

13. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application
conditions: From graphs to high-level structures. Fundamenta Informaticae 74(1), 135–166
(2006)

14. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph Trans-
formation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Springer (2005)

16. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM ToPLaS 16(5),
1543–1571 (1994)

17. Lack, S.: An embedding theorem for adhesive categories. Theory and Applications of Cate-
gories 25(7), 180–188 (2011)

18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Science of
Computer Programming 72(1-2), 31–39 (2008)

19. Atenea: Reusable Specification of Observers (2012), http://atenea.lcc.uma.es/
index.php/Main Page/Resources/ReusableObservers

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/ReusableObservers
http://atenea.lcc.uma.es/index.php/Main_Page/Resources/ReusableObservers

20. Frolund, S., Koistinen, J.: QML: A language for quality of service specification. Technical
Report HPL-98-10, Hewlett-Packard Laboratories (1998)

21. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems. PhD the-
sis, University of Oslo (2001)

22. Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML. In: Bruel, J.M. (ed.) Proc. 1st
Int’l Workshop on Quality of Service in Component-Based Software Engineering, pp. 43–56
(June 2003)

23. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: Proc. 26th
Int’l Conf. on Software Engineering (ICSE 2004), pp. 179–188. IEEE Computer Society
(2004)

24. Bravenboer, M., Visser, E.: Concrete syntax for objects: Domain-specific language embed-
ding and assimilation without restrictions. In: Proc. 19th Annual ACM SIGPLAN Conf.
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2004),
pp. 365–383. ACM Press (2004)

25. Bravenboer, M., Visser, E.: Parse Table Composition Separate Compilation and Binary Ex-
tensibility of Grammars. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 74–94. Springer, Heidelberg (2009)

26. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional develop-
ment of domain specific languages. Int’l Journal on Software Tools for Technology Transfer
(STTT) 12(5), 353–372 (2010)

27. Wende, C., Thieme, N., Zschaler, S.: A Role-Based Approach towards Modular Language
Engineering. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 254–273. Springer, Heidelberg (2010)

28. Carton, A., Driver, C., Jackson, A., Clarke, S.: Model-driven Theme/UML. Transactions on
Aspect-Oriented Software Development (2008)

29. Kienzle, J., Abed, W.A., Klein, J.: Aspect-oriented multi-view modeling. In: Proc. 8th ACM
Int’l Conf. on Aspect-Oriented Software Development (AOSD 2009), pp. 87–98. ACM
(2009)

30. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-Independent Model
Modularisation. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on
AOSD VI. LNCS, vol. 5560, pp. 39–82. Springer, Heidelberg (2009)

31. Harrison, W.H., Ossher, H.L., Tarr, P.L.: Asymmetrically vs. symmetrically organized
paradigms for software composition. Technical Report RC22685, IBM Research (2002)

32. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E.,
Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid, A.,
Akşit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg
(2006)

33. Kleppe, A.G.: 1st European workshop on composition of model transformations (CMT
2006). Technical Report TR-CTIT-06-34, Centre for Telematics and Information Technol-
ogy, University of Twente (June 2006)

34. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.M.: Reusable model trans-
formations. Software and Systems Modeling (SoSyM), 1–15 (2010)

	On the Reusable Specification of Non-functionalProperties in DSLs
	Introduction
	Motivating Example
	Formal Framework
	The Models Involved and Their Relationships
	Model Weaving
	Semantic Consistency

	A Prototypical Implementation
	Related Work
	Modelling of Non-Functional Properties
	Modular Languages, Models, and Transformations

	Conclusions and Outlook
	References

