

EXPRESIÓN DE LOS GENES DE LA FOSFOENOLPIRUVATO CARBOXILASA (PEPC) Y PEPC-QUINASA (PPCK) DE LA SEMILLA DE SORGO. FUNCIÓN Y REGULACIÓN POR FOSFORILACIÓN Y UBIQUITINACIÓN DE ESTAS PROTEÍNAS EN EL DESARROLLO Y GERMINACIÓN DE LA SEMILLA

UNIVERSIDAD DE SEVILLA DEPARTAMENTO DE BIOLOGÍA VEGETAL Y ECOLOGÍA ÁREA DE FISIOLOGÍA VEGETAL

EXPRESIÓN DE LOS GENES DE LA FOSFOENOLPIRUVATO CARBOXILASA (PEPC) Y PEPC-QUINASA (PPCK) DE LA SEMILLA DE SORGO. FUNCIÓN Y REGULACIÓN POR FOSFORILACIÓN Y UBIQUITINACIÓN DE ESTAS PROTEÍNAS EN EL DESARROLLO Y GERMINACIÓN DE LA SEMILLA

Trabajo de investigación presentado por la licenciada **Isabel Mª Ruiz Ballesta** para optar al grado de Doctora en Biología.

Sevilla, 2014

Directora de la Tesis

Dra. Cristina Echevarría Ruiz de Vargas Catedrática de Universidad

Tutor

Dr. Francisco Javier Cejudo Fernández Catedrático de Universidad

Este trabajo se ha realizado en el Departamento de Biología Vegetal y Ecología, Área de Fisiología Vegetal, de la Facultad de Biología de la Universidad de Sevilla.

La financiación se realizó con cargo a los siguientes proyectos de investigación:

- Fosforilación de proteínas y metabolismo del carbono. Ayudas grupo PAI 2010. Proyecto BIO-298-2010. Programa Plan Andaluz de Investigación.
- Fosforilación de proteínas y metabolismo del carbono. Ayudas grupo PAI 2011. Proyecto BIO-298-2011. Programa Plan Andaluz de Investigación.
- Proyecto del Ministerio de Economía y Competitividad nº AGL2012-35708. Expresión de Genes y Regulación de Proteínas PEPC, PEPC-Kinasa y PEPC-Proteasa: Papel en el Desarrollo y Germinación de la Semilla de Sorgo y Resistencia al Estrés Salino.
- "Natural Science and Engineering Research Council of Canada and Queens's Research Chairs program to W.C.P"
- Durante 4 años (2010-2014) he estado en posesión de una beca del IV Plan Propio de la Universidad de Sevilla denominada: Beca predoctoral o de personal investigador en formación (PIF) en áreas con necesidades docentes y de dos ayudas de movilidad del Plan Propio de la Universidad de Sevilla denominadas: estancias breves en España y en el extranjero para el año 2013 y 2014.

NOTA: Según la Normativa vigente en la Universidad de Sevilla a 1 de Septiembre de 2014 para optar a la Mención Internacional del Título de Doctor (Acuerdo 9.1/CG-19-4-2012) una parte de esta tesis doctoral: resumen, conclusiones y el capítulo 2 se han redactado en inglés.

A mis padres. A mis hermanas. A Vicente.

"Son los problemas sin resolver,

no los resueltos,

los que mantienen activa la mente".

Erwin Guido Kolbenheyer

ÍNDICE

ÍNDICE DE FIGURAS Y TABLAS	
ABREVIATURAS	
RESUMEN-ABSTRACT	
I. INTRODUCCIÓN	1
1. LA SEMILLA DE SORGO	3
1.1.Ciclo de vida de la semilla	4
Fase de desarrollo	4
Papel del ácido abscísico en el desarrollo de la semilla	5
Fase de germinación	7
2. LA FOSFOENOLPIRUVATO CARBOXILASA (PEPC)	8
2.1. Familia génica de la PEPC	10
2.2. Estructura de la PEPC	11
2.3. Funciones de la PEPC	14
La PEPC en la fotosíntesis de tipo C4 y CAM (Metabolismo Ácido	
de las Crasuláceas)	14
La PEPC en otros contextos metabólicos	17
2.4. La PEPC en las semillas	19
En semillas en desarrollo	19
En semillas en germinación	21
2.5. Regulación de la actividad PEPC	22
Regulación transcripcional	22
Regulación postraduccional	23
 Regulación por metabolitos, pH, estado oligomérico y estado 	
rédox	23
• Regulación covalente de la PEPC por fosforilación reversible	25
 Regulación por monoubiquitinación 	29
Enzimas desubiquitinadoras	33
 Regulación por PA (Ácido fosfatídico) 	33
2.6. La PEPC de tipo bacteriana (BTPC)	35
3. LA FOSFOENOLPIRUVATO CARBOXILASA KINASA (PPCK)	37

3.1. Familia génica <i>PPCK</i>	38
3.2. Regulación de la PPCK	39
Regulación transcripcional	39
Regulación postraduccional	43
II. OBJETIVOS	45
III. MATERIALES Y MÉTODOS	49
1. MATERIAL VEGETAL Y CONDICIONES DE CULTIVO	51
1.1. Material vegetal	51
1.2. Condiciones de cultivo e imbibición de las semillas	51
2. OBTENCIÓN DE EXTRACTOS CRUDOS	51
2.1. Preparación de los extractos crudos de semillas	51
3. MÉTODOS DE PURIFICACIÓN DE PROTEÍNAS	52
3.1. Purificación de la PEPC C_3 de la semilla de sorgo a dos días de	
germinación	52
3.1.1. Tampones usados durante la purificación	52
3.1.2. Purificación de la PEPC	53
3.1.3. Estimación del peso molecular nativo de la PEPC purificada	
a través de la columna de filtración en gel (Superdex 200)	54
3.2. Purificación de la PEPC mediante cromatografía de inmunoafini-	
dad	54
3.2.1. Producción de los anticuerpos anti-(COSp107)-IgGs	54
3.2.2. Inmunopurificación de la PEPC	54
4. ENSAYOS ENZIMÁTICOS	55
4.1. Determinación de la actividad PEPC	55
4.2. Determinación del grado de fosforilación de la PEPC mediante el	
test malato	56
4.3. Actividad de la PEPC en gel	56
5. ENSAYOS DE FOSFORILACIÓN Y DESFOSFORILACIÓN IN VI-	
TRO	57
5.1. Fosforilación de la PEPC C ₃ purificada in vitro con las PPCKs re-	
combinantes	57
5.2. Fosforilación <i>in situ</i> de la PEPC mediante un marcaje con ³² P	57
5.3. Desfosforilación de la PEPC in vitro	58

6. ENSAYOS DE DESUBIQUITINACIÓN <i>IN VITRO</i>	58
7. TÉCNICAS ANALÍTICAS	59
7.1. Electroforesis en geles de poliacrilamida	59
En condiciones nativas (PAGE)	59
En condiciones desnaturalizantes (SDS-PAGE)	59
7.2. Tinción con Azul de Coomasie y secado de geles	60
7.3. Tinción con ProQ y Sypro-RED	60
7.4. Identificación de proteínas mediante técnicas proteómicas	61
Búsqueda en las bases de datos	62
8. MÉTODOS INMUNOLÓGICOS	62
8.1. Tipos de anticuerpos utilizados en este trabajo	62
8.2. Transferencia de proteínas a membrana de nitrocelulosa y revelado	
con anticuerpos específicos (Western-blot)	63
8.3. Purificación de anticuerpos	64
8.4. Inmunoprecipitación de la PEPC	65
8.5. Inmunolocalización in situ	65
9. TÉCNICAS MOLECULARES	66
9.1. Extracción de ARN	66
9.2. Retrotranscripción de ARN a ADNc	67
9.3. Experimentos de reacción en cadena de la polimerasa (PCR) en	
tiempo real (qPCR)	67
10. OTROS MÉTODOS	68
10.1. Determinación de proteínas solubles y pH	68
10.2. Análisis estadístico	68
10.3. Software informático	69
10.4. Números de acceso (NCBI) de las secuencias usadas para el ali-	
neamiento múltiple	69
IV. RESULTADOS	71
1. CARACTERIZACIÓN DE LA PEPC DE LA SEMILLA DE SORGO	73
1.1. Actividad PEPC durante el desarrollo y germinación de la semilla	73
1.2. Inmunocaracterización de la PEPC en el desarrollo y germinación	76
1.2.1. Las PEPC de tipo planta (PTPC)	76
1.2.2. La PEPC de tipo bacteriano (BTPC)	79

1.2.3. Estado oligomérico de las PEPCs	80
1.3. Inmunolocalización de la PEPC durante la germinación	82
1.4. Caracterización de la expresión de los genes PEPC durante el de-	
sarrollo y germinación de la semilla de sorgo	84
1.4.1. Expresión de los genes PEPC durante el desarrollo	85
1.4.2. Expresión de los genes PEPC en embriones durante la ger-	
minación	87
1.5. Análisis proteómico de las bandas	89
2. IN VIVO MONOUBIQUITINATION OF ANAPLEROTIC PHOSPHO-	
ENOLPYRUVATE CARBOXYLASE OCCURS AT LYS624 IN GER-	
MINATING SORGHUM SEEDS	95
2.1. Immunocharacterization of monoubiquitinated PEPC from germi-	
nating sorghum seeds	95
2.1.1. Mass spectrometry and N-terminal sequence analysis of	
immunoprecipitated PEPC from crude extracts	95
2.2. PEPC purification and characterization from germinating sorghum	
seeds	97
2.2.1. PEPC purification	97
2.2.2. Mass spectrometry analysis of purified PEPC	103
2.2.3. Kinetic studies	105
2.3. Class-1 PEPC monoubiquitination also occurs in developing sor-	
ghum seeds	107
3. FOSFORILACIÓN DE LA FOSFOENOLPIRUVATO CARBOXILA-	
SA EN LA GERMINACIÓN Y DESARROLLO DE LA SEMILLA DE	
SORGO	111
3.1. Caracterización de la expresión de los genes PPCKs durante el de-	
sarrollo y germinación de la semilla de sorgo	111
3.1.1. Expresión de los genes PPCKs durante el desarrollo	112
3.1.2. Expresión de los genes PPCKs en embriones durante la ger-	
minación	113
3.2. Evaluación del estado de fosforilación de la PEPC durante el desa-	
rrollo y germinación de la semilla	114
3.2.1. Determinación de la sensibilidad al L-malato (IC ₅₀) de la	

PEPC durante el desarrollo y la germinación de la semilla	115
3.2.2. Evaluación de la fosforilación in vivo mediante el uso de an-	
ticuerpos fosfoespecíficos	118
3.2.3. Influencia del corte del flujo de fotosintatos en el estado de	
fosforilación de la semilla en desarrollo	123
3.2.4. Fosforilación in situ de la PEPC	128
3.3. Uso de PEPC inmunopurificada de semillas embebidas 48 horas	
para evaluar el estado de fosforilación y ubiquitinación de las dife-	
rentes isoenzimas	129
3.3.1. Análisis proteómico y modificaciones postraduccionales de	
las diferentes isoenzimas en la fracción de PEPC inmunopuri-	
ficada	133
3.3.2. Nuevos sitios de fosforilación en las PTPCs	136
ANEXO 1	139
4. ESTUDIO INTERACTÓMICO	143
4.1. Interacción con la sacarosa sintasa (SUS)	143
4.2. Estudio interactómico de la PEPC	146
5. EFECTO DE LA TEMPERATURA EN LA MONOUBIQUITINACIÓN	
DE LA PEPC	153
5.1. Distintos patrones de monoubiquitinación en distintas especies de	
cereales	153
5.2. Efecto de la temperatura en la monoubiquitinación de la PEPC en	
la fase de germinación de las semillas de sorgo	154
5.3. Repercusión de la velocidad de germinación y el estado de mo-	
noubiquitinación de las semillas en la IC_{50}	159
5.4. La germinación y la monoubiquitinación en las dos variedades de	
sorgo están estrechamente ligadas a la viabilidad y velocidad de	
germinación	163
V. DISCUSIÓN	167
1. Caracterización de los genes PEPC y de sus proteínas durante el ciclo de	
vida de la semilla	170
1.1. PTPC	170
1.2. BTPC	173

2. Actividad PEPC en la semilla	174
3. Modificación postraduccional de la PEPC por monoubiquitinación	176
4. Modificación postraduccional de la PEPC por fosforilación reversible en	
fracciones purificadas de semillas germinadas 48 h	178
5. Patrones de fosforilación de la PEPC durante el desarrollo y la germina-	
ción	187
6. Estudio interactómico	191
7. La monoubiquitinación y la fosforilación son eventos concomitantes y se	
producen en la fase de crecimiento (fase III) entre los estadios II y IV	193
8. Las isoenzimas de PEPC durante el ciclo de vida de la semilla	195
VI. CONCLUSIONES-CONCLUSIONS	197
VII. BIBLIOGRAFÍA	203
AGRADECIMIENTOS	

ÍNDICE DE FIGURAS Y TABLAS

Figuras

Fig. 1	Estructura del grano de sorgo	4
Fig. 2	Representación química del mecanismo de reacción de la PEPC	10
Fig. 3	Filogenia de los genes PTPC y BTPC en sorgo (Sorghum bicolor),	
	arroz (Oryza sativa) y maíz (Zea mays)	11
Fig. 4	Modelo tridimensional de la PEPC C ₄ de maíz. Diferentes vistas de la	
	estructura del homotetrámero	13
Fig. 5	Aspectos generales de la ruta C ₄	16
Fig. 6	Interacciones entre el metabolismo del carbono y del nitrógeno	18
Fig. 7	Diferentes funciones de la PEPC	19
Fig. 8	Regulación de la PEPC por fosforilación reversible en plantas C ₄	28
Fig. 9	Reacción de ubiquitinación y desubiquitinación	30
Fig. 10	Diferentes modos de ubiquitinación conducen a diferentes funciones en	
	el sustrato	31
Fig. 11	Estadios de desarrollo de la semilla de sorgo	73
Fig. 12	Estadios de la germinación de la semilla de sorgo	74
Fig. 13	Evolución de la actividad PEPC durante el desarrollo de la semilla de	
	sorgo	75
Fig. 14	Evolución de la actividad PEPC en los embriones y en la aleurona/	
	endospermo de semillas embebidas de sorgo	76
Fig. 15	Inmunocaracterización e integridad de la PEPC durante el desarrollo de	
	la semilla de sorgo	78
Fig. 16	Inmunocaracterización e integridad de la PEPC durante la germinación	
	de la semilla de sorgo	79
Fig. 17	La PEPC en las semillas de sorgo está presente mediante forma te-	
	tramérica/dimérica	81
Fig. 18	Inmunolocalización in situ durante la germinación de la semilla de	
	sorgo	83
Fig. 19	Análisis de la expresión de los genes PEPC en las semillas en desarro-	
	llo a diferentes tiempos	87
Fig. 20	Análisis de la expresión de los genes PEPC en embriones embebidos	
	de semillas de sorgo a diferentes tiempos	89
Fig. 21	CP21 is the major PEPC present in germinating seed	96
Fig. 22	The p110 subunit in clarified extracts from germinating seeds is an	
	ubiquitinated form of p107	97
Fig. 23	Co-elution of PEPC activity with 110 kDa and 107 kDa PEPC poly-	
	peptides (p110 and p107, respectively) during Superdex-200 HR 16/60	
	gel-filtration FPLC of PEPC from germinating sorghum seeds	98
Fig. 24	SDS-PAGE and immunoblot analysis of various fractions obtained	
	during the purification of PEPC from 48 h germinated sorghum seeds	99
Fig. 25	Native molecular-mass estimation for PEPC from 2-day germinated	

	sorghum seeds	100
Fig. 26	Incubation with the deubiquitinating enzyme USP-2 core converts the	
	p110:p107 heterotetrameric PEPC from germinated sorghum seeds	
	into a p107 homotetramer	101
Fig. 27	The p110 and p107 subunits of purified Class-1 PEPC from germinat-	
	ed sorghum seeds can be phophoryated in vitro by recombinant PPCK2	
	and PPCK3	102
Fig. 28	The p110 subunit of purified PEPC from germinated sorghum seeds is	
	monoubiquitinated at Lys624	104
Fig. 29	Select amino acid sequence alignment of PEPC from different sources	
	to show the phosphorylation and monoubiquitination sites	105
Fig. 30	PEPC monoubiquitination in developing sorghum seeds	108
Fig. 31	Análisis de la expresión de los genes PPCKs en los diferentes estadios	
	de desarrollo de la semilla de sorgo	112
Fig. 32	Análisis de la expresión de los genes de PPCKs en embriones de semi-	
-	llas de sorgo a diferentes tiempos de imbibición	114
Fig. 33	Valores de IC_{50} para el L-malato de la PEPC durante el desarrollo y la	
	germinación de la semilla de sorgo	117
Fig. 34	Influencia de la desubiquitinación de la PEPC mediada por USP-2 en	
	la sensibilidad a su efector alostérico negativo, L-malato, en embriones	
	de extractos crudos embebidos 24 h	118
Fig. 35	Reconocimiento y especificidad de los anticuerpos pSer13 del motivo	
-	de fosforilación N-terminal de la PEPC CP28, CP21, 4960 y C ₄ foto-	
	sintética	119
Fig. 36	Evidencia de la fosforilación in vivo de la PEPC procedente de extrac-	
	tos crudos del desarrollo (estadio I: 7-12 DPA y estadio III: 16-20	
	DPA) usando anticuerpos pSer13 y la fosfatasa lambda	121
Fig. 37	Inmunocaracterización de la fosforilación de p110 y p107 durante la	
	germinación	122
Fig. 38	Influencia en la actividad PEPC de la desfosforilación in vitro usando	
	la fosfatasa CIP (Alkaline Phosphatase, Calf Intestinal)	123
Fig. 39	Influencia del corte del flujo de fotosintatos en la IC ₅₀ y composición	
	oligomérica de la enzima	125
Fig. 40	Análisis de la expresión de los 3 genes PTPCs en la semilla en desarro-	
	llo tras la interrupción del flujo de fotosintatos a diferentes tiempos (0,	
	24 y 48 h)	126
Fig. 41	Análisis de la expresión de los genes que codifican las PPCKs en la	
	semilla en desarrollo tras una interrupción del flujo de fotosintatos de	
	0, 24 y 48 h	127
Fig. 42	Fosforilación <i>in situ</i> utilizando ³² P de las dos subunidades de PEPC,	
	p110 y p107, procedentes de semillas embebidas durante a 48 horas	128
Fig. 43	Inmunopurificación de la PEPC	130
Fig. 44	La PEPC inmunopurificada de extractos crudos de semillas a las 48 h	
-	de germinación está fosforilada en p110 y p107	131

Fig. 45	Desfosforilación in vitro de la PEPC inmunopurificada procedente de	
	extractos crudos de semillas germinadas durante 48 horas usando la	
	fosfatasa lambda	132
Fig. 46	Alineamiento de secuencias de las isoenzimas PEPCs de diferentes	
	fuentes	139
Fig. 47	La enzima sacarosa sintasa co-inmunopurifica con la UB-PEPC	145
Fig. 48	Inmunopurificacion de la PEPC ubiquitinada y desubiquitinada	146
Fig. 49	La DeUB-PEPCip está fosforilada en p107	147
Fig. 50	Distintos patrones de monoubiquitinación en varias especies de cerea-	
	les	153
Fig. 51	Estadios de germinación desde la semilla seca hasta 96 horas de sorgo	154
Fig. 52	Representación de la velocidad de germinación de las dos variedades	
	de sorgo a 25 y 35 °C	155
Fig. 53	Niveles de monoubiquitinación de la PEPC durante la germinación de	
	las semillas a 25 y 35 °C en las dos variedades de sorgo	157
Fig. 54	Niveles de monoubiquitinación de la PEPC y velocidad de germina-	
	ción de semillas de sorgo germinadas a 35 °C hasta 18 horas	158
Fig. 55	IC_{50} de las dos variedades de semillas de sorgo a 25 y 35 °C a los dife-	
	rentes tiempos de imbibición de las semillas	160
Fig. 56	Los patrones de IC_{50} de las dos variedades de semillas de sorgo a 35 °C	
	siguen el mismo patrón de monoubiquitinación de la PEPC	161
Fig. 57	Niveles de fosforilación de la PEPC en semillas germinadas a 35 °C	162
Fig. 58	Análisis de la expresión de los genes PTPCs en semillas de sorgo em-	
	bebidas 48 horas a 25 y 35 °C	163
Fig. 59	Inmunocaracterización de las subunidades p110 y p107 a las 24 horas	
	de imbibición de semillas de S. bicolor var. PR88Y20 y var. PR87G57	1.67
	y su porcentaje de germinación	165
Fig. 60	PEPCs heterotetraméricas monoubiquitinadas y fosforiladas según los	
	modelos propuestos para COS y harsh hakea	181
Fig. 61	Modelos de PEPCs heterotetraméricas monoubiquitinadas y/o fosfori-	
	ladas según los resultados obtenidos por Orbitrap en semillas de sorgo	
	embebidas 48 h a 25 °C	181
Fig. 62	Conformación posible de CP21 según los datos obtenidos de fraccio-	
	nes purificadas por FPLC	182
Fig. 63	Conformaciones posibles de CP21	184

Tablas

Tabla 1.	Cebadores utilizados en este trabajo	68
Tabla 2.	Identificación por MALDI QqTOF MS de los péptidos trípticos pro-	
	cedentes de p110&p107	91
Table 3.	Purification of PEPC from 300 g of 2-day-old germinated sorghum	
	seeds	98
Table 4.	Influence of various metabolites on the activity of ubiquitinated and <i>in vitro</i> deubiquitinated PEPC purified from germinated sorghum	
	seeds	106
Table 5.	Influence of USP-2-mediated deubiquitination on allosteric effector sensitivity of purified PEPC	107
Table 6.	MALDI QqTOF MS identified tryptic peptides matching between p110&p107 (both identified as CP21; P29195) from the	
	inmunoprecipitated samples	109
Table 7.	MALDI QqTOF MS/MS sequenced p110 tryptic peptides that matched ubiquitin (79 a.a., GI:241916066) from the inmuno-	
	precipitated samples	109
Table 8.	MALDI QqTOF MS identified tryptic peptides matching between p110&p107 (both identified as CP21: P29195) from the purified	
	sample	110
Table 9.	MALDI QqTOF MS/MS sequenced p110 tryptic peptides that	-
	matched ubiquitin (79 a.a., GI:241916066) from the purified sample	110
Tabla 10.	Determinación por MS-Orbitrap de las diferentes isoenzimas presen- tes en las bandas p110 y p107 de semillas germinadas 48 h y sus	
	PTMs por fosforilación del extremo N-terminal y monoubiquitina-	
	ción	135
Tabla 11.	Determinación por MS-Orbitrap de nuevos sitios de fosforilación en	
	las diferentes isoenzimas	137
Tabla 12.	Análisis de la banda p90 por espectrometría de masas mediante un analizador Orbitrap Fusion	144
Tabla 13.	Análisis de los co-inmunoprecipitados de UB-PEPC y DeUB-PEPC	
	por espectrometría de masas mediante un analizador Orbitrap Fusion	149

ABREVIATURAS

Las abreviaturas utilizadas en este trabajo se especifican a continuación. Para los nombres y símbolos utilizados, se ha elegido el Sistema Internacional de Unidades. Las sustancias químicas se han denominado según el sistema de nomenclatura de la IUPAC.

2-OG	2-oxoglutarato
³² P	Isótopo fósforo 32
3-PGA	Ácido 3-fosfoglicérico
ABA	Ácido abscísico
ACCsintasa	1-aminociclopropano-1-carboxilato sintasa
ADN	Ácido desoxirribonucleico
ADNasa	Desoxirribonucleasa
ADNc	Ácido desoxirribonucleico complementario
A.E	Actividad específica
AF	Ácido fórmico
AMPc	Adenosina monofosfato cíclico
APS-IgG	Anticuerpos específicos dirigidos contra el sitio de fosforilación
	de la PEPC C ₄ de sorgo
ARN	Ácido ribonucleico
ARNasa	Ribonucleasa
ARNm	Ácido ribonucleico mensajero
ARNr	Ácido ribonucleico ribosómico
ATP	Adenosina trifosfato
BLAST	Basic Linear Alignment Sequencing Tool
BSA	Albúmina de suero bovino
BTPC	PEPC de tipo bacteriano
C ₃	Especie cuyo primer producto fotosintético estable posee 3 átomos
	de carbono
C_4	Especie cuyo primer producto fotosintético estable posee 4 átomos
	de carbono
CA	Anhidrasa carbónica
CAM	Metabolismo ácido de las Crasuláceas
CBB-R250	Coomassie Brilliant Blue R250
CDPK	Proteína quinasa de plantas dependiente de calcio
CHX	Cicloheximida
CIP	Fosfatasa alcalina, intestinal de ternero
COS	Castor Oil Seed
Ct	Ciclo umbral
DCMU	N'-(3,4-Diclorofenil) N',N'-dimetilurea
DPA	Días post-antesis
DPDS	2,2'-dipiridil disulfato
DTT	Ditiotreitol

DUB	Enzima desubiquitinadora
EDTA	Ácido etilendiaminotetracético
EG	Etilenglicol
EGTA	Ácido etilenglicoltetracético
FPLC	Fast protein liquid chromatography
GAs	Ácidos giberélicos
Glu-6-P	Glucosa 6-fosfato
GOGAT	Glutamato sintasa
GS	Glutamina sintetasa
HECT	Enzimas ligasas E3s "homólogas al C-terminal E6-AP"
HEPES	Ácido N-(2-hidroxietil)piperacina-N'-(2-etanosulfónico)
h	Hora
<i>IC</i> ₅₀	Concentración del inhibidor requerida para reducir al 50% la actividad de la enzima
IgG	Inmunoglobulina G
IP	Inmunoprecipitado
IP ₃	Inositol 1,4,5-trifosfato
Ka	Constante de activación
K_{av}	Coeficiente de partición
kDa	Kilodalton
Ki	Constante de inhibición
K _m	Constante de Michaelis-Menten
LEA	Late embryogenesis abundant
MALDI-TOF	Matrix assisted laser desorption ionization- time of flight
MDH	Malato deshidrogenasa
MS	Mass spectrometry
MS/MS	Tandem mass spectroscopy nicotinamide
NAD(P)H	Nicotina adenina dinucleótido (fosfato) reducido
NAD-ME	Subtipo fisiológico de plantas C ₄ , cuya enzima descarboxiladora
	es la NAD-enzima málico
NADP	Nicotina adenina dinucleótido fosfato
NCBI	National Center for Biotechnology Information
NR	Nitrato reductasa
OAA	Oxalacetato
p/v	Relación peso/volumen
p107	Polipéptido de 107 kDa
p110	Polipéptido de 110 kDa
PA	Acido fosfatídico
PAGE	Electroforesis en gel de poliacrilamida
PBS	Tampón fosfato salino
РСК	Subtipo fisiológico de plantas C ₄ cuya enzima descarboxiladora es

	la fosfoenolpiruvato carboxiquinasa
PCR	Reacción en cadena de la polimerasa
PEG	Polietilenglicol
PEP	Fosfoenolpiruvato
PEPC	Fosfoenolpiruvato carboxilasa
Pi	Fosfato inorgánico
PI-PLC	Fosfolipasa C dependiente de PI
РКА	Subunidad catalítica de la quinasa dependiente de AMPc de
PKC	Piruvato kinasa citosólica
РКР	Piruvato kinasa plastídica
PI C	Fosfolipasa C
PLD	Fosfolipasa D
PM	Peso molecular
PMSF	Fluoruro de fenilmetilsulfonilo
	Proteína fosfatasa de tipo 2A
PPCK	Fosfoenolniruvato carboxilasa quinasa
PPDK	Piruvato ortofosfato diquinasa
ProO-PPS	Pro-O Diamond Phosphoprotein stain
PTM	Modificación post-traduccional
PTPC	PEPC de tipo planta
PVPP	Polivinilpirrolidona
aPCR	PCR cuantitativa
RING	Enzimas ligasas E3s "really interesting new gene"
ROS	Especies reactivas de oxígeno
Rubisco	Ribulosa 1,5-bisfosfato carboxilasa/oxigenasa
SDS	Dodecilsulfato sódico
SDS-PAGE	Electroforesis en geles de poliacrilamida en presencia de SDS
SnRK	Grupo de quinasas relacionadas con SNF ₁
SUS	Sacarosa sintasa
TBS	Tampón tris salino
TCA	Ciclo de los ácidos tricarboxílicos
TEMED	N, N, N', N'-tetrametil-etilen-diamina
TGM	Tris-HCl 48 mM, glicina 39 mM, SDS 0.037% (p/v), metanol 5% (v/v)
TMB-8	Clorhidrato de 8-(dietilamino) octil 3,4,5-trimetoxibenzoato
Tris	Tris(hidroximetil)aminometano
U	Unidad de actividad enzimática
Ub	Ubiquitina
UBDs	Dominios de unión a ubiquitina
USP-2	Proteasa específica de ubiquitina 2
v/v	Relación volumen/volumen

var.	Variedad
V _{max}	Velocidad máxima
W7	$N-(6-Aminohexil)-5-cloro-1-na ftaleno sulfonamida \ hidrocloruro$

RESUMEN-ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal photosynthetic role in primary CO₂ fixation by C₄ and Crassulacean acid metabolism plants, but also has a variety of additional functions, including seed development and germination (O'Leary *et al.*, 2011b). PEPC was characterized along the life cycle of sorghum seeds (a mono-cotyledonous C₄ plant), focusing on the post-translational control of the enzyme. The activity of the enzyme was investigated both in developing and in germinating grains. During seed development, total PEPC activity increased to reach a maximum at stage III. During imbibition, total PEPC activity in embryos increased and reached the maximum rate at 96 h, however this activity did not change significantly in aleuron/endosperm and was lower than in embryos. Immunolocalization studies in 24 h germinated seeds revealed the presence of PEPC in tissues with a high metabolic activity.

The phosphorylation state of PEPC in crude extracts, as judged by L-malate 50% inhibition of initial activity values, Pro-Q Diamond phosphoprotein staining, and immunodetection with pSer13-IGgs against the phosphorylated N terminus, was found to be high between 7 and 27 days postanthesis (DPA), and between 24-72 h of germination at 25 °C. In contrast, the enzyme appeared to be in a low phosphorylation state from 27 DPA up to 14 h, and in the late stages of germination. At 48 h, *in vivo* radiolabeling, followed by PEPC immunoprecipitation, SDS-PAGE and autoradiography further demonstrated ³²Pi incorporation into immunoprecipitated p110 and p107.

In sorghum, PEPC is encoded by a small multigene family with six PEPC genes. *Sb8720-CP21*, *Sb1090-CP28*, *Sb4960*, *Sb5090* (C₃ type) and *Sb1330* (C₄ photosynthetic type) encode closely related plant type PEPCs (PTPCs), whereas *Sb8410* encodes the distantly related bacterial type PEPC4 (BTPC) (Paterson *et al.*, 2009). In the present work, we describe the qPCR (quantitative real time PCR) analysis of the expression of these PTPCs genes. *CP21*, *CP28*, *4960* transcripts were found in sorghum seed. MS studies of PEPC (purified by immunoaffinity chromatography and immunoprecipitation of clarified extracts) revealed that those different PTPC isoforms and Sb5090 co-exist in germinating sorghum seeds, however CP21 was the most abundant. In addition, all of these PTPCs were *in vivo* phosphorylated at their conserved N-terminal phosphorylation site. PEPC is subjected to *in vivo* regulatory phosphorylation by a specific Ca²⁺-independent serine/threonine kinase known as PPCK (PEPC kinase) (Nimmo *et al.*, 2003). The genome of sorghum contains three putative PPCK genes: Sb*PPCK1*,

SbPPCK2 and SbPPCK3 (Paterson *et al.*, 2009) and we found that all of these were expressed in seeds. We also described new phosphorylation sites in PTPCs that had never been seen before.

In developed and germinated seeds, q-PCR analysis confirmed the low accumulation of BTPC transcripts. In addition, Class-2 PEPC p107:p118 hetero-octamer was not detected when the extracts were subjected to in-gel PEPC activity staining.

Two immunoreactive PTPC polypeptides, having molecular masses of 110 and 108- or 103-kD, have frequently been observed on immunoblots of extracts from diverse C₃ plant tissues including species such as barley, wheat and sorghum (Osuna et al., 1996, 1999; Gonzalez et al., 1998; Nhiri et al., 2000; Feria et al., 2008). In order to establish the biochemical basis for this observation, a 460 kDa PEPC heterotetramer, composed of an equivalent ratio of p110 and p107 subunits, was purified to near homogeneity from 48 h germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (8720-CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs, and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme's feedback inhibition by L-malate. The purified PEPC was not phosphorylated, as indicated by immunoblotting with phospho-site specific antibodies. However, both subunits were phosphorylated in vitro by PEPC kinase 2 (PPCK2) and PPCK3. By contrast, immunoaffinity chromatography of clarified extracts, coupled with immunoblotting and MS, indicated that this fraction contained different PEPCs among which the CP21, CP28 and 4960 were phosphorylated in vivo at the consensus Nterminal Ser in both p110 and p107 subunits. Among them, CP21 was shown not to be phosphorylated at p107 during germination in sorghum seeds. MS also revealed the monoubiquitination site at Lys624 in CP21 PEPC and at Lys630 in 1090-CP28 PEPC isoenzymes. Partial PEPC monoubiquitination was also detected for the first time during sorghum seed development.

Results of the current study suggest a novel pattern of post-translational modification of plant PEPC in seeds, as it appears that the same p110 subunit can be

simultaneously phosphorylated and monoubiquitinated *in vivo* in a starch-storing cereal seed. It is apparent that monoubiquitination at Lys is opposed to phosphorylation at Ser in terms of regulating the catalytic activity of sorghum seed PEPC. Monoubiquitination decreased sorghum PEPC activity by sensitizing the enzyme to the allosteric inhibitor L-malate (it lowers IC_{50}) while phosphorylation increased the IC_{50} value. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell's immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon–nitrogen interactions. In this thesis we also propose various models acting in sorghum seed that will be analyzed with futures studies.

PEPC interactome of sorghum seeds was assessed using coimmunopurification followed by proteomic analysis. Peptide mass fingerprinting confirmed that 438 proteins coimmunopurificated with PEPC, but the most interesting result was the interaction with sucrose synthase (SUS), also confirmed by immunoblotting with SUS-IgGs. An extensive copurification of PEPC with SUS also occurs in developing COS and in proteoid roots from harsh hakea (Gennidakis *et al.*, 2007; Shane *et al.*, 2013). Future research will need to clarify how these two key enzymes of carbohydrate metabolism might interact *in vivo* within the cytosol of cells.

Finally, new results in this thesis demonstrate that when seeds are germinated at 35 °C instead of 25 °C monoubiquitination occurs at an earlier time and the process occurs more rapidly. However, the ubiquitination always takes place between stage II and stage IV.

INTRODUCCIÓN

1. LA SEMILLA DE SORGO

El Sorgo (*Sorghum bicolor* L. Moench) es el quinto cultivo de cereal más importante del mundo. A partir de una gran diversidad de entornos y sistemas de producción, este cultivo nos proporciona alimentos, piensos, fibras y materias primas químicas/biocombustibles (Kresovich *et al.*, 2005). Es importante especialmente en los trópicos semiáridos debido a su tolerancia a los ambientes calientes y secos (Mullet *et al.*, 2001) y ha servido como modelo en el estudio de la estructura, función y evolución de los cereales gracias al pequeño tamaño de su genoma (unos 730 millones de pares de bases). Además, es una gramínea representativa de la fotosíntesis C₄. Las plantas con este tipo de fotosíntesis han desarrollado especializaciones bioquímicas y morfológicas complejas para optimizar la asimilación de carbono a altas temperaturas (Paterson, 2008).

Como en todas las especies de cereales, el fruto es una cariópside y sus principales componentes son el pericarpio (cubierta externa), el endospermo y el germen (embrión y escutelo). El pericarpio es el elemento más externo de la cariópside, se origina en la pared del ovario y durante los primeros días post-antesis (DPA) es el principal almacén de almidón, antes de que se almacene en el endospermo (Earp *et al.*, 2004). El pericarpio junto con la testa (que puede estar o no presente) forman la cubierta externa del cereal. Este tejido aporta un cierto grado de impermeabilidad a la semilla lo cual permite a la testa ejercer una regulación sobre el metabolismo de los órganos y tejidos internos de la semilla (Fig. 1) (García-Agustín *et al.*, 1993).

La cubierta externa envuelve a un tejido nutritivo, el endospermo y al germen del grano. El componente principal del cereal es el endospermo, que supone el 84% del peso total de la semilla y posee la principal reserva de energía en forma de almidón y hemicelulosas, y su contenido proteico se basa principalmente en prolaminas y gluteínas. En el endospermo se encuentra la aleurona, que en el sorgo consiste en una única capa de células localizada justo debajo de la testa. En las células de la aleurona también se almacenan carbohidratos de reserva, ácidos nucleicos, exo- y endoproteasas, y vitaminas. En conjunto, la reserva de este tejido permite la proliferación rápida del sistema de membranas interno y de la maquinaria de síntesis proteica, y provee de los aminoácidos necesarios para la síntesis de las enzimas hidrolíticas, que serán necesarias durante la germinación (Barceló *et al.*, 2001).

Fig. 1. Estructura del grano de sorgo. A, esquema adaptado de Sautier y O'Deye, 1989. B, fotografía del grano.

1.1. Ciclo de vida de la semilla

El ciclo de vida de la semilla comprende dos fases, desarrollo y germinación, separadas por un periodo de dormición (Rock y Quatrano, 1995).

Fase de desarrollo

En las angiospermas, la fertilización se inicia con la entrada por el tubo polínico de los dos núcleos del gametofito masculino. Uno de los dos núcleos (haploide) fecunda a la ovocélula (célula huevo haploide) formando un cigoto (diploide, 2n) que por mitosis dará lugar al embrión. El otro núcleo se une a los dos núcleos polares (cada uno de ellos haploide) del gametofito femenino y forma el endospermo (triploide, 3n).

El desarrollo del embrión o embriogénesis está acompañado de la producción de los tejidos de almacenamiento, tales como el endospermo, y las capas intergumentales maternas, las cuales, en la semilla madura serán la testa. En monocotiledóneas, el embrión de la semilla madura sólo posee un cotiledón, que en las gramíneas se modifica en el escutelo. También hay un tejido delgado y especializado que cubre a la radícula (coleorriza), y uno que se localiza alrededor de la plúmula y cubre la primera hoja (coleóptilo). En el endospermo, los nutrientes son obtenidos de los tejidos adyacentes durante su desarrollo. Por lo tanto, el crecimiento del embrión comienza a desarrollarse en asociación con la fuente de nutrientes disponibles que puede obtener durante su maduración y posterior germinación (Bewley *et al.*, 2013).

Las hormonas juegan un papel muy importante en el desarrollo y maduración de la semilla. El destino de las células embrionarias y los dominios tisulares dependen de la distribución de auxinas durante la embriogénesis temprana. El depósito de las reservas almacenadas y la prevención de una germinación precoz es controlada por el ácido abscísico (ABA) durante las últimas etapas del desarrollo de la semilla, y la acumulación de proteínas específicas y oligosacáridos durante la maduración está asociada con la adquisición a la tolerancia a la desecación, lo cual permite a las semillas sobrevivir durante el periodo de desecación (Bewley *et al.*, 2013). Los procesos que caracterizan la desecación reflejan las diversas funciones de este estado, tales como (i) finalización de la maduración de la semilla, (ii) acumulación de los mecanismos de protección para sostener la quiescencia y deshidratación y (iii) preparación para la germinación, iniciando múltiples cambios transcripcionales y postranscripcionales y procesos metabólicos (Angelovici *et al.*, 2010).

Papel del ácido abscísico en el desarrollo de la semilla

El ácido abscísico (ABA) es un sesquiterpeno derivado del ácido mevalónico presente en todas las plantas superiores. Esta hormona regula muchos aspectos del crecimiento y desarrollo de la planta (Finkelstein, 2013). Se acumula en todos los tejidos de la semilla, bien por transporte desde la planta a través del floema (Hoad, 1995) o por síntesis en la propia semilla (Karssen *et al.*, 1983). El ABA materno promueve la acumulación de reservas e inhibe el viviparismo, paso directo de embriogénesis a germinación mientras que la semilla se encuentra aún en la planta madre (Holdsworth *et al.*, 2001). Sin embargo, las funciones que adquiere el ABA en la fase de maduración y desecación están relacionadas con el mantenimiento de la dormancia, tolerancia a la desecación, inhibición de la germinación y síntesis de proteínas LEA, "*late embryogenesis abundant*" (Finkelstein *et al.*, 2002).

Los niveles de ácido abscísico (ABA) comienzan a aumentar en las últimas etapas del desarrollo de la semilla, primero en tejidos maternos y después, a bajos niveles, en el embrión y en el endospermo, coincidiendo con el descenso de los niveles de giberelinas y auxinas y con el comienzo de los procesos de maduración. Éste alcanza sus niveles máximos durante la acumulación de reservas y el comienzo de la deshidratación, influyendo en la acumulación de proteínas de reserva, en la prevención de la germinación precoz (Rock y Quatrano, 1995), en el desarrollo de la dormición (Kermode, 1990) y en la adquisición de la tolerancia a la desecación (Dure *et al.*, 1989; Skriver y Mundy, 1990; Colorado *et al.*, 1995). Posteriormente, los niveles descienden hasta ser mínimos en la semilla seca madura (Karssen *et al.*, 1983).

El ABA proporcionado por la planta materna y la capa de la semilla contribuyen a la regulación del desarrollo del embrión y maduración (McCarty, 1995; Finkelstein *et al.*, 2002). Además, procesos fisiológicos cruciales tales como la germinación, la cual es inhibida por ABA, son regulados por el catabolismo de la hormona (Jacobsen *et al.*, 2002; Schmitz *et al.*, 2002).

La señalización del ABA implica una compleja red en la que participan quinasas y fosfatasas que pueden actuar tanto como reguladores positivos como negativos, así como factores de transcripción, enzimas que procesan el ARN y proteínas que metabolizan o responden a segundos mensajeros (Finkelstein, 2013).

Un gran número de genes cambian su expresión y su metabolismo resultante justo antes o durante la desecación. Uno de los genes que incrementan su expresión en este periodo son los genes que codifican para las proteínas LEA (*late embryogenesis abundant*) (Bewley *et al.*, 2013). Estos genes están muy controlados por una acción combinada de factores de transcripción (Finkelstein, 2013). Las proteínas LEA se caracterizan por ser solubles en agua, extremadamente hidrofílicas, tener escasos residuos hidrofóbicos y básicos y contener abundantes aminoácidos cargados y polares, en particular glicina y lisina. Estas proteínas, también carecen de triptófano y muy a menudo de cisteínas. Estas características les confieren una importante función: proteger a las célu-

las frente a los daños producidos por la brusca deshidratación que sufren las semillas en las últimas fases de desarrollo (Dure *et al.*, 1989; Bewley *et al.*, 2013).

Fase de germinación

La germinación es un proceso que comprende una serie de acontecimientos por el cual la semilla madura embebida debe cambiar rápidamente, a través de un programa de desarrollo, desde la maduración a la germinación y preparar el crecimiento de la plántula (Nanogaki *et al.*, 2010). Por definición, la germinación incluye aquellos eventos que comienzan con la absorción de agua por la semilla seca quiescente y finaliza con la elongación de la radícula (Bewley, 1997). La absorción de agua por la semilla desencadena una serie de cambios metabólicos que incluyen la activación del proceso respiratorio, la síntesis proteica y la movilización de las reservas, proporcionando nutrientes para el crecimiento de la plántula que son transportados a través del escutelo (García-Agustín y Primo-Millo, 1993; Bewley, 1997).

La síntesis de enzimas hidrolíticas y otras enzimas de la aleurona, que serán secretadas al endospermo para movilizar las reservas, está controlada por una elaborada ruta de biosíntesis, catabolismo y señalización de distintos tipos de ácidos giberélicos (GAs) en combinación con brasinoesteroides (Olszewski *et al.*, 2002), citoquininas y etileno (Corbineau y Côme, 1992, 1995; Hilhorst, 1995), probablemente liberados por el embrión. Se ha descrito que el balance de GA/ABA es crítico durante el comienzo de la germinación de las semillas con y sin dormancia (Finch-Savage y Leubner-Metzger, 2006). Las GAs promueven la germinación, mientras que el ABA inhibe este proceso (Finkelstein *et al.*, 2008). El contenido de ABA es regulado por el balance entre el catabolismo y la biosíntesis. (Nambara *et al.*, 2010; Xu *et al.*, 2013). Sin embargo, no está del todo claro cómo la formación de ABA contribuye a la señalización en las células de las plantas (Xu *et al.*, 2013).

Las especies reactivas del oxígeno (ROS), especialmente el H_2O_2 , son continuamente producidas por productos de varias rutas metabólicas. A pesar del conocido efecto deletéreo, se ha sugerido que la generación de ROS es necesaria para la germinación de la semilla (Bailly *et al.*, 2008; Díaz-Vivancos *et al.*, 2013). Se ha demostrado que el tratamiento de semillas de cebada o plántulas de guisantes con H_2O_2 disminuye los contenidos de ABA endógenos (Wang *et al.*, 1998; Barba-Espín *et al.*, 2011).

Al inicio de la germinación, las enzimas hidrolíticas sintetizadas *de novo* por el escutelo y la aleurona y secretadas al endospermo son las responsables de la movilización de las reservas en este tejido. Sin embargo, a medida que la plántula crece los productos hidrolíticos de las reservas se acumulan en el endospermo llegando hasta concentraciones suficientemente altas como para inhibir la posterior síntesis de hidrolasas y es entonces cuando otros factores como variaciones de pH o el control osmótico entran en juego (Jacobsen *et al.*, 1995).

El pH del endospermo se mantiene ácido durante la germinación. Esta acidez se debe, en principio, a la secreción de L-malato por las células de la aleurona (Mikola y Virtanen, 1980; Hamabata *et al.*, 1988) y, posteriormente, a la liberación de ácido cítrico y fosfórico por dichas células (Drozdowicz y Jones, 1995). Existen varios procesos que requieren un pH ácido en el endospermo: i) movilización de reservas proteicas por proteasas (Jacobsen y Varner, 1967; Mikola y Virtanen, 1980), ii) solubilización de sustancias de reserva del endospermo (Hamabata *et al.*, 1988), iii) transporte de aminoácidos y péptidos a través del epitelio del escutelo (Sopanen *et al.*, 1980; Salmenkaillo y Sopanen, 1989; Hardy y Paine, 1991) y iv) disociación de inhibidores endógenos de sus respectivas hidrolasas (Halayko *et al.*, 1986). La existencia de gradientes de pH puede favorecer la hidrólisis de reservas, proporcionando un ambiente óptimo para la acción de las enzimas y aumentando la accesibilidad de las enzimas a sus sustratos, que son más solubles a pH ácido (Hamabata *et al.*, 1988).

La acidificación tras la germinación también está controlada hormonalmente por difusión, siguiendo un patrón que avanza desde la zona próxima al embrión hasta la parte distal del grano, tanto en cebada como en trigo (Swanson y Jones, 1996; Domín-guez y Cejudo, 1999).

2. LA FOSFOENOLPIRUVATO CARBOXILASA (PEPC)

La fosfoenolpiruvato carboxilasa (PEPC; EC 4.1.1.31) es una enzima clave en el metabolismo de la planta. Se localiza en el citosol, aunque recientemente se ha descrito
una isoenzima cloroplastídica (Masumoto *et al.*, 2010). Su distribución es amplia, la encontramos en las plantas superiores, algas verdes y microorganismos, pero está ausente en hongos, levaduras y animales (Chollet *et al.*, 1996; Izui *et al.*, 2004).

En 1953, se caracterizó por primera vez la PEPC en hojas de espinacas, considerándose durante mucho tiempo como una enzima carboxilasa de plantas con función secundaria respecto a la RuBisCO (Bandursky y Greiner, 1953). Sin embargo, el descubrimiento de la fotosíntesis C_4 y la implicación de una isoenzima específica de PEPC en esta ruta, aumentaron considerablemente el interés de esta enzima (Kluge, 1983; Hatch, 1992).

La PEPC cataliza la β -carboxilación irreversible del fosfoenolpiruvato (PEP) en presencia de HCO₃⁻ y usando un catión divalente como cofactor, el Mg²⁺. El producto directo de su reacción es el oxalacetato y P_i, aunque este compuesto es rápidamente transformado a malato por la malato deshidrogenasa. El malato se considera el primer compuesto estable de la reacción, siendo una molécula de gran interés ya que transporta carbono y poder reductor. El mecanismo de reacción más aceptado consiste en tres fases microreversibles (Fig. 2). En la primera fase, se produce enolato de piruvato y carboxifosfato a partir de PEP y HCO₃⁻ en una reacción parcialmente reversible. En la segunda fase, el enolato se isomeriza y el carboxifosfato se descompone en el sitio activo de la PEPC en CO₂ y P_i. En la última fase, el CO₂ produce un ataque electrofílico al enolato para formar oxalacetato y liberar Pi, siendo esta fase irreversible (Chollet *et al.*, 1996; Vidal y Chollet., 1997; Izui *et al.*, 2004).

Fig. 2. Representación química del mecanismo de reacción de la PEPC. OAA, Oxalacetato; MDH, malato deshidrogenasa (Adaptada de Izui *et al.*, 2004).

2.1. Familia génica de la PEPC

La PEPC pertenece a una pequeña familia multigénica que refleja la diversidad funcional de la enzima. Se han caracterizado isoenzimas que constituyen las PEPC de tipo planta (PTPCs) que se dividen en dos categorías: fotosintéticas [C₄ y CAM (Metabolismo ácido de las crasuláceas)] o no fotosintéticas (C₃), y al menos una más evolutivamente separada del resto, la PEPC de tipo bacteriano (BTPC) (Lepiniec *et al.*, 1994; Toh *et al.*, 1994; Rao *et al.*, 2002; Besnard *et al.*, 2003; O'Leary *et al.*, 2011b). Todas las PTPCs han evolucionado de un gen ancestral común y poseen un nivel alto de conservación a nivel genético (Svensson *et al.*, 2003). Recientemente se ha descrito que las PTPCs y BTPC provienen de un linaje común procedente de las gamma-proteobacterias, posiblemente a través de una transferencia horizontal de genes entre reinos. En concreto desde las bacterias al ancestro común eucariota de las plantas (Peng *et al.*, 2012).

El genoma del sorgo (*Sorghum bicolor*) se ha secuenciado por completo y se han descrito seis genes que codifican para diferentes isoenzimas de PEPC (Paterson *et al.*, 2009). El gen Sb*10g021330* codifica para la isoenzima C₄ o fotosintética y el gen Sb*03g008410* codifica para la isoenzima de tipo bacteriano. Los cuatro genes restantes codifican para isoenzimas de tipo C₃, dos de los cuales están bien caracterizados: el gen Sb02g021090 (1090-CP28), que se expresa constitutivamente; y el gen Sb04g008720 (8720-CP21), que codifica para una PEPC específica de raíz cuya expresión es inducible. Los otros dos genes, Sb03g035090 (5090) y Sb07g014960 (4960), se han descubierto recientemente por homología con genes de PEPC de tipo C₃ de arroz por lo que no se conoce bien su función (Fig. 3) (Paterson *et al.*, 2009).

Las PTPCs de sorgo caracterizadas hasta el momento tienen estructuras primarias y propiedades funcionales y regulatorias similares, por lo que la diferencia entre ellas se establece a nivel de expresión en los distintos órganos de la planta y en respuesta a distintos estímulos (Lepiniec *et al.*, 1993). Por el contrario, la BTPC es la que presenta mayor divergencia respecto a sus homólogas, tanto estructural como funcional (Lepiniec *et al.*, 1994; Sánchez y Cejudo, 2003; O'Leary *et al.*, 2011b).

Fig. 3. Filogenia de los genes *PTPC* y *BTPC* en sorgo (*Sorghum bicolor*), arroz (*Oryza sativa*) y maíz (*Zea mays*). "Sb" indica genes de *Sorghum bicolor*, "Sv" indica genes de *Sorghum vulgare*, "Os" indica genes *Oryza sativa* y "Zm" indica genes de *Zea mays* (Adaptado de Paterson *et al.*, 2009).

2.2. Estructura de la PEPC

En 1984, Fujita y colaboradores dedujeron la primera secuencia de aminoácidos de la PEPC a partir del gen *ppc* clonado de *E. coli* (Fujita *et al.*, 1984). El tamaño de las

subunidades que constituyen la PEPC varía dependiendo del tipo de organismo: 870 aminoácidos (100 kDa) en bacterias, 970 aminoácidos (110 kDa) en plantas vasculares, 1010 aminoácidos (116 kDa) en cianobacterias y 1150 aminoácidos (134 kDa) en protozoos (Izui *et al.*, 2004). Además, se identificó y clonó un nuevo tipo de PEPC propia de arqueobacterias en *Sulfolobus solfataricus*, la cual presenta un tamaño muy pequeño (55-60 kDa) respecto a sus homólogas, distintas propiedades bioquímicas y está presente en la mayoría de los genomas secuenciados de arqueobacterias (Ettema *et al.*, 2004).

Las PTPCs están formadas por polipéptidos de unos 100–110 kDa que se caracterizan por contener un dominio de fosforilación en una serina localizada en el extremo N-terminal de la proteína (ácido-base-XX-SIDAQLR), un tetrapéptido (QNTG) crítico muy conservado en el extremo C-terminal, y por existir típicamente como un homotetrámero formando las PEPCs de clase 1 (Kai *et al.*, 2003; Izui *et al.*, 2004; Xu *et al.*, 2006; O'Leary *et al.*, 2011b). *In vitro*, la PTPC se presenta en forma de tetrámero, trímero, dímero o monómero (Stiborova y Leblova, 1986). La forma tetramérica es la más abundante y activa catalíticamente, mientras que el monómero carece de actividad (Walker *et al.*, 1986; McNaughton *et al.*, 1989; Jawali, 1990; Willeford *et al.*, 1990).

Mediante análisis por cristalografía de rayos X se han obtenido las estructuras tridimensionales de la PEPC de *Escherichia coli* (Kai *et al.*, 1999; Matsumura *et al.*, 2002), de la PTPC de tipo C_4 en maíz (*Zea mays*) (Matsumura *et al.*, 2002) y en *Flave-ria trinervia*, y de la PTPC de tipo C_3 en *Flaveria pringlei* (Paulus *et al.*, 2013). En estos análisis de cristalografía, en combinación con mutagénesis dirigida, se han descubierto numerosas relaciones existentes entre la estructura y función en la catálisis de la PEPC, control alostérico y regulación por fosforilación (O'Leary *et al.*, 2011b). Recientemente se ha demostrado que una única mutación en el sitio activo de la PEPC (774) y otra única mutación en el sitio inhibidor (884) son suficientes para cambiar la función desde la actividad C_3 a C_4 (Paulus *et al.*, 2013).

Se ha visto que la PEPC de *E. coli* y la PEPC de maíz están compuestas por cuatro subunidades idénticas que se organizan como un dímero de dímeros, y todos los determinantes estructurales importantes son semejantes entre las dos enzimas (Fig. 4). Sin embargo, existe una gran diferencia entre ambas isoenzimas, la ausencia del dominio de fosforilación situado en el extremo N-terminal en la PEPC bacteriana (Vidal y Chollet, 1997; Matsumura *et al.*, 2002). Esta diferencia es muy importante, ya que las PTPCs están fuertemente reguladas por fosforilación reversible en un residuo de serina localizado en el extremo N-terminal de la enzima (ácido-base-XX-SIDAQLR), del que carece la isoenzima bacteriana (Echevarría y Vidal, 2003; Sánchez y Cejudo, 2003).

Aunque las BTPCs carecen de la Ser fosforilable característica del extremo Nterminal de las PTPCs, se ha descrito recientemente que la BTPC de semillas de ricino (*Castor Oil Seed*; COS) se fosforila *in vivo* en 3 sitios distintos: una Thr⁴ en el Nterminal, y las Ser⁴²⁵ y Ser⁴⁵¹ (O'Leary *et al.*, 2011a,b; Dalziel *et al.*, 2012; Hill *et al.*, 2014).

Fig. 4. Modelo tridimensional de la PEPC C₄ de maíz. Diferentes vistas de la estructura del homotetrámero. Cada subunidad presenta un color diferente. La figura B está girada 90° en el eje vertical respecto a la figura A (Adaptado de Matsumura *et al.*, 2002).

Los diferentes análisis de la estructura de la PEPC han demostrado que tanto el sustrato de la enzima, el PEP, como los inhibidores alostéricos, L-malato y L-aspartato, se unen a sitios independientes en cada monómero. Recientemente, un estudio apoya el modelo de activación competitiva de la PEPC. Según esto, los activadores alostéricos como la Glu-6-P o el EG se unen al sitio activo de una subunidad, induciendo un cambio conformacional y activando posteriormente a las demás subunidades (Tovar-Méndez *et al.*, 1998; Bläsing *et al.*, 2000; Schlieper *et al.*, 2014).

2.3. Funciones de la PEPC

La PEPC en la fotosíntesis de tipo C_4 y CAM (Metabolismo Ácido de las Crasuláceas)

Todos los eucariotas fotosintéticos reducen el CO₂ fotosintético a carbohidratos mediante el ciclo de Calvin o ciclo C₃, cuya primera reacción está catalizada por la ribulosa bifosfato carboxilasa/oxigenasa (RuBisCO), generando como primer producto estable un compuesto de tres átomos de carbono denominado ácido 3-fosfoglicérico (3-PGA) (Hatch y Slack, 1970). En el caso de las plantas C₄ y CAM, se produce un ciclo adicional con nuevas rutas bioquímicas, donde la enzima clave y responsable de la fijación inorgánica del carbono es la PEPC. De esta forma, estas plantas con flores han desarrollado un exitoso mecanismo concentrador de CO₂ alrededor de la RuBisCO antes de su fijación por el ciclo de Calvin. Las plantas C₄ y CAM han evolucionado convergentemente para adaptarse a una reducción de CO₂ en el medioambiente (Raven *et al.*, 2008; Christin *et al.*, 2014) y, aunque los mecanismos concentradores de cada planta son diferentes, los ciclos bioquímicos son similares (Osmond, 1978; Hatch, 1987). De esta forma, reducen la fotorrespiración y el gasto energético asociado, consiguiendo un mayor rendimiento fotosintético y una mayor eficiencia en el uso del agua y de los nutrientes (Nimmo, 2000; Edwards *et al.*, 2001).

En la primera fase de la asimilación fotosintética del CO₂, la isoenzima fotosintética de la PEPC, que se encuentra en muy altas concentraciones y en el citosol de las células del mesófilo de estas plantas, cataliza la reacción de carboxilación produciendo un ácido de 4 átomos de carbono que posteriormente es descarboxilado generando un compuesto de 3 átomos de carbono y CO₂ libre, que servirá de sustrato para la fijación secundaria de éste por la RuBisCO (Gil, 1995; Sage *et al.*, 2012). En las plantas CAM se produce una separación temporal entre ambas carboxilaciones, mientras que en las plantas C₄ la separación es espacial, puesto que las carboxilaciones suceden en tipos celulares diferentes: las células de la vaina, en las que se localiza la RuBisCO; y las células del mesófilo, que se disponen en una corona concéntrica a su alrededor y donde se ubica la PEPC. Esto da lugar a una anatomía foliar característica de las plantas C₄ denominada anatomía Kranz o en corona (Haberlandt, 1884; Sage *et al.*, 2012).

En la ruta C₄, el OAA es rápidamente reducido a malato por la enzima NADP⁺malato deshidrogenasa en los cloroplastos de la célula del mesófilo, o transaminado a aspartato en el citosol por la aspartato-transaminasa, dependiendo de la especie C₄. Posteriormente, los ácidos C₄ (malato o aspartato) son transportados a las células de la vaina, donde son descarboxilados a piruvato o alanina, liberándose el CO₂ en el interior de estas células. La reacción de descarboxilación pueden llevarla a cabo tres enzimas distintas que definen los tres subtipos fisiológicos de plantas C₄: la NADP⁺-enzima málico (tipo NADP-ME), la NAD⁺-enzima málico (tipo NAD-ME) o la PEP-carboxiquinasa (tipo PCK) (Azcón-Bieto y Talón, 2008; Sage et al., 2012). En el sorgo, la descarboxilación del malato la realiza la NADP⁺-enzima málico. El CO₂ liberado en la reacción es fijado por la RuBisCO, y el piruvato regresa a los cloroplastos de las células del mesófilo para regenerar el aceptor primario, el PEP, por acción de la piruvato ortofosfato diquinasa (PPDK) (Fig. 5). Estas modificaciones en el metabolismo fotosintético confieren a las plantas C₄ una serie de propiedades que, en conjunto, se denominan síndrome Kranz, y entre las que destacan: bajos niveles de tasas mesurables de fotorrespiración, un punto de compensación de CO2 mínimo, insensibilidad de la fotosíntesis a las variaciones en las concentraciones de O2 y CO2 e insaturación de las tasas fotosintéticas por la intensidad lumínica. Además, sus enzimas tienen elevados óptimos térmicos y son plantas con una mayor eficiencia en el uso del nitrógeno y del agua en comparación con las plantas C_3 (Gil, 1995).

Este conjunto de características determina que entre estos vegetales se encuentren las especies más productivas (Bjorkhan, 1976; Caballero *et al.*, 1977; Gil *et al.*, 1978; Caballero, 1981; Ehleringer y Pearcy, 1983).

Fig. 5. Aspectos generales de la ruta C_4 . El CO₂ entra en la célula del mesófilo y genera HCO₃⁻ a través de la anhidrasa carbónica (CA) en el ambiente acuoso del citosol. El ion bicarbonato reacciona con el PEP para formar un ácido de 4 carbonos (OAA), que es convertido mediante la malato deshidrogenasa (MDH) en un segundo ácido C₄ (malato o aspartato) y se transporta a la célula vecina de la vaina. Allí, el ácido C₄ se descarboxila por la NADP-ME y el CO₂ liberado es fijado por la RuBisCO y convertido en carbohidrato en el ciclo de Calvin. El ácido C₃ producido en la descarboxilación se transporta de vuelta a la célula del mesófilo para regenerar el PEP (Sage *et al.*, 2012).

En el metabolismo fotosintético CAM, durante la noche, cuando las tasas de evapotranspiración son bajas, la PEPC cataliza la fijación del CO₂ atmosférico y/o respiratorio en el citosol. El producto final es el ácido málico que se almacena en la gran vacuola central. Durante el día, los estomas están cerrados y la RuBisCO fija el CO₂ que se genera en la descarboxilación del málico sintetizado durante toda la noche (Borland y Taybi, 2004). El cierre estomático diurno confiere a las plantas con metabolismo fotosintético CAM una altísima eficiencia en el uso del agua.

Cockburn (1985) ha descrito dos variantes del metabolismo estándar que se pueden desarrollar en respuesta a distintos tipos de estrés (revisado en Lüttge, 2004). En la primera variante, los estomas permanecen cerrados tanto de día como de noche, y la fluctuación del ciclo de ácidos orgánicos se sustenta del reciclaje del CO_2 respiratorio. Este fenómeno se ha descrito en respuesta a estreses severos por limitaciones en la disponibilidad de agua (Griffiths, 1988; Griffiths *et al.*, 1989). En una segunda variante, también llamada CAM cíclica, los estomas permanecen cerrados durante el período de oscuridad, produciéndose alguna síntesis nocturna de ácidos orgánicos a partir del CO₂ respiratorio. Durante el posterior período de luz, los estomas se abren capturando CO₂ atmosférico y reduciéndolo directamente mediante el ciclo de Calvin. Este CAM cíclico podría ser el punto de partida para la evolución del metabolismo CAM típico (Guralnick y Jackson, 2001).

La PEPC en otros contextos metabólicos

En plantas superiores, la PEPC se localiza en hojas, raíces, semillas y en nódulos (O'Leary, 1982). Esta naturaleza ubicua de la enzima se justifica, probablemente, por la naturaleza de su producto final estable, el L-malato, que puede ser usado como fuente de carbono y poder reductor en numerosas vías metabólicas.

Debido a la baja K_m por el sustrato bicarbonato (en el rango μ M), esta enzima interviene, como función general, en la economía del carbono de la célula. La PEPC participa en multitud de contextos fisiológicos incluyendo el movimiento estomático (Outlaw, 1990), la homeostasis del pH celular y la absorción y transporte de cationes en las raíces (Ben-Zioni et al., 1970). También interviene en la fijación del nitrógeno atmosférico por leguminosas, en la interacción del tubo polínico y el estilo, en la maduración y germinación de la semilla y en la maduración del fruto (Chollet et al., 1996; Echevarría y Vidal, 2003; Izui et al., 2004; O'Leary et al., 2011b). Además, la PEPC tiene una función anaplerótica consistente en la reposición de intermediarios del ciclo de los ácidos tricarboxílicos o ciclo de Krebs, especialmente cuando la demanda de esqueletos carbonados para la biosíntesis de aminoácidos es alta (Huppe y Turpin, 1994). Esta función es principalmente importante en tejidos no fotosintéticos (Latzko y Kelly, 1983), tanto de plantas C₃ como C₄ (Giordano, 2001). Durante la síntesis de aminoácidos, los ácidos orgánicos procedentes del ciclo de Krebs son transportados desde la mitocondria al estroma del cloroplasto o al citosol para la asimilación de NH₄⁺ en el ciclo glutamina sintetasa/glutamato sintasa mediante el ciclo GS/GOGAT, disminuyendo la tasa de regeneración de oxalacetato (OAA) y/o malato en la mitocondria (Champigny y Foyer, 1992). En este sentido, la reacción catalizada por la PEPC puede ser considerada como el inicio de una rama de la ruta glucolítica (Fig. 6).

Fig. 6. Interacciones entre el metabolismo del carbono y del nitrógeno (Adaptada de O'Leary *et al.*, 2011b).

Durante la reducción del NO_3^- , que consume protones, la actividad PEPC C_3 aumenta el contenido de ácidos orgánicos, que reduce la alcalinización y contribuye a la homeostasis del pH citosólico. Además, el OAA producido por la PEPC puede ser usado por la lanzadera OAA/malato mitocondrial o cloroplástica para transportar hasta el citosol el poder reductor requerido por la nitrato reductasa (NR) (Oaks, 1994). Finalmente, se observa una clara relación entre la actividad PEPC y la actividad glutamina sintetasa (GS), estando esta última controlada por los niveles de glutamina (Dever *et al.*, 1995) y la expresión de PEPC coordinada con la nitrato reductasa (Müller *et al.*, 2001). Todo esto pone en evidencia una coordinación entre el metabolismo del carbono y del nitrógeno finamente regulada para mantener una adecuada relación C/N.

En las raíces con proteoides de *Hakea prostrata*, la PEPC contribuye con un fino mecanismo de control metabólico a facilitar una rápida carboxilación anaplerótica

del PEP para ayudar con la masiva síntesis y exudación de los ácidos orgánicos que son necesarios en el metabolismo de las raíces en los ambientes sin fosfato de esta planta (Shane *et al.*, 2013) (Fig. 7).

Los cambios en el reparto del carbono en el punto de ramificación del PEP son cruciales para permitir a las células vegetales sincronizar su metabolismo con las variaciones en las condiciones medioambientales. El control de la actividad PEPC ocurre a niveles transcripcionales/traduccionales y postraduccionales. Diferentes estudios han mostrado que el suplemento de azúcares exógenos, el Pi y el nitrógeno influyen en la cantidad y el estado de la fosforilación de la PEPC en diferentes plantas (Duff *et al.*, 1995; Sima *et al.*, 2001; Nakagawa *et al.*, 2003; Rajagopalan *et al.*, 2004; Murmu *et al.*, 2007; Chen *et al.*, 2008; Feria *et al.*, 2008; Gregory *et al.*, 2008; O'Leary *et al.*, 2011b).

Fig. 7. Diferentes funciones de la PEPC (Adaptada de O'Leary et al., 2011b).

2.4. La PEPC en las semillas

En semillas en desarrollo

La PEPC está ampliamente estudiada en numerosas semillas de diferentes especies, donde se le han atribuido importantes funciones en el metabolismo del carbono . El metabolismo del PEP vía PEPC, PCC y PKP (piruvato kinasa citosólica y piruvato kinasa plastídica) juega una función muy importante en el reparto de los fotosintatos que han sido importados hacia los leucoplastos para llevar a cabo la biosíntesis de los ácidos grasos. El papel de la PEPC en la refijación del CO₂ procedente de la respiración para la producción de malato también es de gran importancia, puesto que mejora la economía del carbono suministrando este malato como intermediario en el ciclo de los ácidos tricarboxilicos (O'Leary *et al.*, 2011b).

En semillas oleaginosas como en COS (Blonde y Plaxton, 2003; Murmu y Plaxton, 2007; O'Leary et al., 2011b) o en canola (Singal et al., 1995; King et al., 1998; Sebei et al., 2006), las principales etapas de almacenamiento de aceites y biosíntesis de proteínas coincide con el aumento de la actividad PEPC y PPCK (PEPC-kinasa), así como con el aumento en la fosforilación de p107 en el homotetrámero. Además, estas actividades están controladas por el flujo de fotosintatos, al igual que en semillas de soja y cebada (Xu et al., 2003; Sullivan et al., 2004; Tripodi et al., 2005; Murmu y Plaxton, 2007; Xu et al., 2007; Feria et al., 2008). La fosforilación in vivo de las PTPCs en COS parece estar relacionada con las condiciones fisiológicas en las que las semillas necesitan un alto flujo de carbono que se realizaría a través de la PEPC de clase 1, como ocurre durante el reparto de los fotosintatos hacia el almacenamiento de los productos finales de reserva. Por otro lado, en el desarrollo de la semilla de ricino también está presente la PEPC de clase 2, de la que se sugiere que está funcionando para llevar a cabo un mecanismo de "reserva metabólica" que pudiera mantener un importante flujo de PEP hacia L-malato en condiciones a las que la PEPC de clase 1 estuviera inhibida (O'Leary et al., 2009; 2011b,c).

En las etapas del desarrollo de las semillas que acumulan almidón, como en la cebada, la PEPC se fosforila en los estadios intermedios del desarrollo y se desfosforila hacia el periodo de desecación coincidiendo con la síntesis y acumulación de la PPCK (Feria *et al.*, 2008). A diferencia de COS, en cebada no se ha descrito la presencia de la PEPC de clase 2 heterooctamérica durante el desarrollo de la semilla (Feria *et al.*, 2008). Incrementos concomitantes de la actividad PEPC y el contenido en malato reflejan el papel que tiene la PEPC en el proceso de acidificación durante el desarrollo del endospermo (Macnicol y Jacobsen, 1992). En la capa de aleurona, el malato producido

vía PEPC, también regula el suministro de los sustratos de fermentación malato/etanol cuando la semilla de cebada está sometida a hipoxia (Macnicol y Jacobsen, 1998).

Por otro lado, en semillas leguminosas como en *Vicia narbonensis* la alta actividad PEPC observada ha sido relacionada con la biosíntesis de proteínas de reserva debido al requisito de OAA y 2-OG (2-oxoglutarato) necesarios en la asimilación de nitrógeno durante la formación de aminoácidos (Rolletschek *et al.*, 2004; Radchuk *et al.*, 2007). En cereales, se detectaron grandes cantidades de PEPC en los cuerpos proteicos procedentes de granos inmaduros de trigo (*Triticum durum*), donde la PEPC contribuiría a la biosíntesis de aminoácidos y proteínas durante el desarrollo del grano (Araus *et al.*, 1993).

También se le han atribuido funciones a la PEPC generando precursores de los metabolitos y reduciendo así la energía para apoyar la síntesis de triacilgliceroles (O'Leary *et al.*, 2011b).

En semillas en germinación

En semillas de cereales se ha sugerido otro papel importante de la PEPC produciendo L-malato durante la germinación de la semilla (Osuna *et al.*, 1998).

La fosforilación de la PEPC de la aleurona de las semillas de cebada (Osuna *et al.*, 1999) y trigo (Osuna *et al.*, 1996) ha sido descrita por nuestro grupo y se produce en un 80% durante las primeras 24 horas, encontrándose la PEPC completamente fosforilada a las 48 horas de imbibición. En la PEPC de las semillas de cebada, la enzima se encuentra altamente fosforilada a partir de las 6 horas de imbibición (Feria *et al.*, 2008). La alta fosforilación de la PEPC y alta producción de L-malato podría estar relacionada con la regulación del pH citosólico en las células de la aleurona y el transporte de cationes desde la vacuola de la aleurona al endospermo (Mikola y Virtanen, 1980; Hamabata *et al.*, 1988; Drozdowicz y Jones, 1995; Swanson y Jones, 1996). La fosforilación de la PEPC en la aleurona de semillas de sorgo ha sido también descrita (Nhiri *et al.*, 2000). En semillas de cebada, el ABA juega un papel fundamental desencadenando la acumulación de la PEPC durante el estado de desecación, quinasa que luego será fundamental en la rápida fosforilación de la PEPC durante la germinación. Además, en nuestro grupo

se ha demostrado que la activación de la quinasa durante la germinación de la semilla de cebada no se realiza por síntesis proteica como en el resto de contextos fisiológicos donde trabaja la enzima, sino que su actividad está regulada por metabolitos, siendo la relación glucosa-6P/malato, más que la concentración de cada uno de ellos, la que de-termina en última instancia la fosforilación de la PEPC (Feria *et al.*, 2008).

En el metabolismo de semillas oleaginosas como en COS, al contrario que en semillas que acumulan almidón, la PEPC no se encuentra fosforilada debido a que carece del extremo N-terminal conservado donde se localiza la serina fosforilable y, sin embargo, la enzima se encuentra monoubiquitinada al 50% (Uhrig *et al.*, 2008b). Esta modificación postraduccional (PTM) resulta ser inhibidora de la actividad de la PEPC. Aunque la monoubiquitinación tiene influencia sobre las propiedades de regulación y la actividad de la enzima, esta PTM ha estado con frecuencia implicada en las interacciones proteína-proteína (Schnell y Hicke, 2003). Una doble banda de PEPC de 103 y 108kDa, altamente reminiscente a un proceso de monoubiquitinación se ha observado frecuentemente en semillas en germinación de trigo, sorgo y cebada (Osuna *et al.*, 1996; González *et al.*, 1998; Osuna *et al.*, 1999; Nhiri *et al.*, 2000).

En la germinación temprana, la PEPC desarrolla una función crucial que es la formación de ácidos de cuatro carbonos necesarios para desencadenar el ciclo del TCA y del glioxilato. Otra función es proporcionar ácidos dicarboxílicos que se requieren como sustrato para las reacciones de transaminación que siguen a la hidrólisis de proteínas (O'Leary *et al.*, 2011b).

2.5. Regulación de la actividad PEPC

En la regulación de la actividad PEPC se establecen principalmente dos niveles de control, uno a nivel transcripcional y otro a nivel postraduccional.

Regulación transcripcional

A nivel transcripcional, la PEPC está regulada por varios factores, destacando la luz como uno de los principales y mejor conocidos. Esta respuesta, que se da tanto en plantas C₄ (Thomas *et al.*, 1990; Lepiniec *et al.*, 2003) como en plantas C₃ (Matsuoka y

Yamamoto, 1989), está mediada por el fitocromo y se produce en la transición de planta etiolada a planta verde. La luz también afecta a la fluctuación circadiana de los niveles de ARNm de PEPC. Sin embargo estas fluctuaciones no se ven reflejadas en la cantidad de proteína, que se mantiene constante (Thomas *et al.*, 1990). El fitocromo también participa en la expresión de la PEPC en la planta CAM facultativa *Mesembryanthemum crystallinum* (Cushman y Bohnert, 1999). Otros factores ambientales como temperatura, salinidad, estrés hídrico o la aplicación exógena de ABA aumentan la expresión de la PEPC en esta planta (Herppich *et al.*, 1992).

En plantas de tipo C₃ como en *Hordeum vulgare* (cebada), el estrés salino y el ABA reducen la asimilación de CO₂, el contenido en clorofilas, proteínas y la actividad RuBisCO y, por el contrario, se estimula la actividad PEPC (Popova *et al.*, 1995). En plántulas de trigo (*Triticum aestivum*), el tratamiento con NaCl y LiCl, además de otros estreses como hipoxia o frío, también provocan un aumento en la expresión de PEPC en la raíz, aunque se desconoce si el ABA interviene en este efecto (González *et al.*, 2003).

Finalmente, otras hormonas como citoquininas, en conjunción o no con la nutrición nitrogenada, pueden modificar la expresión de la PEPC (Peters *et al.*, 1997).

Regulación postraduccional

o Regulación por metabolitos, pH, estado oligomérico y estado rédox

La mayoría de las PTPCs están sujetas a regulación alostérica por una amplia variedad de metabolitos fotosintéticos. Sin embargo, las propiedades cinéticas y alostéricas específicas de la enzima son variables y parecen estar adaptadas a las funciones fisiológicas de las distintas isoenzimas. Un buen ejemplo de adaptación es que en las PEPCs de Clase 1 de las plantas C₄ los valores de IC_{50} (malato) y K_m (PEP) son mayores con respecto a los de las plantas C₃ (Svensson *et al.*, 2003; O'Leary *et al.*, 2011b). En maíz, existen dos isoenzimas de PEPC C₃, una de las cuales es abundante en la raíz. La identidad entre la secuencia de aminoácidos de las isoenzimas C₄ y la de raíz es del 77%. Sin embargo, los valores de K_m de la forma C₄ para el PEP, Mg²⁺ y HCO³⁻ a pH 7.3 es 30, 10 y 2 veces superior a los de la forma C₃ de raíz, respectivamente (Dong *et al.*, 1998).

Generalmente, las PTPCs de dicotiledóneas son activadas por glucosa 6-fosfato (Glu-6-P) e inhibidas por L-malato o aspartato, especialmente a valores de pH subóptimo (del orden de 7.1 a 7.3) que se aproximan al valor de pH citosólico (Andreo *et al.*, 1987; Echevarría *et al.*, 1994). La Glu-6-P incrementa la V_{max} de la PEPC, produciendo una bajada de la K_m para el PEP y reduciendo la sensibilidad de la enzima al L-malato. En plantas monocotiledóneas, además de los metabolitos citados anteriormente, la glicina y la alanina son activadores (Tovar-Méndez *et al.*, 2000; Izui *et al.*, 2004). Por el contrario, la PEPC de *E. coli* presenta una regulación más compleja, siendo activada por acetil-coenzima A, fructosa 1,6-bifosfato, ácidos grasos de cadena larga y guanosina 3'-difosfato 5'-difosfato, e inhibida por aspartato o L-malato (Izui *et al.*, 1981; 2004).

En la PEPC de clase 1 presente en el desarrollo del fruto de la planta de tomate (*Lycopersicon esculentum*), (Guillet *et al.*, 2002) en la naranja (*Citrus sinensis*), (Perotti *et al.*, 2010), y en la isoenzima cloroplastídica de arroz aparecen diferentes patrones en la regulación alósterica (Masumoto *et al.*, 2010). La PEPC de clase 2 heteroctamérica también tiene distintas propiedades cinéticas que serán descritas más adelante (O'Leary *et al.*, 2009; 2011b).

La afinidad de la enzima por PEP y Mg^{2+} también aumenta fuertemente a un pH entre 7 y 8, y el pH óptimo para la actividad de la enzima, ensayada *in vitro*, es de 8. Por lo tanto, *in vivo*, la actividad de la enzima va a depender del balance entre los efectores negativos y positivos de origen fotosintético o relacionados con la fotosíntesis y de la modulación por el pH citosólico (Gadal *et al.*, 1996). La mayoría de factores que interaccionan y actúan en la regulación de la PEPC (pH, Glu-6-P, fosforilación) son opuestos al efecto negativo ejercido por el L-malato (Jeanneau *et al.*, 2002).

La regulación de la actividad de la PEPC está influenciada por el estado oligomérico de la enzima, siendo el tetrámero la conformación óptima, seguida del dímero, y por último el monómero, que carece de actividad (Chollet *et al.*, 1996). Los cambios en el estado de oligomerización se asocian a factores como la dilución de la enzima, cambios en la concentración de sales en el medio de ensayo, concentración de L-malato o baja temperatura. Sin embargo, la contribución real de esta regulación a la actividad de la enzima *in vivo* no está clara en plantas C₄. Por el contrario, en plantas CAM hay evidencias de que el tetrámero actuaría durante la fase nocturna asociado a la fase activa de fijación de CO_2 (Chollet *et al.*, 1996).

La PEPC podría estar sometida a una regulación rédox (Iglesias y Andreo, 1984; Chardot y Wedding, 1992; Chollet *et al.*, 1996) debido a la abundancia de cisteínas, algunas altamente conservadas en todas las PEPCs (Chollet *et al.*, 1996). No obstante, hasta la fecha no se ha descrito ninguna cascada de óxido-reducción tipo ferredoxinatiorredoxina implicada en la regulación de la PEPC (Chollet *et al.*, 1996), a pesar de que actualmente se han descrito varias tiorredoxinas citosólicas como la mayoría de las tiorredoxinas h (Serrato *et al.*, 2002; Traverso *et al.*, 2008).

Además, se ha descrito que productos como el DTT, mercaptoetanol o glutatión reducido cambian débilmente la sensibilidad al malato *in situ*. Sin embargo, ninguno de estos productos tiene efecto *in vitro*. Este efecto no se debe a ningún proceso mediado por tiorredoxina o dependiente de fosforilación. Diversos autores proponen que el glutatión podría contribuir a la protección de la enzima frente al málico, debido a que este compuesto tiólico es un compuesto fisiológico que se encuentra en el citosol, principalmente en estado reducido (Pierre *et al.*, 2004).

o Regulación covalente de la PEPC por fosforilación reversible

El fenómeno de fosforilación reversible en la PEPC fue puesto en evidencia por primera vez en la PEPC de la planta CAM *Bryophyllum fedtschenkoi* (Nimmo *et al.*, 1984), y posteriormente en la PEPC de maíz (Budde y Chollet, 1986) y en la de sorgo (Guidici-Orticoni *et al.*, 1988). Todas las PTPCs fotosintéticas y no fotosintéticas están sometidas a regulación por fosforilación reversible en un residuo de serina localizado en el extremo N-terminal de la proteína. La fosforilación la lleva a cabo una pequeña proteína con actividad quinasa conocida como PEPC quinasa (PPCK). La Ser fosforilable reside en el motivo E/DR/KxxS*IDAQL/MR, común a todas las enzimas de plantas secuenciadas hasta la fecha pero ausente en las PEPCs de bacterias (*E. coli*) y en la PEPC de tipo bacteriano de plantas (Lepiniec *et al.*, 1994; Toh *et al.*, 1994; Chollet *et al.*, 1996; Kai *et al.*, 1999; Sánchez y Cejudo, 2003; O'Leary *et al.*, 2011b). Los múltiples estudios realizados sobre dicha modificación postraduccional, incluyendo la clonación de la PPCK en plantas C₄, C₃ y CAM, han contribuido a que la regulación por fosforilación reversible de la PEPC sea, hasta la fecha, uno de los ejemplos mejor conocidos de regulación por fosforilación reversible de una enzima en el reino vegetal.

La fosforilación de la PEPC fotosintética C₄ de sorgo produce un débil efecto sobre la K_m de la PEPC pero duplica la V_{max} , aumenta siete veces la K_i para su inhibidor el L-malato y 4.5 veces la K_a para la Glu-6-P, en condiciones de pH y concentración de PEP subóptimos (Echevarría *et al.*, 1994; Duff y Chollet, 1995). La PEPC es desfosforilada por una proteína fosfatasa de tipo 2A (PP2A) (Carter *et al.*, 1990) (Fig. 8). Las variaciones en el estado de fosforilación de la PEPC parecen ser consecuencia de fluctuaciones en la actividad PPCK, ya que los niveles de actividad fosfatasa *in vitro* se mantienen relativamente constantes en las transiciones luz-oscuridad (Echevarría *et al.*, 1990).

Existen diferentes estudios de mutagénesis dirigida y su repercusión en la fosforilación. En la PEPC C₄ recombinante de sorgo se ha puesto de manifiesto que el efecto de la fosforilación puede ser simulado por la introducción de una carga negativa, sustituyendo el residuo de Ser por Asp (S8D) en el extremo N-terminal de la proteína. La incorporación de una carga negativa en dicho dominio se traduce también en un aumento de la velocidad catalítica y una disminución de la sensibilidad al L-malato (Wang et al., 1992; Duff y Chollet, 1995; Chollet et al., 1996). Otros tratamientos como la sustitución de un residuo básico situado 3 aminoácidos antes de la Ser por Asn, o la eliminación del péptido N-terminal de la PEPC C₄ de maíz con enteroquinasa en el residuo 33, mimetizan parcialmente el efecto de la fosforilación (Izui et al., 2004). En la misma línea se ha visto que añadiendo al ensayo de actividad PEPC anticuerpos específicos dirigidos contra un péptido sintético de 20 aminoácidos del extremo N-terminal que contiene la secuencia del sitio de fosforilación de la enzima C4 de hojas de sorgo (péptido APS-IgG), se modifican las propiedades cinéticas y funcionales de la PEPC por lo que se sugiere que dicho anticuerpo provoca un cambio conformacional en la molécula que simula la fosforilación (Pacquit et al., 1995).

Las isoenzimas no fotosintéticas de PEPC también están sometidas a una regulación por fosforilación reversible, similar a la de las isoenzimas C₄ o CAM (Chollet *et al.*, 1996; Vidal y Chollet, 1997; Gousset-Dupont *et al.*, 2005). Diversos estudios *in vivo* con ³²P han demostrado la existencia de fosforilación de la PEPC en una gran variedad de tejidos donde sólo se localiza la isoenzima no fotosintética, como por ejemplo en nódulos de raíces de soja (Zhang *et al.*, 1995), semillas de trigo y cebada (Osuna *et al.*, 1996; 1999; Feria *et al.*, 2008), estomas (Du *et al.*, 1997), frutos (Law y Plaxton, 1997), hojas de trigo de plántulas deficientes en nitrógeno (Van Quy *et al.*, 1991; Duff y Chollet, 1995), e incluso en la planta acuática *Egeria densa* (Casati *et al.*, 2000; Lara *et al.*, 2001).

Además, estudios *in vitro* han detectado la existencia de actividad PPCK en nódulos de raíces de soja y alfalfa (Schuller y Werner, 1993; Vance *et al.*, 1994), hojas de trigo y tabaco (Wang y Chollet, 1993a; Duff y Chollet, 1995), semillas de cebada (Feria *et al.*, 2008), semillas en desarrollo de ricino (Murmu y Plaxton., 2007; O'Leary., 2011b) y en semillas y raíces de sorgo (Nhiri *et al.*, 2000; Pacquit *et al.*, 1993), demostrándose, además, la similitud de dicha actividad quinasa con la de plantas C₄ y CAM respecto a su independencia de Ca²⁺, propiedades cromatográficas y subunidad catalítica (Pacquit *et al.*, 1993; Wang y Chollet, 1993b; Duff y Chollet, 1995).

En hojas C₃, esta actividad PPCK está modulada de forma reversible *in vivo* por una interacción compleja entre fotosíntesis y metabolismo del N₂, o por el suministro de fotosintatos a los nódulos de raíces fijadores de N₂ (Duff y Chollet, 1995). Además, la inducción de la actividad PPCK en hojas iluminadas de plantas C₃ tiene características comunes a la de las enzimas C₄ (Duff y Chollet, 1995; Chollet *et al.*, 1996; Li *et al.*, 1996; Gousset-Dupont *et al.*, 2005), lo que sugiere la existencia de cadenas de transducción similares en ambos tipos de plantas. En este sentido, se ha puesto de manifiesto que la PEPC de hojas de *Arabidopsis* se regula mediante un mecanismo de fosforilación dependiente de luz, en una ruta similar a la que ocurre en plantas C₄ (Gousset-Dupont *et al.*, 2005). Mediante experimentos de marcaje radiactivo con ³²P, se detecta PEPC marcada en extractos de luz y no en los de oscuridad. Estos resultados apoyan la hipótesis de que los cambios dependientes de luz en las propiedades regulatorias de la PEPC se deben a la fosforilación *in vivo* de la enzima (presumiblemente AtPPC2) (Gousset-Dupont *et al.*, 2005).

Como se ha propuesto para el caso de la PEPC C_4 , la fosforilación podría ejercer un efecto protector que contrarrestaría la inhibición metabólica de la PEPC. Por lo tanto, el control por metabolitos y modulación por la regulación covalente en la luz de la enzima, podrían actuar en un bucle de retroalimentación que aseguraría el control preciso del flujo de carbono a través del ciclo anaplerótico y en la ruta de síntesis de aminoácidos de la familia del aspartato (Gousset-Dupont *et al.*, 2005). En el caso de las plantas C_3 , la PEPC juega un papel crucial en la coordinación del metabolismo del carbono y del nitrógeno. Por tanto, el papel de la fosforilación reversible en oposición a la inhibición metabólica de la PEPC de C_4 y CAM, puede aplicarse a cualquier contexto fisiológico donde la concentración del metabolito sea alta; en el caso de la PEPC C_3 , durante el flujo anaplerótico del carbono (Vidal *et al.*, 2002).

La PEPC C₄ se fosforila durante el día (Fig. 8), mientras que en la PEPC de las CAM ocurre de noche. Consecuentemente, en ambos casos, la fosforilación de la PEPC sucede durante la etapa activa de fijación de CO_2 para la fotosíntesis. La fosforilación está controlada, principalmente, por la luz en las plantas C₄, y por un oscilador circadiano en las plantas CAM (Nimmo, 2003). Sin embargo, hay evidencias que apoyan la existencia de múltiples factores que controlan la fosforilación reguladora de la PEPC: el estrés oxidativo (Izui *et al.*, 2004), el estrés salino en plantas C₄ (Echevarría *et al.*, 2001), o la falta de CO₂ en plantas CAM (Izui *et al.*, 2004).

Fig. 8. Regulación de la PEPC por fosforilación reversible en plantas C_4 **.** La luz induce la síntesis de la PPCK, la cual fosforila a la PEPC en una serina en el extremo N-terminal de la PEPC produciendo cambios en las propiedades cinéticas y de regulación de la enzima. La desfosforilación de la PEPC la realiza una fosfatasa de tipo 2A (PP2A) (Adaptada de Fig. 12.49. Buchanan *et al.*, 2001).

Sorprendentemente, estudios recientes realizados en líneas transgénicas de *Fla-veria bidentis*, planta de tipo C_4 , carentes de actividad PPCK se muestra que la fosforilación de la PEPC en la luz no es necesaria para alcanzar una eficiente fotosíntesis C_4 cuando las plantas son crecidas bajo condiciones controladas en invernadero (Furumoto *et al.*, 2007), otra cuestión sería en plantas en condiciones de estrés, sin embargo los autores no mencionan este contexto. Estos nuevos resultados ponen en duda la esencialidad de la fosforilación de la PEPC en el contexto fotosintético C_4 , adquiriendo especial relevancia los factores independientes de la luz que parecen regular la fosforilación de la PEPC lejos de las condiciones óptimas de cultivo.

• Regulación por monoubiquitinación

La ubiquitina (Ub) es una pequeña proteína globular de 76 aminoácidos que aparece en todos los eucariotas y que está implicada en la regulación de múltiples y diversos procesos celulares. Desde que se descubrió en los 70, a la ubiquitina sólo se le había atribuido participación en los procesos de degradación de las proteínas (Hershko *et al.*, 1998), pero ahora está claro que la ubiquitinación puede participar en funciones independiente de la proteólisis, tales como el ciclo celular y división, replicación, transcripción y reparación del ADN y en la endocitosis, así como en la interacción entre proteínas y direccionamiento a membranas o compartimentos celulares (Mukhopadhyay y Riezman, 2007).

La ubiquitinación modifica covalentemente a las proteínas a través de la formación de un puente isopéptidico entre un residuo de glicina del C-terminal de la ubiquitina y un ε -grupo amino de un residuo de lisina de la proteína substrato/aceptora. En este proceso intervienen tres enzimas diferentes. Primero, el C-terminal de la Ub forma un puente tioéster con la cisteína de la enzima activadora de Ub (E1), en una reacción dependiente de ATP. Entonces, la Ub es transportada desde la E1 a la cisteína catalítica de la enzima conjugadora de Ub (E2). El complejo E2-Ub coopera con la enzima ligadora de Ub (E3) para transferir la ubiquitina a un residuo de lisina de la proteína sustrato mediante un puente isopéptidico (Pickart y Eddins, 2004; Sadowski *et al.*, 2012). Las enzimas E3s pertenecen a 2 subfamilias enzimáticas: las ligasas E3s "*homologas al Cterminal E6-AP*" (HECT), y las ligasas E3s "*really interesting new gene*" (RING). Las enzimas HECT contienen una cisteína en el sitio activo, la cual es conjugada con ubiquitina por la E2s antes de la ligación con ubiquitina al sustrato (Rotin *et al.*, 2009). En contraste, las ligasas RING, las cuales no contienen un sitio activo enzimático, unen al mismo tiempo el intermediario ubiquitina-E2 y el sustrato (Ye y Rape, 2009).

La mayoría de los organismos solo tienen una E1, pero tienen docenas de diferentes E2 y hasta cientos de miles de diferentes E3, proporcionando la necesidad de hacer frente a la especificidad de un sustrato eficaz (Hua y Vierstra, 2011; Braun y Madhani, 2012) (Fig. 9).

Fig. 9. Reacción de ubiquitinación y desubiquitinación. A, Reacción de ubiquitinación esquematizada de las tres enzimas que participan en el proceso. **B,** Especificidad de las enzimas ubiquitinadoras (Hicke *et al.*, 2005).

Existen diversas formas de modificaciones de Ub:

- Mono-ubiquitinación: es la unión de una única Ub a la proteína.
- Multi-ubiquitinación: tiene lugar cuando varios residuos de lisina de la proteína substrato son etiquetadas con una única Ub.
- Poli-ubiquitinación: tiene lugar cuando se añade una cadena de ubiquitina compuesta de varias ubiquitinas a la proteína substrato. Se unen mediante el Cterminal de los residuos de glicina de cada unidad de Ub y una lisina interna especifica de la anterior Ub agregada (Fig. 10).

Se ha mostrado que la monoubiquitinación y la multi-ubiquitinación se requieren para la entrada de ciertas proteínas de carga en vesículas en diferentes estadios de la ruta secretor/endocítica, mientras que la poliubiquitinación ha sido principalmente asociada con la degradación por el proteosoma (Mukhopadhyay y Riezman, 2007).

Fig. 10. Diferentes modos de ubiquitinación conducen a diferentes funciones en el sustrato. La monoubiquitinación puede regular procesos tales como la reparación del ADN, expresión génica y la endocitosis. La multiubiquitinación puede regular receptores de endocitosis. La poliubiquitinación en la K11 o en la K48 produce generalmente degradación por el proteosoma, mientras que en la K63 puede funcionar en la señalización y en la endocitosis. Una cadena de poliubiquitinas lineares se puede generar a través de los grupos aminos del residuo de la metionina del N-terminal para así regular la activación del factor NF- κ B. Las cadenas de poliubiquitinas ramificadas pueden modular la actividad ligasa de RING E3. Ring1B puede inducir la monoubiquitinación de la histona H2A. La función de la ubiquitinación en los residuos K6, K27, K29 y K33 se desconoce hasta el momento (Sadowski *et al.*, 2012).

Estudios previos, han descrito la degradación de la PEPC y la PPCK vía poliubiquitinación y el proteosoma (Agetsuma *et al.*, 2005; Schulz, *et al.*, 1993). En cuanto a otras enzimas metabólicas, la fosfoglicerasa mutasa-B se monoubiquitina en los tejidos cancerígenos colorectales pero hasta el momento no se ha descrito la función que desarrolla esta enzima monoubiquitinada o si esta PTM modifica las propiedades cinéticas de la enzima (Usuba *et al.*, 2001).

En 2008, fue descrito el primer ejemplo en la naturaleza de regulación por monoubiquitinación de una enzima metabólica en plantas, en las semillas de ricino (COS, Uhrig *et al.*, 2008b). Previamente había sido descrito que una enzima desubiquitinadora, la ataxina 3, era activada por monoubiquitinación. (Todi *et al.*, 2009). En la actualidad, también se ha visto monoubiquitinación de la PEPC en las raíces inmaduras con proteoides de harsh hakea (*Hakea prostrata*) (Shane *et al.*, 2013). En los extractos de COS en germinación y en las raíces de harsh hakea existe un ratio equivalente de dos polipéptidos inmunorreactivos de PTPC. Ambos polipéptidos tienen una masa molecular de ~110 kDa y 107 kDa (p110 y p107, respectivamente). La purificación de estas PTPCs y los estudios mediante espectrometría de masas (MS) de las proteínas purificadas demostraron que: (i) ambas subunidades surgen del mismo gen PTPC e interactúan para formar una PEPC heterotetramérica, p110:p107, de clase 1, y (ii) p107 se monoubiquitina para formar p110 (Uhrig *et al.*, 2008b; Shane *et al.*, 2013).

La monoubiquitinación de la PEPC de clase 1 en COS o en harsh hakea es inhibidora puesto que aumenta su K_m (PEP) mientras que aumenta su sensibilidad a los inhibidores alostéricos. Estos estudios han proporcionado un nuevo modelo en el control postraduccional de la PEPC de clase 1 no fotosintética, sin embargo, en estos dos modelos, la influencia inhibidora de la monoubiquitinación no es drástica, lo cual podría sugerir que esta nueva PTM de la PEPC pudiera tener una función adicional *in vivo*. Estudios futuros serán necesarios para caracterizar el proteoma "monoubiquitinado" de las células eucariotas y describir las proteínas con dominios de unión a ubiquitina que interaccionan con las proteínas ubiquitinadas. De esta forma, se podrá estudiar la función que existe para este nuevo modelo de PTM en las proteínas dianas además de estudiar su localización celular, en nuestro caso, de la PEPC (Schnell y Hicke, 2003; Downes y Vierstra, 2005).

Durante la maduración del polen de lily (*Lilium longiflorum*) y en *Arabidopsis*, también se ha descrito la monoubiquitinación de la PEPC. Al principio del desarrollo del polen (antes de la mitosis I en lily o después de la mitosis II en *Arabidopsis*) se ha descrito la presencia de un complejo de PEPC de clase 1 heterotetramérico que se compone de Ub-PTPC:PTPC, y en una etapa posterior comienza a expresarse la BTPC y a formarse el complejo de PEPC de clase 2 heterooctamérico compuesto de BTPC:Ub-PTPC:PTPC (Igawa *et al.*, 2010; O'Leary *et al.*, 2011b).

Finalmente, la existencia de una "doble banda" de PTPC altamente reminiscente a la ubiquitinación ha sido frecuentemente identificada en extractos clarificados de diferentes plantas, incluyendo hojas C₃, células guardas, raíces y frutos (Denecke *et al.*, 1993; Law y Plaxton, 1997; De Nisi y Zocchi, 2000; Rao *et al.*, 2006), y durante el desarrollo y germinación de semillas de cereales, tales como el trigo, cebada y sorgo (Osuna *et al.*, 1996, 1999; Gonzalez *et al.*, 1998; Nhiri *et al.*, 2000; Feria *et al.*, 2008).

Enzimas desubiquitinadoras

La ubiquitinación de las proteínas es reversible y las cadenas de ubiquitinas y monoubiquitinas pueden ser hidrolizadas por las llamadas enzimas desubiquitinadoras (DUBs). Las DUBs funcionan manteniendo el balance de ubiquitinación en la célula y contribuyen a la regulación de los procesos celulares además del mantenimiento de la formación de ubiquitinas libres (Reyes-Turcu *et al.*, 2009). Las DUBs eucariotas se clasifican en 5 familias diferentes dependiendo del dominio de reorganización y sitio activo (Komander *et al.*, 2009).

Uhrig y colaboradores probaron nueve diferentes enzimas desubiquitinadoras con la PTPC y solo la enzima USP-2c (proteasa específica de Ub 2) catalizó la desubiquitinación de la subunidad de PTPC de 110 kDa, lo cual se correlacionaba con el incremento de la cantidad de la subunidad de 107 kDa (Uhrig *et al.*, 2008b). Existen dos diferentes isoenzimas de USP-2 que tienen un núcleo en común pero diferentes Nterminales, y la especificidad de estas enzimas viene modulada por sus N-terminales. Como el núcleo catalítico carece del dominio de regulación en el N-terminal, puede desubiquitinar una gran cantidad de sustratos *in vitro* (Uhrig *et al.*, 2008b).

• Regulación por PA (Ácido fosfatídico)

El ácido fosfatídico (PA) es un intermediario bien conocido de la biosíntesis de lípidos (Athenstaedt y Daum, 1999). Sin embargo, actualmente también es considerado

un importante lípido señal actuando como segundo mensajero en varias cadenas de transducción de señales, tanto en plantas como en animales. El PA desempeña un amplio abanico de funciones según el tipo de organismo o el proceso donde intervenga. Hasta el momento se sabe que en plantas, se induce la síntesis de PA en respuesta a un amplio rango de estreses entre ellos el frío, estrés hídrico, salinidad, por heridas o por ataques de patógenos (Testerink y Munnik, 2005), y también en la interacción Rhizo-bium-leguminosa (Den Hartog *et al.*, 2001, 2003).

En 2004, Testerink y colaboradores pusieron por primera vez en evidencia, utilizando extractos proteicos procedentes de cultivos celulares de *Arabidopsis thaliana* (Col-0) y tomate (Msk8), la interacción entre el PA y distintas isoenzimas de PEPC C₃. Además, mostraron que la afinidad de la PEPC por el PA es mayor que por otros lípidos (Testerink *et al.*, 2004; Testerink y Munnik, 2005). En tomate, son las isoenzimas PEPC1 y 2 las que se unen a PA, mientras que en *Arabidopsis* son las isoenzimas PEPC1 y 3, sugiriendo una cierta especificidad de la isoenzima en la interacción (Testerink *et al.*, 2004).

Posteriormente, se observó que el tratamiento de células con estrés hipoosmótico o el elicitor fúngico xilanasa, también aumentaba el grado de unión del PA a la PEPC. Por lo tanto, la interacción del PA y la PEPC podría jugar un papel en la adaptación a estreses ambientales (Zhang *et al.*, 2005).

Recientemente, trabajos realizados en nuestro grupo han descrito que el PA también se une a las PEPCs de tipo C₄ (Monreal *et al.*, 2010b). En estos estudios, la PEPC C₄ de sorgo semipurificada era inhibida catalíticamente tras la adición de PA, tanto en su forma fisiológica (18:1) como en su forma soluble pero no fisiológica (8:0). El estado de fosforilación de la enzima, pH, presencia de metabolitos reguladores (Glu-6-P o Lmalato) o de su sustrato (PEP) no influían en la inhibición de la enzima por PA (Monreal *et al.*, 2010b). En estos estudios se observa la presencia de PEPC en la fracción de membrana, y se detectan múltiples bandas de PEPC que indican que esta PEPC se encuentra parcialmente proteolizada o modificada (Monreal *et al.*, 2010b). Además, el PA induce la exposición del C-terminal de la PEPC, y en consecuencia se activa un mecanismo de degradación a través de una cisteína-proteasa que hasta el momento no ha sido identificada (Gandullo *et al.*, datos no publicados). Todos estos resultados en su conjunto sugerían que una posible función de la interacción del PA con la PEPC es el reclutamiento a membrana de esta enzima, y que dicho proceso podía estar relacionado con su subsiguiente degradación proteolítica.

Aunque se requiere un estudio más profundo sobre las implicaciones fisiológicas de la interacción PEPC-PA, el PA podría ser un importante elemento regulador de la PEPC en determinadas condiciones de estrés.

2.6. La PEPC de tipo bacteriana (BTPC)

Como se ha descrito previamente, Sánchez y Cejudo fueron los investigadores que describieron por primera vez la BTPC en plantas de *Arabidopsis* y arroz. Esta BTPC está presente en todos los genomas secuenciados hasta la fecha de algas y plantas y constituye un grupo monofilético (Sánchez y Cejudo, 2003; O'Leary *et al.*, 2011b).

Las BTPCs forman polipéptidos que tienen un tamaño de 116-118 kDa, o aproximadamente 130 kDa en algas verdes. Basándose en tres principales criterios, las proteínas PEPC son fácilmente clasificadas como PEPC o BTPC: (i) carecen del dominio de fosforilación conservado (acido-base-XXSIDAQLR) en el extremo N-terminal de las PTPCs, (ii) poseen un tetrapéptido C-terminal de tipo procariota (R/K)NTG (Sánchez y Cejudo, 2003; Marmedov *et al.*, 2005; Gennidakis *et al.*,2007; O'Leary *et al.*, 2011b), (iii) Todas las BTPCs contienen una inserción única y divergente de aproximadamente 10 kDa que se ha predicho que existe con una conformación muy flexible e inestructurada, esta región es conocida como "*intrinsically disordered región*" o región desordenada (O'Leary *et al.*, 2011b).

La PTPC y la BTPC fueron purificadas juntas por primera vez en algas verdes unicelulares (*Selenastrum minutum* y *Chlamydomonas reinhardtii*). La PEPC homote-tramérica de 400 kDa se clasificó como PEPC de clase 1 mientras que la PEPC de alto peso molecular compuesta de ambas proteínas, PTPC y BTPC de 130 kDa (hasta el momento desconocida como bacteriana, se clasificó como PEPC de clase 2 (Schuller *et al.*, 1990; Rivoal *et al.*, 1996, 1998, 2001, 2002). Esta PEPC de clase 2 de algas, se ca-

racterizó y se observo que tenía distintas características cinéticas (Mamedov *et al.*, 2005; Moellering *et al.*, 2007).

En 2003, Blonde y Plaxton purificaron dos isoenzimas de PEPC procedentes del endospermo del desarrollo de COS. Una isoenzima tenía bajo peso molecular y la otra alto, y ambas tenían propiedades físicas, reguladoras y cinéticas muy similares a las que se describieron en algas. Posteriormente, las caracterizaron y estudiaron en profundidad concluyendo que la PEPC de clase 1 consistía en un homotetrámero clásico de 410 kDa, mientras que la PEPC de clase 2 estaba formado por un heterooctaméro que surgía de la fuerte interacción entre las subunidades PTPCs y BTPCs, p107 y p118 respectivamente, en una relación estequiométrica 1:1 (Gennidakis *et al.*, 2007; O'Leary *et al.*, 2011b). Recientemente también se ha caracterizado la PEPC de clase 2 en el polen de lily, con la diferencia de que el heterooctámero en esta planta superior está formado por 2 subunidades de PTPC ubiquitinadas, 2 desubiquitinadas y 4 BPTCs (LIBTPC:Ub-LIPTPC) (Igawa *et al.*, 2010).

Hasta el momento, la BTPC solo ha sido observada en asociación con la PTPC formando el complejo heterooctamérico de PEPC de clase 2, y en algas y COS se ha visto que la BTPC es muy susceptible de ser proteolizada *in vitro* por una tiol endopeptidasa endógena que ataca en un sitio especifico de la región desordenada, y cuya protección solo se consigue con fluoruro de fenilmetilsulfonilo (PMSF), un cocktail inhibidor de proteasas (ProteCEASE 100, G Biosciences) o bien con 5 mM de acetato de cobre (Rivoal *et al.*, 2001; Gennidakis *et al.*, 2007; Igawa *et al.*, 2010; O'Leary *et al.*, 2011b).

En el grupo del profesor Plaxton, también se construyo *in vitro* una PEPC de clase 2 quimérica que fue purificada y caracterizada cinéticamente. Debido a esta PEPC recombinante se puso en evidencia que la subunidad BTPC tiene un efecto regulador sobre la PTPC en la PEPC de clase-2 ya que la subunidad PTPC de la Clase 2 era menos sensible a los inhibidores alostéricos comparada con la PTPC de la Clase 1 (O'Leary *et al.*, 2009). Estudios recientes de co-expresión transitoria con FP (proteína fluorescente) han demostrado que las subunidades de PTPC y BTPC interaccionan *in vivo* en la superficie de la mitocondria, a través de la región desordenada de la BTPC (Park *et al.*, 2012).

La BTPC de COS se fosforila en tres diferentes sitios (Uhrig *et al.*, 2008a), en la Thr⁴ que se encuentra en el N-terminal y en la Ser⁴²⁵ y Ser⁴⁵¹ localizadas en la región desordenada, y los análisis con los mutantes fosfo-miméticos permitieron demostrar que la fosforilación en la Ser⁴²⁵ y en la Ser⁴⁵¹ eran reguladoras (O'Leary *et al.*, 2011c; Dalziel *et al.*, 2012), además, se acaba de describir que la fosforilación en la Ser⁴⁵¹ está mediada por una nueva proteína dependiente de calcio, una RcCDPK (Hill *et al.*, 2014).

3. LA FOSFOENOLPIRUVATO CARBOXILASA KINASA (PPCK)

La fosfoenolpiruvato carboxilasa quinasa (PPCK) es una proteína quinasa de Ser/Thr que utiliza ATP como donador de fosfato. Fosforila a la PEPC en un residuo de Ser en el motivo E/DR/KxxS*IDAQL/MR situado en el extremo N-terminal de la proteína (Jiao *et al.*, 1991c).

La PPCK es una proteína altamente específica, que pertenece a la familia de las quinasas dependientes de Ca^{2+} y/o calmodulina (superfamilia CDPK-SnRK). Sin embargo, a diferencia de éstas, la PPCK no posee ningún dominio de unión a Ca^{2+} o secuencia autoinhibidora (Echevarría y Vidal, 2003), con lo cual su actividad es independiente de Ca^{2+} y se encuentra constitutivamente activa. Con una masa molecular teórica de 31 kDa, es la proteína quinasa dependiente de ATP más pequeña conocida hasta la fecha (Hartwell *et al.*, 1999, revisado en Hrabak *et al.*, 2003). También es la primera quinasa descrita cuya regulación se produce por cambios rápidos en su velocidad de síntesis, con una tasa de renovación de unas 2 h (Jiao *et al.*, 1991b; Hartwell *et al.*, 1996; 1999).

En 2001, Tsuchida y colaboradores diseñaron una PPCK recombinante de *F*. *trinervia* que fosforilaba en la Ser fisiológica a la PEPC C₄ de maíz eficientemente (Tsuchida *et al.*, 2001). Aunque poseía un dominio quinasa similar al de las CDPKs, la PPCK recombinante de *Flaveria trinervia* no era capaz de fosforilar sustratos convencionales de quinasas como la caseína o la histona-IIIS. Sin embargo, resultados obtenidos recientemente por nuestro grupo de investigación indicaron que las PPCKs recombinantes de sorgo sí podían fosforilar ambos sustratos (Monreal *et al.*, datos no publicados). Las propiedades cinéticas de las PPCKs de *M. crystallinum* y de *F. trinervia* fueron esencialmente las mismas que las de la PPCK nativa purificada de hojas de maíz (Saze *et al.*, 2001). Por ejemplo, la estricta especificidad por el sustrato, la independencia de Ca²⁺, el perfil de pH, y los valores de K_m para los ligandos, fueron los mismos (Tsuchida *et al.*, 2001; Ermolova *et al.*, 2003).

A pesar de que la especificidad de la fosforilación de la PPCK es alta, la PEPC C_4 purificada a partir de hojas de sorgo puede ser fosforilada *in vitro* en la Ser fisiológica por la subunidad catalítica de la quinasa de mamíferos dependiente de AMPc (PKA), la cual no está presente en plantas (Terada *et al.*, 1990).

3.1. Familia génica PPCK

En 1999, Hartwell y colaboradores clonaron las primeras PPCKs a partir de *K*. *fedtschenkoi y Arabidopsis* (Hartwell *et al.*, 1999). En la actualidad se conocen representantes de *Mesembryanthemum crystallinum* (Taybi *et al.*, 2000; Ermolova *et al.*, 2003), de nódulos de soja (Xu *et al.*, 2003) y de la leguminosa *Lotus japonicus* (Nakagawa *et al.*, 2003) y de otras especies referidas a continuación. Los productos de la traducción de los ADNc de los genes *PPCK* constan de 274-307 residuos de aminoácidos, y poseen una masa molecular de 31-33 kDa. La familia *PPCK* está formada por genes con patrones de expresión relacionados con la función específica de sus productos (Nimmo, 2003). Por comparación de secuencias de varias *PPCKs* se observa que los subdominios IV, V y VIA son muy variables mientras que los subdominios X y XI están muy conservados y son propios de la PPCK (Izui *et al.*, 2004).

El genoma de *Arabidopsis* posee dos genes de *PPCKs*: At*PPCK1* y At*PPCK2*. At*PPCK1* es el que se expresa de forma más abundante en las hojas de la roseta (Fontaine *et al.*, 2002; Nimmo, 2003).

En el sorgo, se han descrito tres genes que codifican PPCKs: Sb04g036570 (SbPPCK1), Sb04g026490 (SbPPCK2) y Sb06g022690 (SbPPCK3). Únicamente se han caracterizado los dos primeros, puesto que SbPPCK3 ha sido descrito a partir de la secuenciación del genoma del sorgo por homología con las PPCKs de maíz (Paterson *et al.*, 2009). La proteína SbPPCK1 (284 aminoácidos) posee un 92% de identidad con

ZmPPCK1 y el gen se expresa en respuesta a la luz en las células del mesófilo. Por otro lado, SbPPCK2 (307 aminoácidos) tiene un 90% de homología con ZmPPCK2 y se expresa en las células de la vaina. Además, la expresión de Sb*PPCK1* aumenta drásticamente en por luz, mientras que la expresión de Sb*PPCK2* responde menos a cambios luz-oscuridad. El gen Sb*PPCK3* codifica una proteína de 299 aminoácidos y está filogenéticamente más relacionado con el gen Zm*PPCK4* de maíz por lo que se cree que podría tener el mismo papel que en el caso de maíz, aunque actualmente se desconoce su localización celular y su función (Shenton *et al.*, 2006; Paterson *et al.*, 2009).

Las proteínas ZmPPCK2 y ZmPPPCK3 de maíz, y SbPPCK2 de sorgo son muy parecidas entre sí, y se diferencian del resto de miembros de la familia PPCKs en que contienen una inserción ácida de longitud variable entre el dominio VIb y VII del dominio catalítico quinasa (Shenton *et al.*, 2006).

3.2. Regulación de la PPCK

Regulación transcripcional

La PPCK está fundamentalmente regulada a nivel transcripcional (Hartwell *et al.*, 1999). En plantas C₄, la PPCK se regula por la intensidad luminosa (Echevarría *et al.*, 1990) a través de una cadena de transducción de señales de la que se conocen numerosos componentes (Giglioli-Guivarc'h *et al.*, 1996; Coursol *et al.*, 2000; Echevarría y Vidal, 2003; Monreal *et al.*, 2010a). En plantas CAM, la síntesis de la PPCK depende de un oscilador circadiano que actúa en conjunción con el malato (Taybi *et al.*, 2004).

En la hoja de maíz (planta C₄), la cinética de aparición de la actividad PPCK es relativamente lenta, observándose su máxima actividad después de 90 min de iluminación (Echevarría *et al.*, 1990). La activación de la PPCK por luz implica una síntesis *de novo* de la enzima, puesto que la inhibición de este proceso se da por cicloheximida (CHX, es un inhibidor de la síntesis proteica en eucariotas) (Jiao *et al.*, 1991b; Bakrim *et al.*, 1992; Hartwell *et al.*, 1999). La fotoactivación de la PPCK C₄ está mediada por la fotosíntesis, ya que se inhibe en presencia de inhibidores del flujo fotosintético de electrones (DCMU), de desacoplantes, y también de inhibidores del ciclo de Calvin (Chollet *et al.*, 1996; Vidal y Chollet 1997; Echevarría y Vidal, 2003), aunque también hay evidencias de que no es indispensable un ciclo de Calvin funcional para que se produzca la activación por la luz de la PPCK C₄ de maíz (Smith *et al.*, 1998).

El grupo del profesor Jean Vidal, describió por primera vez la cadena de transducción de señales que desencadena la síntesis de PPCK en hojas C₄ (Pierre *et al.*, 1992; Giglioli-Guivarc'h *et al.*, 1996; Coursol *et al.*, 2000; Echevarría y Vidal, 2003; Osuna *et al.*, 2004).

Esta síntesis implica los siguientes elementos:

- i. La luz, a una intensidad luminosa superior a 200 μ E m⁻²s⁻¹.
- El 3-PGA, producido en el ciclo de Calvin y que difunde al mesófilo actuando como mensajero intercelular (Giglioli-Guivarc'h *et al.*, 1996).
- iii. La basificación del citosol (Pierre et al., 1992).
- iv. Activación de una fosfolipasa C dependiente de inositol (PI-PLC) y producción de inositol trifosfato (IP₃) (Coursol *et al.*, 2000).
- v. Apertura de canales de Ca²⁺ del tonoplasto (sensibles a TMB-8) y de la membrana plasmática (Giglioli-Guivarc'h *et al.*, 1996; Coursol *et al.*, 2000; Echevarría y Vidal, 2003; Osuna *et al.*, 2004).
- vi. Activación de una quinasa Ca²⁺-dependiente (CDPK) (inhibida por W7), con características de proteína quinasa C (PKC).
- vii. Síntesis de la PPCK.
- viii. Fosforilación de la PEPC, proceso regulado a su vez por metabolitos (Glu-6-P y L-malato) y por el pH (Echevarría *et al.*, 1994; Giglioli-Guivarc'h *et al.*, 1996).

Bakrim y colaboradores, describen una cascada de transducción similar en las plantas CAM, en la cual el incremento de pH desencadenante de la señalización, que permitiría la expresión de la PPCK sería el resultado del transporte del ácido málico a la vacuola durante la noche (Bakrim *et al.*, 2001).

Además de la activación por luz en las plantas C_4 y el ritmo circadiano en las plantas CAM, la PPCK puede ser activada en respuesta a diferentes señales. Por ejemplo por metabolitos, que además de regular la síntesis de PPCK en las plantas CAM (Nimmo, 2003), también tienen efectos en algunas plantas C_3 y C_4 . En plantas de tabaco

a las que se les suministra malato por corriente transpiratoria, se reducen los niveles de actividad y de transcritos de la nitrato reductasa (NR), que a su vez, están coordinados con los de PEPC y PEPC-k. En nódulos de soja, el gen que da lugar a la proteína PPCK se expresa en función de los fotosintatos translocados por la hoja, siendo la PEPC fosforilada durante el ciclo de luz, coincidiendo con el mayor aporte de fotosintatos (Nimmo, 2003).

En células en suspensión de *Arabidopsis* o en plántulas crecidas sin aporte de fosfato, se ha visto que se aumenta la expresión de At*PPC1* (PEPC1) y de las dos isoenzimas quinasas: At*PPCK1* y At*PPCK2* como respuesta a este déficit nutricional. Además de la fosforilación *in vivo* de p107, la actividad específica de AtPPC1 también se ve incrementada (Gregory *et al.*, 2009).

En la actualidad, hay evidencias acumuladas que muestran que el estado de fosforilación de la PEPC de clase 1 está regulado por cambios en la tasa de síntesis de la PPCK comparadas con la de degradación, con una excepción importante en la semilla de cereales que se describirá más adelante (Osuna *et al.*, 1996; 1999; Nimmo, 2003; Feria *et al.*, 2008). A pesar de que se contemplen algunas variantes, la señalización implicada tiene elementos comunes a los descritos para la C₄. Todas las PTPCs de tipo C₃ descritas hasta la fecha tienen la Ser reguladora localizada en el dominio N-terminal conservado, y ha sido comprobada la actividad PPCK y la fosforilación de la PEPC en todas estas plantas (Duff y Chollet, 1995; Zhang *et al.*, 1995; Li *et al.*, 1996; Osuna *et al.*, 1999; Tripodi *et al.*, 2005; Murmu y Plaxton, 2007; O'Leary *et al.*, 2011b; Shane *et al.*, 2013).

En hojas cortadas de tabaco, el aumento de actividad PPCK se bloquea por inhibidores de la fotosíntesis y por CHX (Li *et al.*, 1996). Este fenómeno se revierte parcial y específicamente al aplicar glutamina exógena a las hojas lo que induce a los autores a concluir que la PPCK se activa por luz en plantas C_3 mediante una ruta similar, pero no idéntica, a la que ocurre en maíz.

En cebada, otra planta C₃, se ha visto que al incubar protoplastos del mesófilo en la luz se obtiene una reducción de la sensibilidad de la PEPC al L-malato en un proceso dependiente de síntesis proteica puesto que es sensible a la CHX (Smith *et al.*, 1996).

En este trabajo, concluyen que podrían existir dos quinasas: una quinasa que se induce por la luz y que se inhibe por L-malato y otra quinasa que tendría niveles basales de actividad y que podría fosforilar a la PEPC en otro sitio diferente del N-terminal conservado, de esta forma la PEPC no respondería a los cambios de sensibilidad por el Lmalato.

En estudios realizados con semillas de trigo y cebada, la actividad de la PPCK así como la fosforilación *in situ* de la PEPC no se veían afectadas por la presencia de CHX, TMB8 (inhibidor de canales de Ca^{2+} del tonoplasto) o W7 (inhibidor de quinasas del tipo CDPKs), que habían demostrado ser efectivos bloqueando la cadena de transducción de señales que opera en la fosforilación de la PEPC C₄ del mesófilo de la hoja (Vidal y Chollet, 1997). Estos resultados llevaron a la conclusión de que la síntesis de la PPCK tendría que realizarse durante la fase de desarrollo de la semilla, quedando acumulada en la semilla seca conjuntamente con una PEPC desfosforilada, y que su activación durante la germinación y consiguiente fosforilación de la PEPC no dependía de síntesis proteica como en los distintos contextos que se habían estudiado hasta la fecha (Osuna *et al.*, 1999). Además en estos trabajos, se puso en evidencia que es la relación Glu-6-P/L-malato la que determina la fosforilación de la PEPC *in vivo* durante el desarrollo y germinación de la semilla de cebada, demostrándose por primera vez una regulación por metabolitos de la PPCK (Feria *et al.*, 2008).

En semillas en desarrollo de cebada, ricino y soja se ha demostrado que la actividad de la PPCK endógena desaparece tras el corte del flujo de fotosintatos bien por el corte de la espiga o tras la oscuridad prolongada de plantas intactas, en estas últimas la actividad quinasa es recuperada tras la re-iluminación (Xu *et al.*, 2003; Sullivan *et al.*, 2004; Tripodi *et al.*, 2005; Murmu y Plaxton, 2007; Xu *et al.*, 2007; Feria *et al.*, 2008; O'Leary *et al.*, 2011). La PPCKs en estos tejidos no fotosintéticos parecen ser una de las muchas proteínas cuya expresión está influenciada por el aporte de sacarosa (Weber *et al.*, 2005).

Por otro lado, se ha descrito un gen de PPCK de soja (Gm*PPCK4*) que se regula de forma circadiana en hojas pero no en raíces (Sullivan *et al.*, 2004). El gen del reloj circadiano *LHY* se expresa tanto en hojas como en raíces pero sólo está conectado a la expresión del gen Gm*PPCK4* de soja en las hojas (Sullivan *et al.*, 2005). Una posible

explicación para el control circadiano de este gen en hojas es que dirija carbono hacia la biosíntesis (sobre todo de aminoácidos) mediante la activación de la PEPC. Aunque la función de este gen en raíces puede ser la misma, el control circadiano no debe ser tan importante como en hojas (Sullivan *et al.*, 2005).

Recientemente, en nuestro grupo se han descrito evidencias que demuestran la implicación de nuevos elementos, una fosfolipasa D (PLD), el calcio del exterior celular, y el ácido fosfatídico (PA), en la señalización que regula la síntesis de la PPCK1 en las hojas de las plantas C_4 (Monreal *et al.*, 2010 a,b).

Regulación postraduccional

Aunque la síntesis/degradación de la PPCK representa el mecanismo principal de regulación, existen otros factores que pueden regular la actividad de la enzima. En este sentido, la PPCK está regulada por el pH, siendo su óptimo *in vitro* de 8 (Echevarría *et al.*, 1994; Chollet *et al.*, 1996). Además, la fosforilación de la PEPC en ensayos reconstituidos con PPCK está regulada por metabolitos: es inhibida por malato (Echevarría *et al.*, 1994; Chollet *et al.*, 1996; Bakrim *et al.*, 1998; Echevarría y Vidal, 2003; O'Leary 2011b) y dicha inhibición se revierte por Glu-6-P (Echevarría *et al.*, 1994).

Por otra parte, los trabajos de Saze *et al.*, (2001) muestran una posible regulación redox de la PPCK purificada de maíz. La PPCK se podría inactivar rápidamente bajo condiciones semi-oxidativas, y reactivarse eficientemente por una reducción mediada por tiorredoxina (Saze *et al.*, 2001). Además, observan el mismo fenómeno con la PPCK de *F. trinervia* (Tsuchida *et al.*, 2001).

También se ha estudiado la presencia de un inhibidor de la PPCK que pudiera funcionar inhibiendo los niveles basales de kinasa en condiciones donde el flujo rápido de PEPC no fuera necesario (Nimmo *et al.*, 2001).

Por último, otro mecanismo implicado en la regulación de la PPCK podría provenir de la interacción con su sustrato, la PEPC. Se observó que cuando se utilizaba como sustrato un péptido sintético que contenía el dominio de fosforilación de la PEPC, la eficiencia de la fosforilación por la PPCK era muy baja, sugiriendo la existencia de un sitio secundario de interacción con la PPCK (Li *et al.*, 1997). Este segundo sitio de interacción es, al menos *in vitro*, el extremo C-terminal de la PEPC (Álvarez *et al.*, 2003). Resultados obtenidos por nuestro grupo mostraron que un péptido sintético que contiene los últimos 19 aminoácidos del extremo C-terminal de la PEPC, inhibe *in vitro* la fosforilación de la enzima por la PPCK, aportando la primera evidencia de que la alta especificidad de la PPCK por la PEPC podría provenir de la interacción con el dominio C-terminal hidrofóbico de su sustrato (Álvarez *et al.*, 2003).
II. OBJETIVOS

Los objetivos de esta tesis se plantearon como una necesidad de continuar descifrando el papel crucial que ejerce la PEPC en la semillas de cereales. Estos estudios comenzaron en trigo y se continuaron en cebada donde se pusieron en evidencia resultados de gran relevancia fisiológica. Aquí, abordaremos el estudio de la PEPC en el desarrollo y en la germinación de la semilla de sorgo (tejido C_3) con los siguientes objetivos:

- Caracterizar los patrones de actividad enzimática, integridad y localización celular de la PEPC así como evaluar la expresión génica de cada una de las isoenzimas PEPC y validarlas a nivel de proteína.
- 2. Identificar la presencia de la monoubiquitinación de la PEPC y estudiar como esta PTM afecta a las propiedades cinéticas y de regulación de la enzima.
- 3. Investigar el estado de fosforilación aparente de la PEPC y evaluar la expresión génica de las tres PPCKs que aparecen en el genoma del sorgo.
- Profundizar en el estudio de las diferentes PTMs y conocer la interacción de la PEPC con otras proteínas.
- Identificar algún factor ambiental que influya en la monoubiquitinación de la PEPC en la germinación de la semilla de sorgo.

III. MATERIALES Y MÉTODOS

1. MATERIAL VEGETAL Y CONDICIONES DE CULTIVO

1.1. Material vegetal

La especie vegetal utilizada mayoritariamente en este trabajo ha sido el cereal de tipo C₄ sorgo (*Sorghum bicolor (L.) Moench*, var. *PR87G57* y var. *PR88Y20* Pioneer Hi-Bred España).

1.2. Condiciones de cultivo e imbibición de las semillas

Las semillas de sorgo se cultivaron en macetas con sustrato tierra suplementadas con vermiculita y se mantuvieron en condiciones controladas en un invernadero a 25 °C durante el fotoperiodo (12 h), y a 18 °C durante el periodo de oscuridad. Las semillas se recolectaron en diferentes estadios de la postantesis y se englobaron en seis diferentes grupos (I, II, III, IV, V y VI). Posteriormente, se congelaron en nitrógeno líquido y se guardaron a -80 °C hasta su utilización.

Las semillas se esterilizaron antes de la imbibición incubándolas durante 20 min en hipoclorito sódico al 2% (v/v). A continuación se sometieron a dos lavados sucesivos con agua destilada, un lavado con HCl 10 mM y finalmente otros cinco lavados con agua destilada (Abdul-Baki, 1974). La imbibición se realizó en placas de Petri provistas de papel de filtro estéril humedecido con agua destilada estéril, cubiertas con papel de aluminio a 25 °C y durante los tiempos indicados en cada experimento. Posteriormente, las semillas permanecieron completas o se desembrionaron por simple disección manual utilizando una cuchilla estéril y congelándose rápidamente en N₂ líquido hasta el momento de su uso, de esta forma, quedaron separados por un lado el embrión y por otro lado la aleurona/endospermo.

2. OBTENCIÓN DE EXTRACTOS CRUDOS

2.1. Preparación de los extractos crudos de semillas

El material vegetal, previamente congelado y correspondiente a los distintos estadios de desarrollo o de la germinación, se procesó triturando todas las semillas enteras o bien los tejidos aleurona/endospermo o embrión, en un molino de bolas modelo

Retsch MM301. A continuación, el polvo congelado (0.4 g de peso fresco) se extrajo, usando un mortero previamente enfriado en hielo, en 1 ml de tampón de extracción que contenía Tris-HCl 0.1 M pH 7.5, glicerol al 20% (v/v), EDTA 10 mM y MgCl₂ 10 mM suplementado con β-mercaptoetanol 14 mM, PMSF 1 mM, KF 50 mM, quimostatina 10 μ g/ml, leupeptina 2.2 μ M, Na₂MoO₄ 1 mM, Na₃VO₄ 1 mM, y microcistina o ácido okadaico a 50 nM. El homogenado se centrifugó a 17000 *g* durante 7 min a 4 °C en una centrífuga refrigerada modelo Microfriger-BL (Selecta). En algunos casos, el sobrenadante obtenido se utilizó directamente para los distintos ensayos enzimáticos, o bien fue precipitado, por la adición de un 60% (saturación) de (NH₄)₂SO₄, centrifugado a 10500 *g* y resuspendido en 200 μ l de tampón de extracción. Finalmente, los extractos se desalaron por cromatografía en una columna de Sephadex G-25 (1 x 5 cm, SIGMA) que había sido previamente equilibrada en tampón de extracción sin β-mercaptoetanol y que permitía eliminar las sales y moléculas pequeñas.

3. MÉTODOS DE PURIFICACIÓN DE PROTEÍNAS

3.1. Purificación de la PEPC C3 de la semilla de sorgo a dos días de germinación

3.1.1. Tampones usados durante la purificación

Todos los tampones contenían Hepes-kOH 50 mM pH 8.0, MgCl₂ 5 mM, DTT 1 mM, y un cocktail inhibidor de fosfatasas y proteasas que consistió en: EDTA 5 mM, EGTA 1 mM, NaF 25 mM, Na₂MoO₄ 1 mM, Na₃VO₄ 1 mM y NaPPi 5 mM. El tampón A contenía glicerol al 20% (v/v), Triton X-100 al 0.1% (v/v), PVPP al 1% (w/v), PMSF 1 mM y DPDS 2 mM. El tampón B contenía 25% (saturación) de (NH₄)₂SO₄. El tampón C consistió en el tampón B pero careciendo de (NH₄)₂SO₄ y conteniendo etilenglicol al 10% (v/v). El tampón D contenía glicerol al 20% (v/v) y KCl 50 mM. El tampón E contenía glicerol al 20% (v/v) y KCl 100 mM.

3.1.2. Purificación de la PEPC

Todos los pasos fueron realizados a temperatura ambiente salvo los que se mencionan en el texto. Las semillas de sorgo germinadas a 48 horas y congeladas previamente en N₂ (300 g), fueron homogenizadas (1;2.5 w/v) en tampón A frío usando un Polytron, y centrifugando a 4 °C durante 20 minutos a 10000 g. El sobrenadante fue filtrado en una capa de Miracloth (Calbiochem) y llevado al 25% (saturación) (NH₄)₂SO₄ agitado durante 20 min a 4 °C, y centrifugado de la misma forma. Los pellets fueron resuspendidos en tampón B que carecía de (NH₄)₂SO₄. La solución fue cargada a 2 ml min⁻¹ en una columna (2.2 x 10 cm) de butyl-Sepharose 4 Fast Flow preequilibrada con buffer B y conectada a un sistema FPLC ÄkTA Purifier (GE Healthcare). La columna fue lavada hasta que la A_{280} llegó a la línea base. La PEPC fue eluída con un 50% de tampón C (50% de tampón B) (6 ml por fracción⁻¹). Las fracciones que se localizaban en el pico con mayor absorbancia fueron recogidas y concentradas usando un AMICON Ultra-15 ultrafiltration device (límite de 30 kDa) (Millipore), congeladas en N₂ líquido, y conservadas a -80 °C toda la noche. La muestra fue descongelada rápidamente y ajustada para contener un 25% (w/v) de polietilenglicol (PEG) (peso molecular 8000 Da). La solución fue incubada durante 25 min en hielo y centrifugada a 18000 g durante 15 min a 4 °C. Los pellets fueron resuspendidos en tampón D conteniendo microcistina-LR 50 nM d y 2.5 µl ml⁻¹ de ProteCEASE-100 (G-Biosciences). La muestra se cargó a 0.75 ml min⁻¹ en una columna (1 x 3 cm) de Fractogel EMD DEAE-650 (S) que había sido pre-equilibrada con tampón D. La columna fue lavada con tampón D hasta que la A_{280} disminuyó a la línea base, y la actividad PEPC fue eluida con un gradiente linear de kCl de 50-500 mM (40 ml) en tampón D (2 ml por fracción). Las fracciones recogidas, fueron concentradas a 0,6 ml de la misma forma que anteriormente y centrifugadas a 14000 g durante 5 min a 4 °C. El sobrenadante fue llevado a 1 ml con tampón E y cargado a 0.40 ml min⁻¹ en una columna de filtración en gel calibrada, Superdex-200 HR 16/60, que había sido pre-equilibrada con tampón E. Las fracciones que se correspondían con el pico de PEPC fueron recogidas y concentradas a 0.25 ml como anteriormente. La preparación final fue diluida a 0.5 ml con tampón E, alicuotada en 25 µl, congelada en N₂ liquido y conservada a -80 °C.

3.1.3. Estimación del peso molecular nativo de la PEPC purificada a través de la columna de filtración en gel (Superdex 200)

La masa molecular nativa de la PEPC fue calculada representando en una gráfica el coeficiente de partición (K_{av}) frente a la masa molecular (kDa) de los estándares que fueron usados y que fueron los siguientes: tiroglobulina (669 kDa), ferritina (440 kDa), catalasa (232 kDa), aldolasa (158 kDa), albúmina de suero bovino (BSA, 66 kDa), y anhidrasa carbónica (29 kDa). Para determinar el volumen muerto de la columna (V₀), se usó el azul dextrano.

3.2. Purificación de la PEPC mediante cromatografía de inmunoafinidad

3.2.1. Producción de los anticuerpos anti-(COSp107)-IgGs

Los anticuerpos anti-(COSp107)-IgGs, presentes en 5 ml de suero inmunológico de conejo que había sido previamente inmunizado ante la PEPC nativa de clase 1 procedente del estadio VII del desarrollo de COS (Crowley *et al.*, 2005; Gennidakis *et al.*, 2007), fueron purificados mediante cromatografía en una columna (2 ml) de proteína A agarosa plus (Pierce Chemicals), según las indicaciones del producto. La columna fue lavada con PBS para eliminar las proteínas del suero que no se habían unido, y hasta que la A_{280} disminuyó a la línea base. A continuación, los anticuerpos fueron eluidos usando un tampón glicina 0.1 M pH 2.8, y neutralizados con tampón Tris-HCl 1 M pH 8.8. Las fracciones con mayor A_{280} fueron concentradas a 2 mg ml⁻¹ usando AMICON Ultra-15 ultrafiltration device (límite de 10 kDa) y finalmente dializadas toda la noche en PBS. Los anticuerpos dializados anti-(COSp107)-IgGs fueron acoplados a los 2 ml de gel AminoLink Coupoling Gel (Pierce Biotechnology), tal y como se describía en las instrucciones del producto.

3.2.2. Inmunopurificación de la PEPC

Las semillas de sorgo a 48 horas en germinación (5 g) fueron homogenizadas (1;2.5 w/v), usando un Polytron, en tampón A que contenía HEPES-KOH 100 mM pH 7.5, EDTA 1 mM, EGTA 1 mM, glicerol al 15% (v/v), MgCl₂ 5 mM, NaF 25 mM,

Na₃VO₄ 1 mM, Na₂MoO₄ 1 mM, PVPP al 0.1% (w/v), Triton X-100 al 0.1% (v/v), DPDS 2 mM, DTT 1 mM y 10 μ L/mL de ProteCEASE-100 (G-BioSciences). Los homogenados fueron centrifugados a 4 °C y a 48384 *g* durante 10 min, y el sobrenadante fue re-centrifugado 5 min a la misma velocidad y filtrado en una capa de Miracloth (Calbiochem). Los extractos clarificados fueron eluidos en una pre-columna de Amino-Link Coupling Gel (Pierce Biotechnology) (1 x 4 cm) saturada de Tris-HCl 1 M pH 7.4, que había sido pre-equilibrada con el tampón A. Las proteínas que no se unieron a la resina fueron inmediatamente absorbidas a 2 ml min⁻¹ en la columna con los anticuerpos anti-p107-IgGs (1 x 2 cm) acoplados. La columna fue lavada con PBS, a 1ml min⁻¹, hasta que la A_{280} disminuyó a la línea base. A continuación, las proteínas unidas se eluyeron a 0.5 ml min⁻¹ con tampón glicina 0.1 M pH 2.8 y neutralizadas con tampón Tris-HCl 1 M pH 8.8 (1 ml de fracción se recogió en 0.1 ml de Tris-HCl 1 M pH 8.8). Las fracciones con mayor A_{280} fueron concentradas de la misma forma que anteriormente, y analizadas mediante SDS-PAGE y posterior tinción con Sypro-Red/ Pro-Q diamond o Coomasie coloidal, Western-blot y espectrometría de masas.

4. ENSAYOS ENZIMÁTICOS

4.1. Determinación de la actividad PEPC

La actividad fosfoenolpiruvato carboxilasa (PEPC) se realizó utilizando un ensayo acoplado a la malato deshidrogenasa (MDH) que reduce el oxalacetato producido por la PEPC a L-malato, en presencia de NADH. La MDH reduce el oxalacetato (OAA) producido por la PEPC a L-malato con oxidación de NADH de manera equimolar a la producción de OAA. La oxidación del NADH se registró en un espectrofotómetro (Modelo Helios α Thermo Spectronic, UV visible) a 340 nm, en 1 ml de medio de reacción que contenía tampón HEPES-KOH 0.1 M pH 8 ó 7.3, PEP 2.5 mM, NaHCO₃ 1 mM, MgCl₂ 5 mM, NADH 0.2 mM, y 5 U ml⁻¹ de MDH (Echevarría *et al.*, 1994). El coeficiente de extinción del NADH a 340 nm, es 6.23 µmoles⁻¹ ml cm⁻¹. El ensayo se inicia con la adición del extracto crudo. Una unidad de enzima (U) se define como la cantidad de PEPC que cataliza la carboxilación de 1 µmol de fosfoenolpiruvato por min a pH 8 y 30 °C. Alternativamente, la actividad PEPC fue ensayada en un lector de placas (Molecular Devices Spectramax Kinetics Microplate reader). El medio de reacción contenía en 0.2 ml: HEPES-KOH 50 mM a pH 8 ó 7.3, PEP 2.5 mM, NaHCO₃ 5 mM, MgCl₂ 5 mM, NADH 0.15 mM, glicerol al 10% (v/v), DTT 1 mM, y 5 U ml⁻¹ de MDH (Tripodi *et al.*, 2005).

4.2. Determinación del grado de fosforilación de la PEPC mediante el test malato

El grado de fosforilación de la PEPC puede estimarse mediante la sensibilidad de la enzima a su inhibidor alostérico L-malato. El test Malato se basa en la medida de la actividad PEPC en condiciones subóptimas de pH 7.3, en presencia de PEP 2.5 mM y diferentes concentraciones de L-malato. La concentración de L-malato requerida para inhibir al 50% la actividad de la enzima (IC_{50}) se calculó a partir de una gráfica de la velocidad frente a la concentración de L-malato (Nimmo *et al.*, 1984). En estas condiciones de ensayo, la enzima fosforilada presenta una IC_{50} para el L-malato de 2 a 3 veces mayor que la enzima desfosforilada (Jiao y Chollet, 1991a; Bakrim *et al.*, 1992).

Alternativamente, los valores de IC_{50} y de k_m fueron calculados usando un programa cinético, Brooks, tal y como previamente se ha descrito (Tripodi *et al.*, 2005). Los stock de las soluciones de metabolitos fueron preparadas equimolarmente con MgCl₂ y ajustadas a pH 7.5.

4.3. Actividad de la PEPC en gel

Los extractos crudos fueron obtenidos tal y como se describe en el apartado 2.1, con la excepción de que el sobrenadante fue concentrado por la adicción de un 20% (p/v) de PEG8000 (Sigma). A continuación, se centrifugó el extracto a 15000 g durante 15 min a 4 °C en una centrifuga refrigerada modelo Microfriger-BL (Selecta) y solubilizado en el mismo tampón de extracción. Finalmente, a las muestras se les añadió tampón de carga nativo y se cargaron en geles de poliacrilamida nativos al 5% (sin gel de compactación). Tras la migración de las proteínas a 4 °C, los geles fueron incubados durante 15 min a temperatura ambiente con un tampón de equilibración que contenía Tris-HCl 0.05 M pH 8, MgCl₂ 20 mM, glicerol al 15% (v/v) y kHCO₃ 2.5 mM. Posteriormente, el gel se incubó con el tampón de desarrollo durante 5-10 min que contenía PEP 1.5 mM, NADH 0.15 mM y 2 U/mL de MDH en 10 mL de tampón de equilibración. Finalmente, la actividad PEPC fue visualizada en un transiluminador UV donde las bandas de actividad PEPC (sitios donde se produce la oxidación del NADH en el gel) aparecían como bandas oscuras en un fondo fluoresecente (Rivoal *et al.*, 2002)

5. ENSAYOS DE FOSFORILACIÓN Y DESFOSFORILACIÓN IN VITRO

5.1. Fosforilación de la PEPC C₃ purificada in vitro con las PPCKs recombinantes

La fosforilación *in vitro* usando la PEPC purificada (10 µg) fue desarrollada en un medio de reacción que contenía: Tris-HCl 0.1 M pH 8, MgCl₂ 10 mM, P¹P⁵di(adenosin-5')-pentafosfato (inhibidor de la adenilato quinasa) 0.25 mM, EGTA 1 mM, KF 1 mM, y las proteínas PPCKs recombinantes, PPCK2 y PPCK3 (Números de acceso de GenBank: XM_002452431 y XM_002446745, respectivamente), de *Sorghum bicolor* L. que se habían producido utilizando la tecnología Gateway[®] (Invitrogen) (Monreal *et al.*, 2013). La reacción de fosforilación se inició por la adicción de 1 µCi de [γ -³²P]ATP (10 Ci mmol⁻¹) junto con la incubación durante 30 minutos a 30°C, y se paró incubando las muestras durante 3 minutos a 90°C en presencia de tampón de disociación [Tris-HCl 0.1 M pH 8, glicerol al 25 % (v/v), SDS al 1% (p/v), β-mercaptoetanol al 10% (v/v) y de azul de bromofenol al 0.05% (p/v)]. Las proteínas desnaturalizadas se separaron mediante electroforesis en geles de poliacrilamida en condiciones desnaturalizantes (SDS-PAGE, apartado 7.1). Tras la tinción con Azul Coomassie R-250 y secado del gel, éste se puso en contacto con una pantalla Fuji Imaging Plate durante 24h, para finalmente ser revelado en un scanner Fuji FLA-5100.

5.2. Fosforilación *in situ* de la PEPC mediante un marcaje con ³²P

Cuatro medias semillas embrionadas fueron embebidas en 200 μ L de tampón que contenía Tris-HCl 0.1 M pH 7.5, CaCl₂ 10 mM y 200 μ Ci de ³²P. Tras 48 h de imbibición a temperatura ambiente, aproximadamente la mitad de la solución había sido absorbida por las semillas, y a continuación éstas fueron lavadas para eliminar el ³²P no absorbido. Las proteínas fueron extraídas como se describe en el apartado 2.1, con la excepción de la adición de ATP 1 mM no radioactivo para así minimizar la fosforilación *in vitro*. El homogenado resultante fue centrifugado a 13000 r.p.m durante 5 min, y el sobrenadante clarificado fue incubado con 100 μ g de anticuerpos anti-PEPC-C₄ purificados e incubado toda la noche en agitación y en hielo. Al día siguiente, se añadió proteína A-sepharosa y se recuperó la proteína inmunopurificada, tal y como se describe en el apartado 8.4. Las proteínas fueron analizadas en un gel de poliacrilamida en condiciones desnaturalizantes al 8% (SDS-PAGE, apartado 7.1), transferidas a una membrana de nitrocelulosa, y autorradiografíadas como se describe anteriormente. A continuación, la membrana se saturó con leche al 5% (p/v) y fue incubada con anticuerpos anti-PEPC-C₄.

5.3. Desfosforilación de la PEPC in vitro

Los extractos crudos fueron preparados como se describe en el apartado 2.1 con la excepción de que el tampón carecía de EDTA, y de todos los inhibidores de fosfatasas. El extracto clarificado (100 µg de proteína) fue incubado durante 60 min a 30 °C con 4000 U ml⁻¹ of λ - phosphatase (New England BioLabs) en un volumen final de 50 µl, y siguiendo las instrucciones del producto. En el caso de la PEPC inmunopurificada se usaron 3 µg de proteína para el ensayo.

En el caso de usar la fosfatasa alcalina CIP (Alkaline Phosphatase, Calf Intestinal), los extractos crudos de semillas completas de 48 horas en germinación (200 μ g) fueron incubados con 400 unidades de CIP durante 30 min a 37 °C.

6. ENSAYOS DE DESUBIQUITINACIÓN IN VITRO

Los extractos crudos (50 μ g) y la PEPC purificada (6 μ g) fueron incubados con 5 μ M y 20 μ M, respectivamente, de la enzima USP-2 en un volumen final de 50 μ l. La enzima se consiguió por diferente procedencia: Abcam, cat.#ab125735 o bien de cedida por Progenra Inc. (Malvern, PA). El ensayo se realizó a 37 °C y se usaron alícuotas, a diferentes tiempos según el experimento, para ser desnaturalizadas con tampón de disociación y correr geles SDS-PAGE seguidos de Western-blots utilizando anticuerpos anti-PEPC totales o anti-ubiquitina (ver apartados 7.1, 8.1 y 8.2), o bien se usaron las alícuotas para estudiar la cinética de la proteína en su estado ubiquitinado y desubiquitinado. El tampón de incubación fue Tris-HCl 25 mM pH 7.5, KCl 50 mM, MgCl₂ 5 mM, glicerol al 20% (v/v), DTT 1mM, Na₂MoO₄ 0.5 mM y Na₃VO₄ 0.5 mM.

7. TÉCNICAS ANALÍTICAS

7.1. Electroforesis en geles de poliacrilamida

En condiciones nativas (PAGE)

La electroforesis en geles de poliacrilamida en condiciones nativas se realizó utilizando geles discontinuos formados por un gel de empaquetamiento al 4% (p/v) y un gel de separación al 5% de acrilamida (p/v). El gel de separación se preparó con la mezcla de acrilamida/bisacrilamida en tampón Tris-HCl 375 mM pH 8.8, persulfato amónico al 0.5% (p/v), y TEMED 6 mM. El gel de empaquetamiento contenía los mismos componentes, excepto que el tampón utilizado fue Tris-HCl 125 mM pH 6.8. Las muestras fueron suplementadas con tampón de carga nativo (25% del volumen total de la muestra) compuesto por Tris-HCl 0,1 M pH 8,8, glicerol al 20% (v/v) y azul de bromofenol al 0.05% (p/v). La electroforesis se desarrolló en una cámara refrigerada a 6 °C, a 100 voltios durante 3 horas, en una cubeta Mini-Protean[®] III-2D Cell (Bio-Rad), siendo el tampón de electroforesis Tris 25 mM, Glicina 192 mM, pH 8.3.

En condiciones desnaturalizantes (SDS-PAGE)

Para la electroforesis en condiciones desnaturalizantes se utilizaron geles discontinuos, constituidos por un gel de separación al 7.5-8% de acrilamida (p/v), y un gel de empaquetamiento al 4% de acrilamida (p/v). El gel de separación se preparó con la mezcla de acrilamida/bisacrilamida en tampón Tris-HCl 375 mM pH 8.8, SDS al 0.1% (p/v), persulfato amónico al 0.5% (p/v), y TEMED 6 mM. El gel de empaquetamiento contenía los mismos componentes, excepto que el tampón utilizado fue Tris-HCl 125 mM pH 6.8. Las muestras fueron suplementadas con tampón de disociación compuesto por Tris-HCl 100 mM pH 8, glicerol 25% (v/v), SDS 1% (p/v), β-mercaptoetanol 10% (v/v) y azul bromofenol 0.02% (p/v). Finalmente, las muestras se desnaturalizaron incubándolas 5 min a 90 °C, y se resolvieron en el gel de acrilamida en una cubeta Mini-Protean[®] III-2D Cell (Bio-Rad) que contenía tampón de electroforesis Tris 25 mM-Glicina 192 mM pH 8.3 y SDS al 0.1% (p/v), a voltaje constante de 110 V durante 2 h o bien en una cubeta Protean II xi Slab Cell (Bio-Rad) a voltaje constante de 85 V durante 12 h. El peso molecular de la PEPC se determinó utilizando como marcadores proteínas preteñidas de pesos moleculares conocidos (gTP-bio RGB Prestained Protein Ladder).

7.2. Tinción con Azul de Coomasie y secado de geles

Los geles se sumergieron durante 15 min, en agitación suave, en una solución fijadora que contenía agua/metanol/ácido acético en relación (5:4:1), y posteriormente se hicieron 3 lavados con agua destilada de 10 min de duración cada uno. Finalmente, el gel se tiño con Azul de Coomasie Colloidal G-250 para su tinción, cuya composición era Coomasie blue G-250 al 0.12% (p/v), sulfato de amonio al 10% (p/v), ácido fosfórico al 10% (v/v), y metanol al 20% (v/v). Por último, los geles se secaron al vacío durante unas 2 horas en un equipo de secado de la marca Bio-Rad (modelo 543) conectado a una bomba de vacío.

7.3. Tinción con ProQ y Sypro-RED

Los geles se sumergieron durante 30 min (3 lavados de 10 min) en una solución fijadora que contenía agua/metanol/ácido acético en relación (4:5:1) y se mantuvieron en agitación. Posteriormente se hicieron 3 lavados de 10 min con agua destilada y se incubaron con la solución de ProQ-PPS diluida en agua destilada (1:1) durante 1.5 h (Molecular Probes). Finalmente se destiñeron en una solución que contenía acetato de sodio 50 mM a pH 4 y acetonitrilo al 20% (p/v) durante 1 hora (3 cambios con la solución) y se hicieron 2 lavados de 5 min con agua destilada. Los geles teñidos fueron escaneados usando un Typhoon 8600 con imagen fluorescente. Los mismos geles fueron incubados toda la noche en SDS al 0.05% (p/v) a temperatura ambiente y posteriormente se incubaron en la solución de Sypro-Red diluida 1:5000 en ácido acético al 7.5% (v/v) y se volvieron a visualizar en el Typhoon.

7.4. Identificación de proteínas mediante técnicas proteómicas

Las bandas correspondientes a las proteínas teñidas con el Azul de Coomassie Colloidal, fueron cortadas de los geles SDS-PAGE mediante la ayuda de una cuchilla de la manera más precisa posible. Las proteínas fueron reducidas, alquiladas, y digeridas con tripsina según los protocolos estándares (Uhrig *et al.*, 2008b). Los péptidos trípticos fueron extraídos usando acetonitrilo/ácido trifluoracético al 0.1% (v/v, 60:40), y secaron al vacío en una centrífuga refrigerada CentriVap (Labconco Corp.).

Las proteínas fueron reconstituidas en 4 µl de ácido fórmico (AF) al 0.1% (v/v) y se identificaron usando dos tipos de metodología instrumental:

-Un sistema Eksigent nanoLC 400 acoplado con un espectrómetro de masas TripleTOF 5600+ quadrupole time-of- flight (TOF) (AB Sciex, Concord, ON, Canada) de baja energía en la disociación inducida por colisión (CID).

-Un sistema EASY-nLC Orbitrap Fusion Tribrid LC-MS (Thermo Fisher, San Jose, CA, USA) en el modo de alta energía en la disociación inducida por colisión (HCD).

La muestra fue atrapada en una columna C18 de fase reversa (Chrom XP, 350 μ m id×0.5 mm length, 3 μ m, 120A) a 2 μ l min⁻¹ del solvente A (0.1% AF) durante 15 min, y posteriormente separada en una columna C18 analítica (75 μ m id×150 mm, 3 μ m, 120A) a 300 nl min⁻¹ durante 60 min. La fase móvil fue configurada en un gradiente linear del 5 al 30% del solvente B (0.1% AF en acetonitrilo), seguido con un 85% de solvente B por encima de 10 min para la elución del péptido.

Las medidas de TripleTOF MS y MS/MS se consiguieron con una gran resolución de 30.000, y las regiones que se seleccionaron para el estudio, fueron desde los 350–1600 m/z (masa/carga) para el MS o desde los 100–1250 m/z para el MS/MS, además de los 20 primeros iones en los diferentes estados cargados 2⁺, 3⁺, y 4⁺. La exclusión dinámica fue configurada para un periodo de tiempo de 30 seg.

Con el objetivo de la comparación, se hicieron análisis similares con otras réplicas de las mismas proteínas usando el sistema Orbitrap Fusion Tribrid LC-MS de alta precisión, y con un análisis de MS de resolución de 120 000, seguido por un análisis de HCD con los 10 primeros iones.

Búsqueda en las bases de datos

Para realizar las búsquedas con los datos obtenidos del análisis por MS/MS (de ambos instrumentos), se utilizó la base de datos del NCBI usando el servidor Mascot (version 2.4.0, Matrix Science, London, UK). Los parámetros fueron restringidos a: las viridiplanteae (plantas verdes), el número máximo de cortes enzimáticos omitidos fue de dos, se tuvo en cuenta la carbamidometilación de las cisteínas como modificación fija, y la deamidación de la asparagina y glutamina, la oxidación de la metionina, la fosforilación de la serina/treonina/tirosina, y ubiquitinación de la lisina como modificaciones variables; la máxima tolerancia se configuró en 30 ppm para los iones de MS y 0.05 Da para los iones fragmentados de MS/MS. Las asignaciones de los péptidos fueron filtradas con un score para el ion de 15, y los espectros identificados para el MS/MS fueron verificados manualmente.

8. MÉTODOS INMUNOLÓGICOS

8.1. Tipos de anticuerpos utilizados en este trabajo:

- Anticuerpos totales (PEPC C₄-IgGs), dirigidos contra la totalidad de la PEPC C₄ de hojas de Sorgo. Producidos en los Servicios Generales de Investigación de la Universidad de Sevilla.
- Anticuerpos anti N-terminal (anti-N24-IgGs), dirigidos contra un péptido sintético que representa los primeros 21 aminoácidos del extremo N-terminal desfosforilado de la PEPC C₄ de sorgo [⁴ERHHSIDAQLRALAPGKVSEE²⁴(YG)]. Estos anticuerpos fueron cedidos por el Dr. J. Vidal (Orsay, France).
- Anticuerpos anti C-terminal (anti-C19-IgGs), dirigidos contra un péptido sintético que representa los últimos 19 aminoácidos del extremo C-terminal de la PEPC C₄ de sorgo [(Y)⁹⁴³EDTLILTMKGIAAGMQNTG⁹⁶¹] (Crétin *et al.*, 1990). Tanto el péptido sintético como el anticuerpo fue producido por Neosystem laboratoire (Strasbourg, Francia).
- 4. Anticuerpos anti sitio de fosforilación (anti-pSer13-IgGs), dirigidos contra un fosfopéptido sintético que representa el N-terminal fosforilado en la serina 13 co-

rrespondiente a la PTPC de tipo C₃, CP28 [Cys-⁹ERLS(pS)IDAQLR¹⁹] (Lepiniec *et al.*, 1993).

- 5. Anticuerpos totales [anti-(COS-PTPC)-IgGs], dirigidos contra la PEPC nativa de clase 1 del desarrollo de COS (Tripodi *et al.*, 2005).
- Anticuerpos anti-SUS [anti-(SUS)-IgGs], dirigidos contra la sacarosa sintasa presente en los nódulos de raíces de soja (Shane *et al.*, 2013).
- 7. Anticuerpos anti-Ubiquitina (Anti-ubiquitin-IgGs, nº catalogo 05-944, Millipore).

8.2. Transferencia de proteínas a membrana de nitrocelulosa y revelado con anticuerpos específicos (Western-blot)

Una vez finalizada la electroforesis, el gel de poliacrilamida se sumergió durante 1 h en agitación, en tampón TGM (Tris 48 mM-Glicina 39 mM pH 9.2, metanol al 5% (v/v) y SDS al 0.037% (p/v). La transferencia de los polipéptidos a la membrana de nitrocelulosa (Sigma, poro 0.2 μ m) se realizó utilizando tampón TGM, en un aparato Semidry Transfer blot (Bio-Rad), con voltaje constante (10 V) durante 30 min y una corriente límite de 5.5 mA/cm2. Una vez finalizada la transferencia, se realizó el siguiente tratamiento de la membrana, a temperatura ambiente.

- Saturación de la membrana. Ésta se incubó 1 h con tampón TBS conteniendo leche desnatada en polvo al 5% (p/v). Con este tratamiento, se saturan los sitios de unión inespecíficos.
- 2. Incubación con anticuerpos primarios. La membrana se incubó durante 3 h en agitación continua, o bien toda la noche a 4 °C, con los anticuerpos primarios.
- 3. Utilizando el sistema de detección SNAP i.d. ® Protein Detection System (Millipore) y siguiendo instrucciones del fabricante, tras lavar la membrana con tampón TBS compuesto por Tris-ClH 50 mM, pH 7.5, NaCl 150 mM y Nonidet (0.05% v/v), ésta se incubó con anticuerpos secundarios anti-conejo (Bio-Rad) o anti-ratón (Thermo Scientific Pierce), ambos marcados con peroxidasa, durante 15 min, tras lo cual se procedió a lavar la membrana de nuevo con tampón TBS-Nonidet (0.05%, v/v) La membrana de nitrocelulosa se reveló mediante quimio-

luminiscencia con el kit de revelado SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) en un sistema de imagen (Fuji LAS-3000).

Alternativamente, el Western-blot fue realizado tal y como describió Tripodi *et al.*, 2005, en este caso, los anticuerpos secundarios utilizados estaban marcados con fosfatasa alcalina, y el revelado se realizó con detección cromogénica (Tripodi *et al.*, 2005).

En algunas ocasionas la membrana fue deshibridada (separación de los anticuerpos primarios de la proteína diana) con un tampón que contenía Glicina 25 mM a pH 2 y SDS al 1% (p/v) durante 30 min en agitación continua. A continuación, la membrana se lavó con un tampón TBS que contenía Tris-HCl 20 mM a pH 7.5, NaCl 150 mM y Tween 20 al 0.1% (v/v). Tras este paso, se siguió por el punto 1 de este apartado.

8.3. Purificación de anticuerpos

Este tipo de cromatografía se basa en la capacidad de la proteína A Sepharosa CL-4B de retener específicamente a las inmunoglobulinas G. La capacidad de retención de la columna oscila entre 2 y 15 mg de inmunoglobulinas por cada ml de gel.

Para la preparación de la columna se resuspendió 1 g de proteína A Sepharosa CL-4B (Pharmacia) en 4 ml de tampón A compuesto por Tris-HCl 50 mM pH 8, y se empaquetó en una columna (Bio-Rad, 20 ml) equilibrada previamente con tampón PBS [fosfato sódico 25 mM pH 7.5, NaCl 0.9 % (p/v)]. A continuación, se hizo pasar por la columna 2 ml de suero sanguíneo del conejo inmunizado contra la proteína y se lavó con 25 ml de tampón PBS hasta que la absorbancia a 280 nm se estabilizó a cero. Las inmunoglobulinas retenidas en la columna se eluyeron con tampón citrato 200 mM, pH 2.8. Se recogieron 6 fracciones de 4 ml, a las que se les añadió rápidamente 1.5 ml de tampón Tris HCl 1 M pH 8.8, para neutralizar la acidez. Las fracciones que contenían las inmunoglobulinas se reagruparon, se concentraron con sulfato de amonio al 50% de saturación, se centrifugaron a 20000 g (15 min, 4 °C), y el precipitado se resuspendió en tampón B que contenía Tris 100 mM pH 7.5 y glicerol al 20% (v/v). Las muestras se dializaron toda la noche utilizando membranas de celulosa (Sigma). Los anticuerpos se conservaron a -20 °C hasta su utilización.

8.4. Inmunoprecipitación de la PEPC

Los extractos enzimáticos se incubaron con los anticuerpos anti-PEPC totales descritos en el apartado 7.1., durante toda la noche a 4 °C, tras lo cual se añadió proteína A Sepharosa al 4% (p/v) y se dejó actuar 15 min a 4 °C. A continuación, el inmunoprecipitado se recuperó por centrifugación a 13000 g (5 min). El precipitado se sometió a dos lavados sucesivos con 1 ml de tampón Tris-HCl 50 mM pH 8, NaCl 1.5 M y Tritón X al 1% (v/v), centrifugando a 13000g 10 min después de cada lavado. Posteriormente, el precipitado se lavó con 1 ml de tampón Tris-HCl 100 mM pH 8 para eliminar los restos de sal y detergente, y se centrifugó a 13000 g durante 10 min. Finalmente, el precipitado se resuspendió en 60 µl de tampón de disociación (apartado 7.1). Las muestras se incubaron 10 min a 90 °C, y se centrifugaron a 13000 g durante 5 min. Finalmente, las muestras se cargaron en un gel SDS-PAGE (7.5-8% acrilamida), y posteriormente se transfirieron a membranas de nitrocelulosas para llevar a cabo Western-blots (apartado 8.2).

8.5. Inmunolocalización in situ

Las semillas de sorgo en germinación, a las 24 horas, se fijaron en parafolmaldehido al 4% (p/v) y glutaraldehído al 0.25% (v/v) durante 4 horas y, tras ser deshidratadas en una serie alcohólica creciente, se embebieron en parafina (Panreac) de la siguiente forma: etanol 50% (2 x 3 horas); etanol 70% (2 x 4 horas); etanol 80% (2 x 4 horas); etanol 96% (1 x 24 horas, y 1 x 4 horas); etanol 100% (2 x 1 hora); xilol (2 x 1hora); parafina 50% / xilol 50% (1 x 24 horas); parafina (1 x 24 horas, y 1 x 44 horas). Los bloques de este material se cortaron en secciones de 10 y 15 μ m con un microtomo (modelo RM 2165, Leica). Estas secciones se dispusieron sobre portaobjetos gelatinizados para permitir la fijación del material vegetal.

Para retirar la cera las secciones se incubaron en xilol (3 x 10 min) y se sometieron a rehidratación mediante tratamientos con etanol absoluto (2 x 1 min); 95% etanol/ 5% TBS (Tris-HCl 20 mM, NaCl 150 mM pH 7.5) 1 min; 85 % etanol/ 15% TBS, 1 min; 50% etanol/ 50 % TBS, 2 min. Posteriormente, se siguió el siguiente protocolo:

1. A los portaobjetos se les añadió PAP-PEN (Sigma), que produce una barrera hidro- repelente que diseña un círculo en torno a las muestras.

2. Tres lavados de 10 min en TBS-Tritón al 0.3%.

3. Bloqueo de los sitios de unión inespecíficos tratando los tejidos 30 min en TBS conteniendo BSA al 3% (p/v).

4. Incubación con los anticuerpos primarios anti-PEPC, para lo cual se cubrieron los tejidos del portaobjetos con una solución de 3 μ g de anticuerpos o suero preinmune en 500 μ l de TBS, y se incubaron toda la noche a temperatura ambiente.

5. Los anticuerpos unidos inespecíficamente se eliminaron mediante tres lavados de 10 min con TBS.

6. Las secciones se incubaron a continuación con anticuerpos secundarios anticonejo marcados con fosfatasa alcalina (Bio-Rad) durante 2 h a 37 °C.

7. Tres lavados de 10 min en TBS.

8. A continuación, se procedió al revelado de la actividad fosfatasa alcalina con 100 μ l de la solución BCIP[®]/NBT liquid substrate System (Sigma). La reacción colorimétrica que se desarrolló durante 5 min, finalizó al introducir las secciones en TBS.

9. El último paso consistió en deshidratar en concentraciones crecientes de etanol (70%, 96% y 100%), 1 min en cada paso, y finalmente 2 min en xilol. Se selló con DPX y se observaron los cortes al microscopio óptico (Olympus CH). Las fotografías se realizaron en un microscopio con cámara acoplada (Olympus BX61).

9. TÉCNICAS MOLECULARES

9.1. Extracción de ARN

A partir de 50-100 mg de semillas congeladas (pulverizadas mediante un molino de bolas), se extrajo el ARN total utilizando el kit IQeasyTM Plant RNA Extraction (Intron Biotechnology). Los ácidos nucleicos extraídos se trataron con ADNasa I (Sigma) para eliminar la contaminación de ADN genómico en las muestras. Las concentraciones de ARN se determinaron usando un Nanodrop 2000, y se determinó la calidad de la extracción mediante la relación A_{260}/A_{280} . El ARN obtenido se conservó a -80 °C hasta su utilización.

9.2. Retrotranscripción de ARN a ADNc

Para la formación de ADNc se utilizó 1 µg del ARN extraído, 2,5 µM del cebador oligo (dT)10, 60 µM del cebador random hexamer, 8 mM MgCl₂, 20 U del inhibidor de ARNasa, 1 mM del mix de desoxinucleótidos y 10 U de la transcriptasa reversa (Transcriptor First Strand cDNA Synthesis Kit, Roche). La reacción de retrotranscripción se llevó a cabo durante diez minutos a 25 °C seguidos de 30 minutos a 55 °C. Por último, se inactivó la transcriptasa reversa calentando a 85 °C durante 5 minutos. El ADNc sintetizado se diluyó cinco veces y se conservó a -20 °C hasta su uso.

9.3. Experimentos de reacción en cadena de la polimerasa (PCR) en tiempo real (qPCR)

Las reacciones de PCR en tiempo real (qPCR) se realizaron en un volumen final de 20 µl consistente en 5µl del ADNc obtenido en el apartado anterior, 15 µM de cebadores específicos (ver Tabla 1), y 10 µl de 2X SensiFAST SYBR No-ROX kit (Roche). La PCR se llevó a cabo en el Sistema de Detección MiniOpticonTM Real Time (Bio-Rad) y los ciclos umbral (Ct) se determinaron usando el software de análisis Bio-Rad CFX Manager V1.6. Como control interno para normalizar los valores obtenidos, se midió la cantidad del producto ARN 18S de cada muestra y se utilizó el método Livak ($2^{-\Delta\Delta Ct}$) (Livak y Schmittgen, 2001) para el tratamiento de los datos (expresión relativa). Para validar los cebadores y el programa de amplificación utilizados, se usaron diluciones seriadas de ADNc para la construcción de una recta de expresión: $R^2 > 0.98$ y eficiencia 90 – 105%.

N° Acceso	Gen	Cebador		Secuencia
XM_002454701	SbPPCK1	PPCK1UTR-F	F	5'-TTCTGCCAATCGTCAATGAA-3'
		PPCK1UTR-R	R	5'-GCTGAAGCCTGAAGCTGAAC-3'
XM_002452431	SbPPCK2	PPCK2-3'	F	5'- CTAGGTAAAGAGCATCCCAA -3'
		PPCK2-5b	R	5'- ATACCATACCAGCAGAGGA -3'
XM_002446745	SbPPCK3	PPCK3F ex-ex	F	5'- GTGCTTCGGGGGCAGCCTCAG-3'
		PPCK3R ex-ex	R	5'- TGGATCCACGGGTGCCGGAG-3'
Sb10g021330	SbPEPC1	PEPC1F	F	5'-CAGCTTCGTTCGCGCTTCCC-3'
		PEPC1R	R	5'-TCGTAGCACTCCTGGACAAATTCG-3'
Sb02g021090	CP28	CP28F	F	5'-CCGCCTCGCAACACCTGAAACA-3'
		CP28R	R	5'-ACCGGGAGGTGGAACCGTGT-3'
Sb07g014960	4960	4960F	F	5'-TGAGCTTCGGGCACAAGCAGATG-3'
		4960R	R	5'-GCTCCAAAGGCTCTAAGAACTGCTC-3'
Sb03g035090	5090	5090F	F	5'-GGACATCAGGGAGACGGTGCAAGA-3'
		5090R	R	5'-ACCGGGAGGTGGAACCGTGT-3'
Sb04g008720	CP21	CP21F	F	5'-TGTTGAACAGTTTCTGGAACCTCTT-3'
		CP21R	R	5'-GCTTCACAAGGGCAAGCCCAAAAG-3'
Sb03g008410	PEPC bact	PEPC bact F	F	5'-ACCACAGGGTTCGTAAAGCACGC-3'
		PEPC bact R	R	5'-TGGCTTAGATCAGGGCGACCGTT-3'
M82330	18S rRNA	18S-F	F	5'-GGGGAAACTTACCAGGTCCA-3'
		18S-R	R	5'-GGATGGCTCCGCATAGCTA-3'

Tabla 1. Cebadores utilizados en este trabajo.

10. OTROS MÉTODOS

10.1. Determinación de proteínas solubles y pH

En la mayoría de los casos, la determinación de proteínas en los extractos crudos se realizó según el método colorimétrico descrito por Bradford (1976). Alternativamente, la concentración de proteína fue determinada con el método de tinción con Coomassie Blue G-250, usando la γ-globulina como estándar (Tripodi *et al.*, 2005).

Las medidas de pH se realizaron en un medidor de pH Crison, modelo GLP21 provisto de un electrodo Crison (Crison Instruments S.A. Alella, España).

10.2. Análisis estadístico

Para el análisis se utilizó un software estadístico, el SigmaStat versión 3.5 (Systat Software Inc). Los datos fueron analizados usando la *t*-student.

10.3. Software informático

Bases de datos

-NCBI (<u>http://www.ncbi.nlm.nih.gov/</u>)

-PubMed (http://www.ncbi.nlm.nih.gov/pubmed)

Alogirtmos y paquetes de análisis

-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

-Mega (version 5.10) usando ClustalW para los alineamientos múltiples.

-BioEdit (versión 7.1.9)

-Multi Gauge V3.0

-Scaffold_4.3.2

10.4. Números de acceso (NCBI) de las secuencias usadas para el alineamiento múltiple

Ricinus communis RcPPC3 (ABR2987), Sorghum bicolor 8720-CP21 (XP_002451855.1), Sorghum bicolor 1090-CP28 (EER98700.1), Sorghum bicolor 4960 (EES13699.1), Sorghum bicolor 5090 (EES03641.1), Sorghum bicolor C₄ type (XP_002438521.1), Arabidopsis thaliana AtPPC1 (NP_175738.1), Arabidopsis thaliana AtPPC2 (AEC10145.1), Arabidopsis thaliana AtPPC3 (AEE75592.1), Oryza sativa Japonica Group OsPPC1 (AAG00180.1), Zea mays (CAD60555.1), Glycine max (NP_001241357.1), Mesembryanthemum crystallinum (CAA32728.2), Oryza sativa Japonica Group bacterial type (BAF03713.1), Sorghum bicolor bacterial type (XP_002455324.1), Arabidopsis thaliana AtPPC4 (AEE34835.1), Ricinus communis bacterial-type RcPPC4 (ABR29877.1), Synechocystis sp. PCC 6803(BAA18393.1), Escherichia coli (ZP_03034212).

IV. RESULTADOS

1. CARACTERIZACIÓN DE LA PEPC DE LA SEMILLA DE SORGO

1.1. Actividad PEPC durante el desarrollo y germinación de la semilla

En este apartado, se presentan los resultados del estudio de la actividad PEPC, polimorfismo e inmunolocalización *in situ* en la semilla de sorgo. La actividad de la PEPC se determinó a un pH óptimo de 8, en extractos crudos de semillas en desarrollo y durante la germinación. Para ello, se utilizaron series de semillas recolectadas en los meses de julio-septiembre de 4 años consecutivos (2010, 2011, 2012 y 2013). El estadio de desarrollo se definió según el día de recolección de las espigas contando desde el inicio de la antesis. Se recolectaron 4 lotes independientes, y se hicieron seis grupos dónde se englobaron todos los estadios de desarrollo: I: 7-12 DPA, II: 13-15 DPA, III: 16-20 DPA, IV: 21-27 DPA, V: 28-30 DPA, VI: 31-40 DPA. En las Fig. 11 y 12 se muestran las imágenes de las semillas en los diferentes estadios de desarrollo y durante la germinación, respectivamente.

Fig. 11. Estadios de desarrollo de la semilla de sorgo. Los granos de sorgo fueron recolectados en diferentes momentos después de la antesis. Los tiempos indicados corresponden a días post-antesis (DPA).

En la Fig. 13 se muestran los valores de actividad PEPC de semillas enteras durante las diferentes fases del desarrollo. En ella, se muestra que la actividad expresada por semilla (actividad total, Fig. 13A) fue aumentando desde la embriogénesis, siendo más alta en el estadio III (35 mU/semillas), y disminuyendo hacia el estadio de semilla seca. Cuando se expresa por actividad específica, la actividad PEPC fue más alta en los primeros estadios, y va disminuyendo progresivamente hacia la desecación (0.06 U/mg proteína) con un máximo de 0.15 U/mg proteína en el estadio II (Fig. 13B).

Fig. 12. Estadios de la germinación de la semilla de sorgo. Los granos de sorgo fueron embebidos a diferentes tiempos en placas de Petri, posteriormente se procedió a la separación de tejidos: embrión y aleurona/endospermo.

A continuación, se estudió la evolución de la actividad de la PEPC durante el proceso de germinación. En este caso, se analizaron separadamente los tejidos de aleurona-endospermo y embrión (ver materiales y métodos). La Fig. 14 muestra que la actividad PEPC de los embriones durante la germinación fue aumentando progresivamente, tanto sí la expresamos por semilla (Fig. 14A) como por actividad específica (Fig. 14B), con un máximo de 0.29 U/mg proteína a las 72 h de imbibición.

La actividad PEPC detectada a lo largo de la imbibición en la aleurona /endospermo no cambió significativamente con respecto a la actividad de las semillas secas, tanto cuando se expresó por actividad total como por específica (Fig. 14C y D, respectivamente). En los resultados correspondientes a la aleurona/endospermo, la actividad PEPC fue significativamente menor que en los embriones, llegando a ser incluso del orden de hasta 4-5 veces menor a 72 y a 96 horas.

Fig. 13. Evolución de la actividad PEPC durante el desarrollo de la semilla de sorgo. Los extractos crudos se realizaron a partir de 0.4 g de semillas enteras en 1 ml de tampón de extracción en los diferentes estadios. La actividad PEPC se determinó a un pH óptimo de 8, y a una concentración de PEP de 2.5 mM a 30 °C. A, actividad total y B, actividad específica. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

Estos resultados ponen de manifiesto que al igual que en otros cereales estudiados (Osuna *et al.*, 1996, 1999; González *et al.*, 1998; Feria *et al.*, 2008; Nhiri *et al.*, 2000), en la semilla de sorgo la PEPC está activa durante el desarrollo y la germinación mostrando patrones específicos de actividad dependiendo del contexto fisiológico y del tejido donde actúa.

Fig. 14. Evolución de la actividad PEPC en los embriones y en la aleurona/endospermo de semillas embebidas de sorgo. Los extractos crudos se realizaron a partir de 0.4 g de embriones (separados previamente con una cuchilla) en 1 ml de tampón de extracción en los diferentes tiempos indicados. La actividad PEPC se determinó a un pH óptimo de 8 y una concentración de PEP de 2.5 mM a 30 °C. A y B, actividad total y actividad específica en los embriones, respectivamente. C y D, actividad total y actividad específica en la aleurona-endospermo, respectivamente. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005). No existen diferencias significativas en la actividad PEPC de la aleurona/endospermo.

1.2. Inmunocaracterización de la PEPC en el desarrollo y germinación

1.2.1. Las PEPC de tipo planta (PTPC)

Trabajos previos realizados en nuestro grupo de investigación, habían puesto de manifiesto la presencia de una doble banda que inmunoreaccionaba con anticuerpos PEPC cuando se estudiaban extractos crudos procedentes de diferentes especies de cereales, tales como la cebada y el trigo (Osuna *et al.*, 1996; 1999; González *et al.*, 1998; Feria *et al.*, 2008). Para estudiar el polimorfismo de la PEPC en sorgo utilizamos anticuerpos policionales dirigidos contra la PEPC de hojas de sorgo anti-(PEPC C₄-IgGs).

Los resultados muestran que al igual que en otros cereales (Osuna *et al.*, 1996, 1999; González *et al.*, 1998; Feria *et al.*, 2008), en el desarrollo los anticuerpos detectaron dos polipéptidos de 107 y 110 kDa (p107 y p110, respectivamente) (Fig. 15B). Para comprobar si ambos polipéptidos eran versiones proteolizadas de la misma subunidad o versiones enteras, utilizamos anticuerpos específicos dirigidos contra el extremo C y N terminal de la PEPC (anticuerpos anti-C19-IgGs y anti-N24-IgGs, respectivamente; descritos en la Fig. 15A). El estudio mostró que los dos polipéptidos de 107 y 110 kDa contenían ambos extremos, indicando que eran subunidades completas (Fig. 15C y D, respectivamente) de la enzima.

En la germinación, el estudio del polimorfismo de la PEPC se hizo por tejidos distinguiendo la aleurona/endospermo por un lado y el embrión por el otro (Fig. 16A). Los anticuerpos anti-PEPC C₄-IgG detectaron de nuevo la doble banda de p107 y p110, en ambos tejidos. En el caso de la aleurona/endospermo, p107 apareció constitutivamente en los diferentes tiempos estudiados, mientras que p110 se indujo muy levemente a partir de las 24 horas de imbibición. En el embrión, ambos polipéptidos fueron aumentando con el tiempo de germinación hasta que a 96 horas decayó la señal, sin embargo, desde las 24 a las 48 horas, la PEPC predominante fue la de 110 kDa.

A continuación, utilizamos extractos crudos de semilla completa de 48 horas de germinación, y usando los anticuerpos dirigidos hacia el extremo C y N terminal de la PEPC (anticuerpos C19-IgGs y N24-IgGs, respectivamente) se mostró que al igual que durante el desarrollo, p107 y p110 eran subunidades integras de la enzima (Fig. 16B).

Fig. 15. Inmunocaracterización e integridad de la PEPC durante el desarrollo de la semilla de sorgo. Los extractos se realizaron a partir de 0.4 g de semillas enteras. Las proteínas extraídas se analizaron (80 μ g de proteína/pista) en SDS-PAGE (8% de acrilamida) y se transfirieron a una membrana de nitrocelulosa que se incubó con los distintos anticuerpos. A, Secuencias de la PEPC que son dianas de los distintos anticuerpos que fueron diseñados y sintetizados previamente (ver materiales y métodos, apartado 8.1); B, anticuerpos policionales realizados contra la PEPC C₄ completa de hojas de sorgo anti-(PEPC C₄-IgGs); C, anticuerpos policionales realizados contra la péptido C19 señalado en la Fig. A (C19-IgGs) y D, anticuerpos policionales realizados contra el péptido N24 señalado en la Fig. A (N24-IgGs). Las proteínas inmunoidentificadas se detectaron mediante un ensayo de quimioluminiscencia utilizando un 2º anticuerpo de conejo marcado con peroxidasa.

En su conjunto, estos resultados muestran que en el sorgo la PEPC se presenta como dos subunidades de diferente movilidad electroforética (p110 y p107) las cuales son versiones completas de la enzima, encontrando nuevamente el polimorfismo detectado en otras especies de cereales y destacando el carácter constitutivo de p107 versus el carácter inducible de p110 durante la germinación.

Fig. 16. Inmunocaracterización e integridad de la PEPC durante la germinación de la semilla de sorgo. Los extractos se realizaron a partir de 0.4 g de tejido de endospermo/aleurona, embrión, o bien de semilla completa. Las proteínas extraídas se analizaron (50 µg de proteína/pista) en SDS-PAGE [8% de acrilamida, y en un gel grande en el caso de A (Protean II, ver materiales y métodos apartado 7.1)] y se transfirieron a una membrana de nitrocelulosa que se incubó con los distintos anticuerpos. A, anticuerpos policionales que reconocen la PEPC C₄ completa de hojas de sorgo (PEPC C₄-IgGs); B, anticuerpos policionales que reconocen el péptido C19 (C19-IgGs) y el péptido N24 (N24-IgGs), ambos descritos en la Fig. 15A. Las proteínas inmunoidentificadas se detectaron mediante un ensayo de quimioluminiscencia utilizando un 2º anticuerpo de conejo marcado con peroxidasa.

1.2.2. La PEPC de tipo bacteriano (BTPC)

Se conoce que la PEPC de tipo bacteriano se encuentra en el genoma del sorgo (Paterson *et al.*, 2009), pero de momento no se ha conseguido dilucidar su localización y función en este cereal. La PEPC de tipo bacteriano tiene un peso molecular alrededor de 118 kDa, superior a las PEPC de plantas y no es reconocida por los anticuerpos PEPC de tipo Planta (anti-PTPC-IgGs; Sánchez y Cejudo, 2003). Se hicieron experimentos de inmunoblot para ver si la PEPC de tipo bacteriano (BTPC) se detectaba en la semilla. Para ello, se usaron anticuerpos anti-COS-BTPC (O'Leary *et al.*, 2009) y anti-At-BTPC (Sánchez y Cejudo, 2003) que están dirigidos contra la PEPC de tipo bacteriano de ricino (Castor Oil Seed; COS) y de *Arabidopsi*s, respectivamente. Los resulta-

dos fueron negativos y en ninguna de las numerosas repeticiones realizadas se observó la presencia de un péptido de 118 kDa que pudiera corresponder a la PEPC de tipo bacteriano.

Estos resultados parecen indicar que la BTPC no contribuye en esencia a los procesos de desarrollo y germinación de la semilla de sorgo.

1.2.3. Estado oligomérico de las PEPCs

La conformación habitual para las PTPCs es de un homotetrámero de unos 410 kDa. Esta PEPC es llamada también PEPC de Clase 1. El homotetrámero es habitualmente la forma más activa, aunque podemos encontrar actividad en la forma disociada dimérica, siendo el monómero inactivo (Chollet *et al.*, 1996). Por el contrario, la BTPC forma parte de un heterooctámero compuesto de 4 subunidades PTPCs de 110 kDa y 4 subunidades BTPCs de 118 kDa, tiene un peso molecular de alrededor de 910 kDa (O'Leary *et al.*, 2009) y es la llamada PEPC de Clase 2. En 2003, la BTPC se describió por primera vez en plantas superiores (Sánchez *et al.*, 2003; O'Leary *et al.*, 2011b).

El experimento que se presenta a continuación, muestra la actividad de la PEPC en geles nativos mediante un método de detección por fluorescencia de la actividad en gel (Rivoal et al., 2002). Esta técnica permite determinar el peso molecular de la proteína nativa (ver materiales y métodos apartado 4.3). Los experimentos se hicieron usando extractos crudos de semillas correspondientes al estadio III (desarrollo), semilla seca y 48 horas (germinación) (Fig. 17). Con estos experimentos, se pretendió observar si existía una o más conformaciones oligoméricas de la PEPC. Tal y como se puede observar en la imagen, no se detectó ninguna PEPC de alto peso molecular que pudiese corresponder a la PEPC de Clase 2 heterooctamérica con un peso molecular aproximado de 910 kDa. Por el contrario, sí observamos en los distintos extractos de semillas dos bandas con actividad PEPC, una banda de señal débil de unos 440 kDa (tetrámero) y otra más intensa de unos 220 kDa (dímero) (Fig. 17A). Además, el tetrámero podía observarse con mejor claridad cuando se cargaba una mayor cantidad del extracto crudo (Fig. 17B), indicando que la mayor parte de la PEPC, tanto durante el desarrollo como durante la germinación, se encuentra activa y disociada en su forma dimérica. Sin embargo, no pudimos establecer si esa forma dimérica es la que está presente mayoritaria-
mente *in vivo*, pudiera formarse durante la migración en el gel en las condiciones nativas, o bien pudiera deberse a la concentración de la enzima. La diferencia que observamos con respecto a la migración del tetrámero de PEPC fotosintética C₄ purificada de hojas de sorgo y utilizada como control, podría deberse a diferencias en sus respectivas "ratios" masa-carga.

Globalmente estos resultados muestran la ausencia de un heterooctámero de unos 910 kDa que pudiera corresponderse con la presencia de la BTPC de acuerdo con los resultados mostrados anteriormente en el apartado de inmunocaracterización, y ratifican, por tanto, que la PEPC bacteriana no está presente durante el desarrollo o la germinación de la semilla. Además, añaden que el estado conformacional de las PTPCs, que sí se detectan durante ambos procesos, es mayoritariamente dimérico y en menor proporción tetramérico.

Fig. 17. La PEPC en las semillas de sorgo está presente en su forma tetramérica/dimérica. Los extractos crudos fueron extraídos como se describen en materiales y métodos, y las muestras fueron cargadas en un gel nativo (5% acrilamida sin gel de separación) a 4 °C. Tras la migración de las proteínas, el gel fue revelado mediante la técnica de actividad en gel (Rivoal *et al.*, 2002). **A,** pista 1, PEPC semipurificada de hojas de sorgo en oscuridad (1.2 U). Pista 2, semillas del estadio III del desarrollo (0.08 U). Pista 3, semilla seca (0.04 U). Pista 4, semilla completa a 48 horas de imbibición (0.03 U). **B,** semilla completa a 48 horas de imbibición (0.1 U).

1.3. Inmunolocalización de la PEPC durante la germinación

Resultados anteriores obtenidos en las semillas de trigo, muestran que la PEPC está ampliamente distribuida por todos los tejidos encontrándose en el epitelio del escutelo, aleurona, endospermo, radícula y en el hipocótilo de semillas embebidas durante 14-24 horas (González et al., 1998). En sorgo, hemos estudiado la distribución y localización de la PEPC en los diferentes tejidos de la semilla. Para ello, utilizamos la técnica de inmunolocalización in situ utilizando anticuerpos anti-(sorgo C4-PEPC)-IgGs de hojas de sorgo que han mostrado anteriormente reconocer con una alta eficacia todas las isoenzimas PEPC de tipo planta (PTPCs), pero no a la PEPC de tipo bacteriana (BTPC) (Sánchez y Cejudo, 2003). En paralelo, se realizó un control negativo incubando el tejido con suero preinmune que carece de este tipo de anticuerpos (Fig. 18A, B y C). Según los distintos resultados, y cómo podemos observar en las imágenes (Fig. 18D, E, F, G, H e I), a las 24 horas de imbibición de la semilla, la PEPC se encontró ampliamente distribuida en los distintos tejidos embrionarios: epicótilo (ep) (Fig. 18D y E), radícula (r) (Fig. 18D y F), escutelo (sc) (Fig. 18D, E, H e I), epitelio del escutelo (ept) (Fig. 18H e I), capa de aleurona (al) (Fig. 18G), endospermo (se) (Fig. 18H e I) y pericarpio (Fig. 18G).

Estos experimentos de inmunolocalización muestran que la PEPC es muy abundante en la mayoría de los tejidos de la semilla en germinación, especialmente se encuentra una señal alta en la aleurona (Fig. 18G) y en el epitelio del escutelo de 24 h de imbibición (Fig. 18D, E, H e I).

Fig. 18. Inmunolocalización *in situ* durante la germinación de la semilla de sorgo. Las semillas se embebieron durante 24 h. Las secciones de tejidos (15 μ m) se incubaron con anticuerpos policionales anti-(sorgo C₄-PEPC)-IgG (D, E, F, G, H, I) o con suero preinmune del conejo (A, B y C). Abreviaturas: al, aleurona; ep, epicótilo; ept, epitelio del escutelo; sc, escutelo; se, endospermo de reserva, r, radícula y p, pericarpio.

1.4. Caracterización de la expresión de los genes *PEPC* durante el desarrollo y germinación de la semilla de sorgo

Tal como se describe en la introducción, recientemente se ha secuenciado el genoma completo del sorgo (Paterson *et al.*, 2009) dotándonos de una excelente herramienta para establecer la expresión diferencial de los genes PEPC durante el desarrollo y la germinación de la semilla de sorgo, y profundizar sobre la contribución de las diferentes isoenzimas en ambos procesos fisiológicos. La pequeña familia génica de la PEPC que se ha detectado en este genoma, está compuesta por 6 genes que codifican para distintas isoenzimas. Son cuatro los genes que codifican para isoenzimas del tipo C_3 , el Sb02g021090 (CP28), que codifica para una isoenzima llamada CP28 que se expresa constitutivamente, el Sb04g008720 (CP21) que codifica para una PEPC llamada CP21 específica de raíz cuya expresión es inducible por nitrógeno (Lepiniec *et al.*, 1993), y los genes Sb03g035090 (5090) y Sb07g014960 (4960) que se han descubierto recientemente por homología con genes de PEPC de tipo C₃ de arroz. De estos dos últimos genes aún se desconoce su función específica y localización. El gen Sb10g021330 codifica para la isoenzima C₄ o fotosintética (C₄-fotosintético), la última de este grupo de isoenzimas PTPCs. Finalmente, el gen Sb03g008410 (*sbBTPC*) codifica para la isoenzima BTPC, que es la que está evolutivamente más separada del resto.

Hasta el momento se desconoce cuáles son las PEPCs que se expresan en la semilla de sorgo por lo que este estudio se englobó dentro del primer capítulo de la tesis. A continuación, se describen los resultados obtenidos del estudio de la expresión de los genes de PEPC en las semillas de sorgo en desarrollo y en embriones en germinación.

1.4.1. Expresión de los genes PEPC durante el desarrollo

La caracterización de los genes PEPC de sorgo (Paterson et al., 2009) nos abrió una puerta de excepción para poder estudiar por primera vez en el contexto de la semilla los niveles de expresión de los diferentes genes de PEPC a lo largo del desarrollo, y en los diferentes tejidos de la semilla en germinación. Mediante PCR a tiempo real (q-PCR), se compararon los niveles de expresión de los 6 genes PEPC en los diferentes estadios que se definieron en este trabajo para la semilla de sorgo: I, II, III, IV, V y VI. Para este estudio se utilizaron los diferentes cebadores que se diseñaron, y que se muestran en los materiales y métodos (Tabla 1). Los resultados obtenidos muestra que de los cuatro genes que codifican para isoenzimas de tipo C₃, los genes: Sb02g021090 (CP28, constitutivo), Sb04g008720 (CP21, inducible de raíz), y Sb07g014960 (4960; no caracterizado aún) son aquellos que se expresaron en la semilla en desarrollo. No se encontró expresión para el gen Sb03g035090 (5090), ni para el gen Sb10g021330 (C₄*fotosintético*) que codifica a la PEPC de tipo C_4 fotosintética, en ningún estadio. En el caso del gen que codifica para la BTPC, Sb03g008410 (sbBTPC), se encontró expresión pero ésta fue muy baja y se necesitó un elevado número de ciclos para ver amplificación del gen, con un Ct alto comparado con el Ct de las otras PTPCs restantes que se expresaron, en torno a 16 en CP28, 17 para CP21, 21 para 4960 y 23 para el sbBTPC). Para verificar que aunque la expresión era baja se trataba del gen sbBTPC, los fragmentos de PCR amplificados para este gen, correspondientes al estadio I y II del desarrollo, fueron cargados en un gel de agarosa dónde se observó que el tamaño coincidía con el tamaño del "amplicón" deseado, aún así, para confirmar que no fuese una contaminación o un artefacto, los fragmentos fueron purificados y enviados a secuenciar a la empresa "Stab Vida" (Portugal), dónde se confirmó que los fragmentos pertenecían a la BTPC. Estos resultados muestran que la PEPC bacteriana se expresa, pero a muy bajo nivel, lo que justifica que no se detectara en Western blot y tampoco por actividad en geles nativos (Fig. 17). Con respecto a los niveles de transcritos de los demás genes C₃ que se observaron, los de *CP28* fueron discretamente en aumento hacia la desecación, no observando ninguna diferencia drástica entre ellos (Fig. 19A). Los niveles de expresión para el gen *4960* fueron muy llamativos en el caso del estadio I, dónde la expresión fue 17 veces mayor que en el estadio 6 (Fig. 19B). Para el gen *CP21*, también se encontraron unos niveles altos de transcritos en el estadio I y disminuyendo hacia el estadio III, siendo del orden de 3.8 veces menor, a partir de este momento, la expresión aumentó gradualmente hasta el final (Fig. 19C).

En general, y en base a los Ct aproximados necesitados para la amplificación de 16, 17, 21 y 23 para los genes *CP28*, *CP21*, *4960* y *BTPC* respectivamente, podemos sugerir que son los dos primeros los que estarían mejor representados durante el proceso de desarrollo de la semilla y que 4969 tendría un papel relevante en la etapa de celularización de la semilla (estadio I).

Fig. 19. Análisis de la expresión de los genes *PEPC* en las semillas en desarrollo a diferentes tiempos. El análisis de q-PCR del ARNm de PEPC de sorgo se realizó como se indica en materiales y métodos. El ARNr 18S se usó como control endógeno para normalizar los datos obtenidos de cada muestra. Todos los datos están relativizados al estadio VI. A, Expresión de la PEPC C₃ constitutiva *CP28*; **B**, PEPC C₃ 4960 y **C**, PEPC C₃ inducible de raíz *CP21*. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

1.4.2. Expresión de los genes PEPC en embriones durante la germinación

Al igual que en el desarrollo, se compararon los niveles de expresión de los 6 genes PEPC mediante PCR a tiempo real (q-PCR) y en los diferentes tiempos de imbibición de la semilla: 0, 14, 24, 48, 72 y 96 horas. Los 3 genes C₃: *CP28*, *CP21*, y 4960, fueron aquellos que se expresaron en los embriones en los estadios estudiados, desde la semilla seca hasta 96 horas (Fig. 20). En este caso, tampoco se encontró en la germinación expresión para el gen 5090 ni para el gen C_4 -fotosintético. Los niveles de ARNm de la BTPC volvieron a ser muy bajos, y se necesitó un número elevado de ciclos para ver amplificación del gen. El Ct fue muy alto comparándolo con el Ct de las otras PEPCs (en torno a 13 para *CP21*, 16 en *CP28*, 17 en 4960 y 23 para el *BTPC*).

El gen *CP28* siguió un patrón de expresión en el embrión durante la germinación, donde aumentó progresivamente desde la semilla seca, con un máximo a las 48 horas con una expresión de 3.5 veces mayor que los valores detectados a las 14 horas, y disminuyó hacia las 96 horas (Fig. 20A), Por otro lado, el gen 4960 sufrió un drástico aumento a las 24 h, siendo 164 veces mayor que en la semilla seca y disminuyendo con el tiempo de germinación (Fig. 20B). En cuanto a la expresión de *CP21*, la expresión comenzó a aumentar gradualmente desde la semilla seca hasta las 24 horas, sufriendo una disminución a las 48 horas, siendo dos veces menos que a 24, y volviendo a aumentar significativamente 1.5 veces más a las 72 h (Fig. 20C). Destacable es también que éste último gen analizado (*CP21*), y como se ha comentado anteriormente, tuvo los Ct más bajos (13, respecto a 16, 17 y 23), lo cual se traduce en la existencia de una mayor cantidad de estos transcritos en toda la germinación con respecto a los otros genes, sugiriendo que pudiera tener un papel relevante en la germinación.

Fig. 20. Análisis de la expresión de los genes *PEPC* en embriones embebidos de semillas de sorgo a diferentes tiempos. El análisis de q-PCR del ARNm de PEPC de sorgo se realizó como se indica en materiales y métodos. El ARNr 18S se usó como control endógeno, para normalizar los datos obtenidos de cada muestra. Todos los estadios están relativizados al tiempo 14 h. A, PEPC C₃ constitutiva *CP28*; **B**, PEPC C₃ 4960 y **C**, PEPC C₃ inducible de raíz *CP21*. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

1.5. Análisis proteómico de las bandas

En este último apartado del primer capítulo, se abordó un estudio proteómico de las PTPCs presentes en los diferentes estadios de desarrollo y post-antesis. Para el estudio se utilizaron inmunoprecipitados obtenidos con anticuerpos anti-PEPC C₄ (ver en materiales y métodos, apartado 8.4). Estos anticuerpos se dejaron precipitar toda la noche con los diferentes extractos crudos correspondientes al: estadio I, estadio III, y estadio VI de las semillas en desarrollo y con los extractos crudos obtenidos de la aleurona/endospermo y del embrión de semillas secas y embebidas durante 48 horas. Las muestras inmunoprecipitadas se cargaron en un gel SDS-PAGE al 8%, se tiñeron con Azul de Coomasie y las bandas correspondientes a p110 y p107 se recortaron y se enviaron a la Unidad de Proteómica de la Universidad Complutense de Madrid dónde fueron analizadas mediante Espectrometría de Masas.

El análisis de los datos de la huella peptídica de los péptidos obtenidos por digestión con tripsina reveló la presencia mayoritaria de la isoenzima CP21 a lo largo de todo el desarrollo tanto en p107 como en p110 (Ver Tabla 2, Columna *Score*). En el desarrollo, la puntuación máxima (*score*) de CP21 se dio en el estadio I coincidiendo con los niveles mayores de transcritos en esta etapa de la semilla. También encontramos la isoforma de PEPC 4960. Esta isoenzima pudo encontrarse mayoritariamente en el estadio I estando luego poco representada, dato también en concordancia con los altos transcritos de este gen encontrados en el estadio temprano de la semilla. Las isoenzimas 5090 y CP28 se encontraron menos representados y se localizaron en p110 y p107, respectivamente en el estadio I. CP28 se encontró también en p107 del estadio III y se mantuvo hasta el VI donde apareció en p110 por primera vez.

Estos datos en su conjunto muestran: i) la presencia mayoritaria de CP21 a lo largo del desarrollo tanto en p107 como en p110, ii) la presencia de 4960 en el estadio I del desarrollo tanto en p107 como en p110 y en concordancia con la abundancia de transcritos de este gen, y iii) la ausencia o baja presencia de las proteínas CP28 y 5090 a lo largo del desarrollo.

En la semilla seca y a 48 horas de germinación encontramos nuevamente una presencia mayoritaria de la isoenzima CP21. La única PEPC detectada en la aleurona/endospermo fue CP21 en p110 y p107. En cuanto al tejido del embrión, además de CP21 se observó la isoforma CP28 en ambas subunidades con una menor representación.

En los datos obtenidos en la germinación se señala: i) un aumento significativo de la presencia de CP21 aumentando a las 48 h de germinación, ii) que dicho aumento se da preferentemente en p110.

Estudios recientes sobre la PEPC de semilla de ricino (Uhrig *et al.*, 2008b) y de proteoides de hakea (Shane *et al.*, 2013), han mostrado que la PEPC se regula por monoubiquitinación, en concreto, la PEPC en el endospermo de las semillas de ricino se

presenta como un heterotetrámero formado por una proporción equivalente de p110:p107. Estudios proteómicos sobre estos polipéptidos en ricino identificaron que ambos eran provenientes de un mismo gen (RcPpc3) y que p110 era la forma monoubiquitinada de p107 (Uhrig *et al.*, 2008b). Éste nuevo descubrimiento en la semilla oleaginosa de ricino aportó una nueva perspectiva e hizo que se planteara la posibilidad de que también estuviese ocurriendo este fenómeno en las semillas de cereales, tales como el sorgo, trigo o cebada. A tal efecto, y dado que en el análisis se encontraron también los polipéptidos p110 y p107, se decidió abordar el estudio de la posible monoubiquitinación de la PEPC de sorgo durante el desarrollo y la germinación de la semilla.

Tabla 2. Identificación por MALDI QqTOF MS de los péptidos trípticos procedentes de p110 y p107. Los péptidos analizados corresponden a las muestras inmunoprecipitadas de extractos crudos procedentes de los diferentes estadios del desarrollo y de la germinación, separando en este último entre aleurona/endospermo y embrión.

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
	PEPC CP21	gil241931686	248	35	31
p110	PEPC 4960	gil241940554	118	24	22
	PEPC 5090	gil241930496	98	22	21
	DEDC CD21	~; 241021686	225	45	20
	FEFC CF21	gli241951080	323	40	39
p107	PEPC 4960	gil241940554	114	26	21
	PEPC CP28	gil241925556	107	23	20

ESTADIO I del desarrollo (7-12 DPA).

ESTADIO III del desarrollo (16-20 DPA).

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
p110	PEPC CP21	gil241931686	103	24	21
p107	PEPC CP21	gil241931686	206	33	29
	PEPC 4960	gil241940554	66	19	16
	PEPC CP28	gil241925556	61	17	15

<u>ESTADIO VI</u> del desarrollo (31-40 DPA).

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
n110	PEPC CP21	gil241931686	60	10	13
р110 РЕРС	PEPC CP28	gil241925556	36	9	8
10-	PEPC CP21	gil241931686	121	15	18
p107	PEPC CP28	gil241925556	76	8	10

> <u>SEMILLA SECA</u>: Aleurona/Endospermo.

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
p110	PEPC CP21	gil241931686	30	13	9
p107	PEPC CP21	gil241931686	72	20	15

SEMILLA SECA: Embrión.

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
n110	PEPC CP21	gil241931686	310	45	39
p110	PEPC CP28	gil241925556	91	21	18
p107	PEPC CP21	gil241931686	283	42	48
h101	PEPC CP28	gil241925556	63	16	14

> <u>SEMILLA A 48 HORAS DE GERMINACIÓN</u>: Aleurona/Endospermo.

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
p110	PEPC CP21	gil241931686	95	24	16
p107	PEPC CP21	gil241931686	67	16	15

> **<u>SEMILLA A 48 HORAS DE GERMINACIÓN</u>**: Embrión.

Subunidad	Nombre proteína	ID proteína (Nº Acceso NCBI)	Score	Cobertura	Nº. de péptidos encontrados
n110	PEPC CP21	gil241931686	305	44	38
p110	PEPC CP28	gil241925556	54	15	14
n107	PEPC CP21	gil241931686	164	29	38
P107	PEPC CP28	gil241925556	55	15	13

*La cobertura está expresada en %.

2. *IN VIVO* MONOUBIQUITINATION OF ANAPLEROTIC PHOSPHOENOL-PYRUVATE CARBOXYLASE OCCURS AT LYS624 IN GERMINATING SORGHUM SEEDS

2.1. Immunocharacterization of monoubiquitinated PEPC from germinating sorghum seeds

2.1.1. Mass spectrometry and N-terminal sequence analysis of immuneprecipitated PEPC from crude extracts

To further characterize p107 and p110, that had been observed on immunoblots of clarified extracts from sorghum seed (Fig. 7, chapter 1), PEPC was immunoprecipitated from extracts of embryonated seed after 48 h of germination using anti-(sorghum C₄-PEPC)-IgG and the washed protein pellet subjected to SDS-PAGE. Coomassie blue R-250-stained p110 and p107 bands were excised and subjected to ingel tryptic digestion and matrix-assisted laser desorption ionization (MALDI) time-of flight (Q-TOF) MS peptide mapping quadrupole and N-terminal microsequencing. Both subunits displayed virtually identical peptide mass fingerprints (Fig. 21A and B) and originated from the same PTPC gene, namely CP21 (encoding a C₃-type PEPC isozyme: Sb8760; GenbankTM accession: P29195). p110 and p107 also shared an identical N-terminal amino acid sequence [MPERHQSIDAQLRL], characteristic of the CP21 sorghum PEPC (Fig. 21A-C).

CP21 transcripts were also induced during sorghum seed germination as we have observed in chapter 1 (Fig. 11C). The present results establish CP21 (predicted molecular mass 109.4 kDa) as the predominant PEPC isoenzyme expressed in germinating sorghum seed. As p110 and p107 appear to share an identical amino acid sequence, this suggests the occurrence of PTM(s) acting on the *CP21* gene product that leads to the dissimilar sized subunits. Interestingly, the peptide mass fingerprints also revealed several peptides in p110 tryptic digests (highlighted in bold in Fig. 21A) that were not detected in p107 (Fig. 21B). QqTOF MS/MS sequencing of four of these peptides identified them as originating from ubiquitin (UB) (Table 7).

Fig. 21. CP21 is the major PEPC present in germinating seed. A, MALDI-TOF MS peptide mass fingerprints of p110. **B,** p107 derived from immunoprecipitated PEPC in clarified extracts from 48 h germinating seeds. **C,** MS/MS analysis of N-terminal peptide common to both subunits (marked with arrows in A and B) yielded identical amino acid sequences.

In addition, we showed: i) that immunoprecipitated p110, but not p107 was immunodecorated by anti-UB antibodies (Fig. 22A), and ii) the disappearance of both this signal and the p110 protein-staining band following treatment of the seed extract with 1 μ M USP-2 core (catalytic domain of UB-specific protease-2) (Fig. 22B, lane 3) which also efficiently deubiquitinates monoubiquitinated COS and harsh hakea PEPC

(Uhrig *et al.*, 2008b; Shane *et al.*, 2013). Overall, these data demonstrate that the p110 is a monoubiquitinated form of p107.

Fig. 22. The p110 subunit in clarified extracts from germinating seeds is an ubiquitinated form of p107. A, At the indicated time, PEPC of clarified extracts prepared from embryonated seed halves was immunoprecipitated (0.06 U lane⁻¹) with polyclonal PEPC C₄ antibodies as described by Osuna *et al.* 1996. The solubilized immunoprecipitate was resolved in 8% SDS-PAGE, transferred onto PVDF, and probed with anti-ubiquitin-IgG or anti-(PEPC C₄)-IgG. **B**, Clarified extracts from seeds imbibed in water for 48 h were incubated in the presence or absence of 1 μ M USP-2 core (Abcam) for 1 h at 37 °C, and subjected to immunoblot analysis using anti-(PEPC C₄)-IgG; 50 μ g protein lane⁻¹.

2.2. PEPC purification and characterization from germinating sorghum seeds

2.2.1. PEPC purification

Germinated COS PEPC exists as a heterotetramer composed of an equivalent ratio of monoubiquitinated p110 and non-ubiquitinated p107 subunits (Uhrig *et al.*, 2008b). In order to determine whether a similar quaternary structure also occurs in the starch-storing cereal seed of sorghum, PEPC from the 48 h germinated seeds was purified 391-fold to near homogeneity and an overall yield of 29% and specific activity of 7.1 units mg⁻¹ (Table 3).

Step	Volume	Activity	Protein	Specific activity	Purification	n yield
	mL	units	mg	units/mg ⁻¹	-fold	%
Clarified extract	600.0	82.0	4486.0	0.018	1	100
(NH ₄) ₂ SO ₄ Fractionation	160.0	53.5	1888.0	0.028	2	65
Butyl-Sepharose	22.0	99.0	185.4	0.53	29	121
PEG Fractionation	16.0	51.2	120.0	0.43	23	62
DEAE-Fractogel	1.0	35.0	5.0	7.0	383	43
Superdex 200	0.4	24.0	3.4	7.1	391	29

Table 3. Purification	on of PEPC from	300 g of	2-day-old	germinated	sorghum	seeds
			•	8		

In addition, the single peak of PEPC activity resolved during Superdex-200 gel filtration FPLC co-eluted with an equivalent ratio of immunoreactive p110 and p107 (Fig. 23).

Fig. 23. Co-elution of PEPC activity with 110 kDa and 107 kDa PEPC polypeptides (p110 and p107, respectively) during Superdex-200 HR 16/60 gel-filtration FPLC of PEPC from germinating sorghum seeds. Aliquots (10 μ l each) from various fractions were subjected to SDS–PAGE and immunoblot analysis using anti-COS PTPC. V₀ denotes the column's void volume.

Similarly, SDS–PAGE and immunoblotting indicated that the final preparation consisted of equivalent amounts of protein-staining or anti-COS-PTPC-immunoreactive p110 and p107 that respectively co-migrated with the subunits of purified Class-1 PEPC from germinated COS (Fig. 24A, B).

Fig. 24. SDS–PAGE and immunoblot analysis of various fractions obtained during the purification of PEPC from 48 h germinated sorghum seeds. A, SDS–PAGE was followed by protein staining with Coomassie Blue R-250 (CBB-250). B, Immunoblot analysis was performed using anti-COS PTPC-IgG. Lane 1, 2.5 μ g (A) or 50 ng (B) of purified monoubiquitinated Class-1 PEPC (*RcPPC3*) from germinating COS endosperm (Uhrig *et al.*, 2008b). Lane 2, 45 μ g (A) or 15 μ g (B) of protein from the clarified extract of sorghum seeds. Lane 3, 45 μ g (A) or 15 μ g (B) of 25–60% (NH₄)₂SO₄ fractions. Lane 4, 8 μ g (A) or 4 μ g (B) of

the butyl-Sepharose fraction. Lane 5, 2 μ g (A) or 0.1 μ g (B) of the DEAE-Fractogel fraction. Lane 6, 2 μ g (A) or 0.1 μ g (B) of Superdex 200 fractions. 'M' denotes various protein molecular weight standards. **C**, N and C-terminal immunocharacterization of the purified PEPC from 48 h germinated sorghum seeds. Samples were subjected to 8% SDS–PAGE, blot-transferred onto a PVDF membrane, and probed with anti-N24, anti-SIDAQLR, anti-C19, and anti-pSer13. All lanes contain 0.6 μ g of protein except lane anti-C19 that contains 0.2 μ g.

The enzyme's native molecular mass was estimated by analytical gel filtration to be ~460 kDa (Fig. 25).

Fig. 25. Native molecular-mass estimation for PEPC from 2-day germinated sorghum seeds. This was performed during FPLC on a calibrated Superdex-200 HR 16/60 gel-filtration column as described in the Materials and Methods. r^2 , correlation coefficient.

In agreement with earlier results obtained with clarified sorghum seed extracts (Fig. 22A and B), p110, but not p107, of the purified PEPC was immunodecorated by anti-UB (Fig. 26A); this cross-reaction was eliminated together with the protein-staining p110 band upon USP-2 treatment of the final preparation (Fig. 26B). No higher molecular mass immunoreactive polypeptides indicative of polyubiquitination were observed when the final preparation was probed with anti-UB (Fig. 26C).

Fig. 26. Incubation with the deubiquitinating enzyme USP-2 core converts the p110:p107 heterotetrameric PEPC from germinated sorghum seeds into a p107 homotetramer. Purified germinated sorghum seed PEPC was incubated in the presence or absence of 20 μ M USP-2 core, at 37 °C. A and C, Aliquots were removed at various times and subjected to immunoblot analysis using anti-UB (250 ng PEPC lane⁻¹) or **B**, anti-COS PTPC (25 ng PEPC lane⁻¹).

The p110 and p107 subunits of Class-1 PEPC from germinated COS are both truncated by 19 amino acids such that their N-terminal phosphorylation domain is absent; this process appears to occur in vivo and could therefore have physiological significance (Uhrig et al., 2008b). In contrast, the p110 and p107 subunits of the purified sorghum seed PEPC appear to be intact since they both cross-reacted with the anti-N24, anti-SIDAQ, and anti-C19 (Fig. 24C). The N-terminal served phosphorylation site of the p110 or p107 subunits of the final preparation did not appear to be phosphorylated, as indicated by immunoblotting with anti-pSer13 (Fig. 24C) (confirmed below via MS). However, both subunits readily incorporated ³²P when the final preparation was incubated with $[\gamma^{-32}P]$ ATP and recombinant sorghum PPCK2 or PPCK3 (the physiological PPCKs that catalyse in vivo phosphorylation of sorghum PTPC) (Fig. 27) (Echevarría and Vidal, 2003). In addition, both subunits of the *in vitro* phosphorylated enzyme efficiently cross-reacted with anti-pSer13 (Fig. 27B). Thus, phosphorylation and monoubiquitination of the same PTPC polypeptide are not mutually exclusive, at least in vitro. The ³²P-autoradiography also revealed PPCK2 and PPCK3 autophosphorylation (Fig. 27A), as previously described (Monreal et al., 2013). The overall results suggest that two different Class-1 PEPC populations might co-exist in germinating sorghum seeds (e.g., a monoubiquitinated dephosphorylated heterotetramer vs. a phosphorylated homotetramer) or that a copurifying phosphatase mediated *in vitro* p107 dephosphorylation during PEPC purification (despite the inclusion of a phosphatase inhibitor cocktail in all purification buffers). Further studies are needed to address the interplay between *in vivo* PTPC phosphorylation vs. monoubiquitination in germinating sorghum seeds.

Fig. 27. The p110 and p107 subunits of purified Class-1 PEPC from germinated sorghum seeds can be phophoryated *in vitro* by recombinant PPCK2 and PPCK3. A, The purified PEPC (10 μ g) was incubated at 30 °C with PPCK2 (lane 1), PPCK3 (lane 2) or without kinase (lane 3) in presence of 1 μ Ci of [γ^{32} ATP (10 Ci*mmol⁻¹)]. The gels were stained with Coomassie Brilliant Blue R-250 (left image) and autoradiographed (right image) using a phosphor imager. **B**, Experiment as in (A) but revealed with anti pSer13. **C**, Specificity of anti pSer13 antibodies.

2.2.2. Mass spectrometry analysis of purified PEPC

Coomassie Blue R-250-stained p110 and p107 were excised from SDS gels of the final preparation of the purified PEPC and subjected individually to in-gel tryptic digestion and detailed MS analyses. Mascot analysis of p110 and p107 data sets derived from nanospray HPLC TripleTOF MS of their tryptic peptides (sequence coverage=81%, Fig. 28) revealed that both subunits originated from the same sorghum *CP21 PTPC* gene (gil242061132 or Sb8720).

Consistent with earlier results: (i) p110 and p107 N-terminal tryptic peptides containing non-phosphorylated Ser7 were identified by Orbitrap LC MS/MS; and (ii) p110, but not p107, was ubiquitinated. Trypsin digestion of ubiquitin-conjugated proteins produces a signature peptide at their ubiquitination site containing a diglycine remnant derived from ubiquitin's C-terminus and that remains attached to the target lysine residue via an isopeptide bond. MS/MS analysis of the quadruply charged p110 peptide ion of *m*/*z* 469.2522 corresponding to residues 617–631 showed that the masses of the C-terminal fragments up to y7 have a mass change of 16 Da corresponding to the oxidation of Met627, and that the ubiquitination site was localized at Lys624 based on the mass increase of 114 Da [characteristic mass increment indicating glycine–glycine attachment (Uhrig *et al.*, 2008b)] on the larger fragments of y11 and y14 (Fig. 28A). LC MS/MS using a high resolution Orbitrap Fusion Tribrid instrument identified a smaller ubiquitinated peptide fragment at residues 620–631 (Fig. 28B). Under high resolution HCD fragmentation, the mass shift of 114 Da on both the N-terminal b5 ion and the C-terminal y8 ion unambiguously confirmed Lys624 as p110's monoubiquitination site.

Fig. 28. The p110 subunit of purified PEPC from germinated sorghum seeds is monoubiquitinated at Lys624. A, TripleTOF MS/ MS collision-induced dissociation (CID) analysis of the quadruply charged peptide ion of m/z 469.2522. B, Orbitrap MS/MS highenergy collision-induced dissociation (HCD) analysis of the triply charged peptide ion of m/z 525.94. Cand N-terminal fragment ions are denoted by y and b, respectively.

This residue precisely aligns with the Lys628 monoubiquitination site previously determined for the p110 subunit of Class-1 PEPC from germinated COS (Uhrig *et al.*, 2008b). As this lysine residue appears to be absolutely conserved in all plant PTPCs, monoubiquitination at this site may be a universal PTM (post-translational modification) that occurs with the PTPC subunits of Class-1 PEPCs throughout the plant kingdom (Fig. 29). It is also intriguing that this site is only several amino acid residues on the N-terminal side of a crucial and absolutely conserved PEP-binding/catalytic domain of all PEPCs (Fig. 29).

Fig. 29. Select amino acid sequence alignment of PEPC from different sources to show the phosphorylation and monoubiquitination sites. The arrow denotes the Lys-624 and Lys-628 monoubiquitination sites of p110 subunits of Class-1 PEPC from germinating sorghum seeds and COS (Uhrig *et al.*, 2008b), respectively, that is conserved in all PTPC and BTPC sequences and is highlighted by grey shading. This site is immediately adjacent to conserved catalytic domain (PEP binding site; highlighted by grey shading). This provides a logical rationale as to why monoubiquitination interferes with PEP binding to the enzyme (e.g. steric hinderance caused by UB molecule). The accession numbers of these sequences are described in the Materials and Methods. The abbreviated species name of each sequence are: Rc, *R. communis* (castor); Sb, *Sorghum bicolor*; At, *Arabidopsis thaliana*; Os, *Oryza sativa* (rice); Stu, *S .tuberosum* (potato); Zm, *Z. mays* (maize); Gm, *G.max* (Soybean); Mcr, *M. crystallinum*; Synech, *Synechocystis sp*.PCC 6803(cyanobacteria).

2.2.3. Kinetic studies

The impact of various metabolite effectors (2 mM each) on the activity of the purified, monoubiquitinated heterotetrameric sorghum seed PEPC (UB-PEPC) versus the *in vitro* deubiquitinated homotetrameric enzyme (deUB-PEPC) was assessed using suboptimal assay conditions (0.1 mM PEP, pH 7.3 and 8.0). With the exception of L-malate, monoubiquitination of germinating sorghum seed PEPC (CP21) exerted little to no influence in the response to the metabolites tested (Table 4).

Table 4. Influence of various metabolites on the activity of ubiquitinated and *in vitro* deubiquitinated PEPC purified from germinated sorghum seeds.

Assays were conducted at pH 8.0 and/or pH 7.3 using a subsaturating PEP 0.1 mM. Deubiquitinated PEPC (DeUB-PEPC) was prepared by incubating ubiquitinated PEPC (UB-PEPC) for 1 h with 20 μ M USP-2 as described in the Materials and Methods. PEPC activity in the presence of 2 mM of each effector is expressed relative to the control set at 100%. All values represent means of three independent experiments and are reproducible to within ± 10% SE of the mean value.

	Relative activity						
Addition	рН	7.3	pH 8.0				
	DeUB-PEPC	UB-PEPC	DeUB-PEPC	UB-PEPC			
Glucose-6-phosphate	112	127	120	121			
Glucose-1-phosphate	111	115	116	116			
Fructose-1-phosphate	113	116	116	116			
Ribose-5-phosphate	98	98	105	105			
Glycerol-3-phosphate	108	107	120	124			
Malate	67	53	93	93			
Isocitrate	47	47	38	38			
Aspartate	91	94	109	109			
ATP	88	90	111	100			

UB-PEPC displayed a significantly lower IC_{50} for L-malate relative to deUB-PEPC (1.8 mM and 3.6 mM, respectively) (Table 5). In addition, the K_m (PEP) value of UB-PEPC appeared to be slightly higher than that of deUB-PEPC, although the differences were not statistically significant (Table 5).

Table 5. Influence of USP-2-mediated deubiquitination on allosteric effector sensitivity of purified PEPC. DeUB-PEPC was prepared by incubating UB-PEPC for 1 h with 20 μ M USP-2 as described in the Materials and Methods. *IC*₅₀ values were determined using subsaturating 0.1 mM PEP at pH 8.0 and/or pH 7.3.

_	рН	7.3	рН 8.0		
Kinetic parameter	UB-PEPC	DeUB-PEPC	UB-PEPC	DeUB-PEPC	
$K_{\rm m}$ (PEP) I ₅₀ (malate) I ₅₀ (isocitrate)	0.039 ± 0.002 $1.81 \pm 0.13^{*}$ 1.47 ± 0.17	0.033 ± 0.003 $3.62 \pm 0.24^{*}$ 1.37 ± 0.12	0.044 ± 0.004 ND ND	0.036 ± 0.005 ND ND	

All values are given in mM and represent the means \pm SE of *n*=3 independent experiments. The asterisk indicates statistically significant differences between DeUB-PEPC and UB-PEPC (*P* < 0.05). ND, not determined.

2.3. Class-1 PEPC monoubiquitination also occurs in developing sorghum seeds

The Class-1 PEPC of developing COS endosperm exists as a 410 kDa homotetramer composed of identical, *in vivo* phosphorylated p107 subunits, and also as a novel 910 kDa Class-2 PEPC hetero-octameric complex in which the same Class-1 PEPC isoenzyme (RcPPC3) tightly associated with four BTPC (RcPPC4) subunits (Tripodi *et al.*, 2005; Gennidakis *et al.*, 2007; O'Leary *et al.*, 2011a). However, neither Class-1 nor Class-2 PEPC of intact, developing COS is monoubiquitinated (O'Leary *et al.*, 2011a,b). In the cereal seeds wheat, barley, and sorghum, Class-1 PEPC has been defined as a phosphorylated enzyme in the middle of the developmental stages, dephosphorylated in dry seed, and then re-phosphorylated during germination (Osuna *et al.*, 1996, 1999; González *et al.*, 1998; Feria *et al.*, 2008; Nhiri *et al.*, 2000). The presence of a Class-2 PEPC complex containing tightly associated PTPC and BTPC subunits has not yet been established in barley or sorghum seeds (Feria *et al.*, 2008 and unpublished data, respectively), indicating clear differences in the PEPC biochemistry of developing castor (oil storing) versus cereal (starch storing) seeds.

It was also of interest to explore whether PEPC monoubiquitination occurs during sorghum seed development. Immunoblot analysis of PEPC in clarified extracts prepared from whole seeds harvested at different stages post-anthesis revealed the presence of anti-COS PTPC-immunoreactive p110 and p107 subunits similar to those occurring in the germinating seeds. Incubation with USP-2 led to the disappearance of immunoreactive p110 at each stage of development (Fig. 30, +USP-2). This indicates that p110 is also a monoubiquitinated version of p107 in developing sorghum seeds. This is the first report of PEPC monoubiquitination during seed development.

Anti-(PTPC) -IgG

Fig. 30. PEPC monoubiquitination in developing sorghum seeds. Clarified extracts from developing seeds were incubated in the presence and absence of 5 μ M USP-2 core for 30 min and subjected to immunoblot analysis using anti-COS PTPC (45 μ g protein lane⁻¹).

Position	<i>m/z</i> (Meas.)	[MH]+ (Calc.)	ppm	Peptide sequence
728 - 733	860.4478	859.4228	21	R.FVEYFR.S
370 - 376	958.5141	957.4920	16	R.DKLYYTR.E
720 - 727	975.5399	974.5185	14	R.SIVFQEPR.F
347 - 353	1022.5247	1021.5021	15	K.HYIEFWK.Q
754 - 763	1043.5968	1042.5771	12	R.KPSGGIESLR.A
354 - 362	1099.5662	1098.5458	12	K.QVPPNEPYR.V
734 - 743	1110.5214	1109.4989	14	R.SATPETEYGR.M
477 - 485	1159.6223	1158.6033	10	R.QDWLLSELR.G
224 - 233	1171.5564	1170.5339	13	R.TPPTPQDEMR.A
558 - 570	1267.7037	1266.6932	3	K.LADLEAAPAAVAR.L
571 - 580	1344.6434	1343.6332	2	R.LFSIDWYMNR.I
211 - 222	1448.7523	1447.7419	2	R.EIQAAFRTDEIR.R
2 - 13	1449.7593	1448.7484	3	M.PERHQSIDAQLR.L
764 - 775	1489.7836	1488.7878	-8	R.AIPWIFAWTQTR.F
290 - 303	1628.8861	1627.8716	4	R.VTPEVTRDVCLLAR.M
837 - 851	1717.9171	1716.9046	3	K.LLVAEDLQSFGEQLR.K
902 - 917	1795.9739	1794.9628	2	R.IRDPSFQVSPQPPLSK.E
837 - 852	1846.0090	1844.9996	1	K.LLVAEDLQSFGEQLRK.N
354 - 369	1851.9889	1851.0003	-10	K.QVPPNEPYRVILGDVR.D
195 - 210	1859.9080	1858.8908	5	K.DITADDKQELDEALQR.E
638 - 659	2224.1890	2223.1760	3	R.GGGPTHLAILSQPPDTIHGSLR.V
120 - 140	2281.0767	2280.0393	13	R.GDFADEASAPTESDIEETLKR.L
551 - 570	2080.1650	2079.1728	-7	R.VVPLFEKLADLEAAPAAVAR.L
660 - 679	2349.1724	2348.1471	8	R.VTVQGEVIEHSFGEELLCFR.T

Table 6. MALDI QqTOF MS identified tryptic peptides matching between p110 y p107(both identified as CP21; P29195) from the inmunoprecipitated samples.

Table 7. MALDI QqTOF MS/MS sequenced p110 tryptic peptides that matched ubiquitin(79 a.a., GI:241916066) from the inmunoprecipitated samples.

Position	<i>m/z</i> (Meas.)	[MH]+ (Calc.)	ppm	Peptide sequence
36-44	1039.5300	1038.5094	13	K.EGIPPDQQR.L
66-74	1067.6100	1066.6135	-10	K.ESTLHLVLR.L
45-56	1346.7300	1345.7354	-9	R.LIFAGKQLEDGR.T
32-44	1523.7861	1522.7740	3	K.IQDKEGIPPDQQR.L

Position	<i>m/z</i> (Meas.)	[MH]+ (Calc.)	ppm	Peptide sequence
728 -733	860.4329	859.4228	3	R.FVEYFR.S
370 - 376	958.5021	957.4920	3	R.DKLYYTR.E
720 -727	975.5300	974.5185	3	R.SIVFQEPR.F
744 -752	989.5199	988.5124	0	R.MNIGSRPSK.R
332 - 339	1009.5519	1008.5464	-2	R.IRADELHR.S
754 -763	1043.5858	1042.5771	1	R.KPSGGIESLR.A
354 - 362	1099.5576	1098.5458	4	K.QVPPNEPYR.V
734 -743	1110.5057	1109.4989	0	R.SATPETEYGR.M
477 -485	1159.6096	1158.6033	-1	R.QDWLLSELR.G
542 -550	1166.5862	1165.6026	-20	R.ECHVKQPLR.V
224 -233	1171.5381	1170.5339	3	R.TPPTPQDEMR.A
68 -78	1174.6099	1173.5989	3	R.DEARLGELGSK.L
753-763	1199.6418	1198.6782	36	K.RKPSGGIESLR.A
223 -233	1327.6440	1326.6350	1	R.RTPPTPQDEMR.A
571 -580	1344.6501	1343.6332	7	R.LFSIDWYMNR.I
211-222	1448.7456	1447.7419	-3	R.EIQAAFRTDEIR.R
1 -13	1580.8337	1579.7889	24	MPERHQSIDAQLR.L
585 -600	1712.7914	1711.7835	0	K.QEVMIGYSDSGKDAGR.L
837 -851	1717.9054	1716.9046	-4	K.LLVAEDLQSFGEQLR.K
705 -719	1726.8459	1725.8429	-3	R.ALMDEMAVVATKEYR.S
902 -917	1795.9611	1794.9628	-5	R.IRDPSFQVSPQPPLSK.E
195-210	1859.8861	1858.8908	-7	K.DITADDKQELDEALQR.E

Table 8. MALDI QqTOF MS identified tryptic peptides matching between p110 y p107(both identified as CP21; P29195) from the purified sample.

Table 9. MALDI QqTOF MS/MS sequenced p110 tryptic peptides that matched ubiquitin(79 a.a., GI:241916066) from from the purified sample.

Position	<i>m/z</i> (Meas.)	[MH]+ (Calc.)	ppm	Peptide sequence
34-42	1039.5161	1038.5094	-1	K.EGIPPDQQR.L
64-72	1067.6198	1066.6135	-1	K.ESTLHLVLR.L
43-54	1346.7343	1345.7354	-6	R.LIFAGKQLEDGR.T
30-42	1523.7744	1522.7740	-4	K.IQDKEGIPPDQQR.L

3. FOSFORILACIÓN DE LA FOSFOENOLPIRUVATO CARBOXILASA EN LA GERMINACIÓN Y DESARROLLO DE LA SEMILLA DE SORGO

La fosforilación de la PEPC es un mecanismo postraduccional de regulación bien documentado y estudiado desde los años 80 en las plantas C₄ y CAM. La fosforilación de las PEPCs de clase 1 ocurre en un residuo de serina altamente conservado (ácido-base-XX-SIDAQLR) que se localiza en el extremo N-terminal de la proteína. Además, se ha demostrado que esta modificación postraduccional (PTMs) reguladora también está implicada en el control de las PTPCs no fotosintéticas de numerosas plantas que se han estudiado hasta el momento (O'Leary *et al.*, 2011b; Echevarría y Vidal, 2003). Esta fosforilación es llevada a cabo por la fosfoenolpiruvato carboxilasa quinasa (PPCK), por lo que este capítulo lo iniciamos con el estudio de la expresión de los genes *PPCKs* durante el desarrollo y la germinación de la semilla de sorgo.

3.1. Caracterización de la expresión de los genes *PPCKs* durante el desarrollo y germinación de la semilla de sorgo

Tal y como se ha descrito en la introducción, la PPCK en sorgo está formada por una pequeña familia multigénica formada por los genes: Sb04g036570 (SbPPCK1), Sb04g026490 (SbPPCK2), Sb06g022690 (SbPPCK3), con distintos patrones de expresión (Nimmo, 2003). En hojas de sorgo, se ha demostrado que la luz aumenta drásticamente la expresión de SbPPCK1 siendo ésta del orden de 5-6 veces superior a los niveles detectados en oscuridad (Echevarría y Vidal, 2003) mientras que la expresión de SbPPCK2 y SbPPCK3 en hojas es baja e igual en luz que en oscuridad (Monreal *et al.*, 2013), resultado que confirma que la PPCK1 es la isoenzima responsable de fosforilar a la PEPC que participa en la fotosíntesis C₄ (Chollet *et al.*, 1996; Echevarría y Vidal, 2003), un evento que es necesario para mantener activa la PEPC en presencia de altas concentraciones de malato en las células del mesófilo (Stitt y Heldt, 1985). La expresión de los genes *PPCKs* ha sido estudiada en diferentes plantas y tejidos, sin embargo existen pocos estudios de la expresión de dichos genes durante el desarrollo y germinación de la semilla (Xu *et al.*, 2003; Sullivan *et al.*, 2004; Tripodi *et al.*, 2005; Murmu y Plaxton, 2007; Xu *et al.*, 2007; O'Leary *et al.*, 2011a).

3.1.1. Expresión de los genes PPCKs durante el desarrollo

En primer lugar, se analizó la expresión de los tres genes *PPCKs* en las semillas en desarrollo. En la Fig. 31, podemos observar que en la semillas de sorgo en desarrollo se pudieron detectar transcritos para las tres quinasas que se encuentran en el genoma del sorgo: Sb*PPCK1*, Sb*PPCK2*, Sb*PPCK3*. Los niveles de expresión encontrados fueron comparables a los niveles de expresión de las quinasas de hojas de sorgo en oscuridad (datos no mostrados). En el caso de Sb*PPCK1*, observamos una disminución de la expresión desde el estadio más verde y joven de la semilla hacia la fase de desecación siendo la expresión 2.3 veces menor al final del desarrollo (Fig. 31A).

Fig. 31. Análisis de la expresión de los genes *PPCKs* en los diferentes estadios de desarrollo de la semilla de sorgo. El análisis por PCR cuantitativa (qPCR) de los niveles relativos de los transcritos se realizó como se indica en materiales y métodos (apartado 9.3). El ARNr 18S se usó como control endógeno para normalizar los datos obtenidos de cada muestra. Todos los datos están relativizados al estadio VI. A, Sb*PPCK1*; B, Sb*PPCK2* y C, Sb*PPCK3*. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005). No existen diferencias significativas en Sb*PPCK3*.

Los niveles de transcritos para la SbPPCK2 también sufrieron una disminución gradual hacia la semilla seca, sin embargo, se observó un drástico aumento en el estadio V (3.3 veces mayor que en el estadio IV) (Fig. 31B). Los resultados para la SbPPCK3 mostraron que no existían diferencias significativas entre los diferentes estadios (Fig. 31C).

3.1.2. Expresión de los genes PPCKs en embriones durante la germinación

En este apartado, se analizó la expresión de las quinasas en los embriones embebidos en el curso del tiempo. Como podemos observar en la Fig. 32, al igual que en el desarrollo se detectaron transcritos para las tres quinasas y los niveles de expresión fueron comparables a los niveles de expresión de las quinasas de hojas de sorgo en oscuridad. En el caso de Sb*PPCK1*, la expresión aumentó drásticamente a las 14 horas siendo del orden de 5 veces más alta que en la semilla seca y posteriormente disminuyó en todos los tiempos con respecto de la expresión a las 14 horas (Fig. 32A). Para Sb*PPCK2*, los niveles de ARNm en los embriones aumentaron gradualmente con el tiempo de imbibición, siendo la cantidad 5 veces superior a 96 horas que en la semilla seca (Fig. 32B). Con respecto Sb*PPCK3*, no existió ninguna diferencia significativa en la expresión, sin observar cambios notables en los diferentes tiempos (Fig. 32C).

Estos resultados en su conjunto muestran que los tres genes SbPPCKs se expresaron en las semillas de sorgo mostrando un patrón diferencial durante el proceso de desarrollo y germinación de la semilla. El resultado de la actividad PEPC quinasa se contempla como un balance entre la expresión, la traducción y los procesos de degradación de la proteína. La degradación de la PEPC quinasa ha sido previamente descrita en semillas de cebada durante la germinación, siendo dicha degradación regulada por ABA (Feria *et al.*, 2008).

Fig. 32. Análisis de la expresión de los genes de SbPPCKs en embriones de semillas de sorgo a diferentes tiempos de imbibición. El análisis por PCR cuantitativa (qPCR) de los niveles relativos de los transcritos se realizó como se indica en materiales y métodos (apartado 9.3). El ARNr 18S se usó como control endógeno, para normalizar los datos obtenidos de cada muestra. Todos los estadios están relativizados al tiempo 14 h. A, SbPPCK1; B, SbPPCK2 y C, SbPPCK3. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005). No existen diferencias significativas en SbPPCK3.

3.2. Evaluación del estado de fosforilación de la PEPC durante el desarrollo y germinación de la semilla

Una vez comprobada la presencia de transcritos de las *PPCK*s y su patrón de expresión se estudio el nivel de fosforilación de la PEPC durante ambos procesos. Trabajos previos realizados por nuestro grupo, mostraron la fosforilación de la PEPC en la aleurona/endospermo de semillas de trigo, cebada y sorgo durante la germinación (Osuna *et al.*, 1998; Nhiri *et al.*, 2000; Feria *et al.*, 2008). En dichos trabajos se utilizaron varios métodos como la determinación de la IC_{50} para el L-malato, la cual se incremento durante la germinación mostrando la fosforilación de la enzima (Nimmo *et al.*, 1987;

Echevarría *et al.*, 1994). Estos resultados se confirmaron también mediante ensayos de fosforilación *in vivo* con ³²P que mostraron que, al menos p107 en sorgo (Nhiri *et al.*, 2000) y p107&p110 en trigo y cebada (Osuna *et al.*, 1998; Feria *et al.*, 2008) estaban fosforiladas durante la germinación.

En este apartado, se presentan los resultados obtenidos de un estudio más profundo de la regulación por fosforilación de las PTPCs, que incluye el patrón de fosforilación de la PEPC en semillas enteras durante desarrollo y en semillas enteras o en embriones durante la germinación. En este estudio se desarrollan varios métodos de evaluación del estado de fosforilación de la PEPC que van desde la determinación de la IC_{50} e inmunodetección de la fosforilación con anticuerpos específicos hasta el análisis proteómico que identifica las isoenzimas que están fosforiladas durante la germinación así como los aminoácidos implicados.

3.2.1. Determinación de la sensibilidad al L-malato (IC_{50}) de la PEPC durante el desarrollo y la germinación de la semilla

Como se ha dicho anteriormente, uno de los métodos que tradicionalmente han servido para estimar los niveles de fosforilación *in vivo* de la PEPC es la determinación de su sensibilidad al L-malato (Nimmo *et al.*, 1987; Echevarría *et al.*, 1994) mediante el cálculo de la IC_{50} (concentración del inhibidor L-malato a la cual la actividad inicial de la PEPC se reduce en un 50%). Este parámetro se calcula bajo condiciones de pH subóptimas pero fisiológicas (pH 7.3). Los valores de IC_{50} de aproximadamente 1.5 mM reflejan el estado de una PEPC C₄ de hojas de sorgo fosforilada, y valores de IC_{50} de aproximadamente 0.3 mM son propios de una PEPC desfosforilada, es decir, la fosforilación de la enzima incrementa la IC_{50} para el málico del orden de 2 a 3 veces (Echevarría *et al.*, 1994; Chollet *et al.*, 1996). Estudios recientes, entre los cuales se encuentran los presentados en esta tesis, han demostrado que la monoubiquitinada tiene una IC_{50} más alta (Uhrig *et al.*, 2008; Shane *et al.*, 2013).

En primer lugar se determinó la IC_{50} en extractos crudos de las semillas en desarrollo. Los resultados mostraron que durante el desarrollo (Fig. 33A), la IC_{50} aumentó desde el estadio I con valores de 0.8 mM, y alcanzó el máximo en el estadio III con una alta IC_{50} de 1.4 mM. Posteriormente, los valores de la IC_{50} comenzaron a disminuir durante las fases de desecación de la semilla. Estos valores de IC_{50} indicarían que la PEPC está fosforilada durante los primeros estadios (del I al IV) para desfosforilarse en la última fase de desecación encontrándonos con una enzima completamente desfosforilada en la semilla seca (IC_{50} de 0.25 mM).

En los embriones embebidos a diferentes tiempos, la IC_{50} aumentó progresivamente hasta alcanzar un máximo a las 48 horas con valores de 1.2 mM (Fig. 33B, 48 h) indicando que la enzima se encuentra fuertemente fosforilada. El comienzo de la fosforilación de la PEPC coincidiría con el momento de rotura de la testa y emergencia de la radícula a las 24 horas (Fig. 12 capítulo 1).

Los valores altos de IC_{50} reflejarían por lo tanto los estadios en los que la PEPC se encontraría altamente fosforilada que serían los estadios del I al IV del desarrollo y a las 48 horas de imbibición, encontrándonos una enzima con bajos niveles de fosforilación al final del desarrollo, en la semilla seca y al final de la germinación.

Fig. 33. Valores de IC_{50} para el L-malato de la PEPC durante el desarrollo y la germinación de la semilla de sorgo. Los extractos crudos se realizaron a partir de 0.4 g de semillas en 1 ml de tampón de extracción. El test malato mide la actividad PEPC a pH 7.3 en presencia o ausencia del inhibidor L-malato. La IC_{50} se define como la concentración del inhibidor L-malato a la cual la actividad PEPC se reduce en un 50%. A, fosforilación en los distintos días postantesis utilizando semillas enteras; B, en embriones embebidos a diferentes tiempos. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

Como en los estadios descritos la PEPC se encuentra monoubiquitinada, la IC_{50} sería un reflejo de ambas modificaciones postraduccionales. En la Fig. 34 se muestra el impacto que tuvo la desubiquitinación en el valor de IC_{50} de la PEPC de extractos crudos de semillas germinadas 24 h por incubación con USP-2.

Fig. 34. Influencia de la desubiquitinación de la PEPC mediada por USP-2 en la sensibilidad a su efector alostérico negativo, L-malato, en embriones de extractos crudos embebidos 24 h. La DeUB-PEPC fue preparada tras la incubación de los extractos crudos durante 1 h con 2 μ M de USP-2 (AbCam), tal y como se describe en los materiales y métodos (apartado 6). A, Las medidas de IC_{50} fueron determinadas a los 60 min de incubación con USP-2 usando concentraciones de PEP saturantes de 2.5 mM PEP y a pH subsaturante de 7.3. **B**, las alícuotas fueron desnaturalizadas inmediatamente a los tiempos indicados y sometidas a análisis por inmunoblot usando los anticuerpos anti-(PEPC C₄)-IgG (25 μ g proteína/pista).

Estos resultados mostraron que si bien la fosforilación es un proceso de activación de la enzima, dicha activación está matizada por la monoubiquitinación y que sin la monoubiquitinación la enzima tendría menos afinidad por su efector alostérico negativo el L-malato. Estudios posteriores serán necesarios para comprender porque ambas modificaciones postraduccionales, que se contrarrestan en su efecto, se dan simultáneamente durante determinados estadios del desarrollo y germinación.

3.2.2. Evaluación de la fosforilación in vivo mediante el uso de anticuerpos fosfo-específicos

Dado que la monoubiquitinación de la PEPC altera también el valor de la IC_{50} (Uhrig *et al.*, 2008; Shane *et al.*, 2013), el estado de fosforilación *in vivo* de la PEPC se evaluó mediante el uso de anticuerpos fofo-específicos que reconocen específicamente el motivo de fosforilación fosforilado de la enzima (Fig. 35A). Para ello se utilizaron anticuerpos anti-sitio de fosforilación fosforilados (pSer13) dirigidos contra un fosfopéptido sintético que representa el N-terminal fosforilado en la Ser 13 [Cys-⁹ERLS(pS)IDAQLR¹⁹] correspondiente a la PEPC CP28, PTPC de tipo C₃ de sorgo (Lepiniec *et al.*, 1993; Fig. 35B y 27C). Estos anticuerpos reconocieron el motivo consenso de fosforilación situado en el extremo N-terminal de la PEPC CP28 (Fig. 35A y 27C) y de varias PEPCs de sorgo, entre ellos el de la PEPC de tipo C₄ fotosintética, la isoenzima CP21 y la 4960 (Fig. 35B). Los anticuerpos revelaron el fosfopéptido mientras que no revelaron el desfosfopeptido mostrando una alta afinidad por la forma fosforilada de la enzima si bien la afinidad por los fosfopéptidos de las isoenzimas CP21 y 4960 fue baja en comparación con la que mostraron por CP28 y C₄ fotosintética (Fig. 35A).

Fig. 35. Reconocimiento y especificidad de los anticuerpos pSer13 del motivo de fosforilación N-terminal de la PEPC CP28, CP21, 4960 y C_4 fotosintética. A, Los péptidos fosforilados empleados fueron los correspondientes a los motivos de fosforilación N-terminal de las diferentes isoenzimas. Los anticuerpos se realizaron contra el péptido sintético N-terminal fosforilado de la isoenzima CP28 [ERLSS(OP)IDAQLR]; **B**, alineamiento del motivo de fosforilación conservado en el N-terminal de varias PEPCs.

En el caso del desarrollo de la semilla se prepararon extractos crudos de dos estadios de desarrollo donde la PEPC aparecía con una alta IC_{50} , indicativo de alta fosforilación de la PEPC (estadios I y III) y se realizó un experimento de Western-blot donde se mostró que los anticuerpos pSer13 reconocieron claramente el polipéptido de 107 kDa de PEPC y muy levemente el de 110 kDa (Fig. 36B, pistas 3, 4, 5 y 7, 8, 9). Parte de estos extractos crudos se utilizaron para desfosforilar a la enzima in vitro utilizando la fosfatasa lambda. Esta fosfatasa hidroliza los grupos fosfatos procedentes de residuos de tirosina, treonina o serina que estuvieran fosforilados. Como se puede observar en la Fig. 36B, la incubación con la fosfatasa durante 60 min a 30 °C promovió la desfosforilación de la enzima tanto en el estadio I como en el III (Fig. 36B, pista 6 y 10). Los anticuerpos pSer13 no reconocieron la PEPC purificada procedente de la germinación de COS (Fig. 36B, pista 1) que se utilizó como control negativo ya que está descrito que carece del sitio de fosforilación en el N-terminal y por lo tanto se encuentra completamente desfosforilada (Uhrig et al., 2008). Por el contrario, sí reconocieron a la PEPC purificada de Arabidopsis crecida en ausencia de fosfato (Arabidopsis -P) que se encontraba fosforilada (Fig. 36B, pista 2) y que se utilizó como control positivo (Gregory et al., 2009). En paralelo, se hizo un Western-blot usando las mismas muestras pero incubando la membrana con los anticuerpos totales (anti-PTPC, Fig. 36A) mostrando que las variaciones observadas en las Fig. 36B no fueron debidas a la variación en la cantidad de PEPC sino a su nivel de fosforilación. La PEPC de COS se reveló completamente en el caso de usar los anticuerpos totales. Estos resultados indicaron que en los estadios I y III del desarrollo de la semilla de sorgo la PEPC se encuentra fosforilada.

Fig. 36. Evidencia de la fosforilación *in vivo* de la PEPC procedente de extractos crudos del desarrollo (estadio I: 7-12 DPA y estadio III: 16-20 DPA) usando anticuerpos pSer13 y la fosfatasa lambda. Para el ensayo, se usaron dos estadios representativos con una alta IC_{50} . Los extractos crudos fueron incubados en presencia (+) o ausencia (-) de la fosfatasa lambda durante 60 min, a 30 °C. A continuación, las muestras se analizaron en SDS-PAGE (7.5% de acrilamida) e inmunoblots usando: A, anticuerpos que reconocen a la PEPC completa, anti-PTPC o B, anticuerpos pSer13 en presencia del péptido OH para eliminar las uniones inespecíficas. Pista 1, PEPC de COS purificada de semillas en germinación como PEPC no fosforilada (50 ng de proteína/pista en A o 500 ng de proteína/pista en B); pista 2, PEPC purificada de Arabidopsis –P (cultivada en ausencia de sin fosfato) que está fosforilada (A, 25 ng de proteína/pista; B, o 250 ng de proteína/pista en A o 40 μ g de proteína/pista en B). Pistas 6 y 10, extractos crudos tras el tratamiento con lambda durante 60 min.

El mismo tipo de experimento se llevó a cabo con semillas germinadas. Para ello se prepararon los extractos crudos y desalados procedentes de los diferentes tiempos de la germinación (de 14 a 96 horas) y se analizaron por SDS-PAGE y Western-blot. En la Fig. 37A mostramos que la señal obtenida mediante el uso de los anticuerpos pSer13 aumentó hasta las 48 horas y después decayó coincidiendo con el patrón de los valores de la IC_{50} , aumentando la señal a las 24 horas y siendo la señal más intensa a las 48 horas donde la IC_{50} fue máxima (1.2 mM) (Fig. 37A). En paralelo, se hicieron dos controles: i) Revelado de la membrana con anticuerpos anti PTPC de sorgo (Fig. 37C) para comprobar que la carga del gel era homogénea y ii) usando los mismos anticuerpos pSer13 pero en este caso añadiendo el péptido OP, para demostrar que la señal desaparecía por competencia con el péptido y que por tanto los anticuerpos reconocían específicamente la forma fosforilada de la enzima (Fig. 37B).

Fig. 37. Inmunocaracterización de la fosforilación de p110 y p107 durante la germinación. Las proteínas extraídas a partir de las semillas embebidas a diferentes tiempos se analizaron (40 µg de proteína/pista) en SDS-PAGE (8% de acrilamida) y se transfirieron a una membrana de nitrocelulosa que se incubó con los distintos anticuerpos. A, anticuerpos anti-pSer13; **B**, anti pSer13 + péptido OP (ERLSS(P)IDAQLR) o **C**, incubado con los anticuerpos anti-PEPC de hojas de sorgo (anti PTPC). A y C son la misma membrana pero ésta primero se incubó con los anti-pSer13, se reveló y se deshibridó como se describe en los materiales y métodos (apartado 8.2) para ser posteriormente incubada con los anti-PTPC.

Está descrito que un decremento de la actividad PEPC determinada a un pH subóptimo de 7.3 refleja el estado de fosforilación de la PEPC relacionándose mayor actividad con mayor nivel de fosforilación (Echevarría *et al.*, 1994). En paralelo al ensayo anterior se procedió a determinar la actividad de la PEPC a pH subóptimo de 7.3 después de un tratamiento con la fosfatasa alcalina (CIP). La Fig. 38 muestra una disminución significativa de la actividad de la PEPC de aproximadamente un 57% tras la incubación con la fosfatasa que no se observó cuando la PEPC fue incubada con fosfatasa pero en presencia de ortovanadato de sodio y EDTA, potentes inhibidores de esta enzima (Mossner *et al.*, 1980) (Fig. 38).

Fig. 38. Influencia en la actividad PEPC de la desfosforilación *in vitro* usando la fosfatasa CIP (*Alkaline Phosphatase, Calf Intestinal*). Los extractos crudos de semillas completas de 48 h en germinación fueron incubados con y sin fosfatasa CIP (400 unidades) durante 30 min a 37 °C. CIP elimina los grupos fosfatos de residuos de serina, treonina y tirosina. Todos los valores representan la actividad específica de la PEPC bajo condiciones subóptimas (pH 7.3; 1 mM de málico; 0.2 mM PEP). A, representación gráfica de los datos; B, datos numéricos. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

Estos resultados en su conjunto muestran: i) que la PEPC se fosforila durante el desarrollo y la germinación alcanzando los máximos niveles en el estadio III del desarrollo y a las 48 h de imbibición en semillas germinadas a 25 °C y ii) que la IC_{50} refleja adecuadamente el estado de fosforilación de la PEPC de la semilla aunque dicho parámetro se vea afectado también por el estado de monoubiquitinación.

3.2.3. Influencia del corte del flujo de fotosintatos en el estado de fosforilación de la semilla en desarrollo

Se han realizado numerosos estudios en semillas de cebada, ricino y soja que demuestran que la fosforilación de la PEPC durante el desarrollo disminuye tras el corte del flujo de fotosintatos o tras la oscuridad prolongada de plantas intactas (Tripodi *et*

al., 2005; Murmu y Plaxton, 2007; Feria *et al.*, 2008). En ricino y soja se ha visto también que disminuye la actividad PEPC quinasa y que esta es recuperada tras la reiluminación (Xu *et al.*, 2003; Sullivan *et al.*, 2004; Tripodi *et al.*, 2005; Murmu y Plaxton, 2007; Xu *et al.*, 2007). Además, también se ha mostrado en ricino que tras el corte de fotosintatos ocurre la desfosforilación de p107 que viene posteriormente acompañada de la monoubiquitinación de esta subunidad, pasando de una PEPC homotetramérica fosforilada a una forma heterotetramérica desfosforilada (O'Leary *et al.*, 2011a).

En este sentido, evaluamos el comportamiento de la PEPC de la semilla de sorgo en desarrollo respecto al corte del flujo de fotosintatos. Para ello se determinaron los valores de IC₅₀ en semillas del estadio III del desarrollo que habían permanecido 24 y 48 horas separadas de la planta con el consiguiente flujo de fotosintatos interrumpido. Los resultados mostraron que a las 24 y a las 48 horas aumentó la sensibilidad al málico (disminución de la IC_{50}) (Fig. 39A). Teniendo en cuenta que los inmunoblots con anticuerpos anti-PEPC mostraron un aumento de la cantidad de PEPC aunque sin cambios en el estado de monoubiquitinación (PEPC) (Fig. 39B), la disminución de la IC₅₀ reflejaría una disminución del estado de fosforilación de la PEPC con una IC₅₀ de un 39% menor a las 48 horas tras el corte, comparada con el tiempo 0 (semillas de las espigas recién separadas de la planta). Estos datos mostraron que la PEPC de sorgo se comportó de forma diferente a la de COS en donde la enzima está fosforilada y desubiquitinada durante el desarrollo y pasa a desfosforilarse y a ubiquitinarse después del corte del flujo de fotosintatos (O'Leary et al., 2011a). En el caso del sorgo, la enzima está fosforilada y monoubiquitinada y pasa a desfosforilarse mientras que los niveles de monoubiquitinación (relación p110:p107) permanecen constantes si bien se produce un aumento de la cantidad de PEPC.

Fig. 39. Influencia del corte del flujo de fotosintatos en la IC_{50} y composición oligomérica de la enzima. Las semillas de sorgo en desarrollo (estadio III) fueron recolectadas y mantenidas en placas de Petri humedecidas durante los tiempos indicados. A, Medidas de la IC_{50} de los extractos crudos en los diferentes tiempos (ver materiales y métodos, apartado 4.2). B, SDS-PAGE (8% de acrilamida) y Western-blot usando anticuerpos totales anti-PTPC (45 µg de proteína/pista). A.E: actividad específica de la PEPC. Los datos son la media ± ES de al menos tres experimentos independientes (±20% ES para la A.E). Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

Tras la detección del aumento de la cantidad de PEPC heterotetramérica así como del un aumento de la actividad específica de la enzima (Fig. 39B, A.E) que se produce con la interrupción del flujo de fotosintatos fue interesante comprobar si el aumento de PEPC se correspondía con una mayor expresión de los genes *PTPCs* de alguna isoenzima específica. En la Fig. 40 se muestra que la isoenzima *CP28* aumentó significativamente su expresión a las 48 h con respecto a los niveles basales que existían de esta isoenzima antes del corte del flujo de fotosintatos, sin embargo, las PEPCs de tipo *CP21 y 4960* no cambiaron su expresión. Estos resultados indican que el aumento de proteína y de actividad específica (Fig. 39B) que se detectan en la semilla tras el corte del flujo de fotosintatos, corresponden principalmente a un aumento de la transcripción de la isoenzima *CP28* sin que la transcripción del resto de isoenzimas de PEPC se vea afectado significativamente y que por tanto sería la única que se expresa y se traduce en respuesta a este estrés.

Fig. 40. Análisis de la expresión de los 3 genes *PTPCs* en la semilla en desarrollo tras la interrupción del flujo de fotosintatos a diferentes tiempos (0, 24 y 48 h). El análisis de q-PCR del ARNm de PEPC de sorgo se realizó como se indica en materiales y métodos (apartado 9.3). El ARNr 18S se usó como control endógeno para normalizar los datos obtenidos de cada muestra. Todos los datos están relativizados al tiempo 0. Los datos son la media \pm ES de al menos tres experimentos independientes. Las letras distintas indican diferencias estadísticamente significativas entre los tratamientos según la t-Student (p<0.005).

También se determinó la influencia del corte de fotosintatos en la expresión de las quinasas de sorgo (Sb*PPCK1-3*). Se utilizaron las mismas semillas tras un tratamiento de 24 y 48 h separadas de la planta y se estudio la transcripción de los genes de Sb*PPCK* por qPCR. Los resultados de la Fig. 41 muestran un aumento de la expresión de los genes Sb*PPCK2* y Sb*PPCK3* tras el corte de fotosintatos aunque estas diferencias no fueron significativas. Estos resultados difieren de los obtenidos en COS (O'Leary *et al.*, 2011a) donde la cantidad de quinasa disminuyó tras el corte de fotosintatos.

Fig. 41. Análisis de la expresión de los genes que codifican las PPCKs en la semilla en desarrollo tras una interrupción del flujo de fotosintatos de 0, 24 y 48 h. El análisis de q-PCR del ARNm de PEPC de sorgo se realizó como se indica en materiales y métodos (apartado 9.3). El ARNr 18S se usó como control endógeno para normalizar los datos obtenidos de cada muestra. Todos los datos están relativizados al tiempo 0. Los datos son la media \pm ES de al menos tres experimentos independientes. No existen diferencias significativas entre las muestras.

Colectivamente, estos resultados confirman que las PTPC de semillas de sorgo en desarrollo están fosforiladas en los estadios del I al IV donde empiezan a desfosforilarse. También, que dicha fosforilación está regulada por el flujo de fotosintatos de forma que si dicho flujo se interrumpe la PEPC se desfosforila cayendo su IC_{50} del orden de un 40% tras 48 h de la interrupción. Sin embargo, desde el momento del corte del flujo de fotosintatos la cantidad de PEPC aumenta progresivamente lo que compensaría la falta de fosforilación y este aumento se deba a un aumento de la transcripción del gen CP28, gen que codifica para la isoenzima CP28 considerada *housekeeping*. Es destacable el hecho de que tras el corte de fotosintatos, la PEPC cambia su IC_{50} sin que se vea afectada la monoubiquitinación de la enzima, lo que sugiere nuevamente que los cambios en los valores de la IC_{50} del estadio III en este experimento con respecto al mostrado en la Fig. 33 pudo deberse a que estas semillas pertenecían a otro año de recolección pudiendo ser varios los factores que generaron esta variabilidad en las semillas de ese año, en concreto: la temperatura, humedad y mes de recolección de las semillas.

3.2.4. Fosforilación in situ de la PEPC

Resultados previos obtenidos por nuestro grupo utilizando ³²P suministrado a la planta, mostraron la fosforilación *in vivo* de la PEPC procedente de la aleurona/endospermo de la semilla de sorgo, y de las semillas de trigo y cebada (Osuna *et al.*, 1999; Nhiri *et al.*, 2000; Feria *et al.*, 2008). En este trabajo, se realizó un experimento de fosforilación *in situ* pero en este caso se incubó las semillas enteras (aleurona/endospermo y embrión) con ³²P. Las semillas se pusieron a embeber en presencia de 200 μ Ci de ³²P durante 48 horas. Transcurrido el tiempo, las semillas completas se homogeneizaron en tampón de extracción que contenía 1 mM de ATP no radioactivo, para minimizar de esta forma la fosforilación *in vitro* con ³²P-ATP radiactivo procedente de la planta. A continuación, el extracto crudo se inmunoprecitó con anticuerpos anti-PEPC de hojas de sorgo y finalmente se analizó mediante SDS-PAGE (8% de acrilamida) seguido de inmunoblot y autoradiografía (Fig. 42).

Fig. 42. Fosforilación *in situ* utilizando ³²P de las dos subunidades de PEPC, p110 y p107, procedentes de semillas embebidas durante a 48 horas. Cuatro semillas enteras y cortadas transversalmente para favorecer la incorporación de ³²P, fueron embebidas en 200 μ L de tampón que contenía Tris-HCl 0.1 M a pH 7.5; CaCl₂ 10 mM y 200 μ Ci de ³²P. Tras las 48 horas de imbibición a temperatura ambiente, aproximadamente la mitad de la solución había sido absorbida por las semillas. La extracción de las semillas y la inmunoprecipitación se describe en los materiales y métodos. La PEPC se purificó por inmunoprecipitación tal como se describe en el apartado 8.4 de materiales y métodos y se resolvió por SDS-PAGE (8% de acrilamida) seguido de inmunoblot. La membrana fue incubada toda la noche con los anticuerpos anti-PEPC de hojas de sorgo. A, Western-blot del inmunoprecipitado usando anti-PTPC; B, autorradiografía de la membrana analizada con un equipo Fujifilm FLA-5100 (Fuji, Tokyo).

Los resultados mostraron que ambas subunidades de la PEPC, p107 y p110, se encontrabas fosforiladas, confirmando de esta forma la fosforilación *in vivo* de la PEPC

durante la germinación en concordancia con el resto de los resultados obtenidos (Fig. 33 y 37A).

3.3. Uso de PEPC inmunopurificada de semillas embebidas 48 horas para evaluar el estado de fosforilación y ubiquitinación de las diferentes isoenzimas

Los resultados presentados en esta tesis muestran que la ubiquitinación y la fosforilación son modificaciones postraduccionales que concurren en la PEPC de sorgo tanto durante el proceso de desarrollo como en el de germinación. En este apartado hemos querido abordar un estudio proteómico similar al realizado en el capítulo 2 pero partiendo de una PEPC purificada por cromatografía de inmunoafinidad. La ventaja de dicho método de purificación es la rapidez ya que la purificación de la enzima se puede completar en unas 2-3 horas lo que disminuye el riesgo de alteraciones en el estado original de la enzima (fosforilación, monoubiquitinación o proteólisis) que ocurren con frecuencia a pesar del uso de inhibidores de proteasas o fosfatasas (Ryan, 2011). Además, se ha visto que el N-terminal de la PEPC es muy vulnerable a la proteólisis (Chollet et al., 1996, Moraes y Plaxton, 2000; Blonde y Plaxton, 2003). Para llevar a cabo este estudio, se preparó una columna de AminoLink Coupling Gel (Pierce Biotechnology) unida a anticuerpos anti-PEPC [anti-(COSp107)-IgGs] que fueron purificados con la proteína A y que reconocían específicamente las dos subunidades de la PEPC, p110 y p107. A continuación, cuatro gramos de semillas enteras de sorgo embebidas durante 48 horas fueron homogeneizadas (tal y como se describe en el apartado 3.2.2 de materiales y métodos) y el extracto crudo clarificado (EC) fue inmediatamente cargado en la inmunocolumna. La columna se lavó con objeto de eliminar todas aquellas proteínas no retenidas (NR) y la PEPC se eluyó con glicina a pH 2.5. La fracción eluída se analizó para comprobar su grado de pureza. La Fig. 43 muestra una ausencia casi total de la PEPC en la fracción no retenida (Fig. 43A, NR), y la presencia de la PEPC heterotetramérica en la fracción retenida (Fig. 43A, IP). El análisis de la fracción purificada en SDS-PAGE revelado con Sypro-Red, que tiñe el total de las proteínas, mostró que la enzima tiene un alto grado de pureza a nivel electroforético (Fig. 43B). La fracción de PEPC purificada por este método se denominará PEPC inmunopurificada.

Fig. 43. Inmunopurificación de la PEPC. A, El extracto crudo (EC, pista 1) así como las proteínas no retenidas (NR, pista 2) y retenidas (IP) (10 μ g de proteína por pista en ambos casos) fueron analizadas por SDS-PAGE al 7.5% y por Western-blot usando anticuerpos totales anti-COSp107-IgGs (PEPC inmunopurificada (IP), pista 3-5: 20, 35 y 75 ng de proteína, respectivamente). **B,** Paralelamente, se hizo otro gel SDS-PAGE al 7.5% destinado a la tinción con Sypro-Red. Pista 2, PEPC purificada de COS utilizada como marcador de peso molecular (30 ng); pista 3 y 4, EC y NR respectivamente, (10 μ g de proteína), pista 5-8: PEPC inmunopurificada (IP), (0.08, 0.2, 0.4 y 0.7 μ g respectivamente).

Para evaluar el estado de fosforilación de la PEPC inmunopurificada se utilizó Pro-Q [Pro-Q Diamond phosphoprotein staining (ProQ-PPS)]. La señal se detectó por fluorescencia utilizando un equipo "Typhoon 8600" (GE Healthcare)". El Pro-Q se utiliza en geles de poliacrilamida donde se une específicamente a los grupos fosfato de las fosfoproteínas con una gran sensibilidad y linealidad, de esta forma pueden describirse proteínas fosforiladas sin la necesidad de utilizar anticuerpos específicos. Además, tiene la ventaja de que el mismo gel puede teñirse posteriormente con Sypro-Red, que tiñe todas las proteínas estén o no fosforiladas. Como control en el experimento, se usaron marcadores de pesos moleculares que simultáneamente funcionaron como controles positivos y negativos, puesto que la ovoalbúmina está fosforilada (45 kDa, control positivo) y el resto de proteínas no (control negativo). Además, se usó la PEPC fosforilada de *Arabidopsis* –P como control positivo adicional. La PEPC inmunopurificada se sometió a SDS-PAGE y posteriormente a la tinción por Pro-Q revelándose 3 fosfoproteínas: p110, p107 y una banda en p90 (Fig. 44A). La doble banda de p110 y p107 se correspondió con la PEPC heterotetramérica, y la banda p90 podía corresponderse con fragmentos de PEPC o bien con una proteína fosforilada que estuviera interaccionando con la PEPC. Cuando se tiño con Sypro Red, todas las proteínas y marcadores de peso molecular se tiñeron (Fig. 44B). El revelado con Sypro Red mostró mayor abundancia de p110 (Fig. 44, Sypro-Red) indicando la posible existencia de un homotetrámero de p110, organización oligomérica que también podría estar representada en los extractos crudos en donde en ocasiones se revela con mayor intensidad p110 que p107 (Fig. 16 y 37, 48 h).

Fig. 44. La PEPC inmunopurificada de extractos crudos de semillas a las 48 h de germinación está fosforilada en p110 y p107. A, Distintas concentraciones de la PEPC fueron sometidas a SDS-PAGE al 7.5% y teñidas con Pro-Q Diamond. **B,** con Sypro red: pista 1, marcador de pesos moleculares; pista 2, PEPC purificada de *Arabidopsis* -P (2.5 µg); pista 3, 4 y 5; 1, 2 y 3 µg de proteínas, respectivamente).

Posteriormente, la PEPC inmunopurificada se uso para hacer un ensayo de desfosforilación *in vitro* usando de nuevo la fosfatasa lambda y seguidamente realizando experimentos de inmunobloting con los anticuerpos fosfo-específicos pSer13 en presen-

Fig. 45. Desfosforilación *in vitro* de la PEPC inmunopurificada procedente de extractos crudos de semillas germinadas durante 48 horas usando la fosfatasa lambda. La PEPC inmunopurificada fue incubada en presencia (+) o ausencia (-) de la fosfatasa a los diferentes tiempos indicados. A continuación, las diferentes alícuotas se resolvieron en SDS-PAGE (7.5% de acrilamida), se transfirieron a membranas de nitrocelulosa y se incubaron usando por un lado A, anticuerpos pSer (anti-pSer13-IgGs) en presencia del péptido OH o B, anticuerpos que reconocen a la PEPC completa, (anti-PTPC-IgGs). Pista 1, PEPC purificada desfosforilada de semillas en desarrollo de COS (500 ng/pista en A o 50 ng/pista en B); pista 2, PEPC purificada fosforilada de *Arabidopsis* -P (250 ng/pista A o 25 ng/pista en B); pista 3-8, PEPC procedente de la inmunopurificación de los extractos de semillas de sorgo (400 ng/ pista en A o 100 ng/pista en B). C, Cuantificación de las bandas mediante el programa Multi Gauge V3.0. El 100% es el tiempo 0 en ausencia o presencia de la fosfatasa.

Éstos resultados muestran que la PEPC heterotetramérica inmunopurificada de semillas embebidas 48 horas se encuentra fosforilada y que la fosforilación se produce en ambas subunidades p110 y p107 siendo más abundante y más marcada en p110. Adicionalmente, el análisis de la PEPC inmunopurificada pone de manifiesto ciertas diferencias con la PEPC purificada por FPLC y analizada en el capítulo 2. Estas diferencias se centran fundamentalmente en que la PEPC heterotetramérica purificada por FPLC

presenta una relación 1:1 entre p110 y p107 sugiriendo la presencia única de una PEPC heterotetramérica formada de una proporción estequiométrica de subunidades p110 y p107, en la que ambas subunidades están desfosforiladas mientras que la PEPC inmunopurificada se obtiene como una PEPC fosforilada en ambas subunidades p107 y p110 (Fig. 44 y 45) y además, se observa una mayor abundancia de p110 que de p107 indicando la posible existencia de un homotetrámero formado por subunidades monoubiquitinadas de p110 sugiriendo una nueva forma de asociación de la PEPC hasta ahora no descrita. Esta abundancia de p110 respecto de p107 se observa también en la Fig. 37, 43 y 44 y en los extractos crudos analizados en el capítulo 1 (Fig. 16). Estas diferencias podrían ser únicamente el reflejo, como veremos más adelante, de la variedad y complejidad estructural de la PEPC durante la germinación.

3.3.1. Análisis proteómico y modificaciones postraduccionales de las diferentes isoenzimas en la fracción de PEPC inmunopurificada

Con idea de aclarar estas posibles discrepancias entre los resultados obtenidos con las dos fracciones purificadas de PEPC (FPLC, capítulo 2 e inmunopurificada en este capítulo), se procedió a hacer un estudio proteómico similar al realizado con la fracción anterior (capítulo 2) utilizando un análisis por espectrometría de masas con un analizador UPLC-TripleTOF y en paralelo usando un analizador Orbitrap. El analizador Orbitrap es reciente y está basado en un nuevo principio físico: la separación de los iones en un campo eléctrico oscilante. Este analizador representa una mejor calidad de los datos y sobre todo mayor resolución. Para facilitar el análisis de los datos y puesto que el método Orbitrap tiene una resolución mayor que el UPLC-TripleTOF, se presentaran únicamente los datos obtenidos con este analizador.

Tras comprobar que la PEPC se inmunopurificó correctamente, se procedió a realizar un nuevo gel SDS-PAGE para teñirlo con Coomasie Colloidal. Nuevamente se detectaron las 3 bandas (p110, p107 y p90) mostradas anteriormente (Fig. 44B, Syprored). Las 3 bandas se diseccionaron del gel y fueron sometidas a digestión tríptica y a continuación a UPLC-TripleTOF (datos no mostrados) y paralelamente a Orbitrap (Tabla 10). En la tabla se han incluido los números de acceso de las isoenzimas identificadas en la base de datos del genoma de sorgo que describió Paterson *et al.*, 2009. Si se observan los resultados obtenido del análisis de las bandas p110 y p107, (la tercera banda, p90, se analizará en el capítulo 4) se puede observar que tanto en p110 como en

p107 se encuentra una mezcla de PTPCs (Tabla 10). En la banda p110, se detectó la presencia de CP21, CP28 y 4960. Como corresponde a su movilidad electroforética (110 kDa), CP21 se encontraba monoubiquitinada en la Lys consenso 624 descrita en el capítulo 2. Además, se muestra la monoubiquitinación de CP28 en la Lys 630 que se corresponde con la Lys 624 de CP21. Estos resultados son de gran interés ya que muestran que la monoubiquitinación no está restringida solo a CP21 sino que puede darse en otra isoenzima (CP28) y en la misma Lys conservada. Sin embargo, si CP28 se organiza como un heterotetrámero de p110/p107 tal como ocurre con CP21 (capítulo 2) o como un homotetrámero de p107 o de p110 será objeto de posteriores estudios, aunque los resultados mostrados en la Fig. 39 y 40 sugieren que esta isoenzima se puede organizar también como un heterotetrámero. En cuanto a la banda p107, se confirmó la presencia de CP28, CP21, 4960 y con una menor cobertura la 5090, es decir todas la PTPCs de sorgo excepto la de tipo C₄ fotosintética y la de tipo bacteriano. La ausencia de la PEPC de tipo bacteriano confirma también la ausencia de un heterooctámero de PEPC de clase 2 formado de p107 y subunidades de PEPC de tipo bacteriano. Como corresponde a su movilidad electroforética ninguna de las PEPC detectadas en p107 se encuentra monoubiquitinada.

En la actualidad, el único sitio de fosforilación confirmado y conocido que ocurre en todas las PTPCs es el que se localiza en la Ser consenso presente en el motivo de fosforilación ácido-base-XX-SIDAQLR altamente conservado en todas las PTPCs y que se sitúa en el N-terminal de la proteína. Esta fosforilación es la que está estudiada e impacta en el cambio de propiedades de la enzima aumentando la IC_{50} para el L-malato. Igualmente es la que ha sido inmunodetectada con los anticuerpos pSer13 utilizados en este trabajo. La fosforilación de dicha Ser (Ser⁷, Ser¹³, Ser¹⁰ para CP21, CP28 y 4960 respectivamente) se confirmó en casi todas las isoenzimas presentes, tanto en p107 como en p110 (Tabla 10, Ser en azul) excepto en p107 de CP21. Tabla 10. Determinación por MS-Orbitrap de las diferentes isoenzimas presentes en las bandas p110 y p107 de semillas germinadas 48 h y sus PTMs por fosforilación del extremo N-terminal y monoubiquitinación.

	ID proteína (Nº Acceso NCBI)	Nombre proteí- na	Movilidad electroforéti- ca	Cobertu- ra	Modificaciones pos- traduccionales detec- tadas (fosforilación y monoubiquitinación)
	gil242061132	PEPC CP21	110 kDa	93%	pSer7, Ub-Lys624
Banda p110	gil242078870	PEPC CP28	110 kDa	94%	pSer13, <u>Ub-Lys630</u>
	gil242078871	PEPC 4960	110 kDa	90%	pSer10
	gil242061132	PEPC CP21	107 kDa	87%	No se detectan
Banda	gil242048870	PEPC CP28	107 kDa	90%	pSer13
p107	gil242078871	PEPC 4960	107 kDa	89%	pSer10
	gil242058751	PEPC 5090	107 kDa	64%	pSer11

De todos estos datos, cabe destacar :

i) CP21 aparece fosforilada en la Ser⁷ de p110, por lo tanto, la ubiquitinación en la Lys⁶²⁴ y la fosforilación en la Ser⁷ coexisten, lo que demuestra que ambas modificaciones postraduccionales no son excluyentes y pueden darse en la misma subunidad; este hecho también se confirma para la isoenzima CP28. Estos datos son novedosos y de interés ya que no ocurre así en los dos modelos estudiados hasta el momento de harsh hakea y COS (Shane *at al.*, 2013; Uhrig *et al.*, 2008b) donde fosforilación y monoubiquitinación en la misma subunidad son excluyentes.

 ii) La identificación de la Lys ubiquitinada en CP28 como la Lys 630, que coincide con la Lys 624 de CP21, añade otro nuevo dato que refuerza la importancia de dicha Lys en la regulación por monoubiquitinación.

iii) La fosforilación de las Ser del N-terminal tanto en p110 como en p107 se da *in vivo* durante la germinación para cada una de las isoenzimas, hecho que no había sido demostrado anteriormente ya que la utilización de los anticuerpos pSer13 no permitía discriminar entre las diferentes PEPCs. Además, estos resultados ponen de manifiesto la relevancia de la fosforilación en el proceso de germinación.

iv) La ausencia de fosforilación de p107-CP21 se muestra también en el análisis por UPLC-TripleTOF lo que confirma la ausencia de fosforilación de p107 de la PEPC purificada por FPLC que se identificó mayoritariamente con la isoenzima CP21 (capítulo 2, Fig. 3C). Sin embargo, los resultados presentados en la Tabla 10, muestran que en la fracción de PEPC inmunopurificada, p110-CP21 es la más abundante y está fosforilada. Los resultados descritos en el capítulo 5 explican que las diferencias encontradas entre las dos fracciones de PEPC de semillas de 48 h derivan de la diferente velocidad de germinación de las semillas utilizadas en la purificación de la PEPC por FPLC o por inmunopurificación.

3.3.2. Nuevos sitios de fosforilación en las PTPCs

Como se ha mencionado anteriormente, la única fosforilación de la PTPC conocida hasta la fecha y extensamente estudiada tanto en la isoenzima de tipo C₄ fotosintética como en las de tipo C₃ es la que concierne a la Ser del motivo consenso, ácidobase-XX-SIDAQLR, situado en el N-terminal de la proteína. Sin embargo, el análisis por Orbitrap puso de manifiesto nuevos sitios de fosforilación en las diferentes isoenzimas que no habían sido descritos anteriormente. Los nuevos sitios de fosforilación se presentan en la Tabla 11 donde se identifican los nuevos aminoácidos fosforilados de Ser, Thr o Tyr en sus respectivas isoenzimas de PEPC. Trabajos futuros serán necesarios para saber si dichas fosforilaciones tienen un significado fisiológico relevante. Por el momento, en este trabajo hemos hecho una localización de los diferentes aminoácidos en la proteína para ver su grado de conservación en las distintas PTPCs, BTPCs así como en la PEPC de bacterias. De todos los sitios de fosforilación encontrados y que se muestran en el Anexo 1 al final del capítulo, un gran número de ellos fueron sitios homólogos en todas las PEPCs analizadas. De los fosfo-aminoácidos conservados, se han encontrado algunos que están dentro de algún motivo consenso de reconocimiento por alguna kinasa (ver Fig. 47 del anexo 1) por lo que podría ser objeto de estudio para intentar dilucidar el impacto de dicha fosforilación en las propiedades de la enzima y su posible función biológica. Por ejemplo, el correspondiente al KDIpT (se ha encontrado en la Thr¹⁹⁷ de CP21 fosforilada) es un motivo reconocido por la kinasa PKA (Pearson y Kemp, 1991) siendo la secuencia el motivo descrito: KXX [pS/pT]; otro motivo es el ApTP (en la Thr⁷³⁶ de CP21 fosforilada) que es reconocido por una kinasa dirigida por Prolina (Luo *et al.*, 2005) siendo el motivo descrito el X[pT/pS]P y por último, también hemos encontrado el motivo conservado RLpS/pT (se ha encontrado en la Ser⁶⁰⁵ de la 4960 y en la Ser⁶⁰⁸ de CP28) que es reconocido también por una PKA siendo R/K[pS/pT] los aminoácidos que pudieran formar ese motivo (Pearson y Kemp, 1991). Éste último motivo también está muy cerca del dominio catalítico de unión al PEP. Las últimas serinas localizadas descritas (Ser⁹³³ en CP28, Ser⁹³² en 5090, Ser⁹⁴² en CP28) están muy cercanas al dominio final conservado en todas las PTPCs, QNTG, dominio que también se ha descrito formar parte de la regulación de la enzima (Álvarez *et al.*, 2003).

Tabla 11. Determinación por MS-Orbitrap de nuevos sitios de fosforilación en las diferentes isoenzimas.

	ID proteína (Nº Acceso NCBI)	Nombre proteí- na	Movilidad electroforéti- ca	Cobertura	Modificaciones pos- traduccionales detec- tadas (fosforilación y monoubiquitinación)
	gil242061132	PEPC CP21	110 kDa	93%	pThr197, 642, 736, pTyr577
Banda p110	gil242078870	PEPC CP28	110 kDa	94%	pSer608, 933, 942 pThr401, 403, 404, 648 pTyr614
	gil242078871	PEPC 4960	110 kDa	90%	pSer605 pThr645
	gil242061132	PEPC CP21	107 kDa	87%	No se detectan
Banda	gil242048870	PEPC CP28	107 kDa	90%	pSer933,
p107	gil242078871	PEPC 4960	107 kDa	89%	pTyr611
	gil242058751	PEPC 5090	107 kDa	64%	pSer932 pThr940

Estos resultados abren nuevas perspectivas en el estudio de la regulación de la PEPC por fosforilación.

ANEXO 1

Motivo de fosforilación conservado en el N-terminal -----MARKI EKMASIDAQL FLLAPQKVSE DDKLVEYDAL LLDRFLDILQ DLHGEDIREL VQEC--YELA AEYERKHDSE -----MARKI EKMASIDAQL FLLAPQKVSE DDKLVEYDAL LLDRFLDILQ DLHGEDLREL VQEC--YELA AEYERKHDQ -----MARKI EKMASIDAQL FMLAPAKLSE DDKLVEYDAL LLDRFLDILQ DLHGEDLREL VQEC--YELA AEYERKHDSE -----MARKI DKATSIDAQL FLLAPQKLSD DDKLVEYDAL LLDRFLDILQ DLHGEDIRET VQEC--YELA AEYERKHDSE -----MARNAV DKATSIDAQL FLLAPQKLSD DDKLVEYDAL LLDRFLDILQ DLHGEDIRET VQEC--YELA AEYERKHDSE Sb8720-CP21 Sb1090-CP28 Sb4960 Sb5090 Sb1330-phot. -----MAS ERHHSIDAQL HALAPGKVS- -EELIQYDAL LVDRFLDILQ DLHGPSLREF VQEC--YEVS ADYEGKKDTS ----MQPRNL EKLASIDAQL FLLVPAKVSE DOKLVEYDAL LLDRFLDILQ DLHGEDLKET VQEC--YELS AEYEGKHDPR ----MANRKL EKMA<mark>S</mark>IDVHL HQLVPGKVSE DOKLVEYDAL LLDRFLDILQ DLHGEDLRET VQEL--YEHS AEYEGKHEPK RcPPC3 Atppc1 ----MANRKL EKMASIDVHL HQLVPGKVSE DDKLVEYDAL LLDRFLDILQ DLHGEDLRET VQEL--YEHS AEYEGKHEPK ----MARNI EKMASIDAQL FLLAPGKVSE DDKLVEYDAL LLDRFLDILQ DLHGEDLRET VQEL-YELS AEYEGKREPS -----MAGRNI EKMASIDAQL FLLAPGKVSE DDKLVEYDAL LLDRFLDILQ DLHGEDLRET VQEL-YELS AEYENDRDEA -----MTRNL EKLASIDAQL FLLAPGKVSE DDKLVEYDAL LVDRFLDILQ DLHGEDLRET VQEC--YELS AEYENDRDEA At PPC2 AtPPC3 OsPPC1 StuPPC ZmPPC3 GmPPC McrPPC RcPPC4 OsPPC-b SbPPC-b AtPPC4 Synech. E.coli

	85	95	105	115	125	135	145	155
Sb8720-CP21	RLGELGSKLT	SLPPGDSIVV	ASSFSHMLNL	ANLAEEVQVA	QRRRIKLKR-			G
Sb1090-CP28	KLDELGKMIT	SLDPGDSIVI	AKSFSHMLNL	ANLAEEVQIA	YRRRIKLKK-			G
Sb4960	KLDELGNMLT	SLDPGDSIVT	AKAFSHMLNL	ANLAEEVQIA	YRRRIKLKK-			G
Sb5090	MLDEIGNVLT	DWDRGDSMVI	TKSFSHRLIL	ANLAEEVQMA	YRRRIKLKK-			G
Sb1330-phot.	KLGELGAKLT	GLAPADAILV	ASSILHMLNL	ANLAEEVELA	HRRRNSKLKH			G
RcPPC3	KLDELGNLLT	SLDPGDSIVI	AKSFSHMLNL	ANLAEEVQIA	YRRRNKLKK-			G
AtPPC1	KLEELGSVLT	SLDPGDSIVI	AKAFSHMLNL	ANLAEEVQIA	YRRRIKKLKK			G
AtPPC2	KLEELGNMLT	SLDPGDSIVV	TKSFSNMLSL	ANLAEEVQIA	YRRRIKKLKK			G
AtPPC3	KLEELGSVLT	SLDPGDSIVI	SKAFSHMLNL	ANLAEEVQIA	HRRRIKKLKK			G
OsPPC1	RLDELGRKLT	SLPPGDSIVV	SSSFSHMLNL	ANLAEEVQIA	HRRRIKLKR-			G
StuPPC	KLEELGNVLT	SLDPGDSIVI	AKAFSHMLNL	ANLAEEVQIA	YRRRQKLKKK			G
ZmPPC3	KLGELGAKLT	GLAPADAILV	ASSILHMLNL	ANLAEEVQIA	HRRRNSKLKK			G
GmPPC	KLEELGNLIT	SLDAGDSILV	AKSFSHMLNL	ANLAEEVQIS	RRRRNKLKK-			G
McrPPC	KLDELGSVLT	SLDAGDSIVV	AKSFSHMLNL	ANLAEEVQIA	YRRRIKKLKK			G
RcPPC4	LEKQLALEIS	RMTLEEALTL	ARAFSHYLNL	MGIAETHHRV	RKAR			
OsPPC-b	VEKQLGAELA	AMSLEDSLCL	ARAFSHHLNL	MTIADTYHRV	RKAR			
SbPPC-b	VERQLEADLA	AMSLDDALCV	ARAFSHYLNL	MGIAETHHRV	RKAR			
AtPPC4	LEKQLTSEIS	KMPLEEALTL	ARTFTHSLNL	MGIADTHHRM	HKVH			
Synech.	VIMGITQRIE	HLELNDAIRA	ARAFALYFQL	INIVEQHYEQ	NEQQRNRWEA	SQETNFYEQA	GNEEEMVPPS	RLGASTEPLP
E.coli	NROELLTTLO	NLSNDELLPV	ARAFSOFLNL	ANTAEOYHSI	SPKG			

	165	175	185	195	205	215	225	235
Sb8720-CP21	DFADEASAPT	ESDIEETLKR	LVSQLGKSRE	EVFDALKNQT	VDLVFTAHPT	QSVRRSLLQK	HGRIRNCLRQ	LYAKD
Sb1090-CP28	DFADENSAIT	ESDIEETLKR	LVVDLKKSPA	EVFDALKSQT	VDLVLTAHPT	QSVRRSLLQK	HSRIRNCLVQ	LYSKD
Sb4960	DFADENSALT	ESDIEETFKR	LVVDLKKSPA	EVFDALKSQT	VDLVLTAHPT	QSVRRSLLQK	HSRIRNCLVQ	LCSKD
Sb5090	DFVDENSATT	ESDIEETLKR	LMHQLKKSPL	EVLDALKNQT	VDLVLTAHPT	QSVRRSLLQK	HGRIRNCLTQ	LYAKD
Sb1330-phot.	DFSDEGSATT	ESDIEETLKR	LVSLG-KTPA	EVFEALKNQS	VDLVFTAHPT	QSARRSLLQK	NARIRNCLTQ	LSAKD
RcPPC3	DFADENSATT	ESDIEETFKR	LVIDLKKSPE	EVFDALKNQT	VDLVLTAHPT	QSIRRSLLQK	HARIRNCLAQ	LYAKD
AtPPC1	DFVDESSATT	ESDLEETFKK	LVGDLNKSPE	EIFDALKNQT	VDLVLTAHPT	QSVRRSLLQK	HGRIRDCLAQ	LYAKD
AtPPC2	DFADEASATT	ESDIEETLKR	LLQLN-KTPE	EVFDALKNQT	VDLVLTAHPT	QSVRRSLLQK	FGRIRDCLTQ	LYAKD
AtPPC3	DFVDESSATT	ESDIEETFKR	LVSDLGKSPE	EIFDALKNQT	VDLVLTAHPT	QSVRRSLLQK	HGRIRDCLAQ	LYAKD
OsPPC1	DFADEASAPT	ESDIEETLKR	LVTQLGKSRE	EVFDALKNQT	VDLVFTAHPT	QSVRRSLLQK	HGRIRNCLRQ	LYAKD
StuPPC	DFGDESNATT	ESDIEETFKK	LVGDLKKSPQ	EVFDAIKNQT	VDLVLTAHPT	QSVRRSLLQK	HGRIRDCLAQ	LYAKD
ZmPPC3	GFADEGSATT	ESDIEETLKR	LVSEVGKSPE	EVFEALKNQT	VDLVFTAHPT	QSARRSLLQK	NARIRNCLTQ	LNAKD
GmPPC	DFADENNATT	ESDIEETLKK	LVFDLKKSPQ	EVFDALKNQT	VDLVLTAHPT	QSIRRSLLQK	HGRIRNCLSQ	LYAKD
McrPPC	DLSDENSATT	ESDIEETFKR	LVAELGKSPE	EIFDALKNQT	VDLVFTAHPT	QSVRRSLLQK	HGRIRNCLAQ	LYAKD
RcPPC4	SMTHL	SKSCDDIFNQ	LLQSG-ISAE	ELYDTVCKQE	VEIVLTAHPT	QINRRTLQYK	HIRIAHLLDY	NDRPD
OsPPC-b	NFADL	SKSCDDTFAK	LIQSG-VSPE	ELYDTVCKQE	VEIVLTAHPT	QINRRTLQYK	HLRIAHLLEF	NERAD
SbPPC-b	NIEQL	SKSCDDIFNK	LIQSG-VPPE	QLYDTVCKQE	VEIVLTAHPT	QINRRTLQYK	HLRVAHLLEF	NGRPD
AtPPC4	NVTQL	ARSCDDIFSQ	LLQSG-ISPD	ELYKTVCKQE	VEIVLTAHPT	QINRRTLQYK	HIRIAHLLEY	NTRSD
Synech.	VGIDQNELQA	SVGTFHWLMR	ELKRLNVPPQ	HIQNLLDHLD	IRLVITAHPT	EIVRHTIRRK	QRRVDRILRK	LDQLQGSVTG
E.coli	EAASN	PEVIARTLRK	LKNOPELSED	TIKKAVESLS	LELVLTAHPT	EITRRTLIHK	MVEVNACLKO	LDNKD

	245					295		315
Sb8720-CP21	TTADDKO	ELDEALORET	OAAFRTDEIR	27J RTPPTPODEM	RAGMSYFHET	Z95 TWKGVPKFLR	RIDTALKNIG	TNERLPYNAP
Sb1090-CP28	ITPDDKO	ELDEALOREI	OAAFRTDEIR	RTOPTPODEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	INERVPYNAP
Sb4960	ITPDDKQ	ELDEALQREI	QAAFRTDEIR	RTQPTPQDEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	IDERVPYNAP
Sb5090	I <mark>T</mark> PDEKQ	ELDEALQREI	QAAFRTDEIR	RAPPTPQDEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	INERLPYNAP
Sb1330-phot.	V <mark>T</mark> VEDKK	ELDEALHREI	QAAFRTDEIR	RAQPTPQDEM	RYGMSYIHET	VWNGVPKFLR	RVDTALKNIG	INERLPYDVP
RcPPC3	I <mark>T</mark> PDDKQ	ELDEALQREI	QAAFRTDEIR	RTAPTPQDEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	INERVPYNAP
AtPPC1	ITPDDKQ	ELDEALQREI	QAAFRTDEIK	RTPPTPQDEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	IEERVPYNAP
ALPPC2		ELDESLOPET	QAAFRIDEIR	RTPPTPQDEM	RAGMSIFHET	IWKGVPKFLK	RVDTALKNIG	INERVPINAP
OsPPC1		ELDEALORET	OAAFRTDEIR	RTPPTPODEM	RAGMSYFHET	TWKGVPKFLR	RIDTALKNIG	INERLPYNAP
StuPPC	ITPDDKQ	ELDEALQREI	QAAFRTDEIR	RTPPTPQDEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	INERVPYNAP
ZmPPC3	I <mark>T</mark> DDDKQ	ELDEALQREI	QAAFRTDEIR	RAQPTPQDEM	RYGMSYIHET	VWKGVPKFLR	RVDTALKNIG	INERLPYNVS
GmPPC	I <mark>T</mark> PDDKQ	ELDEALQREI	QAAFRTDEIR	RTPPTPQDEM	RAGMSYFHET	IWNGVPRFLR	RVDTALNNIG	IKERVPYNAP
McrPPC <	ITPDDKQ	ELDEALQREI	QAAFRTDEIR	RTPPTPQDEM	RAGMSYFHET	IWKGVPKFLR	RVDTALKNIG	INERVPYNAP
ACPPC4	LSLEDKE	TITEDIVERT	TAIWOTDELR	RHKPTPVDEA	RAGLNIVEQS	LWKALPHILK	RVSTALKKH-	TGKPLPLTCT
ShPPC-b	LSHEDKE	MLIEDLVREI	TAIWOTDELR	RHKPTPVDEA	RAGINIVEOS	LWKATPHYLR	RVSSALKKH-	TGRPLPLTCT
AtPPC4	LSVEDRE	TLIEDLVREI	TSLWOTDELR	ROKPTPVDEA	RAGLNIVEOS	LWKAVPOYLR	RVSNSLKKF-	TGKPLPLTCT
Synech.	RDWLNTWDAK	TAIAQLTEEI	RFWWRTDELH	QFKPTVLDEV	DYSLHYFDEV	LFDAVPELSK	RLGQAIKETF	PHLRAPR-AN
E.coli	IADYEHN	QLMRRLRQLI	AQSWHTDEIR	KLRPSPVDEA	KWGFAVVENS	LWQGVPNYLR	ELNEQLEEN-	LGYKLPVEFV
	* Thr ¹⁹⁷	⁷ CP21						
	325	335	345	355	365	375	385	395
Sb8720-CP21	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYFS	QIEDLMFELS	MWRCSDELRI	RADELHRSSK	RA
Sb1090-CP28	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMASNLYCS	QIEDLMFELS	MWRCSDELRM	RADELHRSTK	KD
Sb4960	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYCS	QIENLMFELS	MWRCNDELRA	QADELHRSSK	KD
Sb5090 Sb1330-phot	TIGESSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLINA RMMAANLYN	QIEDLMFELS	MWRCSDELRV	RVDELQCSSK	KD
RCPPC3	LIOFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYYS	OTEDIMFELS	MWRCSDELRV	RADELHRSSK	RD
AtPPC1	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAATMYFN	QIEDLMFEMS	MWRCNDELRA	RADEVHANSR	KD
AtPPC2	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYFS	QIEDLMFEMS	MWRCNEELRV	RAERQRCAKR	DA
AtPPC3	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYYN	QIENLMFELS	MWRCTDEFRV	RADELHRNSR	KD
OsPPC1	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYFS	QIEDLMFELS	MWRCSDELRI	RADDLHCSSR	KA
StuPPC	LIQFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYYS	QIEDLMFELS	MWRCNEELRV	RADDLQRSSR	RD
GmPPC3	LIRESSWMGG	DRDGNPRVTP	EVIRDVCLLA	RMMAANLIID RMMAANLVVS	QIEELMFELS	MWRCNDELRV	RALLINSS-S	KDF
McrPPC	LIOFSSWMGG	DRDGNPRVTP	EVTRDVCLLA	RMMAANLYFS	OIEDLMFELS	MWRCTDELRA	RADELHSSSR	R
RcPPC4	PIRFGSWMGG	DRDGNPNVTA	KVTRDVSLLS	RWMAVDLYIR	EVDSLRFELS	MVQCSDRLLK	VANDILIEET	SSEDHHESWN
OsPPC-b	PIKFGSWMGG	DRDGNPNVTA	KVTRDVSILS	QWMAIDLYIR	ELDTLSFELS	INRCSEKLAN	LANDILLKES	ASEDQKTNTW
SbPPC-b	PIKFGSWMGG	DRDGNPNVTA	KVTRDVSLLS	RWMAIDFYIR	ELDNLSFELS	IKRCSDKVAS	LANDIILKES	ASEDLKANTW
AtPPC4	PMKFGSWMGG	DRDGNPNVTA	KVTKEVSLLS	RWMAIDLYIR	EVDSLRFELS	TDRCSDRFSR	LADKILEKDY	D
Synech.	FCYFGSWVGG	DRDGNPSVTP	EVTWQTACYQ	RGLVLGKYLF	SLGELVAILS	PSLHWCKVSQ	ELLDSLERDR	IQLP
E.COII	PVRFISWMGG	DRDGNPNVIA	DIIKHVLLLS	RWAIDLFLA	DIGATASETS	MVEAIPELLA	TAG	
	565	575	585	595	605	615	625	635
Sb8720-CP21	ISEIPE	EATFTNVEOF	LEPLELCYRS	LCACGDKPIA	DGSLLDFLRO	VSTFGLALVK	LDIRQESDRH	TDVLDSITTH
Sb1090-CP28	HSDIPE	ea <mark>t</mark> lttveql	LEPLELCYRS	LCACGDRVIA	DGSLLDFLRQ	VSTFGLSLVR	LDIRQESDRH	TDVLDAITTY
Sb4960	YSDIPE	ES <mark>T</mark> V <mark>T</mark> NVEQF	LEPLELCYRS	LCACGDRVIA	DGSLLDFLRQ	VSTFGLCLVR	LDIRQESDRH	TDVLDAITTY
Sb5090	FSEIPE	EA <mark>T</mark> FTDVEQF	LEPLELCYRS	LCACGDQSIA	DGSLLDFLRQ	VSTFGLSLVR	LDIRQESDRH	TDVMDAITEY
Sb1330-phot.	FSEISE	DAVETKIEEF	LEPLELCYKS	LCECGDKAIA	DGSLLDLLRQ	VFAFGLSLVK	LDIRQESERH	TDVIDAITTH
At PPC1	HSDIPE	EATFINIEOF	LEPLELCIRS	LCSCGDQPIA	DGSLLDFLRQ	VSTEGISLVR	LDIRQESDRH	TDVIDIIIKH
AtPPC2	VSDVPE	DAVETSVDOF	LEPLELCYRS	LCDCGDRPIA	DGSLLDFLRQ	VSTFGLALVK	LDIROESERH	SDVLDAITTH
AtppC3	ISDIPE	EATFTNVEQF	LEPLELCYRS	LCSCGDSPIA	DGSLLDFLRQ	VSTFGLSLVR	LDIRQESERH	TDVLDAITKH
OsPPC1	VSEIPE	EA <mark>T</mark> F <mark>T</mark> NVEEF	LEPLELCYRS	LCACGDKPIA	DGSLLDFLRQ	VSTFGLALVK	LDIRQESDRH	TDVLDAITTY
StuPPC	YSEIPE	EATYTNIEQF	LEPLELCYRS	LCACGDLSIA	DGSLLDFLRQ	VSTFGLSLVR	LDIRQESDRH	TDVLDAITQH
ZIIIPPC3	VSEISA	ESSFTSIEEF	LEPLELCYKS	LCDCGDKAIA	DCGLIDEMDO	VETEGLSLVK	LUIKQESERH	TDVIDAITTH
McrPPC	VSDIPE	DATYTSLEOF	TEDIEI CACS	LCACGDRAIA	DGTLIDFIRQ	VSIEGLSLVR VFTFGI.SI.VP	TDIROESDEH	
RcPPC4	PCEYDO	WDYYETTDOL	LDPLLLCYES	LQSCGAGVLA	DGRLADLIRR	VATFGMVLMK	LDLRQESGRH	ADTLDAITKY
OsPPC-b	PCDRDT	SEYYD <mark>T</mark> SDKL	LEPLLLCYQS	LQSCGSSVLA	DGRLADLIRR	VATFGMVLMK	LDVRQESGRH	TETLDAITSY
SbPPC-b	PCDYDT	EEYCE <mark>T</mark> SDQL	LEPLLLCHQS	LQSCGASVLA	DGRLADLIRR	VATFGMVLMK	LDVRQESGRH	TEALDSVTSY
AtPPC4	PCEYDP	KNSYE <mark>T</mark> SDQL	LEPLLLCYES	LQSSGARVLA	DGRLADLIRR	VSTFGMVLVK	LDLRQEAARH	SEALDAITTY
Synech.	ERQTMITMPA	ENHYRTGEEL	LEELRLIQRN	LTETGLT	CLELENLITQ	LEVYGFNLAQ	LDFRQESSRH	AEAIAEIAEY
E.COII	ETAK-5	EGLLITQNEEL Thr401●TL	wEPLIACIUS 403▲TL- 404	LUACGMGIIA	NGUTTDLTKK	VACEGVPLVR	TDIKQESTRH	LEALGELTRY
		1111, 11	u , m (_1 20				

Motivo de una proteína kinasa PKA

	725	735	745	755	765	775	785	795
Sb8720-CP21	ELLQRECHVK	QP	LRVVPLF	EKLADLEAAP	AAVARLFSID	WYMNRING		
Sb1090-CP28	ELLQRECHVK	TP	LRVVPLF	EKLADLEAAP	AALARLFSID	W <mark>Y</mark> RQRING		
Sb4960	ELLQRECHVK	TP	LRVVPLF	EKLADLEGAP	AALARLFSVD	WYRERING		
Sb5090	ELLQRECHVK	KP	LRVVPLF	EKLADLEAAP	AALARLFSVE	W <mark>Y</mark> RNRING		
Sb1330-phot.	ELLQRECGIR	QT	LPVVPLF	ERLADLQAAP	ASVEKLFSTD	W <mark>Y</mark> INHING		
RcPPC3	ELLQRECHVK	QP	LRVVPLF	EKLADLEAAP	AALARLFSID	W <mark>Y</mark> RNRING		
AtPPC1	ELLQRECRVK	QP	LRVVPLF	EKLADLEAAP	AAVARLFSVD	W <mark>Y</mark> KNRING		
AtPPC2	ELLQRECGIT	DP	LRVVPLF	EKLADLESAP	AAVARLFSIE	W <mark>Y</mark> RNRING		
AtPPC3	ELLQRECHVK	NP	LRVVPLF	EKLADLEAAP	AAVARLFSID	W <mark>Y</mark> KNRING		
OsPPC1	ELLQRECHIK	QP	LRVVPLF	EKLADLEAAP	AAVARLFSID	W <mark>Y</mark> MNRING		
StuPPC	ELLQRECRVR	QP	LRVVPLF	EKLADLDAAP	AAVARLFSIE	W <mark>Y</mark> RNRING		
ZmPPC3	ELLQRECGVR	QP	LPVVPLF	ERLADLQSAP	ASVERLFSVD	W <mark>Y</mark> MDRIKG		
GmPPC	ELLQRECHIK	HP	LRVVPLF	EKLADLEAAP	AALARLFSID	W <mark>Y</mark> RNRING		
McrPPC	ELLQRECRVK	QP	LRVVPLF	EKLADLEAAP	AAVARLFSID	W <mark>Y</mark> KNRING		
RcPPC4	ELLQKDARLA	VSGELGRPCP	GGTLRVVPLF	ETVKDLRGAG	SVIRKLLSID	W <mark>Y</mark> REHIIKNH	N	
OsPPC-b	ELLQKDARLT	VSGDLGRPCP	GGTLRVVPLF	ETVNDLREAG	PAIRKLLSID	W <mark>Y</mark> RDHIIKNH	N	
SbPPC-b	ELLQKDARLT	VSGDLGRPCP	GGTLRVVPLF	ETVKDLQAAG	SAIRKLLSID	W <mark>Y</mark> REHIIKNH	N	
AtPPC4	ELLQKDARLA	LTSEHGKPCP	GGTLRVVPLF	ETVNDLRAAG	PSIRKLLSID	W <mark>Y</mark> REHIQKNH	N	
Synech.	LLLAKEAGLY	DPATASN	SLRIVPLF	ETVEDLKNAP	GIMDSLFSLP	F <mark>Y</mark> RATLAGSY	HSLKELQNQP	PDYYQIPTTT
E.coli	HLLLKEAGIG	FA	MPVAPLF	ETLDDLNNAN	DVMTQLLNID	W <mark>Y</mark> RGLIQG		
						Tr. 577 CD2	1	

Tyr'' CP21

Dominio catalítico/unión al PEP

Motivo de una proteína kinasa PKA

						()	
	805	815	825	835	845	855	865	875
Sb8720-CP21	KQE	VMIGYSDSGK	dagrl <mark>s</mark> aawq	M <mark>y</mark> kaqeelik	VAKHYGV <mark>K</mark> LT	MFHGRGGTVG	RGGGPTHLAI	LSQPPDTIHG
Sb1090-CP28	KQE	VMIGYSDSGK	DAGRL <mark>S</mark> AAWQ	L <mark>Y</mark> KAQEELIK	VAKDFGV <mark>K</mark> LT	MFHGRGGTVG	RGGG <mark>PT</mark> HLAI	LSQPPDTIHG
Sb4960	KQE	VMIGYSDSGK	DAGRI <mark>S</mark> AAWQ	L <mark>Y</mark> KAQEELIK	VAKKFGV <mark>K</mark> LT	MFHGRGGTVG	RGGG <mark>PT</mark> HLAI	LSQPPDTIHG
Sb5090	KQE	VMIGYSDSGK	DAGRF <mark>S</mark> AAWQ	L <mark>Y</mark> KAQEELIN	VAKMYGV <mark>K</mark> LT	MFHGRGGTVG	RGGGP <mark>T</mark> HLAI	LSQPPETIHG
Sb1330-phot.	KQQ	VMVGYSDSGK	DAGRL <mark>S</mark> AAWQ	l <mark>y</mark> vaqeemak	VAKKYGV <mark>K</mark> LT	IFHGRGGTVG	RGGGP <mark>T</mark> HLAI	LSQPPDTING
RcPPC3	KQE	VMIGYSDSGK	DAGRF <mark>S</mark> AAWQ	L <mark>Y</mark> KAQEELIK	VAKQFGV <mark>K</mark> LT	MFHGRGGTVG	RGGGP <mark>T</mark> HLAI	LSQPPDTIHG
AtPPC1	KQE	VMIGYSDSGK	dagrl <mark>s</mark> aawq	l <mark>y</mark> kaqeelvk	VAKEYGV <mark>K</mark> LT	MFHGRGGTVG	RGGGP <mark>T</mark> HLAI	LSQPPDTING
AtPPC2	KQE	VMIGYSDSGK	DAGRL <mark>S</mark> AAWQ	L <mark>Y</mark> KTQEELVK	VAKEYGV <mark>K</mark> LT	MFHGRGGTVG	RGGGP <mark>T</mark> HLAI	LSQPPDTIHG
AtPPC3	KQE	VMIGYSDSGK	dagrl <mark>s</mark> aawe	l <mark>y</mark> kaqeelvk	VAKKYGV <mark>K</mark> LT	MFHGRGGTVG	RGGGP <mark>T</mark> HLAI	LSQPPDTVNG
OsPPC1	KQE	VMIGYSDSGK	DAGRL <mark>S</mark> AAWQ	M <mark>y</mark> kaqeelvk	VAKHYGV <mark>K</mark> LT	MFHGRGGTVG	RGGGPSHLAI	LSQPPDTIHG
StuPPC	KQE	VMIGYSDSGK	DAGRL <mark>S</mark> AAWQ	L <mark>Y</mark> KAQEELIQ	VAKEFDV <mark>K</mark> LT	MFHGRGGTVG	RGGGPAHLAI	LSQPPETIHG
ZmPPC3	KQQ	VMVGYSDSGK	DAGRL <mark>S</mark> AAWQ	L <mark>Y</mark> RAQEEMAQ	VAKRYGV <mark>K</mark> LT	IFHGRGGTVG	RGGG <mark>P</mark> THLAI	LSQPPDTING
GmPPC	KQE	VMIGYSDSGK	DAGRF <mark>S</mark> AAWQ	L <mark>Y</mark> KAQEELIN	VAKKFGV <mark>K</mark> LT	MFHGRGGTVG	RGGG <mark>P</mark> THLAI	LSQPPDTIHG
McrPPC	KQE	VMIGYSDSGK	dagrl <mark>s</mark> aawa	l <mark>y</mark> kaqeelvq	VAKEYGV <mark>K</mark> LT	MFHGRGGTVG	RGGG <mark>P</mark> THLAI	LSQPPETVNG
RcPPC4	GHQE	VMVGYSDSGK	DAGRFTAAWE	l <mark>y</mark> kaqedvva	ACNDFGI <mark>K</mark> VT	IFHGRGGSIG	RGGG <mark>P</mark> TYLAI	QSQPPGSVMG
OsPPC-b	GHQE	VMVGYSDSGK	DAGRFTAAWE	l <mark>y</mark> kaqedvva	ACNAFGI <mark>K</mark> VT	IFHGRGGSIG	RGGG <mark>P</mark> TYLAI	QSQPPGSVMG
SbPPC-b	GHQE	VMVGYSDSGK	DAGRFTAAWE	l <mark>y</mark> kaqedvva	ACNEFGIKVT	IFHGRGGSIG	RGGG <mark>P</mark> TYLAI	QSQPPGSVMG
AtPPC4	GHQE	VMVGYSDSGK	DAGRFTAAWE	l <mark>y</mark> kaqenvva	ACNEFGIKIT	IFHGRGGSIG	RGGGPTYLAI	QSQPPGSVMG
Synech.	ALLNPGNLQE	IMVGYSDSNK	DSGFL <mark>S</mark> SNWE	IHKAQKSLQA	VAQSHRVILR	IFHGRGGSVG	RGGGPAYKAI	LAQPAGTVDG
E.coli	КQМ	VMIGYSDSAK	DAGVMAASWA	Q <mark>Y</mark> QAQDALIK	TCEKAGIELT	IFHGRGGSIG	RGGAPAHAAL	LSQPPGSLKG
			*Ser ⁶⁰⁸	CP28 Tyr	⁶¹⁴ CP28 ⁺ I	Lys ⁶²⁴ CP21	⁻ Thr ⁶⁴²	CP21
			•Ser ⁶⁰⁵	4960 T yr	⁶¹¹ 4960 [•] I	Lys ⁶³⁰ CP28	[•] Thr ⁶⁴⁸	CP28
				5			[▼] Thr ⁶⁴⁵	4960

....|....||||||||||||| 885 895 905 915 925 935 945 955 SLRVTVQGEV IEHSFGEELL CFRTLQRYTA ATLEHGMHPP ISPKPE-WRA LMDEMAVVAT KEYRSIVFQE PRFVEYFRA SLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMHPP ISPKPE-WRA LLDEMAVVAT KEYRSIVFQE PRFVEYFRIA SLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMHPP ISPKPE-WRA LLDEMAVVAT KEYRSIVFQE PRFVEYFRIA Sb8720-CP21 Sb1090-CP28 Sb4960 Sb5090 Sb1330-phot. SIRVTVQGEV IEFMFGEENL CFQSLQRFTA ATLEHGMHPP VSPKPE-WRK LMEEMAVVAT EEYRSVVVKE PRFVEYFRSA RcPPC3 SLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMHPP VSPKPE-WRK LMDEMAVIAT EEYRSIVFKE PRFVEYFRIA SLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMRPP ISPKPE-WRA LLDEMAVVAT EEYRSVVFQE PRFVEYFRIA QLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMHPP VSPKPE-WRV LMDEMAIIAT EEYRSVVFKE PRFVEYFRIA SLRVTVQGEV IEQSFGEAHL CFRTLQRFTA ATLEHGMNPP ISPKPE-WRA LLDEMAVVAT EEYRSVVFQE PRFVEYFRIA AtPPC1 AtPPC2 Atppc3 SLRVTVQGEV IEHSFGEEHL CFRTLORFTA ATLEHGMHPP ISPKPE-WRA LMDEMAVVAT KEYRSIVFKE PRFVEYFRSA OsPPC1 StuPPC SLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMHPP VSPKPE-WRA LMDEIAVVAT EKYRSIVFKE PRFVEYFRLA ZmPPC3 SIRVTVQGEV IEFCFGEEHL CFQTLQRFTA ATLEHGMHPP VSPKPE-WRK LMDEMAVVAT EEYRSVVVKE ARFVEYFRSA SLRVTVQGEV IEQSFGEQHL CFRTLQRFTA ATLEHGMHPP ISPKPE-WRA LMDQMAVIAT EEYRSIVFKE PRFVEYFRLA SLRVTVQGEV IEQSFGEEHL CFRTLQRFTA ATLEHGMHPP ISPKPE-WRA LLDEIAVVAT EKYRSIVFKE PRFVEYFRLA GmPPC Marppa TIRSTEGGEM VQAKFGLPHT AIRQLEIYTT AVLLATIRPP HPPREEQWRN VMEEISRISC QNYRSTYVEN PEFLAYFHEA TIRSTEGGEM VQAKFGLPQT SVRQLEIYTT AVLLATIRPP QPPRDKWRG VMEEISRISC AQYRSTVYEN PEFIKYFQEA RcPPC4 OsPPC-b SbPPC-b TLRSTEQGEM VQAKFGLPQT AVRQLEIYTT AVLLATLRPP HPPRDPNWRT VMEEISRASC AHYRATVYED PEFITYFQEA AtPPC4 SLRSTEQGEM VQAKFGIPQT AVRQLEVYTT AVLLATLKPP QPPREEKWRN LMEEISGISC QHYRSTVYEN PEFLSYFHEA RIKITEQGEV LÄSKYSLPEL ALYNLETLTT AVIQASLLKS SFDFIEPWNR IMEELACTAR RAYRSLIYEE PDFLDFFLTV GLRVTEQGEM IRFKYGLPEI TVSSLSLYTG AILEANLLPP PEPKES-WRR IMDELSVISC DLYRGYVREN KDFVPYFRS Synech. E.coli

Synech.

E.coli

Motivo de una proteína kinasa dependiente de prolina

ı.

	<u></u>							
/	·							••••
<	965	975	985	995	1005	1015	1025	1035
Sb8720-CP21	TPETEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAIKHIM-Q	KDIRNIHVLK	EMYNEWPFFR
Sb1090-CP28	TPETEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GGAFKHVL-Q	KDIRNLHMLQ	EMYNEWPFFR
Sb4960	TPEMEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFKHIL-E	KDIRNLHMLQ	EMYNEWPFFR
Sb5090	TPEMEYGRMN	IGSRPSKRKP	SAG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFKHVL-D	KDIRNLQTLQ	EMYNQWPFFR
Sb1330-phot.	TPETEYGKMN	IGSRPAKRKP	GGG-ITTLRA	IPWIFSWTQT	RFHLPVWLGV	GAAFKWAI-D	KDIKNFQKLK	EMYNEWPFFR
RcPPC3	TPELEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFKHVI-Q	KDVRNLHMLQ	EMYNEWPFFR
AtPPC1	TPELEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GSAIRHVI-E	KDVRNLHMLQ	DMYQHWPFFR
AtPPC2	TPELEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GGAFKRVI-Q	KDSKNLNMLK	EMYNQWPFFR
Atppc3	TPELEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFRYAI-K	KDVRNLHMLQ	DMYKQWPFFR
OsPPC1	TPETEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GGAFKHIM-Q	KDIRNIHTLK	EMYNEWPFFR
StuPPC	TPELEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFKYAI-E	KDIKNLRMLQ	EMYNAWPFFR
ZmPPC3	TPETEYGRMN	IGSRPAKRRP	GGG-ITTLRA	IPWIFSWTQT	RFHLPVWLGV	GAAFKFAI-D	KDVRNFQVLK	EMYNEWPFFR
GmPPC	TPELEYGRMN	IGSRPAKRRP	SGG-IETLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFKKVI-E	ENVKNLNMLQ	EMYNQWPFFR
McrPPC	TPELEYGRMN	IGSRPSKRKP	SGG-IESLRA	IPWIFAWTQT	RFHLPVWLGF	GAAFGYAI-Q	KDVKNLSVLQ	KMYNEWPFFR
RcPPC4	TPQAELGFLN	IGSRPTRRKS	STG-IGHLRA	IPWVFAWTQT	RFVLPAWLGV	GAGLKGAC-E	KGFTEDLK	AMYKEWPFFQ
OsPPC-b	TPQAELGYLN	IGSRPAKRRT	TPG-ISNLRA	IPWVFAWTQT	RLVLPAWLGV	GRGLQDAC-D	KGHTHELR	AMYEEWPFFQ
SbPPC-b	TPQAELGHLN	IGSRPAKRKQ	ALGGISSLRA	IPWVFAWTQT	RLVLPAWLGV	GTGLQDAL-D	RGHGAELR	AMYGEWPFFQ
AtPPC4	TPQAELGFLN	IGSRPTRRKS	SSG-IGHLRA	IPWVFAWTQT	RFVLPAWLGV	GAGLKGVS-E	KGHADDLK	EMYKEWPFFQ
Synech.	TPIPEISELQ	ISSRPARRKG	GKADLSSLRA	IPWVFSWTQT	RFLLPAWYGV	GTALKSFVDQ	DPVKNMKLLR	YFYFKWPFFN
E.coli	TPEQELGKLP	LGSRPAKRRP	TGG-VESLRA	IPWIFAWTQN	RLMLPAWLGA	GTALQKVV-E	DGKQSELE	AMCRDWPFFS
<u> </u>	⁺ Thr ⁷³⁶ CP2	1						

					motivo	QNTG en PTI	PCs/ RNTG en E	BTPCs
							[
	1125	1135	1145	1155	1165	1175	1185	
Sb8720-CP21	TLNVCQAYTL	KRIRDPSFQV	SPQPPLSKEF	TDESQPV	ELVQLNQQ <mark>S</mark> E	YAPGLEDTLI	LTMKGIAAGM	QNTG
Sb1090-CP28	TLNVCQAYTL	KRIRDPDYHV	ALRPHLSKEI	MDPTKAAS	ELVKLNPG <mark>S</mark> E	YAPGLEDTLI	LTMKGIAAGL	QNTG
Sb4960	TLNVCQAYTM	KRIRDPDYHV	TLRPHLSKEI	MDWNKPAA	elvklnp <mark>ts</mark> e	YAPGLEDTLI	LTMKGIAAGM	QNTG
Sb5090	ALNVCQAYTL	KRIRDPGFQV	NPGPHLSKDV	MDIGKPA <mark>S</mark>	elvklnt <mark>ts</mark> e	YAPGLEDTLI	LTMKGIAAGM	QNTG
Sb1330-phot.	TLNVFQAYTL	KRIRDPSFKV	TPQPPLSKEF	ADENKPA	GLVKLNPA <mark>S</mark> E	YPPGLEDTLI	LTMKGIAAGM	QNTG
RcPPC3	TLNVCQAYTL	KRIRDPNYNV	TLRPHISKEI	MESSKPAD	ELVKLNPK <mark>S</mark> D	YAPGLEDTLI	LTMKGVAAGL	QNTG
AtPPC1	TLNVCQAYTL	KRIRDPSYHV	TLRPHISKEI	AESSKPAK	ELIELNP <mark>TS</mark> E	YAPGLEDTLI	LTMKGIAAGL	QNTG
AtPPC2	TLNVCQAYTL	KQIRDPSFHV	KVRPHLSKDY	MESSPAA	ELVKLNPK <mark>S</mark> E	YAPGLEDTVI	LTMKGIAAGM	QNTG
AtPPC3	TLNVCQAYTL	KRIRDANYNV	TLRPHISKEI	MQSSKSAQ	ELVKLNP <mark>TS</mark> E	YAPGLEDTLI	LTMKGIAAGL	QNTG
OsPPC1	TLNVCQAYTL	KRIRDPSFEV	MSQPALSKEF	VDSNQPA	elvqlnaa <mark>s</mark> e	YAPGLEDTLI	LTMKGIAAGM	QNTG
StuPPC	TLNVCQAYTL	KRIRDPDYSV	TPRPHISKEY	MEAKP-AT	ELVNLNP <mark>TS</mark> E	YAPGLEDTLI	LTMKGIAAGM	QNTG
ZmPPC3	TLNVFQAYTL	KRIRDPNFKV	TPQPPLSKEF	ADENKPA	GLVKLNPA <mark>S</mark> E	YPPGLEDTLI	LTMKGIAAGM	QNTG
GmPPC	TLNIVQAYTL	KRIRDPNYNV	KVRPRISKES	AEASKSAD	elvklnp <mark>ts</mark> e	YAPGLEDTLI	LTMKGIAAGM	QNTG
McrPPC	TLNALQAYTL	KRIRDPNYNV	QLRPHISKEY	MDSTSNKPAA	ELVKLNPS <mark>S</mark> E	YAPGLEDTLI	LTMKGIAAGM	QNTG
RcPPC4	PMNMLQVEVL	KRLRRDDD				-NNKLRDALL	ITINGIAAGM	RNTG
OsPPC-b	PMNMLQVEVL	RRLRQDDD				-NRKLRDALL	ITINGIAAGM	RNTG
SbPPC-b	PINMLQVEVL	RRLRRDDD				-NRRLRDALL	ITINGIAAGM	RNTG
AtPPC4	AMNMLOVETT.	KRLRRDED				-NNKLRDALL	TTTNGTAAGM	RNTG

тпоппбтопп	TULUTION TOTA	H100 / I(II(I(I				ционц	DITINGTANON	101110
PLNVLQAELL	HRSRQAEKEG	Q			E	PDPRVEQALM	VTIAGIAAGM	RNTG
			°S	er ⁹³³ C	P28	• Thr ⁹⁴⁰ 5090	Ser ⁹⁴² CP	28
			"Se	er ⁹³² 50	090			

PLGLLQISLL KRLRQVTQEA ETSGVRYRRY SKEE----- ----LLRGAL LTINGIAAGM RNTG

Tetrapéptido conservado

Fig. 46. Alineamiento de secuencias de las isoenzimas PEPCs de diferentes fuentes. La fosforilación y ubiquitinación confirmada mediante Orbitrap Fusion son indicadas con el código de colores indicado abajo. Los símbolos para cada PTM localizados en la secuencia de cada PTPC coinciden con la leyenda de PTMs al final de cada segmento de secuencias. Las abreviaturas de los nombres de las especies que aparecen en las secuencias son: Rc, R. communis (ricino); Sb, Sorghum bicolor (sorgo); At, Arabidopsis thaliana; Os, Oryza sativa (arroz); Stu, S. tuberosum (patata); Zm, Z. mays (maíz); Gm, G.max (soja); Mcr, M. crystallinum; Synech, Synechocystis sp. PCC 6803 (cianobacteria).

Código de colores:

Residuo de Ser/Thr/Tyr fosforilado confirmado por Orbitrap

Residuo de Lys ubiquitinada confirmado por Orbitrap

Aminoácido homólogo al confirmado

____ Motivos conservados descritos en la literatura (Chollet et al., 1996; Izui et al., 2004; O'Leary et al., 2004).

..... Motivos conservados reconocidos por quinasas y descritos en esta tesis (Pearson and Kemp, 1991; Luo et al., 2005).

4. ESTUDIO INTERACTÓMICO

Hasta el momento no conocemos la contribución específica de cada modificación postraduccional (fosforilación versus monoubiquitinación) a los cambios cinéticos y de regulación de la enzima, pero los resultados mostrados en esta tesis así como la literatura descrita hasta la fecha (O'Leary *et al.*, 2011b; Shane *et al.*, 2013), muestra que la sensibilidad al málico y a ciertos reguladores alostéricos así como al pH estarían más relacionados con la fosforilación que con la monoubiquitinación aunque ésta también participaría. Esto sugiere otras posibles funciones de la monoubiquitinación de la PEPC *in vivo*.

Estudios recientes han demostrado que la monoubiquitinación es una modificación reversible implicada en funciones de señalización que tienen como objetivo el control de numerosos procesos celulares tales como la replicación y reparación del ADN, endocitosis y la expresión génica. Además, parece que la capacidad de que las cadenas de ubiquitinas y monoubiquitinas señalicen en diferentes vías depende de la especificidad y función de las proteínas que sirven como receptores de ubiquitina. Se han encontrado dominios de unión a ubiquitina (UBDs) en esas proteínas que han coevolucionado con la ubiquitina para reconocer y unir a su ligando (Kirkin y Dikic, 2007). Ya se han identificado numerosas proteínas con UBDs pero para comprender su mecanismo de acción hay que investigar sobre cómo se determina la especificidad de unión, la regulación y función de las UBDs en la proteína completa. Conocer todos estos aspectos son necesarios y son la clave para comprender como la ubiquitina regula los diferentes procesos celulares (Hicke *et al.*, 2005).

En este último capítulo, se ha profundizado en las posibles funciones de la monoubiquitinación de la PEPC de la semilla de sorgo, en concreto, a través de la identificación de proteínas con dominios de unión a ubiquitina (UBDs) que pudieran interaccionar con la UB-PEPC.

4.1. Interacción con la sacarosa sintasa (SUS)

Los resultados obtenidos en el capítulo 3 nos muestran la composición polipeptídica de una fracción de PEPC inmunopurificada que se corresponde con la PEPC monoubiquitinada (UB-PEPC) obtenida de extractos crudos de semillas germinadas durante 48 horas. El análisis de dicha fracción en SDS-PAGE nos muestra las bandas p110 y p107 características de la PEPC inmunopurificada (capítulo 3, Fig. 44) pero también muestra una banda a la altura de 90 kDa que bien pudiera contener fragmentos de PEPC o alguna proteína co-purificada con la PEPC. Para dilucidar este punto, la banda p90 se diseccionó del gel teñido con Sypro-Red (capítulo 3, Fig. 44) y tras digestión tríptica se analizo por MS utilizando un analizador Orbitrap. Los resultados indicaron que en p90 encontramos fragmentos de PEPC tanto de tipo CP28 como de CP21, además, se identificó la presencia de la enzima sacarosa sintasa (SUS) (Tabla 12).

En plantas, la SUS cataliza la conversión reversible de sacarosa y UDP a UDPglucosa y fructosa. La actividad de la SUS puede ser regulada por oligomerización, fosforilación, interacción con otras proteínas, cambios rápidos en su localización subcelular así como por la modulación del recambió de las proteínas (Winter y Huber, 2000; koch, 2004). En cebada, se ha descrito que dos isoenzimas de SUS son capaces de interaccionar con las proteínas 14:3:3 (proteínas reguladoras eucariotas importantes) (Alexander y Morris, 2006) mientras que en maíz, una isoenzima forma un complejo con varias proteínas que participan en la biosíntesis de almidón (Hennen-Bierwagen *et al.*, 2009).

	ID proteína (Nº Acceso NCBI)	Nombre proteína	Movilidad electroforética	Cobertura (%)	Modificaciones pos- traduccionales de- tectadas (fosforila- ción y monoubiqui- tinación)
	gil242061132	PEPC CP21	110 kDa	84	pThr197 pTyr577
Banda p90	gil242078870	PEPC CP28	110 kDa	79	pSer13, 608, 933 pThr403
	gil222876001	SACAROSA SINTASA	92 kDa	66	nd
	gil242035533	SACAROSA SINTASA	94 kDa	62	nd

Tabla 12. Análisis de la banda p90 p	or espectrometría	de masas	mediante un	analizador
Orbitrap Fusion. Nd (no detectado).				

La co-inmunopurificación de SUS con la PEPC de sorgo fue de gran interés ya que previamente se había observado que SUS co-purificaba también con la PEPC de clase 1 de COS y de *Harsh hakea* (Gennidakis *et al.*, 2007; Shane *et al.*, 2013). Como se observa en la Fig. 47, los anticuerpos anti-COS-SUS-IgGs revelaron una banda de aproximadamente 90 kDa (Fig. 47A) que co-migraba también con la SUS purificada de COS, que se usó como control (Fig. 47B). Adicionalmente, los resultados de espectro-metría de masas no revelaron fosforilación de la SUS, mientras que sí localizaron algunos aminoácidos fosforilados en los fragmentos de CP21 y CP28. En concreto la Ser¹³ del motivo consenso de fosforilación del N-terminal de la PEPC CP28, lo que indicaría la pérdida de un fragmento C-terminal de la isoenzima. Estos resultados, nos permiten concluir que la sacarosa sintasa no está fosforilada cuando interacciona con la PEPC (Tabla 12). La fosforilación de la SUS ha sido previamente descrita por diferentes autores y muestran que la fosforilación de la enzima está en la base de su localización subcelular (Winter y Huber, 2000). Investigaciones futuras serán necesarias para conocer cómo estas dos enzimas citosólicas interactúan *in vivo*.

Fig. 47. La enzima sacarosa sintasa co-inmunopurifica con la UB-PEPC. A, SUS purificada de COS que se cargó como control (Pista 1, 3 ng de proteína) y distintas concentraciones de la UB-PEPC fueron sometidas a SDS-PAGE al 7,5% y a continuación a Western-blot usando anticuerpos anti-(COS-SUS)-IgGs (Pista 2-4, 80, 150 y 500 ng de proteína, respectivamente). **B**, el gel se tiñó con Sypro-Red y se observa como la banda p90 co-migra junto a la SUS purificada de COS. Pista 1, marcador; pista 2, UB-PEPC (2 μ g), pista 3, SUS purificada de COS (0.03 μ g de proteína).

4.2. Estudio interactómico de la PEPC

En este capítulo se analizan dos fracciones de PEPC inmunopurificada UB-PEPC y DeUB-PEPC con idea se saber si la SUS interacciona específicamente con la UB-PEPC, lo que daría relevancia a la monoubiquitinación de la PEPC como mecanismo de interacción con otras proteínas. Para el estudio, se usaron 4 gramos de semillas germinadas durante 48 h y los extractos crudos, previamente al paso por la columna cromatográfica, fueron incubados durante 1 h en presencia o ausencia de 10 µM de USP-2. Una vez inmunopurificadas ambas fracciones, UB-PEPC y DeUB-PEPC, éstas fueron liofilizadas y analizadas por MS. Como podemos observar en la Fig. 48A, las inmunopurificaciones de la UB-PEPC (PEPC heterotetramérica) y DeUB-PEPC (PEPC homotetramérica) funcionaron correctamente.

Fig. 48. Inmunopurificacion de la PEPC ubiquitinada y desubiquitinada. A, inmunocaracterización de las PEPC inmunopurificada ubiquitinada (UB-PEPC, pistas 1, 2, y 5) y desubiquitinada (DeUB-PEPC, pistas 3, 4 y 6) en SDS-PAGE al 7.5% y Western-blot revelado con anti-COSp107-IgGs. Pista 1 y 3, extractos crudos (EC); pistas 2 y 4, fracción no retenida (NR_{EC}); pistas 5 y 6 fracciones inmunopurificadas (IP). Se cargaron 10 µg de proteína por pista en todos los casos. **B**, Paralelamente se hizo otro gel SDS-PAGE al 7.5% destinado a la tinción con Sypro-Red. Pistas 2, 3 y 6, UB-PEPC; pistas 4, 5, 7 DeUB-PEPC. Pista 1, marcadores de pesos moleculares; pista 2 y 4, extracto crudo (EC, 10 µg); pista 3 y 5, proteínas no retenidas (NR-EC, 10 µg); pista 6 y 7, PEPC inmunopurificada (IP) (0.5 µg de proteínas en ambas); pista 8, PEPC purificada de COS como control de tamaño (30 ng).

No se observaron restos de p110 en la fracción desubiquitinada indicando que la enzima USP-2 había funcionado con éxito formando el homotetrámero (Fig. 48A y B, pistas 6 y 7, respectivamente). Además, toda la PEPC quedó retenida en la columna no observándose ningún resto de PEPC en la fracción no retenida (Fig. 48B). La UB-PEPC y DeUB-PEPC fueron bastante puras, a excepción de algunas bandas reveladas por Sy-pro-Red las cuales podrían representar proteínas que interaccionaran con la PEPC.

Finalmente, en la Fig. 50 puede observarse con claridad como los anticuerpos fosfo-específicos anti-pSer13 inmunodetectaron la banda de p107 indicando que la De-UB-PEPC se encontraba, como se ha mostrado en capítulos anteriores, fosforilada. Según estos resultados, la PEPC homotetramérica seguiría fosforilada en p107 y la de-subiquitinación no afectaría el estado de fosforilación.

Fig. 49. La DeUB-PEPC está fosforilada en p107. A, La PEPC inmunopurificada previamente desubiquitinada por la USP-2 se resolvió en SDS-PAGE (7.5% de acrilamida) y se hizo un Western-blot incubando con los anticuerpos anti-Ser13-IgGs más el péptido OH. Pista 1: PEPC del desarrollo purificada de COS que no está fosforilada (500 ng), pista 2: PEPC purificada de *Arabidopsis* -P que está fosforilada (250 ng), pista 3 y 4: DeUB-PEPC 200 y 400 ng de proteína, respectivamente.

Los resultados del análisis proteómico de las bandas de UB- y DeUB-PEPC mostraron una gran cantidad de proteínas presentes en dichas fracciones (438 proteínas). Entre las más representativas y que presentamos en una tabla (100 proteínas), estaban las diferentes PTPCs CP21, CP28, 4960 y 5090 ya que todas las PTPC C₃ fueron reconocidas por los anticuerpos anti-PEPC acoplados a la columna. Tal como mostra-

mos en el apartado anterior, la SUS se encuentra entre las proteínas co-purificadas con la PEPC (Tabla 13). Se co-purificaron tres enzimas SUS, de las cuales la señalada como SUS-3 está presente sólo en la fracción UB (datos subrayados), y no en la De-UB. Las otras dos SUS están presentes en ambas fracciones, poniendo de manifiesto que su interacción con la PEPC no depende estrictamente del estado de ubiquitinación de la enzima. Finalmente, en la Tabla 13 se señalan proteínas que co-inmunopurificaron en ambas fracciones y aquellas que estuvieron más representadas en la fracción de la UB-PEPC (valores subrayados) indicando una posible interacción con la PEPC a través de un dominio de unión a ubiquitina (UBD). En la Tabla 13 se han organizado las diferentes proteínas por su participación en diferentes procesos, encontrándonos proteínas implicadas prácticamente en todas las funciones de la planta. Un estudio en profundidad será necesario para poder obtener información relevante desde el punto de vista fisiológico de este gran número de interacciones de proteínas con la PEPC y de la monoubiquitinación como posible mecanismo que media dicha interacción durante la germinación de la semilla de sorgo. En espera de ese análisis, resaltamos en negrita en la Tabla 13 que la PEPC interacciona con varias enzimas de la ruta glucolítica, de la ruta de degradación del almidón, y de la ruta de las pentosas fosfato (Tabla 13, Metabolismo de los carbohidratos). También se resalta la interacción con la ATPasa 1 de la mitocondria (Tabla 13, Metabolismo energético) y varias proteínas de estrés, algunas de ellas de las llamadas "heat shock proteíns" (Tabla 13, Respuesta a estrés y defensa).

Tabla 13. Análisis de los co-inmunoprecipitados de UB-PEPC y DeUB-PEPC por espec-trometría de masas mediante un analizador Orbitrap Fusion. Las proteínas están agrupadassegún su función en la planta.

Proteínas identificadas	Nº acceso (NCBI)	Peso molecu- lar (kDa)	¹ Valor cuanti- tat. DeUB- PEPC	¹ Valor cuanti- tat. UB- PEPC	Proteína / dominio	
Metabolismo de los carbohidratos						
Hypothetical protein SORBDRAFT 04g008720	242061132	109	637	462	PEPC CP21	
Hypothetical protein SORBDRAFT_02g021090	242048870	110	<u>199</u>	<u>267</u>	PEPC CP28	
Hypothetical protein SORBDRAFT_07g014960	242048870	110	<u>164</u>	<u>226</u>	PEPC 4960	
Hypothetical protein SORBIDRAFT_10g027110	241917067	98	35	30	** Similar to probable alpha- glucosidase Os06g0675700	
Hypothetical protein SORBDRAFT_01g033060	241919015	93	12	14	*Similar to Sucrose synt. 2	
Sucrose synthase	222876001	92	18	15	*Sucrose synthase	
Hypothetical protein SORBDRAFT_03g035090	242058751	110	<u>29</u>	<u>144</u>	PEPC 5090	
Hypothetical protein SORBIDRAFT_04g025120	241932232	36	<u>0</u>	5	*Similar glyceraldehyde-3- phosphate dehydrogenase	
Putative granule bound starch synthase	118340374	66	<u>0</u>	10	**Glycogen/starch synthase, ADP- glucose type	
Hypothetical protein SORBDRAFT 01g035890	241919157	92	<u>0</u>	<u>11</u>	*Similar to Sucrose synt. 3	
Hypothetical protein SORBIDRAFT_09g003150	241944535	35	12	7	***Similar to Glucose and ribitol dehydrogenase homolog	
Hypothetical protein SORBIDRAFT_03g043140	241930919	39	6	7	*Similar to Fructose-bisphosphate aldolase, cytoplasmic isozyme	
Hypothetical protein SORBIDRAFT_03g006130	241927175	27	6	5	*Similar to Triosephosphate isomerase, cytosolic	
Hypothetical protein SORBDRAFT_03g029570	241928026	36	0	2	*Similar to Malate dehydrogenase	
*Enzimas que participan en la glucolisis ** Participa en la degradación del almidón *** Ruta de las pentosas fosfato.						

Metabolismo de la plan-

ta

Hpothetical protein SORBIDRAFT_01g012640	241917972	69	82	41	Cupin 1 domain.Similar to Globu- lin-2 precursor
Hypothetical protein SORBIDRAFT_01g005440	241920164	51	41	26	Similar to Globulin-2 precursor
Hypothetical protein SORBIDRAFT_06g032320	241939919	50	29	19	Similar to Triticain beta
Hypothetical protein					
SORBDRAFT_06g029360	241938328	17	<u>6</u>	<u>33</u>	Ubiquitin
SORBDRAFT_06g029360 Hypothetical protein SORBDRAFT_04g009130	241938328 241933453	17 55	<u>6</u> <u>12</u>	<u>33</u> 23	Ubiquitin Similar to Putative late embryogen- esis abundant domain-containing protein

Hypothetical protein SORBIDRAFT_01g036140	241919164	58	<u>0</u>	<u>8</u>	Cupin 1
Hypothetical protein SORBIDRAFT 02g033170	241926232	57	<u>0</u>	<u>7</u>	Similar to Serine carboxypeptidase- like precursor
Hypothetical protein SORBDRAFT_03g043680	241928805	16	12	9	Similar to Putative cystatin
Hypothetical protein SORBIDRAFT_08g005050	241943626	48	<u>0</u>	<u>6</u>	Similar to Os12g0182200 protein
Unnamed protein product	219734267	49	18	4	Similar to Elongation factor 1- alpha
Hypothetical protein SORBDRAFT 04g003410	241931368	97	18	4	26S proteasome regulatory com- plex component domain
Hypothetical protein SORBIDRAFT_02g006570	241925064	16	23	4	Similar to Trypsin/factor XIIA inhibitor precursor
Hypothetical protein SORBIDRAFT_01g019770	241918359	15	12	4	Similar to 60S ribosomal protein L23
Hypothetical protein SORBIDRAFT_03g046810	241928961	38	0	4	Horseradish peroxidase and related secretory plant peroxidases domain
Hypothetical protein SORBIDRAFT_07g002600	241941353	13	18	6	Similar to Non-specific lipid- transfer protein
Hypothetical protein SORBIDRAFT_01g036790	241919194	38	12	4	Similar to Late embryogenesis abundant protein 1
Late embryogenesis abun- dant protein 3	559099438	21	<u>0</u>	<u>5</u>	
Hypothetical protein SORBDRAFT 01g046000	241919654	37	<u>0</u>	<u>6</u>	Translation initiation factor IF-2 domain
Hypothetical protein SORBIDRAFT 019013390	241920601	47	<u>0</u>	<u>4</u>	Similar to DnaJ-related protein ZMD11
Hypothetical protein SORBIDRAFT 109025270	241915563	16	6	3	Similar to 40S ribosomal protein
Hypothetical protein SORBIDRAFT_03g030270	241928064	19	0	3	Similar to 50S ribosomal protein L12, chloroplast precursor
Hypothetical protein SORBIDRAFT 09g024230	241946594	17	0	4	Similar to Cystatin
Hypothetical protein SORBIDRAFT 02g040650	241924475	24	6	2	Similar to 1-Cys peroxiredoxin PER1
Hypothetical protein SORBIDRAFT 02g038250	241926501	32	0	3	Similar to Ribosome-inactivating protein 9
Hypothetical protein SORBIDRAFT 03g010730	241929604	26	6	3	Similar to Putative cystatin
Hypothetical protein SORBIDRAFT_07g021070	241941886	49	0	2	Lipoyl domain of the dihydrolipoyl acyltransferase component (E2) of 2-oxo acid dehydrogenases
Hypothetical protein SORBIDRAFT 09g021660	241946458	42	12	8	Similar to Actin-11
Hypothetical protein SORBIDRAFT_08g001010	241942398	75	0	3	Similar to AMP-binding enzyme family protein
Hypothetical protein SORBIDRAFT_04g006763	241933320	15	0	4	Similar to Ribosomal protein L12- like protein
Hypothetical protein SORBDRAFT_01g035740	241919148	15	12	2	Similar to BRI1-KD interacting protein 108
Hypothetical protein SORBIDRAFT_02g042050	241924539	23	6	2	Similar to Elongation factor 1-beta
Hypothetical protein SORBDRAFT_06g019800	241939206	24	0	2	Similar to 60S ribosomal protein L
Hypothetical protein SORBIDRAFT_08g018720	241944083	25	29	2	Similar to Thaumatin-like cytokinin-binding protein
Hypothetical protein SORBIDRAFT_02g006470	241925061	16	6	4	Similar to Alpha-amylase inhibitor 5
Hypothetical protein SORBIDRAFT_01g005210	241917595	44	0	4	Ribosomal protein L4/L1 family
Hypothetical protein SORBIDRAFT_03g034600	241930464	28	0	2	Similar to Lipoprotein-like
Hypothetical protein SORBIDRAFT_01g043060	241922142	58	6	2	Similar to Mitochondrial pro- cessing peptidase beta subunit

Hypothetical protein SORBIDRAFT_07g002560	241941350	35	0	3	Similar to 60S acidic ribosomal protein P0
Hypothetical protein SORBIDRAFT_09g002070	241945787	22	0	3	Ribosomal protein L10 family domain
Hypothetical protein SORBIDRAFT_03g016080	241927617	44	0	3	Similar to Dehydrogenase-like protein
Hypothetical protein SORBIDRAFT_08g002690	241943469	12	12	3	Similar to Non-specific lipid- transfer protein 1 precursor
Hypothetical protein SORBDRAFT_03g044290	241928845	24	0	3	Similar to 60S ribosomal protein L13
Hypothetical protein SORBIDRAFT_03g026970	241927872	51	0	3	Similar to Nucleoid DNA-binding protein cnd41-like
Hypothetical protein SORBIDRAFT_10g006160	241916222	13	0	3	Similar to Ribosomal protein L35A
Hypothetical protein SORBIDRAFT_03g011460	241929650	105	0	2	Similar to Coatomer subunit beta-1
Hypothetical protein SORBIDRAFT_04g030890	241934264	18	6	1	Ribosomal protein L11
Hypothetical protein SORBIDRAFT_05g021020	241935499	29	0	1	Similar to 14-3-3-like protein GF14-D

Metabolismo energético

Hypothetical protein SORBI- DRAFT_03g031470	241928137	58	41	21	*Similar to ATP synthase subunit beta, mitochondrial precursor
ATPase subunit 1 (mitochondrion)	115278526	56	35	14	*ATPase subunit 1 (mitochon- drion
Hypothetical protein SORBIDRAFT_09g004430	241945925	59	6	5	Similar to Dihydrolipoyl dehydro- genase
Hhypothetical protein SORBIDRAFT_04g005040	241931470	68	0	4	Similar to Vacuolar ATP synthase catalytic subunit A
Hypothetical protein SORBIDRAFT_07g023320	241941995	20	0	3	ATP synthase D chain, mitochon- drial (ATP5H) domain
*ATPasa mitocondrial					
Estructural					
Hypothetical protein SORBIDRAFT_09g000750	241945707	42	18	12	Similar to Actin-11
Señalización					
Hypothetical protein SORBDRAFT_01g028830	241918775	17	6	3	Similar to Nucleoside diphosphate kinase 1
Hypothetical protein SORBDRAFT_02g033710	241926255	17	<u>0</u>	<u>5</u>	Similar to Nucleoside diphosphate kinase 1
Hypothetical protein SORBDRAFT_08g014070	241943862	30	<u>0</u>	<u>7</u>	Similar to ABA-responsive protein, putative, expressed
Hypothetical protein SORBIDRAFT_02g003360	241922741	16	6	3	The phosphatidylinosi- tol/phosphatidylglycerol transfer protein
Hypothetical protein SORBIDRAFT_08g008400	241942751	26	0	3	Similar to Adenylate kinase B
Respuesta al estrés y defensa					
Hypothetical protein SORBDRAFT_04g007585	242064494	22	88	90	IbpA and alpha-crystallin- Hsps_p23-like domain
Hypothetical protein SORBDRAFT_03g006870	241929386	17	<u>58</u>	<u>69</u>	IbpA and alpha crystallin do- main-ScHsp26-like domain

Hypothetical protein SORBDRAFT_06g021230

241939289

28

47

41

Similar to Chitinase-B1

Chitinase-B, partial	15529121	27	70	36	Chitinase-B, partial
Hypothetical protein SORBDRAFT_03g039360	241928586	71	<u>0</u>	<u>10</u>	Similar to Heat shock 70 kDa protein
Hypothetical protein SORBIDRAFT 019041180	241922035	27	18	8	Similar to Heat shock protein 26
Hypothetical protein SORBDRAFT_06g017850	241937725	25	23	13	Similar to OSIGBa0140007.3 protein
Hypothetical protein SORBIDRAFT_01g017695	241920828	45	12	10	Low-temperature-induced protein; Provisional
Hypothetical protein SORBDRAFT 03g006880	241927213	17	70	56	Similar to Heat shock protein 17.2
Hypothetical protein SORBIDRAFT_03g003530	241927022	18	<u>0</u>	<u>8</u>	Similar to 17.8 kDa class II heat shock protein
SI alpha 4=alpha-amylase inhibitor	264604	12	<u>0</u>	7	
Hypothetical protein SORBIDRAFT 02g037350	241926454	25	53	5	Similar to Zeamatin precursor
Hypothetical protein SORBIDRAFT_01g040030	241921980	18	29	14	Similar to 17.4 kDa class I heat shock protein 3
Hypothetical protein SORBIDRAFT_03g039330	241930712	27	<u>0</u>	<u>7</u>	Allergenic/antifungal thaumatin- like proteins domains
Hypothetical protein SORBDRAFT_09g001860	241944465	17	0	3	Dirigent-like protein
Hypothetical protein SORBIDRAFT_09g024570	241946616	21	6	5	Similar to Alpha globulin
Hypothetical protein SORBIDRAFT_01g017050	241918221	73	12	3	Similar to Heat shock 70 kDa protein, mitochondrial, putative, expressed
Hypothetical protein SORBIDRAFT_03g037720	241928495	24	<u>0</u>	<u>5</u>	Similar to Permatin precursor
Hypothetical protein SORBIDRAFT_01g036580	241919183	39	0	3	Similar to Osr40c1 protein
Hypothetical protein SORBIDRAFT_09g001870	241944466	17	0	2	Dirigent-like protein
Hypothetical protein SORBIDRAFT_05g022640	241935594	52	6	3	Plant antimicrobial peptide domain
Hypothetical protein SORBDRAFT_03g032255	241928191	20	6	1	Similar to Dehydrin 11
Hypothetical protein SORBDRAFT_01g020010	241920977	61	0	4	Similar to Chaperonin CPN60-1, mitochondrial precursor
Unnamed protein product	241919322	35	6	4	Similar to Heat shock cognate 70 kDa protein
Hypothetical protein SORBIDRAFT_01g039390	241919322	71	<u>0</u>	<u>12</u>	Similar to Heat shock cognate 70 kDa protein
Desconocida					
Hypothetical protein SORBIDRAFT_08g018710	241943043	18	41	6	desconocida

¹Valor cuantitativo (Valor cuantitat.), selecciona en el análisis de MS el método cuantitativo que refiere la abundancia y la probabilidad de que la proteína identificada sea la proteína indicada. En el caso de las proteínas presentadas en la tabla, la mayoría de ellas se identifican con una probabilidad superior al 95%. ² Los valores subrayados señalan las proteínas que son más abundantes en la fracción UB-PEPC respecto de la De-

UB-PEPC.
5. EFECTO DE LA TEMPERATURA Y DE LA VIABILIDAD DE LA SEMILLA EN LA MONOUBIQUITINACIÓN DE LA PEPC

5.1. Distintos patrones de monoubiquitinación en distintas especies de cereales

Debido a su reciente descubrimiento (Uhrig *et al.*, 2008b), hasta el momento no existe ningún estudio donde se analice si el patrón de monoubiquitinación de la PEPC se ve afectado por algún factor ambiental o estrés biótico/abiótico. Un hecho que sorprendió fue el resultado de un experimento donde se observó un patrón de monoubiquitinación distinto al ya descrito (Osuna *et al.*, 1996; González *et al.*, 1998; Feria *et al.*, 2008) en diferentes semillas de cereales germinadas a 25 °C de trigo, sorgo y cebada (Fig. 50A y B).

En algunas de estas semillas la PEPC estaba fuertemente monoubiquitinada a las 24 h de germinación mientras que en otras la monoubiquitinación no se produjo, la diferencia entre ellas fue sobre todo, la variedad y el periodo de almacenamiento. Este hecho nos sugirió la idea de que la ubiquitinación pudiera estar regulada por factores internos de la semilla (viabilidad) o por factores ambientales.

5.2. Efecto de la temperatura en la monoubiquitinación de la PEPC en la fase de germinación de las semillas de sorgo

Por este motivo, surgió la idea de comenzar estudiando el efecto de la temperatura en la semilla sorgo. Éste es un cereal que se cultiva en ambientes cálidos y sus semillas tienen temperaturas óptimas de germinación por encima de 30 °C (Kanemasu *et al.*, 1975) lo que permitió analizar el efecto de la temperatura sobre la germinación y el patrón de monoubiquitinación de la PEPC en las semillas a 35 °C sin que se inhibiese la germinación como ocurre en otras especies. Para ello, se germinaron semillas hasta 96 horas, a 25 y 35 °C, utilizando dos variedades de sorgo, una de reciente adquisición (*PR88Y20*) y otra almacenada durante un año (*PR87G57*). Para valorar la velocidad de germinación de las semillas de sorgo a las distintas temperaturas, se establecieron ocho estadios de germinación para las dos variedades utilizadas (Fig. 51).

Fig. 51. Estadios de germinación desde la semilla seca hasta 96 horas de sorgo. Las semillas de sorgo fueron embebidas según lo descrito en materiales y métodos. Los diferentes estadios se basan en la longitud de la radícula y el epicotilo.

Para cada tiempo de germinación (24, 48, 72 y 96 horas) se tomaron como representativas las 15-20 semillas en estadios más avanzados.

La figura 52 muestra la velocidad de germinación para cada variedad de sorgo a 25 y 35 °C durante 96 horas. Ambas variedades poseían una velocidad de germinación más alta a 35 °C que a 25 °C, encontrándose las semillas germinadas a 35 °C en una media de dos estadios por delante de las semillas germinadas a 25 °C (Fig. 52). Además, la variedad *PR88Y20* (variedad nueva) germinó más rápidamente que la variedad *PR87G57* (variedad almacenada durante largo tiempo), tanto a 25 °C como a 35 °C (Fig. 52, var. *PR88Y20* y *PR87G57*).

Fig. 52. Representación de la velocidad de germinación de las dos variedades de sorgo a 25 y 35 °C. Las semillas de sorgo var. *PR88Y20* y var. *PR87G57* fueron germinadas como se describe en materiales y métodos (apartado 2.1). Se representó la media del estadio en que se encontraban y se corresponden a un n=3.

Con objeto de observar la monoubiquitinación de la PEPC en las semillas de sorgo germinadas a 25 y 35 °C hasta 96 horas, los extractos crudos de las semillas en los estadios más avanzados de los diferentes tiempos de imbibición se analizaron mediante Western-blots. Las muestras se revelaron con anticuerpos anti-PTPC que reconocen el total de la proteína. Sorprendentemente, la monoubiquitinación de la PEPC (Fig. 53A) y su correspondiente ratio p110:p107 (Fig. 53B y C) fue mucho menor en las semillas germinadas a 35 °C que en las germinadas a 25 °C a pesar de mostrar una velocidad de germinación mucho mayor a 35 °C (Fig. 52). Esto ocurrió tanto para la variedad *PR88Y20* como para la variedad *PR87G57*. Como se muestra en la Fig. 53B, los ratios de p110:p107 alcanzaron valores de entre 2 y 3.5 en las semillas germinadas a 25 °C mientras que estos valores se mantuvieron en el entorno de 1.5 para las semillas germinadas a 35 °C (Fig. 53C). Estos resultados parecían sugerir que la monoubiquitinación de la PEPC se inhibía parcialmente a 35 °C.

Analizando los resultados en profundidad, se observó que la máxima monoubiquitinación a 35 °C se registró a las 24 horas, mientras que a 25 °C este máximo se registró a las 48 y 72 horas de imbibición y luego comenzó a decaer. A 35 °C el máximo de monoubiquitinación se adelantó respecto al de 25 °C, aunque fue menos pronunciado (Fig. 53A, B y C). Esto podría deberse a que los valores más altos de monoubiquitinación a 35 °C se produjeran antes de las 24 horas. Si esto era así, la monoubiquitinación no estaría en realidad inhibida por la temperatura, sino que a 35 °C se aceleraría la germinación y, por lo tanto, la monoubiquitinación de la PEPC. Esta idea venia reforzada por el hecho de que entre ambas variedades de sorgo elegidas también había un desplazamiento del pico de monoubiquitinación. A 25 °C, en la variedad *PR88Y20* (de germinación rápida) el pico de monoubiquitinación comenzó a las 24 horas (Fig. 53A y B, var. *PR88Y20*, 24 h) mientras que en la variedad *PR87G57* (de germinación lenta) el pico de monoubiquitinación comenzó más tarde, a las 48 horas (Fig. 53A y B, var. *PR87G57*, 48 h). Este hecho mostró que existe una relación estrecha entre la germinación de la PEPC y la monoubiquitinación de las semillas de sorgo.

Fig. 53. Niveles de monoubiquitinación de la PEPC durante la germinación de las semillas a 25 y 35 °C en las dos variedades de sorgo. A, Los extractos de semillas se analizaron en una electroforesis en condiciones desnaturalizantes (8% de acrilamida, 50 µg de proteína/ pista), se transfirieron a una membrana de nitrocelulosa y se incubaron con anticuerpos anti-PTPC. B, Ratio p110:p107 de las bandas mostradas en A mediante un gráfico de barras. Se representa la media ± ES de tres experimentos independientes.

Con el fin de comprobar si en las semillas de sorgo germinadas a 35 °C los máximos de monoubiquitinación de la PEPC se producían antes de las 24 horas, se recogieron semillas de sorgo de la var. PR88Y20 germinadas a 35 °C cada tres horas durante un total de 18 horas. El patrón de monoubiquitinación de la PEPC se analizó en SDS-PAGE y Western-blot, revelándose con los anticuerpos anti-PTPC. La Fig. 54A muestra que, efectivamente, las semillas de sorgo germinadas a 35 °C desarrollaron un pico de monoubiquitinación de la PEPC antes de las 24 h, por lo tanto, el pico de monoubiquitinación de la PEPC se adelantó en función de la velocidad de germinación.

Fig. 54. Niveles de monoubiquitinación de la PEPC y velocidad de germinación de semillas de sorgo germinadas a 35 °C hasta 18 horas. A, Los extractos de semillas de sorgo var. *PR88Y20* se analizaron en una electroforesis en condiciones desnaturalizantes (gel al 8% de acrilamida, 50 µg de proteína/pista), se transfirieron a una membrana de nitrocelulosa y se incubaron con anticuerpos anti-PTPC. **B**, Ratio p110:p107 de las bandas mostradas en A mediante un gráfico de barras. **C**, Las semillas de sorgo var. *PR88Y20* fueron embebidas y a cada tiempo se contó el número de semillas en cada estadio de germinación, congelándose las 15-20 semillas que se encontraban en los estadios más avanzados de cada placa para la preparación de los extractos crudos. Se representan las medias de 3 experimentos independientes.

158

En el caso de de semillas germinadas a 25 °C, la monoubiquitinación comenzó a las 24 horas de imbibición y se mantuvo hasta las 72 horas, cuando empezó a decaer (Fig. 53A y B, var. *PR88Y20*, 24-72 h). A 35 °C el pico de monoubiquitinación de la PEPC se vio adelantado y acortado comenzando a las 12 horas de imbibición y prolongándose hasta las 24 horas, cuando comenzó a decaer (Fig. 54A y B, 12-18 h; Fig. 53A y C, var. *PR88Y20*, 24 h).

Los resultados mostraron también que el comienzo del aumento en la monoubiquitinación de la PEPC coincidió para ambas temperaturas en el mismo estadio. A 25 °C, fue a las 24 horas cuando comenzó a aumentar la monoubiquitinación de la PEPC (Fig. 53A y B, var. *PR88Y20*, 24 h), correspondiéndose con el estadio II de germinación (Fig. 52, var. *PR88Y20* 25 °C, 24 h). Lo mismo ocurrió a 35 °C, donde el comienzo del aumento en la monoubiquitinación se produjo a las 12 horas (Fig. 54A y B, 12 h), cuando las semillas se encontraban también en el estadio II de germinación (Fig. 54C, 12 h). En ambos casos la monoubiquitinación empezó a decaer en el estadio IV, que para las semillas a 25 °C fue a las 72 h de germinación y para las germinadas a 25 grados fue a las 24 horas de germinación.

Estos resultados muestran por primera vez una relación entre el patrón de monoubiquitinación de la PEPC y la temperatura de germinación de la semilla de forma que el pico de monoubiquitinación de la PEPC en las semillas de sorgo está estrechamente relacionado con la velocidad de germinación de éstas, representando un suceso imprescindible para la germinación. Colectivamente estos resultados muestran que la ubiquitinación se produce entre los estadios II y IV de la semillas coincidiendo con las fases que van desde la rotura de la testa, emergencia de la radícula y finalización de la hipoxia (estadio II) hasta el enverdecimiento del epicotilo (estadio IV). Cuando las semillas de sorgo se germinan a 35 °C esta fase se adelanta y se acorta, adelantándose por tanto la monoubiquitinación.

5.3. Repercusión de la velocidad de germinación y el estado de monoubiquitinación de las semillas en la *IC*₅₀

En este apartado hemos estudiado la evolución de la IC_{50} para el L-malato, en la germinación de la variedad nueva (*PR88Y20*) y lenta (*PR87G57*) y para las dos tempe-

raturas (25 y 35 °C) con objeto de observar si la IC_{50} podría estar ligada a la velocidad de germinación y al patrón de monoubiquitinación. Para ello, se realizaron medidas de IC_{50} en las semillas de sorgo embebidas hasta 96 horas a 25 y 35 °C. La Fig. 55 muestra que el aumento de los valores de IC_{50} de la PEPC se produce de forma concomitante al del pico de ubiquitinación. A 25 °C, en la var. *PR88Y20* (Fig. 55A) la IC_{50} fue máxima a las 24 h con 0.94 mM, momento en el que la PEPC tuvo el pico máximo de monoubiquitinación (Fig. 53A y B), en cambio en la var. *PR87G57* la mayor IC_{50} de 0.62 mM se observó a las 48 h (Fig. 55B) coincidiendo también con el valor máximo de monoubiquitinación a esta temperatura (Fig. 53A y B).

Fig. 55. IC_{50} de las dos variedades de semillas de sorgo a 25 y 35 °C a los diferentes tiempos de imbibición de las semillas. Los extractos crudos se realizaron a partir de 0.4 g de semillas enteras en 1 ml de tampón de extracción. A, variedad nueva *PR88Y20* y B, variedad lenta *PR87G57*.

Ampliando los rangos de estudio para las semillas germinadas a 35 °C se observó en la var. *PR88Y20* un desplazamiento de los valores máximos de IC_{50} hacia las 15, 18 y 21 h de imbibición, respecto de las semillas germinadas a 25 °C, coincidiendo con los máximos de monoubiquitinación (Fig. 56A). Lo mismo ocurrió en la variedad de germinación más lenta, si bien en esta variedad los máximos de IC_{50} y de monoubiquitinación se produjeron a las 24 h (Fig. 56B). Para determinar si la fosforilación se adelantaba acompañando al pico de monoubiquitinación se realizaron experimentos adicionales. En ese sentido, un experimento preliminar usando la var. *PR88Y20* mostró que en las semillas germinadas a 35 °C la fosforilación de la PEPC comenzó a las 9 h con valores más intensos entre las 15 y 18 h de imbibición (Fig. 57). Sin embargo, se necesitaran experimentos adicionales para confirmar dicho resultado.

Fig. 56. Los patrones de IC_{50} de las dos variedades de semillas de sorgo a 35 °C siguen el mismo patrón de monoubiquitinación de la PEPC. Los extractos crudos se realizaron a partir de 0.4 g de semillas enteras en 1 ml de tampón de extracción. La mitad del E.C se usó para las medidas de IC_{50} mientras que la otra mitad se desnaturalizó inmediatamente y se analizó en una electroforesis en condiciones desnaturalizantes (gel al 8% de acrilamida, 50 µg de proteína/pista). Posteriormente, los geles se transfirieron a una membrana de nitrocelulosa y se incubaron con anticuerpos anti-PTPC. A, variedad nueva PR88Y20 y B, variedad lenta PR87G57. *Son valores de IC_{50} calculados por aproximación. En estos casos, la PEPC no llegó a inhibirse al 50% a ninguna de las concentraciones de málico ensayadas. La IC_{50} se calculó por un ajuste lineal a partir de aquellos valores donde se encontró la inhibición.

Fig. 57. Niveles de fosforilación de la PEPC en semillas germinadas a 35 °C. Los extractos crudos se realizaron a partir de 0.4 g de semillas enteras en 1 ml de tampón de extracción y se analizaron en SDS-PAGE y Western-blot (50 µg de proteína/ pista). A, revelado con anticuerpos pSer13 que reconocen el fosfo-péptido N-terminal y se realizó en presencia del desfosfopéptido y **B**, revelado con anticuerpos totales anti-PEPC.

Estos resultados en su conjunto sugieren que la monoubiquitinación de la PEPC y la fosforilación son dos eventos concomitantes y ligados al incremento de la IC_{50} de la enzima que se producen en concreto entre el estadio II y IV de la germinación de la semilla. Sin embargo, los niveles de fosforilación de cada isoenzima son difíciles de evaluar, ya que los anticuerpos pSer13 revelan principalmente la isoenzima CP28, por lo que es difícil saber qué niveles de fosforilación alcanzaría la isoenzima CP21, la cual podría ser la principal componente de la banda p110.

Adicionalmente, se compararon los niveles de expresión a 25 y 35 °C y a las 48 horas de imbibición de los tres genes PTPC que se expresaron en la semilla de sorgo, para lo cual se utilizaron los mismos cebadores que se usaron en el capítulo 1 (descritos en la Tabla 1 del Apartado 9.3 en materiales y métodos). Los resultados obtenidos mostraron un ligero aumento de la expresión de las PEPCs a 35 °C, pero las diferencias no fueron significativas (Fig. 58). Estos resultados ponen de manifiesto que la regulación de la actividad de la PEPC durante la germinación de la semilla a diferentes temperaturas recae en sus modificaciones postraduccionales más que en cambios en la expresión de sus genes.

Fig. 58. Análisis de la expresión de los genes *PTPCs* en semillas de sorgo embebidas 48 horas a 25 y 35 °C. El análisis por q-PCR se realizó como se indica en materiales y métodos. El gen 18S fue utilizado como control endógeno. Las muestras a 35°C están relativizadas al control de 25 °C. Los datos son la media \pm E.S. de tres experimentos independientes. No existen diferencias significativas entre las muestras según la t-student.

5.4. La germinación y la monoubiquitinación en las dos variedades de sorgo están estrechamente ligadas a la viabilidad y velocidad de germinación

Para confirmar la relación entre la capacidad de germinación y la monoubiquitinación de la PEPC en semillas, se realizó un ensayo con las dos variedades de sorgo descritas anteriormente. En este ensayo, se dispusieron semillas de ambas variedades a embeber durante 24 h a 25 °C, y posteriormente se clasificaron en germinadas y no germinadas para analizarlas mediante Western-blot. La variedad *PR88Y20*, que son semillas nuevas, tuvieron un porcentaje de germinación a las 24 horas mayor que la variedad *PR87G57*, que fueron semillas almacenadas durante tiempo (Fig. 59C). Se determinó la presencia de monoubiquitinación de la PEPC en las semillas, separando las semillas germinadas de las no germinadas. Para ambas variedades, las semillas embebidas 24 horas, pero no germinadas, mostraron mucho menor grado de monoubiquitinación que las semillas germinadas (Fig. 59A y B). Además, la variedad *PR88Y20* mostró un ratio p110:p107 mucho mayor que la variedad *PR87G57*, lo que concuerda con la mayor velocidad de germinación que presenta la variedad *PR88Y20* (Fig. 52, 24 h). Este resultado muestra que la monoubiquitinación se presenta en semillas viables y capaces de germinar y que no se produce en semillas embebidas pero que no germinan.

La monoubiquitinación de la PEPC es conocida desde hace poco tiempo (Uhrig et al., 2008b) y los avances en la investigación sobre esta regulación postraduccional de la PEPC son escasos. Por eso, los datos que se muestran en este capítulo son novedosos y aportan conocimiento acerca de este tema de investigación. En su conjunto, los resultados obtenidos en este capítulo ponen de manifiesto que: i) la monoubiquitinación de la PEPC y la germinación de las semillas de las plantas están estrechamente relacionadas, observándose un pico en la monoubiquitinación de la PEPC en las semillas germinadas que no se observa en las que no germinan; ii) las semillas de sorgo a 35 °C presentan una velocidad de germinación mayor que a 25 °C, lo que viene acompañado de un adelanto y un acortamiento del pico de monoubiquitinación de la PEPC y probablemente de la fosforilación; iii) la monoubiquitinación de la PEPC comienza a aumentar en las semillas de sorgo en germinación alrededor del estadio II y coincide con la rotura de la testa y finalización de la fase de hipoxia de la semilla y se prolonga hasta el estadio IV con la emergencia del epicotilo y comienzo de la fotosíntesis; iv) resultados preliminares en esta tesis parecen indicar que la monoubiquitinación y la fosforilación de la PEPC durante la germinación están relacionadas y coinciden en el tiempo.

var. <i>PR88Y20</i>		var. <i>PR87657</i>		
No germ.	Germ.	No Germ.	Germ.	
		-	-	— p11
-		-	-	←p10

Anti-PTPC-IgGs

E	3			
		24 h	PR88Y20	PR87G57
	Ratio (p110:p107)	No germ.	0,30	0,32
		Germ.	1,40	0,45

Fig. 59. Inmunocaracterización de las subunidades p110 y p107 a las 24 h de imbibición de semillas de *S. bicolor* var. *PR88Y20* y var. *PR87G57* y su porcentaje de germinación. A, los extractos de semillas germinadas o no germinadas se analizaron en una electroforesis en condiciones desnaturalizantes (8% de acrilamida, 50 μ g de proteína/pista), se transfirieron a una membrana de nitrocelulosa y se incubaron con anticuerpos anti-PTPC. **B**, ratio p110:p107 según las bandas mostradas en A. **C**, Porcentaje de germinación a las 24 horas de imbibición. Los datos son la media ± E.S. de al menos tres experimentos independientes.

V. DISCUSIÓN

Durante varias décadas, la PEPC ha sido ampliamente estudiada en diferentes y numerosos organismos debido a su papel crucial en la fijación inicial del CO₂ en plantas C₄ y CAM y a su participación, no menos importante, en múltiples funciones que la sitúan en el centro del metabolismo del carbono (O'Leary *et al.*, 2011b). Existen muchos estudios sobre la PEPC en el contexto fotosintético C₄ y CAM (Chollet *et al.*, 1996; Nimmo, 2003; Izui *et al.*, 2004; O'Leary *et al.*, 2011b), sin embargo, las isoenzimas de tipo C₃ son menos conocidas tanto funcional como estructuralmente, aunque resaltan algunos modelos de PTPC C₃ bien conocidos y estudiados hasta la fecha como es el modelo de la PEPC de la semilla oleaginosa de ricino (O'Leary *et al.*, 2011b), el de las raíces proteóides de harsh hakea (Shane *et al.*, 2013), el de semillas de cereales (Osuna *et al.*, 1996; González *et al.*, 1998; Osuna *et al.*, 1999; Nhiri *et al.*, 2000; Feria *et al.*, 2008) y el de *Arabidopsis thaliana* (Sánchez y Cejudo, 2003).

La PEPC de semillas de cereales: trigo, cebada y sorgo, ha sido objeto de estudio en nuestro grupo de investigación desde 1996 (Osuna et al., 1996, 1999; Nhiri et al., 2000; Feria et al., 2008) debido al importante interés agronómico que tiene este grupo de monocotiledóneas, ya que almacenan almidón como sustancia de reserva (Bewley et al., 2013). Este hecho sumado a que en 2009 se descifró la secuencia completa del genoma del sorgo (Paterson et al., 2009), una herramienta fundamental en el conocimiento de las diferentes isoenzimas de PEPC y de PPCK, nos situó en una posición privilegiada y permitió profundizar en el papel que estas proteínas desempeñaban en el desarrollo y germinación de la semilla de este cereal. El único estudio de la PEPC realizado en semillas de sorgo publicado (Nhiri et al., 2000) se centró en la caracterización de la PEPC de la aleurona/endospermo y en el efecto del L-malato y la salinidad en la fosforilación de la PEPC de semillas en germinación. En ese trabajo se mostró que durante la germinación, la PEPC se fosforilaba in vitro en la serina consenso situada en el N-terminal (Nhiri et al., 2000) por una PPCK independiente de Ca²⁺ (Chollet et al., 1996; Vidal y Chollet, 1997; Nimmo, 2000; Izui et al., 2004; O'Leary et al., 2011b). Por otro lado, se detectó la presencia de una doble banda de PEPC de 108 y 110 kDa, si bien el motivo de la presencia de dichas bandas no fue dilucidado. El objetivo en este trabajo de tesis que presentamos ha sido caracterizar molecularmente la doble banda de PEPC y profundizar en el conocimiento de la participación de las diferentes isoenzimas de PEPC y de su regulación por modificaciones postraduccionales (fosforilación y monoubiquitinación) así como de las isoenzimas de PPCK durante el desarrollo y la germinación de la semilla.

1. Caracterización de los genes *PEPC* y de sus proteínas durante el ciclo de vida de la semilla

1.1. PTPC

En primer lugar se mostró que la PEPC estaba presente (Fig. 15 y 16) y activa (Fig. 13 y 14) durante todo el desarrollo y germinación de la semilla lo que sugiere un papel relevante en ambos procesos fisiológicos. A lo largo de los dos procesos se identificó la doble banda de PTPC, denominadas p110 y p107, ya descritas anteriormente en sorgo y en otros cereales aunque con movilidades electroforéticas variables (Osuna *et al.*, 1996; González *et al.*, 1998; Osuna *et al.*, 1999; Nhiri, *et al.*, 2000; Feria *et al.*, 2008) y a cuya caracterización molecular le hemos dedicado una parte importante de este trabajo.

Los estudios de transcripción de los genes *PEPC* mostraron que en la semilla de sorgo existe expresión de tres de los cuatro genes que codifican isoenzimas PTPCs de tipo C₃ y que están presentes en el genoma del sorgo: *CP21*, descrita como inducible de raíz, *CP28*, constitutiva o *housekeeping* (Lepiniec *et al.*, 2003) y 4960, no descrita aún su función. Estos tres genes se expresaron durante todo el desarrollo y en la germinación de la semilla del cereal con diferentes patrones de expresión (Fig. 19 y 20).

Los transcritos de estos tres genes fueron traducidos a proteínas como se ha podido observar en los resultados de los estudios de MS (Tabla 2). Los inmunoprecipitados de PEPC de las bandas p110 y p107, obtenidos de tres estadios del desarrollo y de dos de la germinación y que fueron analizados por MS utilizando un analizador MAL-DI-QqTOF, mostraron que CP21 fue la enzima más representada a lo largo de todo el ciclo de vida de la semilla (Tabla 2, "score"), pero apareció especialmente representada en el estadio I del desarrollo de acuerdo con la presencia de transcritos de CP21 en ese estadio (Fig. 19C). También parece ser más abundante en los tejidos embrionarios respecto de la aleurona/endospermo de la semilla seca y embebidas a 48 h. La abundancia de esta enzima en la semilla seca en relación a los bajos niveles de transcritos detectados, comparados con el resto de transcritos de diferentes tiempos (Fig. 20C), sugiere que la enzima se acumula durante la fase final del desarrollo. CP21 ha sido descrita como una enzima inducible de raíz en diferentes estados nutricionales (Lepiniec *et al.*, 2003). Los resultados de esta tesis identifican una nueva función para esta isoenzima que desempeñaría un papel relevante durante todo el ciclo de vida de la semilla. Se destaca, además, que la isoenzima 4960 estuvo muy representada tanto en p110 como en p107 en el estadio I del desarrollo, de acuerdo con los datos de transcripción del gen 4960 que mostraron una abundancia de transcritos de casi 16 veces comparado con el estadio VI (Fig. 19B). Posteriormente, apareció en el estadio III pero menos abundante y solo en p107. Estos son los primeros resultados que asignan una función fisiológica a la PEPC 4960 que estaría por tanto implicada en el desarrollo temprano de la semilla. CP28, considerada una isoenzima "housekeeping" (Lepiniec et al., 2003), se transcribió a lo largo del todo el desarrollo y la germinación, con un máximo de transcripción a las 48 h de la germinación (Fig. 19 y 20A), sin embargo, la proteína correspondiente CP28 se detectó en p107 en los estadios del desarrollo I y III, en ambas subunidades en el VI y en el embrión de la semilla seca y a 48 h siempre con un "score" muy por debajo del de CP21 (Tabla 2). Adicionalmente, la PEPC de semillas embebidas a 48 h, inmunopurificada por cromatografía de inmmunoafinidad usando anticuerpos anti-PEPC y analizada por MS utilizando un analizador Orbitrap, mostró que CP28 y 4960 estaban también presentes a las 48 h de germinación pero siempre con valores inferiores (aproximadamente 3 veces menos) que CP21 (Tabla 10). Las características del analizador Orbitrap permiten una mayor identificación de proteínas (Martín y Ballesteros, 2010) algunas de las cuales son prácticamente indetectables con el analizador MALDI-QqTOF, de hecho, se detectó también la isoenzima 5090 aunque a niveles bajos y a pesar de que no se detectaron transcritos para dicho gen en todo el ciclo de la semilla.

El polimorfismo genético de la PEPC se ha puesto en evidencia también en otras especies. Por ejemplo, en *A. thaliana* existe un gen housekeeping, *Atppc2*, que aparece en la mayoría de los órganos sugiriendo que podría ser el que codifica para la proteína con función anaplerótica, mientras que los otros genes muestran expresión por tejidos y podrían participar en funciones más especializadas (Sánchez y Cejudo, 2006). En el genoma de ricino aparecen tres genes PEPC: *RcPpc1* y *RcPpc3* que codifican PTPCs y *RcPpc4* que codifica la isoenzima bacteriana. En el desarrollo y germinación de COS solo se han observado péptidos correspondientes a RcPpc3 y RcPpc4 y nunca se han detectado péptidos de RcPpc1 (O'Leary *et al.*, 2011a,b), por el contrario, el gen *RcPpc1* se expresa en las raíces donde no existe expresión de *RcPpc3* y donde se sugiere que podría tener una función específica (O'Leary *et al.*, 2011a). Estableciendo homología

con los genes de sorgo, el gen *RcPpc3* de ricino tiene una mayor homología con el gen *4960*. De hecho, la homología del N-terminal (los 4 aminoácidos que preceden a la Ser fosforilable) entre las dos proteínas correspondientes indica que las PEPCs son afines y probablemente con más características comunes entre ellas que de esa isoenzima con las respectivas de su propia especie (datos no publicados). Así, 4960 es la que tiene más homología a RcPPC3 cuando se compararon las dos secuencias, pero además, se parecen sus motivos de fosforilación, de **EKLA**SIDAQLR para ricino, y **EKMA**SIDAQLR para 4960 de sorgo, hecho que ocurre entre proteínas homólogas (ver Fig. 29). Estos 4 aminoácidos son con frecuencia determinantes en el reconocimiento del motivo de fosforilación fosforilado por anticuerpos heterólogos (Izui *et al.*, 2003).

En trigo, hasta el momento, solo se ha descrito un gen, *Ppc1*, que aparece en el desarrollo y germinación de la semilla así como en las raíces y en la parte aérea (González *et al.*, 2002), sin embargo, estudios de MS indican que en trigo la PEPC está también representada por una familia multigénica con al menos 6 representantes equivalentes a los del sorgo (datos no publicados), de ellos *Ppc1* sería el equivalente a Sb*CP28* (González *et al.*, 1998).

Con este conjunto de datos, CP21 sería la isoenzima más abundante en la semilla en todas sus etapas y las otras tres isoenzimas estarían presentes en menor cantidad. La isoenzima 4960 podría tener un papel importante aportando esqueletos carbonados cuando el tejido tiene una intensa actividad metabólica al comienzo del desarrollo, en la etapa de celularización y diferenciación mientras que CP28 podría ser una enzima constitutiva con mayor representación a las 24-48 horas de la imbibición (Fig. 19B y 20A). La PEPC C₄ fotosintética no se detectó en todo el ciclo de vida de la semilla, tanto a nivel de expresión como a nivel de proteína. Es lógico que esta isoenzima esté ausente en la germinación ya que la semilla de sorgo germina en oscuridad, sin embargo podrían haberse esperado transcritos en los estadios más verdes del desarrollo no siendo así, indicando que la PEPC de tipo fotosintética no juega ningún papel en la semilla.

Conocer como cada una de esas PEPCs se combinan durante el desarrollo y la germinación para lograr una actividad de acorde con la función fisiológica que les toque desempeñar, es un gran desafío. Al igual que en el sorgo, existen seis genes PEPC de arroz (cinco codifican PTPCs y uno la BTPC). Los análisis filogenéticos indicaron que *Osppc2a*, *2b*, y *3* se englobaban en las PTPCs de tipo C_3 y *Osppc1* en la C_3 de tipo raíz,

mientras que Osppc4 perteneció a un isoforma con una estructura primaria diferente a las de las otras PTPCs que se localizaba en el estroma del cloroplasto. No se han encontrado ortólogos de *Osppc4* en cebada, maíz o *Arabidopsis* (Masumoto *et al.*, 2010). En sorgo, tampoco existen genes ortólogos a *Osppc4*, lo que indicaría que la ruta de síntesis de ácidos orgánicos y asimilación de nitrógeno es diferente y que esta función la llevaría a cabo una isoenzima de PEPC con otras características. Por otro lado, CP21 y OsPPC1 son proteínas homólogas ya que su N-terminal es muy parecido, MP<u>ERHO-</u>SIDAQLR para la de sorgo y M<u>ERHO</u>SIDAQLR para la de arroz, y ambas están descritas ser propias de raíces (Lepiniec *et al.*, 2003; Masumoto *et al.*, 2010). Además, CP21 está definida como inducible de raíz en presencia de amonio (Lepiniec *et al.*, 2003). Es lógico que CP21 esté muy presente a lo largo del desarrollo de la semilla sobre todo en la fase de emergencia de la radícula y hasta que finaliza el periodo heterótrofo de la semilla.

1.2. BTPC

A pesar de hallarse en el genoma de todas las plantas, son pocos los estudios que han localizado a la isoenzima bacteriana en las distintas especies y tejidos (Rivoal *et al.*, 2001; Sánchez y Cejudo, 2003; Gennidakis *et al.*, 2007; Igawa *et al.*, 2010; O'Leary *et al.*, 2011b). En Arabidopsis se ha observado una muy baja expresión de la BTPC (*Atppc4*) restringida en algunos órganos y una significativa expresión en el polen (Sánchez y Cejudo., 2003; Igawa *et al.*, 2010), mientras que en arroz (*Osppc4*) se ha visto baja expresión en todos los tejidos (Sánchez y Cejudo, 2003). También, en nuestro grupo se ha observado que la expresión de la *Atppc4* aumenta en respuesta a estrés (Sánchez y Cejudo, 2003 y datos de nuestro grupo no publicados). En este sentido, se ha demostrado que la estabilidad térmica de la PEPC de clase 2 (la que forma el hetero-octámero de BTPC:PTPC) era mayor que la de la PEPC de clase 1 (O'Leary *et al.*, 2009), por lo que en el sorgo la presencia de la BTPC podría estar relacionada con una situación de estrés.

En los primeros estadios de la semilla en desarrollo de sorgo se ha visto una expresión baja de la BTPC indicando que existen pocos transcritos de este gen. Además, a pesar de usar los inhibidores de proteasas que han sido descritos, como los apropiados para impedir la degradación de la BTPC (Gennidakis *et al.*, 2007), nunca se observó la proteína integra a nivel de 118 kDa incluso usando para su detección dos tipos de anticuerpos específicos de BTPC, unos procedentes de la isoenzima de *Arabidopsis thaliana* (Sánchez *et al.*, 2006) y otros procedentes de la isoenzima BTPC de ricino (O'Leary *et al.*, 2009). Además, en los ensayos de actividad de la PEPC en gel (M & M, apartado 4.3.) no se localizó ninguna PEPC activa a nivel de 910 kDa, que es el peso molecular del heterooctámero de BTPC y PTPC (Fig. 17). Estos resultados indicaron que si bien en el sorgo el gen bacteriano no está silenciado, su expresión es muy baja al menos en el ciclo de vida de la semilla. Todo esto está en concordancia con lo descrito en cebada donde no se detecta la BTPC completa y solo aparecen fragmentos de 60–70 kDa que inmunoreaccionan con los anticuerpos anti-BTPCs (Feria *et al.*, 2008).

2. Actividad PEPC en la semilla

La actividad PEPC determinada a pH optimo de 8 a lo largo del ciclo de vida de la semilla de sorgo es un reflejo de la actividad de las varias isoenzimas PTPCs presentes en cada estadio. En el desarrollo, se ha puesto de manifiesto que la actividad siguió un patrón similar al de algunas semillas como la de trigo, alcanzando valores altos en los estadios intermedios de diferenciación (10-25 DPA) y disminuyendo hasta llegar a los niveles mínimos en la semilla madura (González *et al.*, 1998). En COS, también se ha descrito una pauta similar (Tripodi *et al.*, 2005). Sin embargo en cebada ocurre lo contrario, la actividad específica de la enzima se incrementó alrededor del 60 % durante el periodo de desecación alcanzando valores relativamente altos y donde las diferencias se realzan cuando la actividad es expresada por semilla alcanzando un valor de hasta 16 veces superior en la semilla seca (Feria *et al.*, 2008). En las semillas de cebada se ha sugerido que ese aumento progresivo de la actividad de PEPC está relacionado con el proceso de acidificación del endospermo durante el desarrollo (Macnicol y Jacobsen, 1992).

En germinación, nuestros datos muestran que la actividad PEPC en el embrión va aumentando gradualmente con las horas de imbibición hecho que está en consonancia con los resultados que obtuvo Nhiri y colaboradores (Nhiri *et al.*, 2000) en la aleurona/endospermo y que muestran un incremento de actividad PEPC de hasta 2 veces el valor de actividad de la semillas secas a los 4 días de imbibición (Nhiri *et al.*, 2000). Un incremento de la actividad PEPC durante la germinación de la semilla ha sido también referido para la semilla de maíz (Cerny *et al.*, 2010), para ricino (Sangwan *et al.*, 1992; Podestá y Plaxton, 1994a,b) y en el escutelo de semillas de trigo (González *et al.*, 1998). En cualquier caso, los valores de actividad PEPC en los embriones fueron del orden de 6 veces menores que los máximos encontrados para la semilla entera durante el desarrollo (comparar valores en Fig. 13 y 14).

En los experimentos de inmunolocalización *in situ* se observó que la PEPC se encontraba ampliamente distribuida en los distintos tejidos embrionarios. Las zonas del epicótilo, radícula, escutelo y epitelio del escutelo se caracterizaron por tener un intenso marcaje de PEPC (Fig. 18). Resultados previos obtenidos en trigo mostraron que la PEPC se encontraba en la mayoría de los tejidos de la semilla y se observaba un fuerte aumento de la señal en el epitelio del escutelo a las 24 h de imbibición (González *et al.*, 1998). Estudios posteriores, donde se usen anticuerpos específicos para cada isoforma de PTPC, serán necesarios para dilucidar si existen isoformas de PTPC restringidas a un tejido en concreto.

Todos estos resultados indican que la PEPC podría tener una función importante en el embrión durante la germinación como es la producción de una molécula, el malato en última instancia, rica en carbono y poder reductor para su reutilización rápida como sustrato respiratorio (O'Leary *et al.*, 2011b) o como la re-fijación del CO₂ respiratorio para la producción de malato que será suministrado como intermediario en el ciclo de los ácidos tricarboxílicos cuando los ácidos orgánicos se dirigen hacia otras rutas metabólicas, tales como la síntesis de aminoácidos y proteínas (Blanke y Lenz, 1989; Macnicol y Jacobsen, 1992; Lepiniec *et al.*, 1994; Podestá y Plaxton, 1994a,b; revisado en O'leary *et al.*, 2011b).

Por otro lado, la actividad PEPC detectada a lo largo de la imbibición en la aleurona/endospermo no cambió significativamente con respecto a la actividad de las semillas secas, tanto expresada como actividad total o como específica (Fig. 14). Además, la actividad fue significativamente menor que en los embriones llegando a ser incluso del orden de hasta 4-5 veces menor a 72 y a 96 horas (Fig. 14). En otros cereales como el trigo, la actividad específica de la PEPC en la aleurona/endospermo se incrementó en un 50% respecto de la actividad inicial a las 48 h y luego disminuyó (Osuna *et al.*, 1996).

Por otro lado, Cerny y colaboradores, en trabajos realizados con el maíz, encontraron que la PEPC era más activa en el embrión aunque la actividad PEPC en el endospermo también fue detectada (Cerny et al., 2010). En un estudio de semillas de trigo donde se estudiaba la actividad PEPC en ambos tejidos: aleurona y endospermo, se ha demostrado que en el endospermo la actividad era indetectable a los dos días de imbibición mientras que en la aleurona aumentaba progresivamente (González et al., 1998). Nuestros resultados también podrían indicar que la mayor parte de la actividad PEPC se encuentra en la aleurona y que exista una proporción baja de PEPC en el endospermo pero debido al gran volumen que supone este tejido en la semilla (de un 84 %) lo que detectemos realmente sea una baja actividad PEPC cuando lo expresamos por mg de proteínas o por semillas⁻¹. Esta teoría viene apoyada por los ensayos de inmunolocalización in situ donde se refleja una alta activad PEPC en la capa de aleurona, viéndose las células fuertemente marcadas, mientras que en el endospermo esta señal es más pobre e incluso indetectable en algunas zonas (Fig. 18H e I). La importancia de la PEPC en el tejido de la aleurona manteniendo los niveles de ácidos orgánicos altos, para la secreción de L-malato en el endospermo y movilización de los compuestos almacenados ha sido referida por varios autores (Cejudo et al., 1995; González et al., 1998; Domínguez y Cejudo, 1999).

3. Modificación postraduccional de la PEPC por monoubiquitinación

El primer ejemplo de regulación postraduccional mediante monoubiquitinación para una enzima metabólica en la naturaleza fue descrito en la PEPC de clase 1 de COS (Uhrig *et al.*, 2008b). Posteriormente, se demostró que esta nueva PTM ocurría en la mayoría de los tejidos de la planta de ricino (O'Leary *et al.*, 2011a), en el desarrollo del polen de lili (*Lilium* spp.) (Igawa *et al.*, 2010) y en las raíces con proteoídes inmaduros de harsh hakea (Shane *et al.*, 2013). Sin embargo, un doblete de PEPC altamente reminiscente, con la movilidad electroforética de la banda monoubiquitinada (p110) y la no ubiquitinada (p107), fue detectado con anterioridad en varias especies (O'Leary *et al.*, 2011a), en hojas y raíces de maíz (*Zea mays*) (Prinsi *et al.*, 2009), en las raíces, silicuas, flores, rosetas, tallo, plántulas (Sánchez *et al.*, 2006) y en las semillas de *Arabidopsis* (Baena *et al.*, 1998; Nhiri *et al.*, 2000; Feria *et al.*, 2008).

Adicionalmente, cuando se extraía y se purificaba la PEPC procedente de la germinación de COS se encontraba que ambas subunidades de la enzima, p110 y 107, aparecían truncadas en 19 aminoácidos del N-terminal, a pesar de la presencia exhaustiva de inhibidores de proteasas durante la extracción. Estos datos sugerían que una tercera PTM, la edición de N-terminal, tendría que estar actuando *in vivo* en la PEPC de COS (además de la fosforilación y monoubiquitinación (Tripodi *et al.*, 2005; Uhrig *et al.*, 2008b).

Tras publicarse estos resultados en ricino, fue de gran relevancia investigar si este proceso regulador tan sofisticado existía también en la PEPC de semillas de cereales acumuladores de almidón como sustancia de reserva, en concreto en la PEPC de semillas de sorgo. En nuestro grupo de investigación se había observado constantemente una doble banda inmunoreactiva a los anticuerpos anti-PEPC tanto en las semillas germinadas de sorgo, cebada y trigo (Osuna *et al.*, 1996, 1999; González *et al.*, 1998; Nhiri *et al.*, 2000; Feria *et al.*, 2008) como en las semillas en desarrollo (Feria *et al.*, 2008). Los resultados obtenidos en esta tesis indican que, en la semilla de sorgo, ésta doble banda inmunoreactiva que corresponde a los polipéptidos de PEPC p110 y p107 contienen el extremo N- y C-terminal intactos, por lo tanto son subunidades completas, lo que difiere del modelo de ricino en el que dichas subunidades están truncadas en el N-terminal (Uhrig *et al.*, 2008b). Estudios anteriores realizados en cebada indicaron que en dichas semilla ambas subunidades poseían ambos extremos y se correspondían por tanto con subunidades intactas (Feria *et al.*, 2008).

Mediante la realización de diferentes ensayos, tales como la purificación de la PEPC mediante FPLC, estudios de inmunobloting utilizando anti-UB-IgGs, de desubiquitinación de la PEPC *in vitro* usando la enzima desubiquitinadora USP-2 y de espectrometría de masas, se ha demostrado en esta tesis que ambas subunidades de PEPC, p110 y p107, estaban codificadas por el mismo gen de tipo C_3 , 8720-CP21, siendo por tanto p110 la versión monoubiquitinada de p107. Mediante análisis de MS de la PEPC purificada por FPLC y de los inmunoprecipitados de extractos crudos se ha determinado que la monoubiquitinación se producía en la Lys624 de la isoenzima CP21 (Fig. 28 y Tabla 10). Adicionalmente, también se ha descrito la monoubiquitinación de la isoenzima CP28 en la Lys630 (Tabla 10), ambas en el motivo consenso descrito para la monoubiquitinación de COS (Uhrig *et al.*, 2008b). Estos resultados son de gran interés ya que muestran que la monoubiquitinación no es un evento restringido a una sola isoenzima sino que puede producirse en diferentes PTPCs.

De este estudio se destacan además dos aspectos: i) que ha sido el primero en que se ha descrito la monoubiquitinación de la PEPC durante el desarrollo de la semilla, ii) que en la germinación, la monoubiquitinación de la PEPC en algunos estadios de germinación aparece con un ratio entre los polipéptidos p110:p107 mayor que 1, indicando mayor abundancia de p110 (Fig. 16, 44, 53, 54 y 56) sugiriendo la posible existencia de un homotetrámero de p110 conforme transcurre la imbibición y siendo máximo entre los estadios II y IV del la germinación de la semilla. Esta situación tampoco se había observado anteriormente en harsh hakea (Shane *et al.*, 2013) donde la PEPC heterotetramérica siempre mantuvo un ratio en proporción 1:1, aunque si se muestra en COS (Uhring *et al.*, 2008b; Fig. S1).

Los resultados obtenidos en este trabajo muestran además que la monoubiquitinación de la PEPC CP21 incrementó significativamente la sensibilidad a su inhibidor el L-malato. Estos resultados estuvieron en concordancia con los que se obtuvieron con la monoubiquitinación inhibidora de la PEPC descrita en COS durante la germinación y en los proteoides inmaduros de harsh hakea (Uhrig *et al.*, 2008b; Shane *et al.*, 2013), de forma que se modifica su IC_{50} para el L-malato en el sentido de menor afinidad cuando la enzima está desubiquitinada (Tabla 5).

4. Modificación postraduccional de la PEPC por fosforilación reversible en fracciones purificadas de semillas germinadas 48 h

La fosforilación de la PEPC ha sido extensamente estudiada sobre todo en plantas C₄ y CAM (Chollet *et al.*, 1996; Nimmo, 2000; Echevarría y Vidal, 2003; Izui *et al.*, 2003) aunque también ha existido una investigación importante sobre la fosforilación reversible de las isoenzimas de tipo C₃ no fotosintéticas (Echevarría y Vidal 2003; O'Leary *et al.*, 2011b). La fosforilación a la que nos referimos es la que ocurre en la Ser del motivo consenso de fosforilación situado en el extremo N-terminal de la proteína. Si bien la BTPC no posee dicho motivo de fosforilación, se ha puesto de manifiesto en la actualidad que la BTPC posee al menos tres sitios de fosforilación (Thr⁴, Ser⁴²⁵ y Ser⁴⁵¹) de los cuales, al menos dos (Ser⁴²⁵, Ser⁴⁵¹) impactan en las propiedades de la enzima (O'Leary *et al.*, 2011c; Dalziel *et al.*, 2012). Otro modelo bien estudiado ha sido la PEPC de COS. La PEPC de COS durante el desarrollo de la semilla está fosforilada, sin embargo durante la germinación sufre una edición de la proteína de forma que pierde 19 aminoácidos del extremo N-terminal y por tanto carece del sitio de fosforilación. Es evidente que al carecer del dominio de fosforilación en el N-terminal, la PEPC se encontrara desfosforilada durante toda la germinación (Uhrig *et al.*, 2008b).

Una parte importante del esfuerzo de esta tesis se ha destinado a valorar el estado de fosforilación de la PEPC durante el desarrollo y germinación de la semilla en un intento de contrastar el modelo de regulación postraduccional de una semilla de cereal (acumuladora de almidón) con el de una semilla oleaginosa como es el ricino (con una PEPC truncada no fosforilada durante la germinación). Ha sido además la primera vez que el estudio de la fosforilación se afronta desde la complejidad de varias isoenzimas presentes en la semilla (CP21, CP28 y 4960), ya que en ricino solo hay 2 genes *PTPC* y uno *BTPC*, de los cuales solo el *RcPpc3* junto con el *RcPpc4* se expresan en la semillas (Uhrig *et al.*, 2008a,b; O'Leary *et al.*, 2011a,b).

Para evaluar el estado de fosforilación de la PEPC se han utilizado varias aproximaciones entre las cuales se destacan anticuerpos específicos dirigidos contra el sitio de fosforilación fosforilado (ácido-base-XX-SIDAQLR) realizados contra un péptido sintético del N-terminal de la proteína C₃ de sorgo CP28, llamados **pSer13** por la posición de la serina fosforilable [Cys-⁹ERLS(pS¹³)IDAQLR¹⁹]. Estos anticuerpos mostraron reconocer específicamente la forma fosforilada de la enzima y esa especificidad aumentó añadiendo a los anticuerpos el mismo péptido desfosforilado [Cys-⁹ERLSSIDAQLR¹⁹], el cual se añade rutinariamente en los ensayos de Western-blot para eliminar las uniones inespecíficas. Por otro lado, los pSer13 reconocían muy bien el fosfopéptido de CP28 pero fueron menos eficientes reconociendo los fosfopéptidos de CP21 y de 4960 (Fig. 35) por lo que fue un reto la obtención de información usando dichos anticuerpos. La IC_{50} es otro parámetro comúnmente empleado y que refleja el estado de fosforilación de la PEPC de forma que para una PEPC fotosintética de hojas los valores de la enzima fosforilada se sitúan en torno a una IC_{50} de 1,2 mM (IC_{50} para el L-malato alta) mientras que para la enzima defosforilada está en torno a 0,3 mM, siem-

pre en condiciones subóptimas de pH (Chollet *et al.*, 1996). Los datos de esta tesis muestran que la monoubiquitinación de la PEPC también impacta en la IC_{50} de la PEPC para el L-malato (Tabla 5), sin embargo experimentos mostrados en esta tesis sugieren que el valor de IC_{50} si bien es un balance entre fosforilación y ubiquitinación reflejan fidedignamente el estado de fosforilación de la PEPC (Fig. 39). Finalmente, los estudios de MS utilizando un analizador Orbitrap han sido una potente herramienta para dilucidar tanto la presencia de las isoenzimas como los estados de fosforilación y los aminoácidos fosforilados de cada una de ellas proporcionándonos una información excepcional que nos ha permitido resolver determinadas cuestiones relacionadas con la fosforilación de la PEPC en el ciclo de vida de la semilla.

En este sentido los resultados de la Tabla 10 muestran que en fracciones purificadas de PEPC por cromatografía de inmunoafinidad de extractos de semillas embebidas 48 h a 25 °C, todos los polipéptidos p107 de las isoenzimas presentes CP28, 4960, así como la menos abundante 5960 se encuentran fosforilados en sus respectivas serinas consensos del N-terminal que son: Ser¹³, Ser¹⁰ y Ser¹¹ para la isoenzimas CP28, 4060 y 5090 respectivamente, con la notable excepción de la Ser⁷ de p107-CP21 que no aparece fosforilada. Esta es la primera vez que se describe la fosforilación de cada una de las isoenzimas de PEPC en un contexto fisiológico determinado, en este caso a las 48 horas de imbibición de la semilla. Además, estos resultados muestran también que la subunidad p110 de CP21, CP28 y 4960 se encuentra además de monoubiquitinada fosforilada, mostrando también por vez primera que las dos modificaciones postraduccionales concurren en la misma subunidad y por tanto no son excluyentes como ocurre en los modelos de COS y de raíces proteoides de harsh hakea en donde o bien solo se produce monoubiquitinación de la PEPC (caso de COS en germinación) o bien se produce monoubiquitinación y fosforilación en la misma isoenzima, pero en subunidades diferentes (Uhrig et al., 2008b; Shane et al., 2013).

En la Fig. 60 se muestran los modelos propuestos para COS y harsh hakea.

Los resultados presentados en la Tabla 10 de esta tesis permiten proponer los siguientes modelos para la PEPC de sorgo durante la germinación (Fig. 61).

Fig. 61. Modelos de PEPCs heterotetraméricas monoubiquitinadas y/o fosforiladas según los resultados obtenidos por Orbitrap en semillas de sorgo embebidas 48 h a 25 °C.

Estos modelos básicos podrían combinarse a lo largo del desarrollo y de la germinación para ofrecer una mayor versatilidad en el funcionamiento de la enzima. Por ejemplo, los resultados presentados en la Tabla 10 provienen de una fracción de PEPC purificada en columna de inmunoafinidad en la que se utilizaron anticuerpos anti-PEPC C₃ de COS, sin embargo, cuando la PEPC se purificó a partir de semillas embebidas durante 48 h por FPLC, en columnas sucesivas de butyl-Sepharosa, Fractorel EMD DEAE 650 (S) y Superdex-200 HR 16/60, se obtuvo una fracción PEPC en la que en el análisis por MS utilizando un analizador Orbitrap solo se identificó la presencia de CP21 (Tabla 8 y 9) en una conformación heterotetramérica con una proporción 1:1 de p110:p107 (Fig. 23). La evaluación por MS (Tabla 8) mostró una PEPC completa en su N-terminal pero desfosforilada. Estos resultados se corroboraron con diferentes anticuerpos que nos muestran una enzima completa (Fig. 24C, anti-N24 y anti-C19) pero desfosforilada (Fig. 24C, anti-pSer13) de acuerdo con los resultados obtenidos de MS. Estos resultados apoyan la idea dibujada en los análisis de MS (Tabla 10 y 13) de que la CP21 es la isoenzima más abundante durante la germinación y por eso es la que se selecciona preferentemente a través de la purificación por FPLC y permite añadir un modelo en el que la CP21 durante la germinación se encontraría como un heterotetrámero 1:1 completamente desfosforilado (Fig. 62). El hecho de que esté desfosforilada está de acuerdo en parte con los datos obtenidos por MS (Tabla 10) que indican que la subunidad p107 es la única de las isoenzimas que aparece desfosforilada. Sin embargo, p110-CP21 sí aparece fosforilada en los análisis de MS (Tabla 10) indicando la existencia de las dos conformaciones de CP21: como un heterotetrámero fosforilado en p110 (Fig. 61, CP21) o como un heterotetrámero completamente desfosforilado (Fig. 62).

Fig. 62. Conformación posible de CP21 según los datos obtenidos de fracciones purificadas por FPLC.

La PEPC purificada por FPLC pudo fosforilarse *in vitro* con las PPCKs recombinantes específicas de la PEPC y dicha fosforilación se produjo tanto en p110 como en p107 lo que demuestra que la concurrencia de las dos modificaciones postraduccionales en la misma subunidad, p110, es posible *in vitro* (Fig. 27A).

El hecho de que se hayan aislado diferentes conformaciones de PEPC CP21 a las 48 h de germinación es totalmente posible ya que como se muestra en el capítulo 5 de esta tesis la germinación de la semilla está fuertemente influenciada por la temperatura, por el estado de conservación de la semilla y por la variedad concreta, de forma que los picos de monoubiquitinación y fosforilación se adelantan y acortan dependiendo de la velocidad de germinación de la semilla. Además, nuestros resultados muestran que no siempre se da una proporción de 1:1 de p110 y p107 sino que la proporción de p110 puede ser incluso del orden de 3 veces la cantidad de p107, tal como ocurre en la fracción inmunopurificada de 48 h por cromatografía de inmunoafinidad (Fig. 44, Sypro-Red). Los datos presentados en esa figura muestran una PEPC de una composición de p110:p107 de 3:1 mostrando además una p110 altamente fosforilada en contraposición de una p107 poco abundante y pobremente fosforilada [Fig, 44A (ProQ-PPS), de acuerdo con los resultados obtenidos por MS (Tabla 10)].

Todas estas variaciones explicarían porque dos fracciones aisladas a las 48 h de imbibición muestran propiedades diferentes y ratifican los resultados presentados en el capítulo 5. La primera fracción purificada por FPLC corresponde a una germinación de semillas nuevas que fueron germinadas a temperatura ambiente del periodo de verano con noches más cálidas, en este sentido germinaron más rápidamente (observación *de visu*). Como se muestra en el capítulo 5, las semillas que germinan más rápidamente tienen adelantado el pico de monoubiquitinación y fosforilación, por lo que a las 48 h la PEPC CP21 purificada por FPLC está en fase de heterotetrámero desfosforilado. Por el contrario, la fracción inmunopurificada se obtuvo un año más tarde, en invierno, con temperaturas nocturnas más bajas y usando las mismas semillas que habían estado almacenadas en frio durante un año. Los datos obtenidos sugieren que la germinación de estas semillas fue más lenta y a las 48 horas la CP21 estaba aún altamente monoubiquitinación de 3:1 de p110 a p107 y fosforilada en la subunidad ubiquitina-da, según los resultados mostrados en la Tabla 10. Este análisis permite añadir otra nue-

va conformación de CP21 en la que nos encontraríamos un homotetrámero de p110 fosforilado y ubiquitinado, explicando los resultados de la Tabla 10. Alternativamente, también podrían producirse dímeros de CP21 monoubiquitinada y fosforilada. La conformación oligomérica *in vitro* de la PEPC de la semilla de sorgo se muestra en la Fig. 17 y es preferentemente dimérica. La Fig. 63 muestra los nuevos modelos inferidos.

Fig. 63. Conformaciones posibles de CP21. Las conformaciones se basan en los datos obtenidos por MS en Tabla 10 y en los extractos crudos de la Tabla 2 y Fig. 17. En la Fig. 17 se muestra la composición esencialmente dimérica de la PEPC en la semillas. **A,** Homotetrámero de p110 y **B,** homodímero de p110.

La existencia del tetrámero, dímero y monómero de PEPC ha sido bien documentada en la literatura atribuyéndosele actividad al tetrámero y al dímero pero no al monómero (Chollet *et al.*, 1996). Meyer y colaboradores describieron que solo el tetrámero y no el dímero era activo en los geles nativos (Meyer *et al.*, 1991), sin embargo, los resultados de la Fig. 17 muestran actividad del dímero de PEPC en geles nativos. En otros trabajos donde purificaron la PEPC de maíz mediante HPLC se vio que la enzima aparecía en su forma dimérica menos activa cuando se ensayaba a concentraciones subóptimas de Mg-PEP, sin embargo, cuando se aumentaba la concentración de sustrato aparecía el tetrámero más activo (Willeford *et al.*, 1990). También se ha observado que la PEPC adoptaba un cambio en tamaño diurno (Andreo *et al.*, 1987) y se agregaba o desagregaba bajo la influencia de diferentes ligandos y tratamientos (Podestá *et al.*, *al.*, *a* 1989; Willeford *et al.*, 1990; Willeford y Wedding, 1992). Hay diversos estudios donde se ha mostrado que la PEPC existe como un tetrámero *in vivo* cuando hay altas concentraciones de proteína (O'Leary, 1982; Andreo *et al.*, 1987; Stiborova, 1988). Finalmente, la forma preferentemente dimérica de la PEPC ha sido descrita por nuestro grupo en semillas de cebada (Feria *et al.*, 2008).

Las transiciones descritas de los modelos monoubiquitinados o fosforilados o que tienen ambas PTMs a la vez y de los modelos heterotetraméricos a homotetraméricos tanto de p107 como de p110, también han sido demostrados en las raíces con proteoides de harsh hakea y en COS (Uhrig et al., 2008b; Shane et al., 2013). En harsh hakea, se ha descrito que la PEPC heterotetramérica procedente de las raíces con proteoides inmaduros está compuesta de p107 fosforilada y de p110 monoubiquitinada (Fig. 60B). Cuando comienza la maduración de las raíces, p110 se desubiquitina y se forma un homotetrámero de p107 fosforilado sin que se especifique si esto ocurre en la misma isoenzima o en una isoenzima diferente (Shane et al., 2013). Estos cambios se acompañaron de un incremento de la V_{max} y de la afinidad por el PEP a la par que redujo su sensibilidad a los inhibidores alostéricos y aumentó la de los activadores alostéricos Glc-6-P (Shane *et al.*, 2013) de forma que los autores sugieren que estas modificaciones de la PEPC servirían para proveer un mecanismo de control metabólico sinérgico que facilitara la rápida carboxilación del PEP y así apoyar la masiva síntesis y exudación de ácidos orgánicos que tienen lugar en el metabolismo de las raíces con proteoides maduros de harsh hakea (Shane et al., 2013). La presencia de homotetrámeros de p110 ha sido también observada en el estadio 2 de la germinación de COS donde la proporción de p110:p107 es de 3:1 (Uhrig *et al.*, 2008).

Todos estos modelos podrían venir también representados por otras isoenzimas como CP28 y 4960 pero nos hemos focalizado en la isoenzima CP21 para simplificar el análisis y porque es la isoenzima más abundante durante la germinación siendo muy posible que CP28 o 4960 heterotetraméricas y fosforiladas co-existan aunque en menor cantidad con CP21 en algunos periodos de la germinación. En *Arabidopsis thaliana*, se ha sugerido que la enzima NAD-ME mitocondrial se puede originar por diferentes asociaciones de dos subunidades, cada una se regula de una forma diferente y son específicas de tejido lo que sugiere que cada posibilidad de dímero tuviera un papel diferente (Tronconi *et al.*, 2010).

Estos resultados son también compatibles con los publicados previamente por nuestro grupo que muestran que la PEPC se fosforila durante el desarrollo y la germinación en cebada (Feria *et al.*, 2008) y en la aleurona/endospermo de semillas de trigo y cebada (Osuna *et al.*, 1996, 1999; Nhiri *et al.*, 2000). En estos trabajos se muestra además la fosforilación *in vivo* de la PEPC por marcaje radiactivo de plantas con ³²P. Los resultados mostrados en la Fig. 42 muestran que p110 y p107 se obtienen marcadas radiactivamente tras la incubación de la semillas de sorgo con ³²P. Tanto en semillas de sorgo (Fig. 42) como en la aleurona/endospermo de cebada (Osuna *et al.*, 1999) se aprecia que la incorporación de ³²P afecta tanto a p110 como a p107.

Un último hecho destacable ha sido la descripción de nuevos sitios de fosforilación en las PTPCs. Está descrito que los cambios en las propiedades cinéticas de la PEPC vienen dados por la fosforilación en la Ser conservada del N-terminal llevada a cabo por las quinasas PPCKs que pertenecen a la familia de las quinasas dependientes de Ca^{2+} y/o calmodulina (Echevarría y Vidal, 2003) y a cuyo análisis nos hemos dedicado hasta ahora en esta tesis, sin embargo, el análisis por MS de la fracción inmunopurificada de UB-PEPC ha puesto de manifiesto nuevos aminoácidos fosforilados en casi todas las PTPCs (Tabla 11). En este trabajo no se ha profundizado en la posible función fisiológica, si la tienen, de estos aminoácidos fosforilados pero sí se ha realizado un análisis de si están o no conservados y si se localizan dentro de motivos de fosforilación de quinasas conocidos (Anexo 1, capítulo 3). Se destaca el correspondiente al KDIpT (pThr¹⁹⁷ de CP21) que es un motivo reconocido por la kinasa PKA (Pearson y Kemp, 1991) siendo la secuencia el motivo descrito: KXX [pS/pT]; otro motivo es el ApTP (pThr⁷³⁶ de CP21) que es reconocido por una kinasa dirigida por prolina (Luo *et al.*, 2005) siendo el motivo descrito el X[pT/pS]P y por último, también hemos encontrado el motivo conservado RLpS/pT (pSer⁶⁰⁵ de 4960 y pSer⁶⁰⁸ de CP28) que es reconocido también por una PKA siendo R/K[pS/pT] los aminoácidos que pudieran formar ese motivo (Pearson y Kemp, 1991). Éste último motivo también está muy cerca del dominio catalítico de unión al PEP. Las últimas serinas localizadas descritas (Ser⁹³³ en CP28, Ser⁹³² en 5090, Ser⁹⁴² en CP28) están muy cercanas al dominio final conservado en todas las PTPCs, el dominio QNTG, que también se ha descrito formar parte de la regulación de la enzima (Álvarez et al., 2003). La fosforilación puede tener repercusión en las propiedades de la enzima y también en la degradación de la enzima, interacción con membranas o con proteínas, de hecho, la familia de proteínas ácidas reguladoras 14-3-3,

que están muy conservadas y que existen como homodímeros mezcladas con heterodímeros en todas las células eucariotas, interaccionan con cientos de fosfoproteínas dentro de la célula regulando la actividad, localización subcelular y estabilidad de la proteína con la que interaccinan. Estos dímeros se unen a motivos conservados que tengan fosfoserinas o fosfo-treoninas (Fu *et al.*, 2000). Existen múltiples estudios de interactoma que han demostrado la importancia de estas proteínas en múltiples procesos celulares tales como en el metabolismo, trafico de proteínas, apoptosis, transducción de señales y regulación del ciclo celular (Johnson *et al.*, 2011). Sin embargo, hasta el momento no se ha encontrado ningún dominio 14-3-3 en las PTPCs (O'Leary *et al.*, 2011b) y tampoco hemos encontrado dicha proteína en nuestro estudio interactómico (Tabla 13).

5. Patrones de fosforilación de la PEPC durante el desarrollo y la germinación

Si bien el estado de fosforilación de las PTPCs purificadas de semillas embebidas 48 h a 25 °C ha sido extensamente demostrado en el análisis anterior, la obtención de los patrones de fosforilación a lo largo del desarrollo y germinación de la semilla han sido difíciles de evaluar, ya que como se muestra en la Fig. 35 los anticuerpos pSer13 mostraron una buena afinidad por el N-terminal fosforilado de CP28 pero sin embargo la afinidad por el N-terminal fosforilado de las isoenzimas CP21 y 4960 fue menor y en los extractos crudos, si bien CP21 sería la más abundante, existía una mezcla de las 3 isoenzimas (CP21, CP28 y 4960). También se han determinado los valores de IC₅₀ para el L-malato. Estos valores han servido tradicionalmente para evaluar el estado de fosforilación de la PEPC C₄ fotosintética de hojas en donde valores de IC₅₀ próximos a 1,3-1,5 y 0,3 de L-malato indican una enzima altamente y pobremente fosforilada, respectivamente. Los trabajos actuales en semillas de ricino, en las raíces proteoides (Uhrig et al., 2008; Shane et al., 2013) y los resultados obtenidos en esta tesis (Tabla 5 y Fig. 34) muestran que la monoubiquitinación altera también la afinidad de la enzima por el malato por lo que la IC_{50} se contempla como una consecuencia del balance entre estas dos modificaciones postraduccionales, fosforilación y monoubiquitinación. Sin embargo, con anticuerpos pSer13 se muestra que los valores de IC_{50} reflejan adecuadamente el estado de fosforilación de la enzima (Fig. 36 y 45). En ese sentido, los valores de IC_{50} determinados en todos los estadios de desarrollo y de la germinación muestran que las PTPCs se encontrarían preferentemente en su estado fosforilado en los estadios del I al

IV del desarrollo y a las 24-48 h de germinación en semillas germinadas a 25 °C. La IC_{50} para el L-malato ha sido también utilizada para evaluar el estado de fosforilación de diversas semillas de cereales y de ricino (Osuna et al., 1996, 1999; Nhiri et al., 2000; Feria et al., 2008; O'leary et al., 2009). La evaluación del estado de fosforilación usando los anticuerpos pSer13 revelaron un pico de fosforilación entre las 24 y 48 horas de imbibición (Fig. 37) si bien estos anticuerpos revelaron pobremente la banda p110 a pesar de que dicha banda estaba fosforilada según los resultados obtenidos en los análisis de MS (Tabla 10). Esto podría deberse a que los pSer13 estaban revelando preferentemente el estado de fosforilación de la isoenzima CP28 (Fig. 37A) y pobremente la fosforilación de CP21. Siendo así, estos resultados ponen en evidencia varios puntos de interés: i) que la isoenzima CP28 se fosforila durante la germinación con un máximo de fosforilación en semillas germinadas 48 h a 25 °C; ii) que dicha isoenzima podría ser más abundante como homotetrámero de p107 fosforilado o como heterotetrámero en el que p110 estaría pobremente fosforilada y iii) que en los estadios en los que la relación p110:p107 fuera de 3:1 (Fig. 16, embrión 48 h; Fig. 37, 48 h; Fig. 44B), CP21, que aparece como la isoenzima mas abundante, estaría preferentemente formando un homotetrámero o un homodímero de p110 fosforilado (Fig. 44A y Tabla 10). La fosforilación de las PTPCs a 48 h de germinación se evidencia también tras la incubación del extracto crudo con fosfatasa alkalina que disminuye la actividad de la PEPC determinada a pH subótimo de 7.3 (Fig. 38). La presencia de una proporción de 3:1 de p110:p107 se ha observado también en COS en el estadio II de germinación (Uhrig et al., 2008b; Fig. S1) y por lo tanto, sería posible la existencia de un homotetrámero de p110 en esta especie oleaginosa.

En el caso de las semillas en desarrollo, experimentos realizados con extractos crudos para determinar el patrón de fosforilación de la PEPC muestran que las PTPC de los estadios I y III pueden desfosforilarse por incubación con fosfatasa λ indicando que la PEPC en esos estadios de desarrollo se encuentra fosforilada (Fig. 36). Estos resultados están de acuerdo con los publicados en semillas de cebada (Feria *et al.*, 2008).

En su conjunto, los resultados presentados en esta tesis muestran que la PEPC durante el desarrollo de la semilla se encuentra monoubiquitinada en todos los estadios analizados (Fig. 30) y preferentemente fosforilada en los estadios del I al IV (Fig. 33A y Fig. 36). Este mismo patrón de fosforilación se ha descrito para la PEPC de semillas en desarrollo de ricino y cebada (Tripodi *et al.*, 2005; Feria *et al.*, 2008). Sin embargo, en
semillas de maíz (Zea mays) o de Amaranthus edulis, la PEPC almacenada en la semilla seca se encuentra fosforilada (Cerny et al., 2010; Álvarez et al., 2011) aunque en el caso del maíz no se describe el patrón de fosforilación de la PEPC del desarrollo y de la germinación por lo que la fosforilación podría ser mayor en otros estadios del ciclo de vida de la semilla. El modelo de regulación postraduccional (monoubiquitinación y fosforilación) coincide con el encontrado en semillas de cebada (Feria et al., 2008) y trigo (Osuna et al., 1996; 1999) pero difiere del modelo encontrado en semillas oleaginosas de ricino en el que la PEPC que aparece en el desarrollo de estas semillas se encuentra fosforilada en la Ser11 aunque desubiquitinada (Tripodi et al., 2005). En este sentido, se ha observado que la eliminación del flujo de fotosintatos en el desarrollo de COS provocó la desfosforilación de la Ser11 en p107 y seguidamente la monoubiquitinación in vivo de esta subunidad, indicando que la fosforilación de la PEPC durante el desarrollo así como la monoubiquitinación está fuertemente regulada por el aporte de fotosintatos (O'Leary et al., 2011a,b). En los nódulos de soja también se ha visto que la actividad PEPC quinasa disminuyó con el corte del flujo de fotosintatos y que ésta era recuperada tras la re-iluminación (Xu et al., 2003; Sullivan et al., 2004; Xu et al., 2007). La PEPC fosforilada de las semillas de cebada durante el desarrollo (11 DPA) también se desfosforila tras el corte de fotosintatos y en ellas la IC_{50} para el L-malato se redujo de 1.3 a 0.6 mM (Feria et al., 2008). En sorgo, existe un escenario similar al de cebada puesto que la PEPC disminuyó la IC_{50} para el L-malato tras el corte del flujo de fotosintatos (Fig. 39) sin embargo se detecto un aumento de la expresión de las quinasas 2 y 3, siendo significativa la diferencia a las 48 h tras el corte del flujo de fotosintatos (Fig. 41). Este resultado remarca la importante función del suplemento de fotosintatos en el mantenimiento de niveles altos de PEPC fosforilada e indicaría que el cese del flujo de fotosintatos cambiaría la reprogramación de la semilla entrando en una fase típica de la desecación con menor aporte de fotosintatos y menores niveles de fosforilación. Por el contrario la actividad PPCK aumentaría aunque estaría esencialmente inactiva in vivo. Un caso similar es el que se detecta en las semillas de cebada en la fase final del desarrollo en las que los niveles de PPCK determinados in vitro son muy altos mientras que la PEPC in vivo se encuentra esencialmente desfosforilada (Feria et al., 2008). Este conjunto de resultados muestra: i) que a diferencia del modelo de semillas de ricino y semejante al de cebada o trigo, la PEPC de semillas de sorgo se encuentra monoubiquitinada durante el desarrollo marcando una diferencia entre el modelo de regulación de la PEPC

en semillas que acumulan almidón respecto del modelo de regulación de la PEPC en semillas que acumulan aceite (ricino); ii) que dado que la PEPC se encuentra homogéneamente monoubiquitinada a lo largo del desarrollo de la semilla de sorgo los valores de IC_{50} reflejarían variaciones en el estado de fosforilación e indicarían que la PEPC se encuentra fosforilada entre los estadios I al IV, estos resultados han sido confirmados también con anticuerpos pSer13 y con la desfosforilación por fosfatasa λ y iii) que el aporte de fotosintatos al igual que en otras semillas regula el estado de fosforilación de la PEPC durante el desarrollo de la semilla de sorgo.

Finalmente, la PEPC es fosforilada por la enzima PPCK representada en el sorgo por tres isoenzimas, PPCK1, PPCK2 y PPCK3. Los estudios de transcripción de los genes PPCK muestran que los tres genes se expresaron durante el desarrollo y la germinación de la semilla aunque con patrones variables. SbPPCK1 se expresó mas al principio del desarrollo y a las 14 h de germinación relacionándose su actuación con ambas etapas activas en procesos de división y diferenciación y con la fase en que la cubierta de la semilla en desarrollo permanece verde. La expresión de SbPPCK2 fue alta al principio del desarrollo y baja hasta el estadio IV cuando termina la fase de relleno (se pierde el color verde de la cubierta) y comienza la fase de desecación. Curiosamente, la expresión de SbPPCK2 experimentó una importante subida en el estadio V coincidiendo con la desecación de la semilla y luego bajó en el estadio IV. La transcripción de este gen se mantuvo baja en la semilla seca y empezó a subir progresivamente desde las 14 h de imbibición hasta el final de la germinación (96 h). Finalmente, SbPPCK3 se mantuvo constante durante el desarrollo y la germinación de la semilla (Fig. 31 y 32). La actividad in vivo de la PPCK vendrá en última instancia determinada por la regulación de su traducción, la estabilidad de la enzima así como por los niveles de fotosintatos. La regulación de la actividad kinasa por los niveles de fotosintatos (Glu-6-P y L-malato) ha sido previamente demostrada en cebada (Feria et al., 2008) donde también se pone de manifiesto que la PPCK se degrada durante la germinación en un proceso regulado por ABA, por lo que altos niveles de transcripción serían necesarios para mantener la actividad de la enzima (Feria et al., 2008). Se ha descrito que el producto de SbPPCK2 estaría relacionado con una función anaplerótica y de transporte (Shenton et al., 2006) por lo que podría estar implicada en la síntesis de proteínas de reserva en la etapa final del desarrollo y en la síntesis de proteínas en la germinación de la semilla.

Es interesante mencionar que existen ejemplos de enzimas que necesitan fosforilarse para luego ubiquitinarse. En ese sentido, se ha visto que ciertos sustratos de ligasas de ubiquitina (E3) tienen que ser primero fosforilados antes de que la ligasa pueda ubiquitinarlos (Schnell y Hicke, 2003; O'Leary *et al.*, 2011b). También, la ubiquitinación de la enzima que cataliza el primer paso en la biosíntesis del etileno, la 1aminociclopropano-1-carboxilato sintasa (ACC sintasa), es regulada por fosforilación para mantener la estabilidad de la proteína (Kamiyoshihara *et al.*, 2010).

Finalmente, los estudios realizados en esta tesis muestran una relación estrecha entre las variaciones de IC_{50} , la fosforilación y la monoubiquitinación en semillas en germinación (datos en capítulo 5), sin embargo, es difícil concluir acerca de si estas dos modificaciones postraduccionales están estrechamente relacionadas o son simplemente coincidentes en el tiempo durante la germinación de la semilla.

6. Estudio interactómico

Dado que la monoubiquitinación puede ser también una modificación postraduccional implicada en la interacción entre proteínas, en esta tesis se ha realizado un estudio interactómico de las fracciones de UB- y DeUB-PEPC purificadas por cromatografía de inmunoafinidad con anticuerpos anti-PEPC (descrito en capítulo 4). El objetivo de estos experimentos fue resolver posibles proteínas que interaccionaran con la PEPC y a su vez resaltar si alguna de ellas tenía preferencia por la forma monoubiquitinada de la enzima. Hasta el momento, se han descrito más de 200 proteínas con al menos 20 diferentes tipos de DUBs (sitios de interacción con ubiquitina), sin embargo las uniones con dicho dominio son uniones no covalentes y difíciles de preservar en los procesos de purificación (Suryadinata et al., 2014). El análisis por MS, utilizando un analizador MALDI-QgTOF y Orbitrap de las fracciones purificadas y liofilizadas, mostró que había una gran cantidad de proteínas que copurificaban con la PEPC tanto de la fracción UB como con la DeUB (Tabla 13). Se obtuvieron del orden de unas 500 proteínas de las cuales solo se han seleccionado 100 de las que estaban más representadas y solo se han presentados los resultados del análisis por Orbitrap. La lista de proteínas co-purificadas con la PEPC se muestran en la Tabla 13 del capítulo 4 y están agrupadas por sus funciones en la planta. En primer lugar cabe destacar que en ambas fracciones obtenemos las 4 PTPC si bien CP21, de acuerdo con los datos expuestos anteriormente, fue la enzima más representada en ambas fracciones. No se obtuvo ninguna proteína que estuviera claramente y de forma exclusiva asociada a la UB-PEPC aunque en la lista de proteínas se han subrayado aquellas en las que existían diferencias en este sentido (Tabla 13). En concreto se destaca la ubiquitina, presente preferentemente en la fracción UB de la PEPC (Tabla 13, *Metabolismo de la Planta*), y una isoenzima similar a la sacarosa sintasa 3 que se asocia preferentemente con la UB-PEPC (Tabla 13, *Metabolismo de los carbohidratos*). Entre las enzimas que están representadas en ambas fracciones encontramos enzimas de gran interés como la sacarosa sintasa, enzima del tipo de gliceraldehido 3-P deshidrogenasa, la fructosa bifosfatasa aldolasa citoplasmática y la triosa fosfato isomerasa todas ellas de la ruta glucolítica (Tabla 13, *Metabolismo de los carbohidratos*) y algunas similares a enzimas del ciclo de las Pentosas fosfato y de la ruta de degradación del almidón (Tabla 13). También, se resalta la interacción con la ATPasa 1 de la mitocondria (Tabla 13, *Metabolismo energético*) y varias proteínas de estrés del tipo "heat shock proteíns" (Tabla 13, *Respuesta a estrés y defensa*).

De entre todas estas proteínas hemos seleccionado para un estudio en profundidad a la enzima SUS ya que la interacción de SUS y la PEPC ha sido previamente observada con la PEPC de clase 1 de COS y de harsh hakea (Gennidakis *et al.*, 2007; Shane *et al.*, 2013). En ese sentido nuestros resultados demuestran que en efecto SUS se reveló con los anticuerpos anti-(COS-SUS)-IgGs y estaba presente en la fracción UB-PEPC purificada por cromatografía de afinidad a una altura aproximada de 93 kDa comigrando con la SUS purificada de COS (Fig. 47A y B). Si bien en los fragmentos de PEPC localizados en la banda p90 analizada encontramos algunos aminoácidos fosforilados (todos ellos recogidos en la Tabla 10 y 11), la SUS, que está descrito que sufre fosforilación reversible (Winter y Huber, 2000; koch, 2004), se aíslo en su forma desfosforilada lo que indicaría que su interacción con la PEPC ocurría preferentemente en su estado desfosforilado (Tabla 12, *Modificaciones postraduccionales*). El resto de las interacciones no han podido ser estudiadas en esta tesis pero abren una posibilidad importante para dibujar el posible interactoma de las PTPCs durante la germinación.

Adicionalmente, se destaca de este análisis la ausencia de la PEPC fotosintética y de la BTPC. La ausencia de la primera se justifica ya que la PEPC C_4 fotosintética es exclusiva de los tejidos fotosintéticos, sin embargo, la ausencia de la BTPC es significativa, ya que indica que en efecto los anticuerpos anti PTPC no reconocen a la BTPC

pero también pone de manifiesto la ausencia de la PEPC heterooctamérica de clase 2 formada por 4PTPC:4BTPC. Este hecho ratifica los resultados mostrados en el capítulo 1 en los que se concluye que la BTPC no está presente durante la germinación (Fig. 17).

7. La monoubiquitinación y la fosforilación son eventos concomitantes y se producen en la fase de crecimiento (fase III) entre los estadios II y IV

La germinación de la semilla es muy sensible a la temperatura. En el caso del sorgo, la germinación de la semilla se produce dentro de un rango amplio de temperaturas, desde 25 a 35 °C (Kanemasu et al., 1975), si bien, las semillas embebidas a 35 °C germinan más rápidamente (Fig. 52). La mayor parte de los estudios de esta tesis se han hecho en semillas germinadas a temperatura ambiente (entre 25 y 27 °C), sin embargo, los estudios de monoubiquitinación de la PEPC son muy recientes (Uhrig et al., 2008b) y no se conoce el efecto de la temperatura u otros factores ambientales en la monoubiquitinación de la PEPC durante la germinación. En este sentido, hemos dedicado el último capítulo de esta tesis al estudio de los patrones de monoubiquitinación de la PEPC de semillas germinadas a 25 y 35 °C. También resultó de interés relacionar la monoubiquitinación con la viabilidad de las semillas y con la variedad utilizada. A tal efecto, hemos utilizado dos variedades una de reciente adquisición y de germinación rápida (PR88Y20) y otra almacenada durante un año y de germinación más lenta (PR87G57). Para estudiar la monoubiquitinación en dichas condiciones se establecieron, en el laboratorio, estadios de germinación del I al VIII siendo el estadio II el momento de rotura de la testa y emergencia de la radícula (Fig. 51). La germinación, en sentido estricto, comienza con la captación de agua (imbibición) y finaliza con la emergencia de la radícula, y se divide en tres grandes fases. La Fase I, es básicamente un proceso físico de absorción de agua. La testa u otras estructuras circundantes limitan el suministro de oxígeno lo cual crea condiciones anaerobias (hipoxia) en la semilla. En la Fase II, el contenido de agua es constante y las actividades metabólicas van incrementando junto con la transcripción de nuevos genes. En las semillas sin dormancia, además, comienza la reparación del citoesqueleto y la del ADN, y se preparan los eventos adicionales que se necesitan para la emergencia de la radícula. La Fase 2 termina con la emergencia del eje embrionario, con frecuencia, la radícula. Finalmente, en la Fase III se movilizan todas las reservas energéticas y se produce el crecimiento de la plántula. Con la rotura de la testa las condiciones aerobias también comienzan a aumentar (Bewley *et al.*, 2013). En nuestro caso, el estadio II asignado a las semillas de sorgo durante la germinación coincidiría con la Fase III, es decir, el momento de la emergencia de la radícula, cuando la Fase I y II propiamente dicha han concluido y comienza el desarrollo de la plántula asociado a la movilización masiva de reservas (Bewley *et al.*, 2013).

Los resultados encontrados muestran que la monoubiquitinación de la PEPC durante la germinación empieza en el estadio II con la rotura de la testa y la emergencia de la radícula y con la finalización de la fase de hipoxia de la semilla. La monoubiquitinación se mantuvo hasta el estadio IV y decayó en el V (cuando el epicotilo se vuelve verde). En semillas germinadas a temperaturas altas, la Fase II se acorta (Bewley et al., 2013). En ese sentido, nuestros resultados muestran que la monoubiquitinación está relacionada con la velocidad de germinación de forma que en semillas germinadas a 35 °C, ésta se adelanta y se acorta en el tiempo produciéndose un pico de p110:p107 de 3:1 (máxima monoubiquitinación) entre las 15 y 18 horas de imbibición (Fig. 54A y B) mientras que en las semillas germinadas a 25 °C la monoubiquitinación se retarda y se alarga produciéndose entre las 24 horas y las 72 horas de germinación (Fig. 53). Otro aspecto relevante detectado es que el aumento de la IC_{50} para el L-malato de la PEPC se produce de forma concomitante con la monoubiquitinación de forma que en semillas germinadas a 35 °C se produce una subida de la IC_{50} entre las 15 y 21 horas de imbibición (Fig. 56). Además, en la variedad de germinación más lenta estos máximos se desplazan ligeramente de acuerdo con la germinación más lenta de esta variedad (Fig. 56B). En este sentido y puesto que los valores altos de IC_{50} están normalmente relacionados con niveles altos de fosforilación de la enzima se evaluaron los niveles de fosforilación con anticuerpos pSer13 mostrándose que la fosforilación de la PEPC de las semillas germinadas a 35 °C también se adelanta, comenzando a las 9 h y siendo máxima entre la 15 y 18 h de imbibición, coincidiendo con los máximos de monoubiquitinación (Fig. 57).

Finalmente, se analizaron por separados semillas embebidas 24 h que no habían germinado de las que sí, mostrándose que la monoubiquitinación es un evento ligado a la viabilidad de la semilla no produciéndose esta PTM en semillas de sorgo que no germinaron, es decir, que no superaron la Fase II (Fig. 59).

En su conjunto estos resultados ponen de manifiesto que: i) la monoubiquitinación en la semilla de sorgo es un proceso que se produce desde el estadio II al IV, ligada a la finalización de la fase de hipoxia, comienzo de la respiración aerobia, fase de diferenciación de los tejidos embrionarios y donde cobra importancia la movilización de las reservas energéticas del endospermo, es decir, la Fase III definida por Bewley *et al.*, 2013; ii) que la fosforilación de la PEPC se produce de forma concomitante con la ubiquitinación, al menos en las condiciones estudiadas y que iii) la combinación de ambas modificaciones postraduccionales da como resultado una desensibilización de la enzima a su efector L-malato.

8. Las isoenzimas de PEPC durante el ciclo de vida de la semilla

Además de la función anaplerótica de la PEPC y de la utilización del malato como sustrato para la respiración (Chollet et al., 1996, Echevarría y Vidal, 2003 O'Leary et al., 2009), la PEPC está implicada en la acidificación del endospermo (Drozdowicz y Jones, 1995) para la movilización de reservas, y en el transporte de aminoácidos a través del epitelio del escutelo (González et al., 1998). La pregunta es ¿cómo afronta la PEPC tal diversidad de funciones?. Los resultados de esta tesis mostraron que durante el desarrollo y germinación de la semilla se expresan diferentes genes de PEPC (CP21, CP28, 4960) de los cuales todos se traducen a proteínas siendo la más representada la isoenzima CP21 a lo largo de toda la germinación, y las isoenzimas CP28 y 4060 en momentos más concretos del desarrollo y la germinación. Los estudios de proteómica revelaron también la presencia de la isoenzima 5090 aunque estaba poco representada y cuyos transcritos no se detectaron. En cuanto a la composición oligomérica de dichas isoenzimas así como de las modificaciones postraduccionales que sufren a lo largo del desarrollo y la germinación se presentan diversos modelos inferidos de los resultados de esta tesis. Esta versatilidad de isoenzimas y modelos están en la base de la versatilidad de funciones que lleva a cabo la enzima en el metabolismo general de la planta, y que se evidencian también en el ciclo de vida de la semilla.

Ha sido un reto durante el trabajo de esta tesis asignar a cada isoenzima un función concreta, si bien no siempre ha sido posible, si que emergen puntos de interés de los que se resaltan la función primordial de la isoenzima CP21 como la más representada a lo largo de todo el ciclo vital. En concreto, durante la germinación sería una enzima inducible que responde al suministro de compuestos nitrogenados procedentes del endospermo e implicada fundamentalmente en la función anaplerótica durante los procesos de diferenciación y desarrollo de los nuevos órganos de la planta. Los resultados presentados en esta tesis sugieren que si bien tanto CP21, como CP28 y 4960 se monoubiquitinan (Tabla 10) es posible que el aumento de la relación p110:p107 a 3:1 observada en los picos de monoubiquitinación se deba fundamentalmente a CP21 que además de en su forma heterotetramérica de p110:p107 1:1, podría encontrarse en forma homotetramérica de p110 o bien en forma dimérica de p110, ya que la forma dimérica es la forma preferente in vitro de la PEPC en la semilla (Fig. 17 y Feria et al., 2008). CP28 es muy constante a lo largo del desarrollo y tiene un pico de expresión a 48 h de germinación, sin embargo, es la enzima que responde con un incremento significativo al corte de flujo de fotosintatos (Fig. 40), por lo que su función podría estar relacionada con el suministro de malato para la respiración y reciclaje de CO₂ en la fase de maduración de la semilla, y a lo largo de la germinación. Finalmente, 4960 tendría un papel importante en la fase temprana del desarrollo, en concreto, en la fase de celularización y fase temprana de diferenciación (Bosnes et al., 1992)

VI. CONCLUSIONES-CONCLUSIONS

1. Tanto en el desarrollo como en la germinación, se observan transcritos para tres genes *PTPC* de tipo C₃: *CP21*, *CP28* y 4960. Todos ellos son traducidos a proteínas y co-existen en el citoplasma de la célula, sin embargo, la isoenzima CP21 es la más abundante y la que se purifica preferentemente en estado heterotetramérico a las 48 h de germinación a 25 °C.

2. Los mayores valores de actividad PEPC en la semilla determinada a pH óptimo se encuentran en el desarrollo, siendo máximos en el estadio III. En la germinación, la actividad va aumentando alcanzando un máximo a las 72-96 horas, sin embargo, en la aleurona-endospermo la actividad es menor que en los embriones y es constante a lo largo de todo el proceso germinativo.

3. Existe expresión de las 3 quinasas de sorgo: SbPPCK1, SbPPCK2 y SbPPCK3 y todas ellas tienen niveles de expresión similares a la expresión de las quinasas de hojas en oscuridad. La SbPPCK1 y SbPPCK2 tiene un patrón de expresión variable a lo largo del desarrollo y la germinación mientras que SbPPCK3 se mantiene constante a lo largo de los dos procesos.

4. Todas las PTPCs se fosforilan *in vivo* en la serina consenso localizada en el Nterminal. Durante el desarrollo se fosforilan en los primeros estadios : I, II, III y IV y posteriormente la enzima se desfosforila llegando a la semilla seca en el estado de enzima desfosforilada. En los embriones germinados a 25 °C, la fosforilación aumenta hasta alcanzar los valores máximos a las 48 h.

5. A las 24 h de imbibición de la semilla, la PEPC se localiza en la mayoría de los tejidos que tienen una alta actividad metabólica (epicotilo, radícula, aleurona, escutelo y en el epitelio del escutelo).

6. Mediante FPLC se purifica como enzima más abundante a las 48 h en semillas germinadas a 25 °C a la isoenzima PEPC CP21. Esta enzima se encuentra formando un heterotetrámero *in vivo* de unos 460 kDa y está compuesta de un ratio 1:1 de p110:p107, ambas subunidades están desfosforiladas y p110 es la versión monoubiquitinada de p107. La Ub-PEPC tiene una IC_{50} menor para el L-málico que la enzima desubiquitinada, por lo que la monoubiquitinación es reguladora en la enzima.

7. La monoubiquitinación se demuestra en la germinación mostrando un incremento en el ratio p110:p107 conforme avanzan las horas de imbibición, y ha sido localizada mediante MS en la Lys624 y Lys630 de CP21 y CP28, respectivamente. Este residuo de lisina está altamente conservado en todas las PTPCs y está cerca del dominio catalítico/unión al PEP. Se describe también esta PTMs durante el desarrollo

de la semilla, siendo el sorgo la primera especie en la que se describe la monoubiquitinación durante este proceso.

8. La fosforilación y la monoubiquitinación *in vivo* de la PEPC ocurren simultáneamente en la misma subunidad, en p110 de CP21 y CP28. Estas dos PTMs podrían estar combinándose para ajustar el flujo de carbono por la vía anaplerótica dependiendo de los requerimientos fisiológicos de la célula y de esta forma apoyar la biosíntesis de intermediarios de los ácidos tricarboxílicos y las interacciones carbono-nitrógeno.

9. Se han descrito nuevos sitios de fosforilación en serinas, treoninas y tirosinas, muchos de ellos están muy conservados entre las distintas PTPCs de diferentes especies por lo que seguramente tendrán una repercusión fisiológica importante en la enzima.

10. La PEPC interacciona con SUS y esta interacción no es dependiente de la fosforilación de SUS. La PEPC no interacciona con la SUS a través de un dominio de unión a ubiquitina.

11. La germinación y la monoubiquitinación de la PEPC están relacionadas, produciéndose un pico en la monoubiquitinación (con alta relación de p110:p107) en el estadio II de imbibición, donde se produce la emergencia de la radícula, y termina en el estadio IV, que marca el enverdecimiento del epicótilo. La velocidad de germinación y la aparición/duración de la monoubiquitinación están relacionados en el sentido de que a una velocidad de germinación mayor el pico de monoubiquitinación se adelanta y se acorta.

1. Transcripts of three C₃ PEPC genes are detected in sorghum seeds (*Sorghum bicolor*) during development and germination. The three genes, namely: *CP21*, *CP28* and 4960 are all translated into proteins, collectively co-existing within the cytoplasm. However, CP21 is mainly purified as a heterotetramer (p110:p107) after 48 h of germination at 25 °C.

2. The highest PEPC activity values at pH 8.0 correspond to developing seeds, with a maximum rate at stage III. During grain germination, PEPC activity increases until reaching a maximum rate after 72-96 h post-imbibition in the embryo, while the activity detected in the aleurone/endosperm tissues is lower compared to that of the embryo with no significant variation evidenced.

3. The three *PPCKs* genes are expressed in seeds: Sb*PPCK1*, Sb*PPCK2*, and Sb*PPCK3*. The level of expression of these genes is similar to that found in sorghum leaves in the dark. The levels of the Sb*PPCK1* and Sb*PPCK2* transcripts manifest specific and different expression patterns during development and germination, while the expression of the Sb*PPCK3* transcripts remains constant.

4. All of these PTPCs are phosphorylated *in vivo* at their conserved N-terminal phosphorylation site. During the first stages of development (I, II, III and IV) PTPCs are phosphorylated, thereafter PTPCs phosphorylation decreases from stage IV onwards until reaching the phase of dry seed, when PTPCs are dephosphorylated. In embryos derived from seeds that were germinating at 25 °C, PTPCs phosphorylation rises reaching a phosphorylation peak following 48 h after imbibition.

5. PEPC is immunolocalized in tissues characterized by high metabolic activities after 24 h post-imbibition in germinating grains (epicotyl, radicle, aleurone layer, scutellum, scutellum's epithelium).

6. CP21 PEPC from germinating seeds at 25 °C was purified by FPLC and was found to be the most abundant enzyme. The native 460 kDa PEPC exists as a nonphosphorylated heterotetramer composed of an equivalent ratio (1:1) of p110 and p107 subunits, p110 being a monoubiquitinated version of p107. The UB-PEPC displays a lower IC_{50} for L-malate relative to the deUB-PEPC. These results clearly establish that PEPC is subjected to regulatory monoubiquitination.

7. The ratio of p110:p107 increases during sorghum germination. Monoubiquitination of the CP21 and CP28 genes is localized by way of MS at Lys624 and Lys630, respectively. The lysine residues are absolutely conserved in all plant PTPCs (plant-type PEPCs) and are proximal to the PEP-binding/catalytic domain. We hereby describe, for the first time, the PEPC monoubiquitination during seed development.

8. The same p110 subunit can be simultaneously phosphorylated and monoubiquitinated *in vivo*. The results prove that PEPC's post-translational modifications (monoubiquitination & phosphorylation) are combined to fine-tune the anaplerotic carbon flux according to the cell's immediate physiological requirements with regard to the tricarboxylic acid cycle intermediates needed to support overall biosynthesis and carbon–nitrogen interactions.

9. New phosphorylation sites at serines, threonines and tyrosines have been identified. Many of these sites are conserved in PEPCs of different plant species, and this could indicate that these phosphor-aminoacids have an important physiological role in these enzyme groups.

10. PEPC interacts with SUS, and the interaction does not depend on the SUS phosphorylation state. The results here reveal that PEPC does not interact with SUS by means of the ubiquitin binding domain.

11. Germination and PEPC monoubiquitination are tightly interrelated. At the beginning of germination from stage II (end of anoxia) to IV, a "monoubiquitination peak" (where the ratio of p110/p107 is highest) is observed. Germination velocity and the appearance/duration of the monoubiquitination are linked, since for more rapidly germinating seeds the PEPC monoubiquitination peak occurs earlier and the time taken is reduced.

VII. BIBLIOGRAFÍA

- **Abdul-Baki, A.A.** (1974). Pitfalls in using sodium hipochloride as seed disinfectant in ¹⁴C incorporation studies. Plant Physiol **53**: 768–771.
- Agetsuma, M., Furumoto, T., Yanagisawa, S., Izui, K. (2005). The Arabidopsis thaliana ubiquitin-proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C₄ photosynthesis. Plant Cell Physiol 46: 389–398.
- Alexander, R.D., Morris, P.C. (2006). A proteomic analysis of 14:3:3 binding proteins from developing barley grains. Proteomics 6:1886–96.
- Álvarez, R., Gandullo, J., Feria, A.B., Dever, L.V, Vidal, J., Echevarría, C. (2011). Characterisation of seeds of a C₄ phosphoenolpyruvate carboxylase-deficient mutant of *Amaranthus edulis*. Plant Biol 13: 16–21.
- **Álvarez, R., García-Mauriño, S., Feria, A.B., Vidal, J., Echevarría, C**. (2003). A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the *in vitro* phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. Plant Physiol **132**: 1097–1106.
- Angelovici, R., Galili, G., Fernie, A.R., Fait, A. (2010). Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15: 211–218.
- Andreo, C.S., González, D.H., Iglesias, A.A. (1987). Higher plant phosphoenolpyruvate carboxylase, structure and regulation. FEBS Lett **213**: 1–8.
- Araus, J.L., Bort, J., Brown, R.H., Bassett, C.L., Cortadellas, N. (1993). Inmunocytochemical localization of phosphoenolpyruvate carboxylase and photosynthesis gas-exchange characteristics in ears of *Triticum aestivum* Desf. Planta 191: 507–514.
- Arrio-Dupont, M., Bakrim, N., Echevarria, C., Gadal, P., LeMaréchal, P., Vidal, J. (1992). Compared properties of phosphoenolpyruvate carboxylase from dark– and light–adapted *Sorghum* leaves: Use of a rapid purification technique by immunochromatography. Plant Sci 81: 7–46.

- Athenstaedt, K., Daum, G. (1999). Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem 266: 1–16.
- Azcón-Bieto, J., Talón, M. (2008). Fundamentos de Fisiología Vegetal. Ed. Mc Graw Hill. Madrid. España.
- Bailly, C., El-Maarouf–Bouteau, H., Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331: 806–814.
- Bakrim, N., Echevarria, C., Cretin, C., Arrio-Dupont, M., Pierre, J.N., Vidal, J., Chollet, R., Gadal, P. (1992). Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade. Eur J Biochem 204: 821–830.
- Bakrim, N., Brulfert, J., Vidal, J., Chollet, R. (2001). Phosphoenolpyruvate carboxylase kinase is controlled by a similar signaling cascade in CAM and C₄ Plants. Biochem. Biophys Res Comm 286: 1158-1162.
- Bakrim, N., Nhiri, M., Pierre, J., Vidal, J. (1998). Metabolite control of Sorghum C₄ phosphoenol pyruvate carboxylase catalytic activity and phosphorylation state. 58: 153–162.
- Bandurski, R.S., Greiner, C.M. (1953). The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J. Biol. Chem 204: 781–786.
- Barba-Espín, G., Diaz-Vivancos, P., Job, D., Belghazi, M., Job, C., Hernández, J.A. (2011). Understanding the role of H₂O₂ during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919.
- Barceló, J., Nicolás, G., Sabater, B., Sánchez, R. (2001). Fisiología Vegetal. Ed.Pirámide, Madrid, Spain.
- Ben-Zioni, A., Vaadia, Y., Lips, S.H. (1970). Correlations between nitrate reduction, protein synthesis and malate accumulation. Physiol Plant 23: 1039-1047.

- Besnard, G., Pincon, G., D'Hont, A., Hoarau, J.Y., Cadet, F., Offmann, B. (2003). Characterisation of the phosphoenolpyruvate carboxylase gene family in sugarcane (*Saccharum* spp.). Theor Appl Genet 107: 470–478.
- Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell 9: 1055–1066.
- Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H. (2013) Seeds: Physiology of Development, Germination and Dormancy, 3rd edn. New York, NY: Springer.
- **Bjorkhan, O.** (1976). Adaptative and genetic aspects of C₄ photosynthesis. CO₂ Metabolism and Plant Productivity. Ed. University Park Press, Baltimore, United Kindom 287–309.
- Blanke, M.M., Lenz F. (1989). Fruit photosynthesis. Plant Cell Environ. 12: 31–46.
- Bläsing, O.E., Westhoff, P., Svensson, P. (2000). Evolution of the C₄ phosphoenolpyruvate carboxylase in *Flaveria*, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C₄-specific characteristics. J Biol Chem 275: 27917–27923.
- Blonde, J.D., Plaxton, W.C. (2003). Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm of developing castor oil seeds. J Biol Chem 278: 11867–11873.
- **Borland, A.M., Taybi, T.** (2004). Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J Exp Bot **55**: 1255–1265.
- Bosnes, M., Wideman, F., Olsen, O.A. (1992). Endorperm differentiation in barley wild-type and sex mutants. Plant J 2:661-674.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
- Braun, S., Madhani, H.D. (2012). Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep. 13: 619–630.

- Buchanan, B.B., Gruissem, W., Jones, R.L. (2001). Biochemistry and Molecular Biology of Plants. Ed. American Society of Plant Physiologists, Rockville (Maryland). United States.
- Budde, R.J.A., Chollet, R. (1986). *In vitro* phosphorylation of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol 82: 1107–1114.
- **Caballero, A.** (1981). Eficiencia fotosintética y producción. Productividad vegetal. Ed. Universidad Complutense, Madrid.
- **Caballero, A., Gil, F., Berbel, M.** (1977). La productividad en prados mediterráneos. Investigación y Ciencia **6:** 83–97.
- Carter, P.J., Nimmo, H.G., Fewson, C.A., Wilkins, M.B. (1990). Bryophillum fedschenkoi protein phosphatase type 2A can dephosphorylate phosphoenolpyruvate carboxylase. FEBS Lett 263: 233–236.
- **Casati, P., Lara, M.V., Andreo, C.S.** (2000). Induction of a C₄-like mechanism of CO₂ fixation in *Egeria densa*, a submersed aquatic species. Plant Physiol **123**: 1611–1622.
- Cejudo, F.J, Cubo, M.T, Baulcombe, D.C. (1995). Amy1 expression during wheat seed germination. Plant Sci 106: 207–213.
- Cerny, M., Doubnerová, V., Müller, K., Ryšlavá, H. (2010). Characterization of phosphoenolpyruvate carboxylase from mature maize seeds: Properties of phosphorylated and dephosphorylated forms. Biochemistry. 92: 1362–1370.
- Champigny, M.L., Foyer, C. (1992). Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis: basis for a new concept. Plant Physiol 100: 7-12.
- Chardot, T.P., Wedding, R.T. (1992). Role of cysteine in activation and allosteric regulation of maize phosphoenolpyruvate carboxylase. Plant Physiol 129: 469–485.

- **Chen, Z.H., Jenkins, G.I., Nimmo, H.G.** (2008). pH and carbon supply control the expression of phosphoenolpyruvate carboxylase kinase genes in Arabidopsis thaliana. Plant Cell Environ **31:**1844–1850.
- Chollet, R., Vidal, J., O'Leary, M.H. (1996). Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 273–298.
- Christin, P.A., Arakaki, M., Osborne, C.P., Bräutigam, A., Sage, R.F., Hibberd, J.M., Kelly, S., Covshoff, S., Wong, G.K.-S., Hancock, L., Edwards, E.J. (2014). Shared origins of a key enzyme during the evolution of C₄ and CAM metabolism. J Exp Bot 65: 3609–3621.
- **Cockburn, W.** (1985). Variation in photosynthetic acid metabolism vascular plants: CAM and related phenomena. New Phytologist **101:** 3–24.
- Colorado, P., Nicolás, G., Rodríguez, D. (1995). Convergent effects of stress and ABA on gene expression during germination of chick-pea seeds. J. Plant Physiol 146: 535–540.
- **Corbineau, F., Côme, D.** (1992). Germination of sunflower seeds and its regulation by ethylene. In: "Advances in the Science and Technology of Seeds" (Jiarui F., Khan AA. eds). Science Press, Beijing, 277–287.
- **Corbineau, F., Côme, D.** (1995). Control of seed germination and dormancy by gaseous environment. En: "Seed Development and Germination" (Kigel j., Galili G. eds.) Marcel Dekker Inc., New York, 397–424.
- **Coursol, S., Giglioli–Guivarc'h, N., Vidal, J., Pierre, J.N.** (2000). An increase in phosphoinositide-specific phospholipase C activity precedes induction of C₄ phosphoenolpyruvate carboxylase phosphorylation in illuminated and NH₄Cl-treated protoplasts from *Digitaria sanguinalis*. Plant J **23**: 497–506.
- Crétin, C., Keryer, E., Tagu, D., Lepiniec, L., Vidal, J., Gadal, P. (1990). Complete cDNA sequence of sorghum phosphoenolpyruvate carboxylase involved in C₄ photosynthesis. Nucl Acids Res 18: 658.

- Crowley, V., Gennidakis, S., Plaxton, W.C. (2005). *In vitro* proteolysis of phosphoenolpyruvate carboxylase from developing castor oil seeds by an endogenous thiol endopeptidase. Plant Cell Physiol **46**: 1855–1862.
- Cushman, J.C., Bohnert, H.J. (1999). Crassulacean acid metabolism: molecular genetics. Annu. Rev. Plant Physiol Plant Mol. Biol. 50: 305–332.
- Dalziel, K.J., O'Leary, B., Brikis, C., Rao, S.K., She, Y., Cyr, T., Plaxton, W.C. (2012). The bacterial type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to *in vivo* regulatory phosphorylation at serine-451. FEBS Lett 586: 1049–1054.
- Denecke, M., Schulz, M., Fischer, C., Schnabl, H. (1993). Partial purification and characterization of stomatal phosphoenolpyruvate carboxylase from *Vicia faba*. Physiol Plant 87: 1996–2012.
- **Den Hartog, M., Musgrave, A., Munnik, T.** (2001). Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J **25**: 55–65.
- Den Hartog, M., Verhoef, N., Munnik, T. (2003). Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol 132: 311–317.
- De Nisi, P., Zocchi, G. (2000). Phosphoenolpyruvate carboxylase in cucumber *Cucumis sativus* L. roots under iron deficiency, activity and kinetic characterization. J Exp Bot 51: 1903–1909.
- Dever, L.V., Blackwell, R.D., Fullwood, N.J., Lacuesta, M., Leegood, R.C., Onek, L.A., Pearson, M., Lea, P.J. (1995). The isolation and characterization of mutants of the C₄ photosynthetic pathway. J Exp Bot 46: 1363–1376.
- Díaz-Vivancos, P., Barba-Espín, G., Hernández, J.A. (2013). Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32:1491–1502.

- Domínguez, F., Cejudo, F.J. (1999). Patterns of starchy endosperm acidification and protease gene expression in wheat grains following germination. Plant Physiol 119: 81–88.
- Dong, L.Y., Masuda, T., Kawamura, T., Hata, S., Izui, K. (1998). Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from *Zea mays*: comparison with the C₄-form enzyme. Plant Cell Physiol **39**: 865–873.
- **Downes, B., Vierstra, R.D.** (2005). Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem. Soc Trans **33**: 393–399.
- **Drozdowickz, Y.M., Jones, R.L.** (1995). Hormonal regulation of organic and phosphoric acid release by barley aleurone layers and scutella. Plant Physiol **108**: 769–776.
- Du, Z., Aghoram, K., Outlaw, W.H., Jr. (1997). In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid. Arch Biochem Biophys 337: 345–350.
- **Duff, S.M.G., Chollet, R.** (1995). *In-vivo* regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation. Plant Physiol **107**: 775–782.
- Dure, L.S., Crouch, M., Harada, J., Ho, T.H.D., Mundy, J., Quatrano, R., Thomas,
 T., Sung, Z.R. (1989). Common aminoacid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12: 475–486.
- Earp, C.F., McDonough, C.M., Rooney, L.W. (2004). Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. J Cereal Sci 39: 21–27.
- Echevarría, C., García–Mauriño, S., Alvarez, R., Soler, A., Vidal, J. (2001). Salt stress increases the Ca²⁺-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum plants. Planta **214**: 283–287.
- Echevarría, C., Pacquit, V., Bakrim, N., Osuna, L., Delgado, B., Arrio-Dupont, M.,
 Vidal, J. (1994). The effect of pH on the covalent and metabolic control of C₄
 phosphoenolpyruvate carboxylase from Sorghum leaf. Arch Biochem Biophys
 315: 425–430.

- Echevarría, C., Vidal, J. (2003). The unique phosphoenolpyruvate carboxylase kinase. Plant Physiol Biochem 4: 541–547.
- Echevarría, C., Vidal, J., Jiao, J.A., Chollet, R. (1990). Reversible light activation of the phosphoenolpyruvate carboxylase protein–serine kinase in maize leaves. FEBS Lett 275: 25–28.
- Edwards, G., Furbank, R.T., Hatch, M.D., Osmond, C.B. (2001). What does it take to be C₄? Lessons from the evolution of C₄ photosynthesis. Plant Physiol 125: 46– 49.
- **Ehleringer, J., Pearcy, R.W.** (1983). Variation in quantum yield for CO₂ uptake among C₃ and C₄ plants. Plant Physiol **73**: 555–559.
- Ermolova, N.V., Cushman, M., Taybi, T., Condon, S.A., Cushman, J.C., Chollet,
 R. (2003). Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced *Mesembryanthemum crystallinum* with enhanced solubility in *Escherichia coli*. Protein Expr Purif 29: 123–131.
- Ettema, J.G., MaKarova, K.S., Jellema, G.L., Gierman, H.J., Koonin, E.V., Huynen, M.A., de Vos, W.M., van der Oost, J. (2004). Identification and functional verification of Archaeal-type phosphoenolpyruvate carboxylase, a missing link in Archaeal central carbohydrate metabolism. J Bacteriol 186: 7754– 7762.
- Feria, A.B., Álvarez, R., Cochereau, L., Vidal, J., García–Mauriño, S., Echevarría, C. (2008). Regulation of phophoenolpyruvate carboxylase phophorylation by metabolites and abscisic acid during the development and germination of barley seeds. Plant Physiol 148: 761–774.
- Finch–Savage, W.E., Leubner–Metzger, G. (2006). Seed dormancy and the control of germination. New Phytol 171:501–523.
- Finkelstein, R. (2013). Abscisic Acid synthesis and response. Arabidopsis Book 11: e0166.

- Finkelstein, R.R., Gampala, S.S.L., Rock, C.D. (2002). Abscisic acid signaling in seeds and seedling. Plant Cell 14: S15–S45.
- Finkelstein, R., Reeves, W., Ariizumi, T., Steber, C. (2008). Molecular aspect of seed dormancy. Ann Rev Plant Biol 59: 387–415.
- Fontaine, V., Hartwell, G., Jenkins, H.G., Nimmo, H.G. (2002). Arabidopsis thaliana contains two phosphoenolpyruvate carboxylase kinase genes with different expression pattern. Plant Cell Environ 25: 115–122.
- Fu, H., Subramanian, R.R., Masters, S.C. (2000). 14-3-3 proteins: Structure, function, and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.
- Fujita, N., Miwa, T., Ishijima, S., Izui, K., Katsuki, H. (1984). The primary structure or phosphoenolpyruvate carboxylase of *Escherichia coli*. Nucleotide sequence of the *ppc* gene and deduced amino acid sequence. J Biochem 95: 909–916.
- Fukayama, H., Tamai, T., Taniguchi, Y., Sullivan, S., Miyao, M., Nimmo, H.G. (2006). Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Plant J 47: 258–268.
- Furumoto, T., Izui, K., Quinn, V., Furbank, R. T., von Caemmerer, S. (2007). Phosphorylation of phosphoenolpyruvate carboxylase is not essential for high photosynthetic rates in the C₄ species *Flaveria bidentis*. Plant Physiol 144: 1936– 1945.
- Gadal, P., Pacquit, V., Giglioli, N., Bui, V.L., Pierre, J.N., Echevarría, C., Vidal, J. (1996). The role of PEPC phosphorylation in the regulation of C₄ photosynthesis. Protein phosphorylation in plants. Ed. The Phytochemical Society of Europe, Claredon Press, Oxford, Inglaterra pp 53–64.
- García-Agustín, P., Primo-Millo, E. (1993). Germinación de las semillas. Fisiología Vegetal. Ed. Interamericana McGraw-Hill. Madrid, 419–433.
- Gennidakis, S., Rao, S., Greenham, K., Uhrig, R.G., O'Leary, B., Snedden, W. a, Lu, C., Plaxton, W.C. (2007). Bacterial- and plant-type phosphoenolpyruvate

carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds. Plant J **52**: 839–49.

- Giglioli-Guivarc'h, N., Pierre, J.N., Brown, S., Chollet, R., Vidal, J., Gadal, P. (1996). The light-dependent transduction pathway controlling the regulatory phosphorylation of C₄-phosphoenolpyruvate carboxylase in protoplasts from *Digitaria sanguinalis*. Plant Cell 8: 573–586.
- Gil, F. (1995). Fotosíntesis C₄. Elementos de Fisiología Vegetal. Ed. Mundi-Prensa. Madrid. 627–666.
- **Gil, F., Caballero, A., Guadilla, D.** (1978). Efectos del nitrato y del amonio en la producción estacional de Lolium perenne. 2ª parte. III Reunión S.E.F.V. Granada.
- **Giordano, M.** (2001). Interactions between C and N metabolism in *Dunaliella salina* cells cultured at elevated CO₂ and high N concentrations. Plant Physiol **158**: 577-581.
- González, M.C., Echevarría, C., Vidal, J., Cejudo, F.J. (2002). Isolation and characterization of a wheat phosphoenolpyruvate carboxilase gene. Modelling of the encoded protein. Plant Sci 162: 233–238.
- González, M.C., Osuna, L., Echevarría, C., Vidal, J., Cejudo, F.J. (1998). Expression and localization of phosphoenolpyruvatte carboxylase in developing and germinating wheat grains. Plant Physiol **116**: 1249–1258.
- González, M.C., Sánchez, R., Cejudo, F.J. (2003). Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta **216**: 985–992.
- Gousset-Dupont, A., Lebouteiller, B., Monreal, J., Echevarría, C., Pierre, J.N., Hodges, M., Vidal, J. (2005). Metabolite and post-translational control of phosphoenolpyruvate carboxylase from leaves and mesophyll cell protoplasts of *Arabidopsis thaliana*. Plant Sci 169: 1096–1101.
- Gregory, A.L., Hurley, B.A., Tran, H.T., Valentine, A.J., She, Y.M., Knowles, V.L.,Plaxton, W.C. (2009). *In vivo* regulatory phosphorylation of the

phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved *Arabidopsis thaliana*. Biochem J **420**: 57–65.

- Griffiths, H. (1988). Carbon balance during CAM: an assessment of respiratory CO₂ recycling in the epiphytic bromeliads *Aechmea nudicaulis* and *Aechmea fendleri*.
 Plant Cell Environ 11: 603–611.
- Griffiths, H., Ong, B.L., Avadhani, P.N., Goh, C.J. (1989). Recycling of respiratory CO₂ during Crassulacean acid metabolism: alleviation of photoinhibition in *Pyrrosia piloselloides*. Planta 179: 115–122.
- Guidici-Orticioni, M.T., Vidal, J., Le Maréchal, P., Thomas, M., Gadal, P., Rémy,
 R. (1988). *In vivo* phosphorylation of *Sorghum* leaf phosphoenolpyruvate carboxylase. Biochimie 70: 769–772.
- Guillet, C., Just, D., Benard, N., Destrac-Irvine, A., Baldet, P., Hernould, M., Causse, M., Raymond, P., Rothan, C. (2002) A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta 214: 717–726.
- **Guralnick, L.J., Jackson, M.D.** (2001). The occurrence and phylogenetics of Crassulacean acid metabolism in the *Portulacaceae*. Int J Plant Sci **162**: 257–262.
- Haberlandt, G. (1884). Physiological plant anatomy. MacMillan 1914. London, United Kingdom.
- Halayko, A.J., Hill, R.D., Svensson, L. (1986). Characterisation of the interaction of barley α-amylase II with and endogenous α-amylase inhibitor from barley kernels. Biochim. Biophys Acta 873: 92–101.
- Hamabata, A., García-Maya, M., Romero, T., Bernal-Lugo, I. (1988). Kinetics of the acidification capacity of aleurone layers and its effect upon solubilisation of reserve substances from starchy endorperm of wheat. Plant Physiol 86: 643–644.
- Hardy, D.J., Payne, J.W. (1991). Analysis of peptide carrier in the scutellum of barley embryos in photoaffinity labelling. Planta 186: 44–51.

- Hartwell, J., Gill, A., Nimmo, G.A., Wilkins, M.B., Jenkins, G.I., Nimmo, H.G. (1999). Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20: 333–342.
- Hartwell, J., Smith, L.H., Wilkins, M.B., Jenkins, G.L., Nimmo, H.G. (1996). Higher plants phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10: 1071– 1078.
- **Hatch, M.D.** (1987). C₄ photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta. **895:** 81–106.
- Hatch, M.D. (1992). C₄ photosynthesis: an unlikely process full of surprises. Plant Cell Physiol 33: 333–342.
- Hatch, M.D., Slack, C.R. (1970). Photosynthetic CO₂ fixation pathway. Ann Rev Plant Physiol **21**: 141–162.
- Hennen-Bierwagen, T.A, Lin, Q., Grimaud, F., Planchot, V., Keeling, P.L., James, M.G., Myers, A.M. (2009). Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541– 59.
- **Herppich, W., Herppich, M., Von Willert D.J.** (1992). The irreversible C₃ to CAM shift in well-watered and salt-stressed plants of *Mesembryanthemum crystallinum* is under strict ontogenetic control. Bot. Acta **105**: 34–40.
- Hershko, A., Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem. 67: 425–479.
- Hicke, L., Schubert, H.L., Hill, C.P. (2005). Ubiquitin-binding domains. Nat. Rev. Mol Cell Biol 6: 610–21.
- Hilhorst, H.W.M. (1995). A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res 5: 61–73.

- Hill, A.T., Ying, S., Plaxton, W.C. (2014). Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a Ca²⁺-dependent protein kinase suggests a link between Ca²⁺ signalling and anaplerotic pathway control in developing castor oil seeds. Biochem. J 458: 109–18.
- Hoad, GV. (1995). Transport of hormones in the phloem of higher plants. Plant Growth Regul 16: 173–182.
- Holdsworth, M., Lenton, J., Flintham, JE., Kurup, S., Mckibbin, R., Bailey, P., Larner, V., Russel L. (2001). Genetic control mechanisms regulating the initiation of germination. J Plant Physiol 158: 439–445.
- Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker– Simmons, K., Zhu, J.K., Harmon, A.C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132: 666–680.
- Hua, Z., Vierstra, R.D. (2011). The Cullin-RING ubiquitina-protein ligases. Annu Rev Plant Biol 62: 299–334.
- Huppe, H.C., Turpin, D.H. (1994). Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45: 577-607.
- Igawa, T., Fujiwara, M., Tanaka, I., Fukao, Y., Yanagawa, Y. (2010). Characterization of bacterial-type phosphoenolpyruvate carboxylase expressed in male gametophyte of higher plants. BMC Plant Biol 10: 200.
- **Iglesias, A.A., Andreo, C.S.** (1984). On the molecular mechanism of maize phosphoenolpyruvate carboxylase activation by thiol compounds. Plant Physiol **75**: 983– 87.
- Izui, K., Matsumura, H., Furumoto, T., Kai, Y. (2004). Phosphoenolpyruvate carboxylase: a new era of structural biology. Ann Rev Plant Biol 55: 69–84.
- Izui, K., Sabe, H., Katsuki, H. (1981). Increased synthesis of phosphoenolypyruvate carboxylase in a strain of *Escherichia coli* bearing a ColE1-ppc+ hybrid plasmid. FEBS Lett 133: 311–315.

- Jacobsen, J.V., Gubler, F., Chandler, P.M. (1995). Gibberellin action in germinated cereal grains. In Plant Hormones. Physiology, Biochemistry and Molecular Biology (Davies P.J.ed). Kluwer Academis, Dordrecht, the Netherlands. 246–271.
- Jacobsen, J.V., Pearce, D.W., Poole, A.T., Pharis, R.P., Mander, L.N. (2002). Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant **115**: 428–441.
- Jacobsen, J.V., Varner, J.E. (1967). Gibberellic acid induced synthesis of proteases by isolated aleurone layers of barley. Plant Physiol **42**: 1596–1600.
- Jawali, N. (1990). The dimeric form of phosphoenolpyruvate carboxylase isolated from maize: physical and kinetic properties. Arch Biochem Biophys 277: 61–68.
- Jeanneau, M., Vidal, J., Gousset–Dupont, A., Lebouteiller, B., Hodges, M., Gerentes, D., Perez, P. (2002). Manipulating PEPC levels in plants. J Exp Bot 53: 1837–1845.
- Jiao, J.A., Chollet, R. (1991a). Posttranslational regulation of phosphoenolpyruvate carboxylase in C₄ and crassulacean acid metabolism plants. Plant Physiol 95: 981– 985.
- Jiao, J.A., Echevarría, C., Vidal, J., Chollet, R. (1991b). Protein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase proteinserine kinase activity in C₄ plants. Proc Natl Acad Sci USA 88: 2712–2715.
- Jiao, J.A., Vidal, J., Echevarria, C., Chollet, R. (1991c). *In vivo* regulatory phosphorylation site in C₄-leaf phosphoenolpyruvate carboxylase from maize and Sorghum. Plant Physiol 96: 297–301.
- Johnson, C., Tinti, M., Wood, N.T., Campbell, D.G., Toth, R., Dubois, F., Geraghty, K. M., Wong, B.H., Brown, L.J., Tyler, J., Gernez, A., Chen, S., Synowsky, S., MacKintosh, C. (2011). Visualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Proteomics 10: M110.005751.
- Kai, Y., Matsumura, H., Inoue, T., Terada, K., Nagara, Y., Yoshinaga, T., Kihara,A., Tsumura, K., Izui, K. (1999). Three-dimensional structure of

phosphoenolpyruvate carboxylase: A proposed mechanism for allosteric inhibition. Proc Natl Acad Sci USA **96**: 823–828.

- Kai, Y., Matsumura, H., Izui, K., (2003). Phosphoenolpyruvate carboxylase: three– dimensional structure and molecular mechanisms. Arch Biochem Biophys 414: 170–179.
- Kamiyoshihara, Y., Iwata, M., Fukaya, T., Tatsuki, M., Mori, H. (2010). Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J **64:** 140–150.
- Kanemasu, E.T., Bark, D.L., Chin, Choy, E. (1975). Effect of soil temperature on sorghum emergence. Plant Soil 43: 411–417.
- Karssen, C., Brinkhorst-van der Swan, D.C.L., Breekland, A.E., Koornneef, M. (1983). Induction of dormancy during seed development by endogenous abscisic acid: studies of abscisic acid deficient genotypes of *Arabidopsis thaliana* (L.) Heynh. Planta 157: 158–165.
- **Kermode, A.R.** (1990). Regulatory mechanisms in the transition from seed development to germination. Crit Rev Plant Sci **9:** 155–195.
- King, S.P., Badger, M.R., Furbank, R.T. (1998). CO₂ refixation characteristics of developing canola seeds and silique wall. Aust. J Plant Physiol 25: 377–386.
- Kirkin, V., Dikic, I. (2007). Role of ubiquitina- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19:199–205.
- Kluge, M. (1983). The role of PEPC in C₄ photosynthesis and crassulacean acid metabolism. Physiol Veg 21: 817–852.
- Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–46.
- Komander, D., Clague, M.J., Urbe, S. (2009). Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10: 550–563.

- Kresovich, S., Barbazuk, B., Bedell, J.A., Borrell, A., Buell, C.R., Burke, J., Clifton, S. Cordonnier–Pratt, M.M., Cox, S., Dahlberg, J., Erpelding, J., Fulton, T.M., Fulton, B., Fulton, L., Gingle, A.R., Hash, C.T., Huang, Y.H., Jordan, D., Klein, P.E., Klein, R.R., Magalhaes, J., McCombie, R., Moore, P., Mullet, J.E., Ozias–Akins, P., Paterson, A.H., Porter, K., Pratt, L., Roe, B., Rooney, W., Schnable, P.S., Stelly, D.M., Tuinstra, M., Ware, D., Warek, U. (2005). Toward Sequencing the Sorghum Genome. A U.S. National Science Foundation–Sponsored Workshop Report. Plant Physiol 138: 1898–1902.
- Lara, M.V., Casati, P., Andreo, C.S. (2001). In vivo phosphorylation of phosphoenolpyruvate carboxylase in Egeria densa, a submersed aquatic species. Plant Cell Physiol 42: 441–445.
- Latzko, E., Kelly, G.J. (1983). The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol Veg 21: 805-815.
- Law, R.D., Plaxton, W.C. (1997). Regulatory phosphorylation of banana fruit phosphoenolpyruvate carboxylase by a copurifying phosphoenolpyruvate carboxylase-kinase. Eur J Biochem. 247: 642–651.
- Lepiniec, L., Keryer, E., Philippe, H., Gadal, P., Cretin, C. (1993). Sorghum phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution. Plant Mol Biol 21: 487–502.
- Lepiniec, L., Thomas, M., Vidal, J. (2003). From enzyme activity to plant biotechnology: 30 years of research on phosphoenolpyruvate carboxylase. Plant Physiol Biochem 4: 533–539.
- Lepiniec, L., Vidal, J., Chollet, R., Gadal, P., Crétin, C. (1994). Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci 99: 111–124.
- Li, B., Pacquit, V., Jiao, J.A., Duff, S.M., Maralihalli, G., Sarath, G., Condon, S.A., Vidal, J., Chollet, R. (1997). Structural requirements for phosphorylation of C₄leaf phosphoenolpyruvate carboxylase by its highly regulated protein-serine

kinase. A comparative study with synthetic peptide substrates and native, mutant target proteins. Aust J Plant Physiol **24**: 443–449.

- Li, B., Zhang, X.Q., Chollet, R. (1996). Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiol 111: 497–505.
- **Livak, K.J., Schmittgen, T.D.** (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta Ct}$ method. Methods **25**: 402–408.
- Luo, M., Reyna, S., Wang, L., Yi, Z., Carroll, C., Dong, L.Q., Langlais, P., Weintraub, S.T., Mandarino, L.J. (2005). Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223. Endocrinology 146: 4410–4416.
- Lüttge, U. (2004). Ecophysiology of Crassulacean Acid Metabolism (CAM). Ann Bot93: 629–652.
- Macnicol, P.K., Jacobsen, J.V. (1992). Endosperm acidification and related metabolic changes in the developing barley grain. Plant Physiol. **98**: 1098–1104.
- Macnicol, P.K., Raymond, P. (1998). Role of phosphoenolpyruvate carboxylase in malate production by the developing barley aleurone layer. Physiol Plant 103: 132–138.
- Mamedov, T.G, Moellering, E.R, Chollet, R. (2005). Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga *Chlamydomonas reinhardtii*. Plant J 42: 832–843.
- Martín Gómez, M.C., Ballesteros González, M. (2010). Espectrometría de masas y análisis de biomarcadores. En: Biomarcadores: Analítica, diagnóstico y terapéutica. Madrid: Monografías de la Real Academia Nacional de Farmacia. Disponible en: http://www.analesranf.com/index.php/mono/issue/view/393.
- Masumoto, C., Miyazawa, S., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H., Miyao, M. (2010).

Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA **107**: 5226–5231.

- Matsumura, H., Xie, Y., Shirakata, S., Inoue, T., Yoshinaga, T., Ueno, Y., Izui, K.,
 Kai, Y. (2002). Crystal structures of C₄ form maize and quaternary complex of *E. coli* phosphoenolpyruvate carboxylases. Structure 10: 1721–1730.
- Matsuoka, M., Minami, E. (1989). Complete structure of the gene for phosphoenolpyruvate carboxylase from maize. Eur. J. Biochem 181: 593–598.
- McCarty, D.R. (1995). Genetic control and integration of maduration and germination pathways in seed development. Annu. Rev. Plant Physiol. Plant Mol Biol 46: 71–93.
- McNaughton, G.A., Fewson, C.A., Wilkins, M.B., Nimmo, H.G. (1989). Purification, oligomerization state and malate sensitivity of maize leaf phosphoenolpyruvate carboxylase. Biochem J 261: 349-355.
- Meyer, C.R., Willeford, K.O., Wedding, R.T. (1991). Regulation of phosphoenolpyruvate carboxylase from *Crassula argentea*: effect of incubation with ligands and dilution on oligomeric state, activity, and allosteric properties. Arch. Biochem Biophys 288: 343–49.
- Mikola, J., Virtanen, M. (1980). Secretion of L-malic acid by barley aleurone layers. Plant Physiol 65: S–142.
- Moellering, E.R., Ouyang, Y., Mamedov, T.G., Chollet, R. (2007). The two divergent PEP–carboxylase catalytic subunits in the green microalga *Chlamydomonas reinhardtii* respond reversibly to inorganic-N supply and co-exist in the high-molecular-mass, hetero-oligomeric class-2 PEPC complex. FEBS Lett 581: 4871–4876.
- Monreal, J. A, Arias-Baldrich, C., Tossi, V., Feria, A.B., Rubio-Casal, A., García-Mata, C., Lamattina, L., García-Mauriño, S. (2013). Nitric oxide regulation of

leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. Planta **238**: 859–69.

- Monreal, J.A., López-Baena, F.J., Vidal, J., Echevarría, C., García-Mauriño, S. (2010a). Involvement of phospholipase D and phosphatidic acid in the lightdependent up-regulation of Sorghum leaf phosphoenolpyruvate carboxylasekinase. J Exp Bot 61: 2819–2827.
- Monreal, J. A., McLoughling, F., Echevarría, C., García-Mauriño, S., Testerink,
 C. (2010b). Phosphoenolpyruvate carboxilase from C₄ leaves is selectively tergeted for inhibition by anionic phopholipids. Plant Physiol 152: 634–638.
- Moraes, T.R., Plaxton, W.C. (2000). Purification and characterization of phosphoenolpyruvate carboxylase from *Brassica napus* (rapeseed) suspension cell cultures. Implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation. Eur J Biochem 267: 4465–4476.
- Mossner, E., Boll, M., Pfleiderer, G. (1980). Purification of human and bovine alkaline phosphatases by affinity chromatography. Hoppe Seylers Z. Physiol. Chem 361: 543–9.
- Mukhopadhyay, D., Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science **315**: 201–5.
- Müller, C., Scheible, W.R., Stitt, M., Krapp, A. (2001). Influence of malate and 2oxoglutarate on the *NIA* transcript level and nitrate reductase activity in tobacco leaves. Plant Cell Environ 24: 191–203.
- Mullet, J.E., Klein, R.R., Klein, P.E. (2001). Sorghum bicolor an important species for comparative grass genomics and a source of beneficial genes for agriculture. Curr Opin Plant Biol 5: 118–121.
- Murmu, J., Plaxton, W.C. (2007). Phosphoenolpyruvate carboxylase protein kinase from developing castor oil seeds: partial purification, characterization, and reversible control by photosynthate supply. Planta 226: 1299–310.

- Nakagawa, T., Izumi, T., Banba, M., Umehara, Y., Kouchi, H., Izui, K., Hata, S. (2003). Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of *Lotus japonicus*, a model legume. Mol Plant Microbe Interact 16: 281–288.
- Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M., Kamiya, Y. (2010). Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20: 675–689.
- Nanogaki, H., Basel, G.W., Bewley, J.D. (2010). Germination still a mystery. Plant Sci 179:574–581.
- Nimmo, H.G. (2000). The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5: 75–80.
- Nimmo, H.G. (2003). Control of phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys **414**: 189–196.
- Nimmo, G.A., Mc Naughton, G.A., Fewson, C.A., Wilkins, M.B., Nimmo, H.G. (1987). Changes in the kinetic properties and phosphorylation state of phosphoenolpyruvate carboxylase in *Zea mays* leaves in response to light and dark. FEBS Lett 213: 18–22.
- Nimmo, G.A., Nimmo, H.G., Fewson, C.A., Wilkins, M.B. (1984). Diurnal changes in properties of phosphoenolpyruvate carboxylase in *Bryophyllum* leaves: a possible covalent modification. FEBS Lett **178**: 199–203.
- Nimmo, G.A., Wilkins, M.B., Nimmo, H.G. (2001). Partial purification and characterization of a protein inhibitor of phosphoenolpyruvate carboxylase kinase. Planta 213: 250–257.
- Nhiri, M., Bakrim, N., Bakrim, N., El Hachimi-Messouak, Z., Echevarría, C., Vidal, J. (2000). Posttranslational regulation of phosphoenolpyruvate carboxylase during germination of Sorghum seeds: influence of NaCl and L-malate. Plant Sci 151: 29–37.
- O'Leary, M. (1982). Phosphoenolpyruvate carboxylase: an enzymologist's view. Ann Rev Plant Physiol **33**: 297–315.
- O'Leary, B., Fedosejevs, E.T., Hill, A.T., Bettridge, J., Park, J., Rao, S.K., Leach, C.A., Plaxton, W.C. (2011a). Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, *Ricinus communis* L. J Exp Bot 62: 5485–5495.
- O'Leary, B., Park, J., Plaxton, W.C. (2011b). The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436: 15–34.
- **O'Leary, B., Rao, S.K., Plaxton, W.C.** (2011c). Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds. Biochem J **433**: 65–74.
- O'Leary, B., Rao, S.K., Kim, J., Plaxton, W.C. (2009). Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 284: 24797–24805.
- **Oaks, A.** (1994). Efficiency of nitrogen utilization in C₃ and C₄ cereals. Plant Physiol **106:** 407–414.
- **Olszewski, N., Sun, T., Gubler, F.** (2002). Gibberellin signalling: biosynthesis, catabolism, and response pathways. Plant Cell **14**: 61–S80.
- **Osmond, C.B.** (1978). Crassulacean acid metabolism. A curiosity in context. Annual Reviews of Plant Physiol **29:** 379–414.
- **Osuna, L.** (1998). La fosforilación de la fosfoenolpiruvato carboxilasa fotosintética (PEPC) como diana de herbicidas de malas hierbas de tipo C₄. Evidencias de la fosforilación de la PEPC de semillas de cereales. Tesis Doctoral. Universidad de Sevilla.

- **Osuna, L., Coursol, S., Pierre, J.N., Vidal, J.** (2004). A Ca²⁺-dependent protein kinase with characteristics of protein kinase C in leaves and mesophyll cell protoplasts from *Digitaria sanguinalis*: possible involvement in the C₄-phosphoenolpyruvate carboxylase phosphorylation cascade. Biochem Biophys Res Commun **314**: 428–433.
- **Osuna, L., Gonzalez, M.C., Cejudo, F.J., Vidal, J., Echevarria, C.** (1996). *In vivo* and *in vitro* phosphorylation of the phosphoenolpyruvate carboxylase from wheat seeds during germination. Plant Physiol **111:** 551–558.
- **Osuna, L., Pierre, J.N., Gonzalez, M.C., Alvarez, R., Cejudo, F.J., Echevarria, C., Vidal, J.** (1999). Evidence for a slow-turnover form of the Ca²⁺-independent phosphoenolpyruvate carboxylase kinase in the aleurone-endosperm tissue of germinating barley seeds. Plant Physiol **119:** 511–520.
- **Outlaw, W.H.** (1990). Kinetic properties of guard-cell phosphoenolpyruvate carboxylase. Biochem Physiol Pflanzen **186:** 317-325.
- Pacquit, V., Giglioli, N., Crétin, C., Pierre, J.N., Vidal, J., Echevarría, C. (1995). Regulatory phosphorylation of C₄ phosphoenolpyruvate carboxylase from Sorghum: An immunological study using specific anti-phosphorylation site antibodies. Photosynth Res 43: 283–288.
- Pacquit, V., Santi, S., Cretin, C., Bui, V.L., Vidal, J., Gadal, P. (1993). Production and properties of recombinant C₃-type phosphoenolpyruvate carboxylase from *Sorghum vulgare: in vitro* phosphorylation by leaf and root PyrPC protein serine kinases. Biochem Biophys Res Commun 197: 1415–1423.
- Park, J., Khuu, N., Howard, A.S.M., Mullen, R.T., Plaxton, W.C. (2012) Bacterialand plant-type phosphoenolpyruvate carboxylase isozymes from developing castor oil seeds interact *in vivo* and associate with the surface of mitochondria. Plant J 71: 251–262.
- Paterson, A.H. (2008). Genomics of sorghum. Int. J. Plant Genomics. 2008: 362451.

- Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A.K., Chapman, J., Feltus, F.A., Gowik, U., Grigoriev, I.V., Lyons, E., Maher, C.A., Martis, M., Narechania, A., Otillar, R.P., Penning, B.W., Salamov, A.A., Wang, Y., Zhang, L., Carpita, N.C., Freeling, M., Gingle, A.R., Hash, C.T., Keller, B., Klein, P., Kresovich, S., McCann, M.C., Ming, R., Peterson, D.G., Mehboobur, R., Ware, D., Westhoff, P., Mayer, K.F., Messing, J., Rokhsar, D.S. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556.
- Paulus, J.K., Schlieper, D., Groth, G. (2013). Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution. Nat Commun 4: 1518.
- Pearson, R.B., Kemp, B.E. (1991). Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200: 62–81.
- Peng, Y., Cai, J., Wang, W., Su, B. (2012). Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family. PLoS One 7: e51159.
- Perotti, V.E., Figueroa, C.M., Andreo, C. S., Iglesias, A.A., Podestá, F.E. (2010). Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (*Citrus sinensis*) fruit juice sacs. Plant Sci 179: 527–535.
- Peters, W., Becj, E., Piepenbrock, M., Lenz, B., Schmitt, J.M. (1997). Cytokinin as a negative effector of phosphoenolpyruvate carboxylase induction in *Mesembryanthemum crystalinum*. J. Plant Physiol 151: 362–367.
- Pickart, C., Eddins, M. (2004). Ubiquitin: structures, functions, mechanisms. Biochim.Biophys Acta 1695: 55–72.
- Pierre, J.N., Pacquit, V., Vidal, J., Gadal, P. (1992). Regulatory phosphorylation of phosphoenolpyruvate carboxylase in protoplasts from Sorghum mesophyll cells

and the role of pH and Ca^{2+} as possible components of the light-transduction pathway. Eur J Biochem **210**: 531–537.

- Pierre, J.N., Prieto, J.L., Gadal, P., Vidal, J. (2004). In situ C₄ phosphoenolpyruvate carboxylase activity and kinetic properties in isolated *Digitaria sanguinalis* mesophyll cells. Photosynth Res **79**: 349–355.
- Podestá, F.E., Andreo, C.S. (1989). Maize leaf phosphoenolpyruvate carboxylase. Oligomeric state and activity in the presence of glycerol. Plant Physiol 90: 427– 433.
- Podestá, F.E., Plaxton, W.C. (1994a). Regulation of cytosolic carbon metabolism in germinating *Ricinus communis* cotyledons. I. Developmental profiles for the activity, concentration, and molecular structure of the pyrophosphate- and ATP dependent phosphofructokinases, phosphoenolpyruvate carboxylase and pyruvate kinase. Planta 194: 374–380.
- Podestá, F.E., Plaxton, W.C. (1994b). Regulation of cytosolic carbon metabolism in germinating *Ricinus communis* cotyledons. II. Properties of phosphoenolpyruvate carboxylase and cytosolic pyruvate kinase associated with the regulation of glycolysis and nitrogen assimilation. Planta 194: 381–387.
- Popova, L.P., Stoinova, Z.G., Maslenkovaa, L.T. (1995). Involvement of abscisic acid in photosynthetic process in *Hordeum vulgare* L. during salinity stress. J Plant Growth Regul 14: 211–218.
- Prinsi, B., Negri, A.S, Pesaresi, P., Cocucci, M., Espen, L. (2009). Evaluation of protein pattern changes in roots and leaves of *Zea mays* plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BMC Plant Biol 9: 113.
- Radchuk, R., Radchuk, V., Goetz, K., Weichert, H., Richter, A., Emery, R. J. N., Weschke, W., Weber, H. (2007). Ectopic expression of phosphoenolpyruvate carboxylase in *Vicia narbonensis* seeds: effects of improved nutrient status on seed maturation and regulatory networks. Plant J **51**: 819–839.

- **Rajagopalan, A.V., Agarwal, R.M., Raghavendra, A.S.** (2004). Modulation *in vivo* by nitrate salts of the activity and properties of phosphoenolpyruvate carboxylase in leaves of *Alternanthera pungens* (C_4 plant) and *A. sessilis* (C_3 species). Photosynthetica **42**: 345–349.
- Rao, S.K., Magnin, C., Reiskind, J.B., Bowes, G. (2002). Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultative C₄ system of *Hydrilla verticillata*. Plant Physiol 130: 876–886.
- Rao, S.K., Reiskind, J., Bowes, G. (2006). Light regulation of thephotosynthetic phosphoenolpyruvate carboxylase PEPC in *Hydrilla verticillata*. Plant Cell Physiol 9: 1206–1216.
- Raven, J.A., Cockell, C.S., De La Rocha, C.S. (2008). The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philosophical Transactions of the Royal Society of London Series B 363: 2641–2650.
- Reyes-Turcu, F.E., Ventii, K.H., Wilkinson, K.D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363– 397.
- **Rivoal, J., Dunford, R., Plaxton, W.C., Turpin, D.H.** (1996). Purification and properties of four phosphoenolpyruvate carboxylase isoforms from the green alga *Selenastrum minutum*: evidence that association of the 102-kDa catalytic subunit with unrelated polypeptides may modify the physical and kinetic properties of the enzyme. Arch Biochem Biophys **332**: 47–57.
- Rivoal, J., Plaxton, W.C., Turpin, D.H. (1998). Purification and characterization of high- and low- molecular-mass isoforms of phosphoenolpyruvate carboxylase from *Chlamydomonas reinhardtii* - Kinetic, structural and immunological evidence that the green algal enzyme is distinct from the prokaryotic and higher plant enzymes. Biochem J 331: 201–209.
- Rivoal, J., Trzos, S, Gage, D.A., Plaxton, W.C., Turpin, D.H. (2001). Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high

molecular mass isoforms of this enzyme in the unicellular green alga *Selenastrum minutum*. J Biol Chem **276**: 12588–12597.

- Rivoal, J, Turpin, D.H., Plaxton, W.C. (2002). In vitro phosphorylation of phosphoenolpyruvate carboxylase from the green alga Selenastrum minutum. Plant Cell Physiol 43: 785–792.
- Rock, C.D., Quatrano, R.S. (1995). The role of hormones during seed development. Plant Hormones: Physiology, Biochemistry and Molecular Biology. (Davies PJ.ed.). Kluwer Academic Publishers, Dordrecht, 671–697.
- Rolletschek, H., Borisjuk, L., Radchuk, R., Miranda, M., Heim, U., Wobus, U. and Weber, H. (2004). Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in *Vicia narbonensis* increases protein content and improves carbon economy. Plant Biotechnol J 2: 211–219.
- Rotin, D., Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10: 398–409.
- Ryan, B.J. (2011). Avoiding Proteolysis During Protein Chromatography. Methods Mol Biol 68: 61–71.
- Sadowski, M., Suryadinata, R., Tan, A.R., Roesley, S.N.A., Sarcevic, B. (2012). Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 64: 136–42.
- Sage, R.F., Monson, R.K. (1999). C₄ plant biology. Academic Press 551–584.
- Sage, R.F., Sage, T.L., Kocacinar, F. (2012). Photorespiration and the evolution of C₄ photosynthesis. Annu Rev Plant Biol 63: 19–47.
- Salmenkaillo, M., Sopanen, T. (1989). Amino acid and peptide uptake in the scutella of germinating barley and wheat. Plant Physiol **89:** 1285–1291.
- Sánchez, R., Cejudo, F.J. (2003). Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from *Arabidopsis* and rice. Plant Physiol 132: 949–957.

- Sánchez, R., Flores, A., Cejudo, F.J. (2006). Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223: 901–909.
- Sangwan, R.S., Singh, N., Plaxton, W.C. (1992). Phosphoenolpyruvate carboxylase activity and concentration in the endosperm of developing and germinating castoroil seeds. Plant Physiol 99: 445–449.
- Saze, H., Ueno, Y., Hisabori, T., Hayashi, H., Izui, K. (2001). Thioredoxin-mediated reductive activation of a protein kinase for the regulatory phosphorylation of C₄form phosphoenolpyruvate carboxylase from maize. Plant Cell Physiol 42: 1295– 1302.
- Sautier, D., O'Deye, M. (1989). Mil Mais Sorgho-Techniques et alimentation au Sahel. Harmattan. Paris France. p. 17.
- Schmitz, N., Abrams, S.R., Kermode, A.R. (2002). Changes in ABA turnover and sensitivity that accompany dormancy termination of yellow-cedar (*Chamaecyparis nootkatensis*) seeds. J Exp Bot 53: 89–101.
- Schnell, J. D., Hicke, L. (2003). Non-traditional Functions of Ubiquitin and Ubiquitinbinding Proteins. J Biol Chem 278: 35857–35860.
- Schlieper, D., Förster, K., Paulus, J. K., Groth, G. (2014). Resolving the activation site of positive regulators in plant phosphoenolpyruvate carboxylase. Mol Plant. 7: 437–40.
- Schulz, M., Klockenbring, T., Hunte, C., Schnabl, H. (1993). Involvement of ubiquitin in phosphoenolpyruvate carboxylase degradation. Bot Acta 106: 143– 145.
- Schuller, K.A., Plaxton, W.C., Turpin, D.H. (1990). Regulation of phosphoenolpyruvate carboxylase from the green alga *Selenastrum minutum*. Plant Physiol 93: 1303–1311.

- Schuller, K.A., Werner, D. (1993). Phosphorylation of soybean (*Glycine max* L.) nodule phosphoenolpyruvate carboxylase *in vitro* decreases sensitivity to inhibition by L-malate. Plant Physiol 101: 1267–1273.
- Sebei, K., Ouerghi, Z., Kallel, H., Boukhchina, S. (2006). Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring canola cultivars (*Brassica napus* L.). C R Biol 329: 719–725.
- Serrato, A.J., Perez-Ruiz, J.M., Cejudo, F.J. (2002). Cloning of thioredoxin h reductase and characterization of the thioredoxin reductase-thioredoxin h system from wheat. Biochem J **367**: 491–497.
- Shane, M., Fedosejevs, E., Plaxton, W. (2013). Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by *in vivo* monoubiquitination and phosphorylation in developing proteoid roots of phosphate deficient harsh hakea. Plant Physiol 161:1634–1644.
- Shenton, M., Fontaine, V., Hartwell, J., Marsh, J.T., Jenkins, G.I., Nimmo, H.G. (2006). Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C₄ plants. Plant J 48: 45–53.
- Sima, B.D., Desjardins, Y. (2001). Sucrose supply enhances phosphoenolpyruvate carboxylase phosphorylation level in *in vitro Solanum tuberosum*. Plant Cell Tissue Organ Cult 67: 235–242.
- Singal, H.R., Talwar, G., Dua, A. Singh, R. (1995) Pod photosynthesis and seed dark CO₂ fixation support oil synthesis in developing *Brassica* seeds. J Biosci 20: 49– 58.
- Skriver, K., Mundy, J. (1990). Gene expression in response to ABA and osmotic stress. Plant Cell 2: 503–512.
- Smith, L.H., Langdale, J.A., Chollet, R. (1998). Calvin cycle is not indispensable for the light activation of C₄ phosphoenolpyruvte carboxylase kinase and its target enzyme in the maize mutant bundle sheath defective2-mutable11. Plant Physiol 118: 191–197.

- Smith, L.H., Lillo, C., Nimmo, H.G., Wilkins, M.B. (1996). Light regulation of phosphoenolpyruvate carboxylase in barley mesophyll protoplasts is modulated by protein synthesis and calcium, and not necessarily correlated with phosphoenolpyruvate carboxylase kinase activity. Planta 200: 174–180.
- Sopanen, T., Uuskallio, M., Nyman, S. (1980). Characteristics and development of leucine transport activity in the scutellum of germinating barley grains. Plant Physiol 65: 249–253.
- **Stiborová, M.** (1988). Phosphoenolpyruvate carboxylase: the key enzyme of C_4 -photosynthesis. Photosynthetica **22**: 240–263.
- Stiborova, M., Leblova, S. (1986). Structure of phosphoenolpyruvate carboxylase from maize leaves. FEBS Lett 205: 32–34.
- Stitt, M., Heldt, H.W. (1985). Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves. Biochim Biophys Acta 808: 400–414.
- Sullivan, S., Jenkins, G.I., Nimmo, H.G. (2004). Roots, cycles and leaves. Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant Physiol 135: 2078–2087.
- Sullivan, S., Shenton, M., Nimmo, H.G. (2005). Organ specificity in the circadian control of plant gene expression. Biochem Soc Trans 33: 943–944.
- Suryadinata, R., Roesley, S.N.A., Yang, G., Sarčević, B. (2014). Mechanisms of generating polyubiquitin chains of different topology. Cells 3: 674–89.
- **Svensson, P., Bläsing, O.E., Westhoff, P.** (2003). Evolution of C₄ phosphoenolpyruvate carboxylase. Arch Biochem Biophys **414**: 180–188.
- Swanson, S.J., Jones, R.L. (1996). Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell 8: 2211–2221.
- Taybi, T., Nimmo, H.G., Borland, A.M. (2004). Expression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes. Implications for

genotypic capacity and phenotypic plasticity in the expression of crassulacean acid metabolism. Plant Physiol **135**: 587–598.

- Taybi, T., Patil, S., Chollet, R., Cushman, J.C. (2000). A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. Plant Physiol 123: 1471–1482.
- Terada, K., Kai, T., Okuno, S., Fujisawa, H., Izui, K. (1990). Maize leaf phosphoenolpyruvate carboxylase: phosphorylation of Ser15 with a mammalian cyclic AMP-dependent protein kinase diminishes sensivity to inhibition by malate. FEBS Lett 259: 241–244.
- Testerink, C., Dekker, H.L., Lim, Z.Y., Johns, M.K., Holmes, A.B., Koster, C.G., Ktistakis, N.T., Munnik, T. (2004). Isolation and identification of phosphatidic acid targets from plants. Plant J 39: 527–536.
- Testerink, C., Munnik, T. (2005). Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10: 368–375.
- Thomas, M., Crétin, C., Keryer, E., Vidal, J., Gadal, P., Monsinger, E. (1990). Light-regulation of phosphoenolpyruvate carboxylase mRNA in leaves of C₄ plants; evidence for fhytocrome control on transcription during greening and for rhythmicity. Plant Sci 69: 65–78.
- Todi, S.V., Winborn, B.J., Scaglione, K.M., Blount, J.R., Travis, S.M., Paulson,
 H.L. (2009). Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 28: 372–382.
- Toh, H., Kaamura, T., Izui, K. (1994). Molecular evolution of phosphoenolpyruvate carboxylase. Plan Cell Environ 17: 31–43.
- Tovar-Méndez, A., Mújica-Jiménez, C., Muñoz-Clares, R.A. (2000). Physiological implications of the kinetics of maize leaf phosphoenolpyruvate carboxylase. Plant Physiol **123**: 149–160.

- Tovar-Méndez, A., Rodríguez-Sotres, R., López-Valentín, D.M., Muñoz-Clares, R.A. (1998). Re–examination of the roles of PEP and Mg²⁺ in the reaction catalysed by the phosphorylated and non-phosphorylated forms of phosphoenolpyruvate carboxylase from leaves of *Zea mays*: effects of the activators glucose 6-phosphate and glycine. Biochem J 332: 633–642.
- Traverso, J., Vignols, F., Cazalis, R., Serrato, A., Pulido, P., Sahrawy, M., Meyer,
 Y., Cejudo, F. J., Chueca, A. (2008). Inmunocytochemical localization of *Pisum* sativum TRXs f and m in non-photosynthetic tissues. J Exp Bot 59: 1267–1277.
- Tripodi, K.E., Turner, W.L., Gennidakis, S., Plaxton, W.C. (2005). In Vivo Regulatory Phosphorylation of Novel Phosphoenolpyruvate Carboxylase Isoforms in Endosperm of Developing Castor Oil Seeds. Plant Physiol 139: 969–978.
- Tronconi, M.A, Maurino, V.G., Andreo, C.S., Drincovich, M.F. (2010). Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in *Arabidopsis thaliana*. J. Biol. Chem. 285: 11870–11879.
- Tsuchida, Y., Furumoto, T., Izumida, A., Hata, S., Izui, K. (2001).
 Phosphoenolpyruvate carboxylase kinase involved in C₄ photosynthesis in *Flaveria trinervia*: cDNA cloning and characterization. FEBS Lett 507: 318–322.
- Uhrig, R.G., O'Leary, B., Spang, H.E., MacDonald, J.A., She, Y., Plaxton, W.C. (2008a). Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant Physiol **146**: 1346–1357.
- Uhrig, R.G., She, Y., Leach, C.A., Plaxton, W.C. (2008b). Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds. J Biol Chem 283: 29650–29657.
- Usuba, T., Ishibashi, Y., Okawa, Y., Hirakawa, T., Takada, K., Ohkawa, K. (2001). Monoubiquitin-phosphoglycerate mutase b complex from human colorectal cancer tissues. Int J Cancer 94: 662–668.

- **Van Quy, L., Foyer, C., Champigny, M.L.** (1991). Effect of light and NO^{3–} on wheat leaf phosphoenolpyruvate carboxylase activity: evidence for covalent modulation of the C₃ enzyme. Plant Physiol **97**: 1476–1482.
- Vance, C.P., Gregerson, R.G., Robinson, D.L., Miller, S.S., Gantt, J.S. (1994). Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci 101: 51–64.
- Vidal, J., Bakrim, N., Hodges, M. (2002). The regulation of plant phosphoenolpyruvate carboxylase by reversible phosphorilation. Advances in Photosynthesis; Photosynthetic Nitrogen assimilation and associated carbon metabolism. Ed. Kluwer Academic Publisher 12: 135–150.
- **Vidal, J., Chollet, R.** (1997). Regulatory phosphorylation of C₄ PEP carboxylase. Trends Plant Sci **2:** 230–237.
- Vidal, J., Gobbillon, G., Gadal, P. (1980). Recovery of active highly purified phosphoenolpyruvate carboxylase from specific immunoadsorbant column. FEBS Lett 118: 31–34.
- Walker, G.H., Ku, M.S., Edwards, G.E. (1986). Activity of maize leaf phosphoenolpyruvate carboxylase in relation to tautomerization and nonenzymatic decarboxylation of oxaloacetate. Arch. Biochem Biophys 248: 489–501.
- Wang, Y.H., Chollet, R. (1993a). In vitro phosphorylation of purified tobacco-leaf phosphoenolpyruvate carboxylase. FEBS Lett 328: 215–218.
- Wang, Y.H., Chollet, R. (1993b). Partial purification and characterization of phosphoenolpyruvate carboxylase protein-serine kinase from illuminated maize leaves. Arch Biochem Biophys 304: 496–502.
- Wang, Y.H., Duff, M.G., Lepiniec, L., Crétin, C., Gautam, S., Condon, S.A., Vidal, J., Gadal, P., Chollet, R. (1992). Site-directed mutagenesis of the phosphorylatable serine (Ser 8) in C₄ phosphoenolpyruvate carboxylase from *Sorghum*. The effect of a negative chargeat the position 8. J Biol Chem 267: 16759–16762.

- Wang, M., Van der Meulen, R.M., Visser, K., Van Schaik, H.P., Van Duijn, B., de Boer, A.H. (1998). Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8: 129–137.
- Weber, H., Borisjuk, L., Wobus, U. (2005). Molecular physiology of legume seed development. Annu. Rev Plant Biol 56: 253–729.
- Willeford, K.O., Wedding, R.T. (1992). Oligomerization and Regulation of Higher Plant Phosphoenolpyruvate Carboxylase. Plant Physiol 99: 755–758.
- Willeford, K.O., Wu, M.X., Meyer, C.R., Wedding, R.T. (1990). The role of oligomerization in regulation of maize phosphoenolpyruvate carboxylase activity. Influence of Mg-PEP and malate on the oligomeric equilibrium of PEP carboxylase. Biochem Biophys Res Commun 168: 778–785.
- Winter, H,. Huber, S.C. (2000). Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31– 67.
- Xu, W., Ahmed, S., Moriyama, H., Collet, R. (2006). The importance of the strictly conserved, C-terminal Glycine residue in phophoenolpyruvae carboxylase for overall catalysis. J Biol Chem 281: 17238–17245.
- Xu, Z.Y, Kim, D.H., Hwang, I. (2013). ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep 32:807– 813.
- Xu, W., Sato, S.J., Clemente, T.E., Chollet, R. (2007). The PEP-carboxylase kinase gene family in *Glycine max* (Gm*PpcK1-4*): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. Plant J 49:910–923.
- Xu, W., Zhou, Y., Chollet, R. (2003). Identification and expression of a soybean nodule–enhanced PEP–carboxylase kinase gene (*NE-PpcK*) that shows striking up-/down-regulation *in vivo*. Plant J 34: 441–452.
- Ye, Y., Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

- Zhang, S.Q., Li, B., Chollet, R. (1995). *In vivo* regulatory phosphorylation of soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol **108**: 1561–1568.
- Zhang, W., Yu, L., Zhang, Y., Wang, X. (2005). Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736: 1–9.

AGRADECIMIENTOS

En estas líneas me gustaría expresar mi más sincera gratitud a todas aquellas personas que, de una manera u otra, han hecho posible que esta tesis se haya realizado. Han sido años difíciles y el trayecto ha sido largo, ¿quién dijo que iba a ser fácil? Pero gracias a todas las personas que profesional y personalmente han estado a mi lado todo este tiempo, el camino por el que transité fue más fácil y regado de felicidad.

En primer lugar, me gustaría agradecer a mi directora de tesis, la Dra. Cristina Echevarría. Gracias por haber confiado en mí desde el principio, siempre motivándome, demostrándome tu inestimable interés e implicación, y transmitiéndome tus conocimientos de una forma excepcional y brillante. Sin tu magisterio y tutela esta tesis no habría sido posible. Tú me has enseñado a discutir en ciencia, has sido paciente conmigo y has respetado mis ideas. Gracias por ser la mejor maestra.

Me gustaría agradecer a la Dra. Rosario Álvarez por su valiosa ayuda como codirectora de mi trabajo fin de máster. Mis inicios en el laboratorio de fisiología vegetal fueron posibles gracias a ti. Todos estos años has estado ahí apoyándome, regalándome infinidad de consejos y tendiéndome tu mano en todo momento.

Otra apreciada ayuda profesional y personal me la ha brindado la Dra. Sofía García-Mauriño. Gracias por tus múltiples consejos científicos y tu gran ayuda en el laboratorio. Eres admirable, siempre tienes una respuesta para absolutamente todo y eres un auténtico ejemplo a seguir. Gracias por todos los momentos vividos también fuera del laboratorio y que han sido únicos y para el recuerdo.

Al Dr. José Antonio Monreal, te agradezco enormemente tu ayuda en el campo de la biología molecular. De ti también he aprendido muchísimo, y una parte de esta tesis se ha podido llevar a cabo gracias a ti. Eres muy trabajador y constante a la par que inteligente (tu "Science" lo certifica). Gracias también por brindarme tu amistad fuera y dentro del laboratorio y por formar parte del grupo de "relíos" al que más tarde nombraré y agradeceré.

I would like to thank Dr. Bill Plaxton for his enormous help and hospitality in his laboratory. I have learnt so much of your excellent science and it was a great pleasure and honor for me to work for you. Thanks Bill for all your guidance, for the knowledge and for your passion science. Thanks everybody in the Plaxton lab as well, special thanks to Hernan del Vecchio, Sheng, Ally and Michael Shane. Thank you very much guys for your constant help in the lab. Thanks to Yi-Min She who provided the mass spectrometry data.

Nous remercions a Dr. Jean Vidal pour son assistance durant la discussion scientifique et durant la rédaction du papier publiée. Merci pour tes conseils précieux durant tes séjours au laboratoire.

También quiero hacer una especial mención al Dr. Jacinto Gandullo. Contigo, el tiempo (en ya aquel laboratorio que quedará para la historia) en el 409, fue breve pero no por ello menos importante, tú también me enseñaste a "cacharrear" en el laboratorio, y me ayudaste incondicionalmente. Tu constancia y tu afán de trabajo te avalan. A los demás compañeros del laboratorio y del área de Fisiología Vegetal también quiero agradecerles su enorme apoyo y amistad: al Dr. Alfredo Rubio, mi compi de avión a Nicaragua y compi de "previas", te agradezco tu enorme ayuda, sin esperar nada a cambio, con la estadística de este trabajo. Gracias por todos los momentos que me has brindado, por iluminarnos siempre con tu sorprendente filmoteca mental, no conozco a nadie que haya visto más películas y recuerde mejor los guiones que tu, jejeje, por tus cantos de tenor y por tu siempre caballerosidad. A la Dra. Ana Belén Feria, la sevillana más profunda del laboratorio siempre con tus historias del Rocío, de la Macarena, pregones, etc...que amenizan el almuerzo y los innumerables cafés. Al Dr. Alfonso de Cires, gracias también por tu compañía siempre alegre y necesaria a la par que llena de risas. A Pilar Benítez tengo tanto que agradecerle....Siempre ayudando en todo lo posible como una polvorilla, solucionándome la "papeleta" en su afán de querer hacerlo todo ella, con su enorme espíritu de trabajadora insaciable además de tan buena persona. Gracias Pili. Gracias a los recientes doctores Javi y Celia, a Juan Martínez, a la "manitas" Anabel y a mi compi de carrera y de área Kike.

También me gustaría agradecer a los nuevos fichajes del laboratorio, a los que ya se fueron y a los no tan nuevos como Nadja que me ha acompañado prácticamente durante todos estos años, gracias por tus deliciosos mojitos y tu amistad. A Alfonso Sánchez, al que más de una vez he querido "matar" jejeje pero que con su cariño y su entusiasmo me ganó por completo. Nadja y Alfonso, os deseo lo mejor en Barcelona y en el Instituto de la Grasa, respectivamente. A la última incorporación, Clara de la Osa, a la que rápidamente le he cogido un cariño inmenso. Gracias por tu ayuda y tu apoyo, toda mi época de escritura de tesis ha sido más fácil y amena gracias a ti. Gracias por

todos los cafés y lo que no son cafés. Llegó el momento de agradecerle a Guille, ¿qué puedo decirte que no sepas? Tú me has ayudado incondicionalmente desde que llegaste al laboratorio y este último año nos ha unido como si de dos amigos de la infancia se tratase, tú también me has enseñado mucho, por todas las reflexiones compartidas, momentos vividos, tu paciencia, tu trabajo y tu participación en el establecimiento del efecto de la T^a en la monoubiquitinación. Me siento afortunada de haberte conocido.

Para finalizar con los fisiólogos vegetales, he dejado mi agradecimiento más preciado. A ti Cire, mi compi de tesis, ya la Dra. Cirenia Arias, tengo que darte las gracias por tantas cosas...No me imagino haber hecho la tesis sin ti y sin tu ayuda. Hemos compartido risas, llantos, nervios, energías, fuerzas, peleas...tanto dentro como fuera de ese zulito, ahora llamado terrario. Gracias por haber sido tan buena compi, aún cuando nos peleamos por aquella "punta" jejeje, y tan buena amiga.

Como no agradecer a Eduardo Villalobo quien me introdujo en este maravilloso viaje, me transmitió su entusiasmo, conocimientos y pasión por la ciencia. Él me acepto en su laboratorio en microbiología sin esperar nada a cambio y me dedico tiempo, paciencia, además de iniciarme en el mundo de la biología molecular. Me motivaste y me hiciste creer que yo también podía pertenecer al mundo de la ciencia y el doctorado, y así fue. Gracias.

Mil gracias a mi grupo "Mum". A Clara Parejo, Irene Jiménez y aquí incluyo de nuevo a Cirenia Arias. Gracias por ser mis amigas durante estos años y espero que para el resto de mi vida. Realmente no sé si este trabajo hubiera sido posible sin vosotras y pienso que habéis tenido la culpa de que todo haya sido tan fácil. Miles de momentos compartidos...me llevo un sinfín de risas, llantos, salidas locas, estreses compartidos y cafés reveladores envueltos de conversaciones que nadie podría llegar a imaginarse nunca. Ellas, Edu y Monre también forman parte del grupo que ha tenido un sinfín de nombres: "como cada miércoles", aljibeños 2013 o 2014 al que quiero dar las gracias. Livia, mi más fiel compi de relios, confidencias y vecina de piso y planta. Cuantos momentos hemos vividos juntas y cuantos nos quedan por vivir. Antonio Álvarez, otro fiel incansable que me ha regalado tanta diversión, la mitad de ella imposible de recordar... Paco Pérez, por todos esos "filters", chistes, y payasadas que te caracterizan. Camilo, mi fisiólogo animal favorito. Agradecer también al inteligente José Luis, a la guapísima Cristina Limón, a la siempre morena Maya, a mi brasileño preferido

Marquiños, al buenazo de Ramón Casimiro y a la que nunca para de reírse Rocío Talaverón. Gracias a todos porque habéis colaborado a que esta tesis fuese muchoooooooooo más amena y divertida (siempre patrocinada por " El aljibe").

También tengo que agradecer enormemente a todas aquellas personas que hicieron que mi estancia en Canadá fuera tan maravillosa, especial y me sintiera como en casa. De mi primera estancia, tengo que agradecer de nuevo a Hernan del Vecchio por haber sido mi gran amigo también fuera del laboratorio durante esos tres meses e introducirme a todos los demás "latinos" que tan bien me acogieron y ayudaron como si de una familia se tratase. A Adriana, Per-Henrik, Juan Carlos Peroni, Heba Shafik a todos ellos gracias, y en especial a Yaya, Joanna y Danny, por haber sido literalmente mi familia cuando estuve allí y por ser grandes amigos durante esos 6 meses y ahora.

También quiero dar profundamente a las gracias a las fisiólogas animales y compis del ala durante casi toda mi tesis: Sara Morcuende, Esperanza Matarredona y Beatriz temiño por haberme ayudado y por vuestros consejos con las técnicas de inmunolocalización así como por vuestra compañía, todos los cotilleos compartidos fuera y dentro del lab. Gracias también a los citólogos, Javier Manzano, gracias por tus innumerables consejos, por prestarme tus anticuerpos, intercambios de información y técnicas en la 4ª planta, además de risas. A Ana Mari y a Laura también gracias por todo lo vivido, reído y compartido. Gracias a los todos los microbiólogos en general, por haberme dejado cacharrear por vuestro territorio y por ofrecerme ayuda siempre cuando la he necesitado.

A todos mis amigos de la carrera. Todo se remonta a ellos, gracias por todos esos años maravillosos mientras estudiábamos Biología. A mis tres niñas, Laura Sardá, Myriam Santos y Miriam Menguiano, mis compis de piso y mis hermanas durante esos maravillosos cinco años. De cada una de ella aprendí algo valioso y gracias a la dedicación, inteligencia y motivación de cada una de ellas por la biología, yo capte un poquito de cada una y me hice mejor estudiante y persona (todo lo bueno se pega). A mi dulce Amparo, también hemos compartido tantos y tantos momentos, algunos mejor no recordar jejeje, y a Silvia Ligenfert otra amiga especial que no debo dejar atrás. Gracias también a Irene "la larga", a Enrique Mendoza, a mi listísima Marina Murillo…cuanto me alegro de todas las últimas cosas buenas que te han pasado y te han unido más a mí. A mi emprendedor favorito, Antonio Martínez Lara, como no a mi rociero preferido, el

capea, y a Alvarito Dugo mucho más que dos ojazos azules. Gracias a todo el grupo de la "siensia en potensia" en general por tantas risas y momentos compartidos.

Dar las gracias a M^a Luisa Hernaez, Felipe Clemente y Dolores Gutierrez de la Unidad de Proteómica de la Universidad Complutense de Madrid, por su ayuda inestimable y consejos en la interpretación de los resultados de proteómica.

Llego el momento de agradecer a mis guapísimas, tanto por fuera como por dentro, amigas ecijanas, como diría Ramón "las Astigitan girls". A Rebeca, Fati, Irene Bermudo, Ana Santa Cruz, María García, Marta, Lourdes, Mary, Rocio Cantarero, Ana Madero, Cristina Cívico, Maxi, Alicia, Lorena, Marité, Viky, Cristina Peña y Yaye, gracias a cada una de vosotras por ser como sois y por estar ahí siempre aun cuando yo os he tenido tan abandonadas porque este trabajo lo requería. A algunas os conozco desde que tengo uso de razón y a otras desde el instituto y todas habéis sido fuente de inspiración de algún u otro modo en algún momento de mi vida porque sois las niñas más valientes, inteligentes y fuertes que conozco. Hemos vividos mil y un momentos juntas y espero seguir viviéndolos siempre año tras año.

A ti Fernando Sáez, también quiero darte las gracias por entenderme tan bien siempre. Al ir por delante de mí, siempre me has guiado y he podido seguir tus valiosos consejos profesionales y personales, gracias por abrirme camino en todo momento. Gracias también por tu maravilloso humor y tu arte.

Y llego el turno para agradecer a mi familia, sin duda es mi agradecimiento más profundo y sentido. A mi padre y a mi madre, Antonio e Isabel, les agradezco todo lo que soy. Siempre han estado ahí, apostando por mi y luchando día a día, aguantando mi fuerte carácter y estando a mi lado. Todos los valores buenos que tengo se los debo a ellos, que me enseñaron a ser lo que soy. Gracias por ofrecerme una vida llena de oportunidades y de felicidad. Sois los pilares de mi vida. Y a mis hermanas, que a pesar de vuestros fuertes caracteres sois las mejores hermanas que se puede tener. Gracias por vuestro apoyo incondicional y cariño diario, por todos vuestros favores y por vuestro inmenso corazón. Gracias al resto de mi familia por parte de mi madre y padre, a todos mis primos, a mis tíos y abuelos. A ti, abuela Isabel te haría ilusión saber qué lejos he llegado. A todos os agradezco enormemente todo el apoyo que me brindáis continuamente. No se puede tener más suerte y tener una familia mejor que la mía. A estos agradecimientos sin duda tengo que sumar a mis suegros, Vicente y Conchi, porque desde hace años ellos ya forman parte de mi familia. Os agradezco todo el enorme apoyo que me habéis regalado todo este tiempo, vuestra preocupación, vuestro cariño y vuestra paciencia, sin duda os habéis convertido en otras de las personas más importantes de mi vida. Gracias, Os quiero a todos.

Para finalizar, tengo que darle las GRACIAS a Vicente, mi amigo, confidente, compañero, novio, y futuro marido. Tú has estado conmigo desde el principio, me has comprendido, has sido paciente, me has protegido, querido, has confiado en mí y me has apoyado incondicionalmente en todas mis decisiones y pensamientos. Tú siempre me has animado a que siguiera adelante y has creído en mí. Eres la persona más buena y sencilla que conozco en el mundo, me doy las gracias por haberte encontrado, me siento muy afortunada. Si no te hubiera conocido quizás no estaría ahora mismo escribiendo estas palabras. Te quiero.

Si hay alguien que no he nombrado, por favor que no se sienta ofendido y me perdone, son tantas las personas a las que agradezco tanto que es posible que me haya dejado alguien atrás.

A todos, GRACIAS.

La fosfoenolpiruvato carboxilasa (PEPC; EC 4.1.1.31) es una enzima clave en el metabolismo del carbono, catalizando la primera reacción en la asimilación fotosintética del CO₂ en las plantas C₄ y CAM o llevando a cabo funciones no fotosintéticas en las plantas C₃. Su distribución es amplia, la encontramos en las plantas superiores, algas verdes y microorganismos. En este trabajo, se aborda el estudio de la PEPC en el desarrollo y en la germinación de la semilla (tejido C₃) de un cereal, el sorgo.

SEVILLA, 2014