
On the Concurrent Execution of Model Transformations
with Linda

Loli Burgueño
Universidad de Málaga

ETSI Informática
Bulevar Louis Pasteur, 35.

(29071)
Malaga, Spain

loli@lcc.uma.es

Javier Troya
Universidad de Málaga

ETSI Informática
Bulevar Louis Pasteur, 35.

(29071)
Malaga, Spain

javiertc@lcc.uma.es

Manuel Wimmer
Business Informatics Group

Vienna University of
Technology

Favoritenstrasse 9-11. (1140)
Vienna, Austria

wimmer@big.tuwien.ac.at

Antonio Vallecillo Universidad de
Málaga

ETSI Informática
Bulevar Louis Pasteur, 35. (29071)

Malaga, Spain
av@lcc.uma.es

ABSTRACT

Nowadays there exists a wide variety of model transforma-tion
languages. However, all of them present limitations, mainly
performance issues, when the complexity and size of model
transformations and models grow. The problems arise due to
the in-memory allocation of large models as well as the time
taken by the execution engines for producing the output
models. This restricts the benefits of using model
transformations in different application fields of model en-
gineering where the complexity of the transformation tasks
exceeds the capabilities of sequential execution engines. In this
paper we tackle these limitations by introducing concur-rency
for model transformations to effectively improve the execution
performance. Instead of reinventing the wheel, we base our
approach on Linda, a mature coordination lan-guage for
parallel processes. We explore how model trans-formations fit
into Linda and show a set of basic mechanisms to enable
concurrent model transformations. Initial results of applying
our approach show a great potential of using Linda to improve
the execution performance with respect to existing approaches.

Keywords

Model transformation, concurrency, Linda, tuple spaces

1. INTRODUCTION

In model engineering [2], models are used as the main
artifacts for capturing knowledge about different domains.
One prominent example for model engineering is model-
driven software engineering [3, 24], where models are used in
a generative manner to produce software systems in a semi-
automatic way. Model transformations (MTs) are so to speak
at the heart of MDE, by providing the mechanisms for
manipulating and transforming models. MTs can be classi-
fied according to different characteristics [7, 19]: abstraction
level of input and output models (i.e., horizontal vs. verti-cal
transformations), directionality (i.e., uni-directional vs. bi-
directional transformations), manipulation of input and
output models (i.e., in-place vs. out-place transformations),
etc. In model-driven software engineering, out-place trans-
formations are very popular for implementing model compil-
ers that produce concrete code from more abstract models.
However, transformations are not limited to be applied for
producing code. For instance, model transformations are
becoming also a promising approach to deal with data inte-
gration, especially when complex data structure are involved
such as in Social Web data management [31].

Because of this increasing variety of model transformation
scenarios, there exists a wide range of different languages
with which model transformations can be developed, each of
them comprises different characteristics [6]. Some examples
of transformation languages from different language cate-
gories are GrGen (graph transformation) [14], Kermeta (im-
perative) [20], QVT-R (declarative) [12], ATL (hybrid) [15]
and UML-RSDS (general purpose MDE tool) [18]. How-ever,
all of them present limitations, mainly performance is-sues,
when the complexity and size of model transformations and
models grow [5, 16]. The problems arise due to the in-memory
allocation of large models as well as the time taken by the
execution engines for producing the output models. This
restricts the benefits of using models and model trans-
formations in different application fields of model engineer-
ing, e.g., biology, medicine, and sociology, where the com-
plexity of the models and model transformation tasks is such

that sequential execution engines are not sufficient anymore.
In this paper we tackle these limitations by introduc-

ing concurrency for model transformations to effectively im-
prove the execution performance. However, instead of rein-
venting the wheel, we base our transformation approach on
Linda [10], a mature coordination language for parallel pro-
cesses. Linda supports to read and write data to distributed
tuple spaces as its basic primitives. For running transfor-
mations on such architecture, we explore how model trans-
formations fit into the Linda framework. In particular, we
report on the representation of metamodels and models as
tuples, how trace links are encoded to allow for efficient re-
trieval, and how the execution of transformation rules is
distributed over tuple spaces. Initial results of applying our
approach to the classical Class2Relational case study show
already a great potential of using Linda to improve the ex-
ecution performance with respect to existing approaches.
The outline of this paper is as follows. In Section 2 we

introduce the Linda framework and how model transforma-
tions are embedded in this framework. In Section 3 we apply
the Linda-based transformation approach to the well-known
Class2Relational case study and investigate on the execu-
tion performance. In particular, we compare our approach
against the ATLAS Transformation Language (ATL) [15].
While we present related work in Section 4, we conclude the
paper with an outlook on future work in Section 5.

2. LINDA MEETS MODEL TRANSFORMA-
TIONS

In this section we show the basics of Linda and how model
transformations can be embedded into the Linda approach.

2.1 Linda Basics
Linda is a coordination language for parallel and distributed

processing and provides a communication mechanism based
on a logically shared memory space called tuple space. It
was first proposed by David Gelernter at Yale University
in the mid-1980’s [9] and in recent years there has been a
resurgence in interest, particularly with regard to Java im-
plementations of Linda [28, 29]. On distributed memory
systems, such as networks of workstations, the tuple space
is usually distributed among the processing nodes. Inde-
pendent of the implementation strategy employed, the tuple
space is structured as a bag of tuples. An example of a tuple
with four fields is ("circumference", 3, 47, 53), where
3 is the radio, and 47 and 53 indicate the position (x and
y coordinates) of the circumference represented by this tu-
ple. As a coordination language, Linda is conceived to be
integrated with a sequential programming language, which
is called the host language. Linda provides operations to
place tuples into tuple spaces (write operations) and to re-
trieve tuples from them (read operations). Read operations
can be either blocking or non-blocking. Also, the specifica-
tion of the tuple to be retrieved makes use of an associative
matching technique whereby a subset of the fields in the
tuple have their values specified.
For implementing our approach, we have used the Java

implementation of an in-memory data grid offered by Gi-
gaspaces Technologies [11]. It is called XAP Elastic Caching
Edition (we will refer to it from here on as XAP) and sup-
ports the basic Linda operations as well as a wide range of
new features that offer good results with low latency, such

as fast data access, performance, and scalability. Linda, and
consequently XAP, allows several machines to work simulta-
neously over a tuple space that can be distributed transpar-
ently to the user. Since XAP deals with Java code, Java ob-
jects can be introduced and extracted from tuple spaces. In-
ternally, XAP serializes the objects before introducing them
in a tuple space and deserializes them when extracting them.

XAP allows to create as many distributed tuple spaces as
desired. These spaces can allocate big loads of information
in RAM memory, since they can be distributed in differ-
ent machines, where smaller chunks of the information are
stored in each machine. Different execution threads, which
may come from different machines, can read and write the
information on these tuple spaces. XAP–internally and in a
transparent way to the user–deals with the concurrent mech-
anisms that offer this parallelization.

2.2 Model Transformations based on Linda
In this subsection, we first show how metamodels and

models are encoded in tuple spaces, and subsequently, we
present how transformations are implemented based on this
encoding.

2.2.1 Implementing Metamodels and Models
The first ingredients needed to define a MT are the meta-

models of the source and target domains. In our approach,
since we are dealing with Java code, metamodels are repre-
sented by means of Java classes. XAP requires these classes
to implement the Java Serializable interface. Further-
more, getter and setter methods have to be defined in or-
der to have access to the attributes afterwards. Our models,
consequently, are composed of instances (objects) of these
classes. Transformation languages such as ATL [15] or QVT
[21] require metamodels to conform to Ecore [4]. Models
conforming to these metamodels are typically stored in XML
Metadata Interchange (XMI) files. We plan as future work
to obtain our Java representation from such metamodels and
models by means of model-to-text (M2T) transformations.
Besides, the representation used throughout this paper has
been adopted considering the particular example shown in
Section 3.

We define two tuple spaces, one for storing the input
model and one for the output model. From here on we re-
fer to them as source tuple space and target tuple space,
respectively. As described before, these tuple spaces can
be distributed on several machines. This means that some
parts of the model, i.e., some Java objects, can be in different
machines than others as is also depicted by Figure 1.

We provide every object with an identifier, which is stored
in an attribute of type String named id. The value of the
identifier has the following form: <package_name>.<class_
name>_Integer. By this convention, identifiers have infor-
mation about the metamodel, in particular, about the meta-
class and its container package, and they also contain an in-
teger number that makes the value universally unique. For
instance, the identifiers for two objects of type Attribute of
the metamodel shown in Figure 2 may be“classMM.Attribut
e_42” and “classMM.Attribute_43”.

Attributes of the meta-classes are represented in the cor-
responding Java also as attributes (i.e., fields), because this
is enough to represent simple values stored in Java objects.

Finally, we need a mechanism to store information about

links between objects. As in Ecore, we consider two types
of relationships between classes: references and containment
references. In our representation, each class has an attribute
of type String for every outgoing relationship with the name
<relationship_name>ID, where the identifier of the refer-
enced object is stored. Additionally, there is another at-
tribute of Boolean type for each relationship, with the name
<relationship_name>IsComposed, which keeps a true value
if the reference is of type containment and false otherwise.

2.2.2 Implementing Model Transformations
As first step in the transformation’s execution, the input

model, i.e., a set of Java objects, is loaded into the source tu-
ple space. The identifiers of the objects of each class go from
<package_name>.<class_name>_1 until <package_name>.<c
lass_name>_n, where n is the number of instances of each
type. In our current naive implementation, input models
are generated from scratch with the help of an external Java
program. For future versions, we plan on receiving input
models in XMI (or similar) format and translating them
into our representation by means of M2T transformations.
Thus, identifiers for objects would be automatically created
by the transformation.
Identifiers of the objects in the output model are consid-

ered to be slightly different in our approach. They comprise
the following form: <package_name>.<class_name>_<rule_
name>_Integer, where the integer value is determined by
the input model. By this convention, information about the
rule that creates an output object is also contained because
of the following two reasons:

1. Uniqueness: Taking into account that the integer
value at the end of the identifier is the same as that
of the input object from which the element is cre-
ated, it may happen that two target objects have the
same integer value if the input objects from which they
are created are of different type. Consider, for exam-
ple, the Class and Relational metamodels (cf. Fig-
ures 2 and 3), and let us suppose that objects of type
Class and Attribute produce objects of type Column
by means of Rule1 and Rule2, respectively. If no infor-
mation about the rule is added in the identifier of out-
put objects, then the class ClassMM.Class_3 and the
attribute ClassMM.Attribute_3 produce both an ob-
ject with the same identifier, RelationalMM.Column_3.
However, if we introduce information about the rules,
the identifiers of the output objects are RelationalMM.
Column_Rule1_3 and RelationalMM.Column_Rule2_3.

2. Tracing: It allows to keep track of from which input
object a specific output object is created. This is sim-
ilar as the trace link concept used in ATL [15] or the
trace model used in [26]. In this way, if we see an ob-
ject with the identifier RelationalMM.Column_Rule1_3
in the output model, and we know that Rule1 receives
objects of type Class as input, then we know that
such object was created from object ClassMM.Class_3
by means of Rule1

When more than one output object is created from an
input object, an additional field is added in the identifiers
to avoid ambiguities. The main element created, e.g., in an
ATL rule, it is the first element created in a matched rule,
has an identifier as described so far. The remaining elements

have an extra integer number that gives the order in the cre-
ation. For example, if object with id ClassMM.Class_3 pro-
duces a table and two columns by means of Rule1, the identi-
fiers of these three objects are RelationalMM.Table_Rule1_3,
RelationalMM.Column_Rule1_3-1 and RelationalMM.Colu
mn_Rule1_3-2. In this initial version of our paper, we deal
with output objects created only from one input object, i.e.,
one-to-many transformation rules.

A strong point of our approach is that several execution
threads can deal with the transformation at the same time
as illustrated by Figure 1. We have based our initial imple-
mentation presented in this paper on ATL. There is a Java
class for every matched rule in an ATL transformation (for
a concrete example see Section 3.2). Each of these classes
defines how a specific set of target objects are created from
a specific set of source objects. In fact, we use the same
matching and filtering strategies as used for ATL matched
rules. Consequently, the behavior of the transformation in
our implementation is equivalent to the ATL implementa-
tion. Source objects are read in blocks and target objects
are produced in blocks, too. Thus, a specific thread reads a
set of objects of the same type (with the takeMultiple op-
eration) from the source tuple space, creates a set of output
objects, and introduces them in the target tuple space (with
the writeMultiple operation). In this first implementation,
each Java class is assigned to a specific number of threads, as
we describe in more detail in Section 3.3. The reading and
writing in blocks is more efficient than reading and writing
objects one-by-one. The internal mechanisms of the XAP
implementation of Linda assure that no two threads take
the same elements from the source tuple space at the same
time.

For reasons of navigability, input objects should remain
in the source tuple space all the time. Otherwise, if a trans-
formation rule requires to navigate from the input object to
another input object which is no longer in the tuple space,
a NullPointerException would be fired. However, at the
same time, if objects remain always in the source tuple space,
special care has to be taken not to fire transformation rules
again and again for the same input objects. Here we have to
consider how the tuple space is accessed. In particular, there
are two types of operations for consulting a tuple space, read
operations and take operations. The former keep the con-
sulted tuples in the space, while the latter take them out.
Therefore, there are two possibilities for extracting input
objects from the source tuple space in order to transform
them into output objects. On the one hand, if we use read
operations to read these objects, then the transformation
never stops, as mentioned before, because there are always
objects matching the preconditions. On the other hand, if
we use take operations, we remove objects from the source
tuple space that may be needed afterwards for navigation
because they are referenced by other objects being trans-
formed. For this reason, we have added a Boolean attribute
named transformed, which is nothing but a flag, to every
class. This attribute is false at the beginning of the trans-
formation’s execution for every object, meaning that they
have not been transformed. Then, input objects that have
not been transformed can be extracted from the source tu-
ple space with the takeMultiple operation. Straightaway,
these objects are stored locally and they are written again in
the source tuple space, now with the transformed attribute
set to true, so that these objects are not taken again by any

execution thread. Finally, the copy of the objects stored lo-
cally is used to create the output objects. Our Java classes
(those corresponding to ATL rules), consequently, take into
account this flag in order to select which input objects are
to be transformed.

Figure 1: Concurrent and distributed model trans-
formation approach at a glance

2.2.3 Summary
A global view of the approach is presented in Figure 1.

We can see how the input and output tuple spaces are parti-
tioned and distributed among several machines (six for each
space in the illustrated example). The input and the out-
put models are stored in such partitions. Several threads
access the input model and create the output model at the
same time. Please note that the threads shown in the fig-
ure may either belong to the machines that store the tuple
spaces or not, because any machine can access these tuple
spaces. By having the models stored and the transformation
executed in several machines, this approach presents a high
degree of scalability for several reasons. First, large models
are distributed over several machines, so that the memory
in these machines is not overloaded. Second, any number of
machines can access the tuple space, even if the space is not
physically in these machines, so that the core(s) of each ma-
chine contribute to the transformation process. In fact, the
more cores available, the more threads can be defined with-
out the risk of context switching, so that the transformation
is executed faster.
Let us point out than in our initial implementation, we

have made experiments only with one machine. However,
this machine has 16 cores and all of them participate in the
transformation’s execution, as we describe in more detail in
Subsection 3.3.

3. CLASS2RELATIONAL CASE STUDY
The Class2Relational example1 transforms simplified UML

class diagrams to simplified relational database schemas. In
this section, we show for this example (i) how the metamod-
els and models are represented, (ii) how the transformation

1It is available at: http://www.eclipse.org/atl/
atlTransformations

rules are expressed, and (iii) we present some performance
measurements for this example to reason about the scalabil-
ity of the presented approach.

3.1 Metamodel/Model Representation
The Ecore representation for the source and target meta-

models is presented in Figures 2 and 3, respectively.

Figure 2: Class metamodel

Figure 3: Relational metamodel

As we explained before, our representation of the meta-
models is done in Java. We need a Java class for each class
in the Ecore representation. Attributes of the Ecore classes
are converted to fields in our representation and we repre-
sent relationships as explained in Section 2.2. An excerpt of
the code for the Attribute class (cf. Figure 2) is depicted
in Listing 1.

Listing 1: Attribute class
1 package classMM;
2 public class Attribute extends NamedElt {
3

4 String id;
5 Boolean multivalued;
6 String typeID; Boolean typeIsComposed = false;
7 String ownerID; Boolean ownerIsComposed = false;
8 Boolean transformed;
9

10 public Attribute (){ }
11

12 public Attribute (String id, String name , Boolean
multiValued , String owner , String idType){

13 super(name);
14 this.id = id;
15 this.multivalued = multiValued;
16 this.ownerID = owner;
17 this.typeID = idType;
18 transformed = false;
19 }
20

21 public String getId() {

22 return id;
23 }
24

25 public void setId(String id) {
26 this.id = id;
27 }
28 ...

The getter and setter methods for the remaining at-
tributes are not shown. There is a constructor with no at-
tributes (requirement of XAP), and there is another one
whose arguments are the attributes and relationships of the
class.

3.2 Transformation Rule Representation
For exemplifying how transformation rules are implement-

ed, we present one of the rules from the Class2Relational
ATL transformation before we discuss how exactly this rule
is realized with Linda. It is the ClassAttribute2Column
rule, that takes non-multivalued Attribute instances (which,
in turn, have as type an instance of Class assigned) as input
and transforms them into Column instances. The column’s
name must be the attribute’s name concatenated with “Id”,
and its type reference must point to a Type instance with
name “Integer”. If no object of type Type with name “Inte-
ger” exists, then one has to be created.
This rule is implemented in ATL as shown in Listing 2.

The helper named objectIDType retrieves a Type instance
with name “Integer”.

Listing 2: ClassAttribute2Column rule in ATL
1 rule ClassAttribute2Column {
2 from
3 a : Class!Attribute (
4 a.type.oclIsKindOf(Class!Class) and
5 not a.multivalued
6)
7 to
8 out : Relational!Column (
9 name <- a.name + ’Id’,
10 type <- thisModule.objectIdType
11)
12 }

In our Java implementation, a rule in ATL corresponds
to a class in Java. Furthermore, the matches and filters we
define are the same as those used by ATL. An exceprt of the
code of the class implementing the ClassAttribute2Column
is illustrated in Listing 3.

Listing 3: ClassAttribute2Column rule of the Linda-
based solution

1 Attribute [] atts=retrieveElements(numElements);
2 if (atts.length > 0){
3 Column [] cols=new Column[attributes.length];
4 for (int i = 0; i < atts.length; i++) {
5 cols[i]=new Column(CommonMeth.genOutId(atts[i],1),
6 atts[i]. getName () + "Id",
7 CommonMeth.objectIDType(gigaSpaceTrg));
8 }
9 gigaSpaceTrg.writeMultiple(cols);
10 }

The method retrieveElements (Listing 3, line 1) retrieves
a block of objects (the number of objects retrieved is given
by numElements) that match the rule’s precondition. This
is, it removes the elements from the input tuple space and
place them locally in the atts array. The code of the re-
trieveElements method is shown in Listing 4. Please note

that this method is located within the class representing the
ClassAttribute2Column rule.

Listing 4: retrieveElements method
1 private Attribute [] retrieveElements(n) {
2 Attribute [] atts=gigaSpaceSrc.takeMultiple(
3 new SQLQuery <Attribute >(Attribute.class ,
4 "typeID like ’inMM.Class_\%’ and multivalued=

false and transformed=false"), n);
5 if (atts.length >0){
6 for (Attribute a : atts){
7 a.setTransformed(true);
8 }
9 gigaSpaceSrc.writeMultiple(atts);

10 }
11 return atts;
12 }

XAP offers the possibility of querying the tuple spaces
by means of SQL-like syntax. The method retrieveEle-
ments uses this mechanism in order to take the elements
that fulfil the specified constraints. In this case, it returns
the elements of type Attribute whose type reference is an
instance of Class, which are not multi-valued and have
not been transformed yet. The more complex issue here
is how to know which class the object referenced by type
belongs to. According to our representation, we have an
attribute named typeID, that keeps the identifier of the
referenced object (cf. line 6 in Listing 1). This is why
object identifiers are strings with the signature: <pack-
age_name>.<class_name>_Integer, so that the class to what
they belong is known and the problem of setting the restric-
tion is reduced to a string comparison with the SQL op-
eration LIKE. Finally, this method marks the elements as
transformed and put them back in the source tuple space
again, as explained in Section 2.2.

Going back to the code implementing the ClassAttribute-
2Column rule (i.e., Listing 3), if there are attributes to be
transformed (line 2), then an array is created (line 3) with
the purpose of storing the columns to be created for writ-
ing them afterwards in the target tuple space all at once.
Then, for each attribute retrieved (line 4), a new column is
created (lines 5, 6, and 7). Fresh identifiers for the columns
are generated with the genOutId method, placed in a class
accessible by all Java classes implementing rules called Com-
monMeth. This method is called in the first parameter of
the columns’ constructor. The code for genOutId method is
shown in Listing 5.

Listing 5: genOutId method
1 public static String genOutId(Attribute attr , int

numObj) {
2 String attrNumber=attr.getId ().substring(
3 attr.getId ().indexOf("_")+1);
4 if (isTypeOf(classOf(attr), DataType.class) &&
5 !attr.getMultivalued ()){
6 return "outMM.Column_" + attrNumber;
7 } else if (isTypeOf(classOf(attr), Class.class ...
8 }

It receives as parameter the attribute instance and returns
the identifier of the element in which it will be transformed.
Since a rule can create more than one element, the second
parameter is necessary in order to know the concrete element
for what we are requesting the identifier. Line 1 shows that
the first step is to extract the number from the identifier,
removing all the other parts like the package name and the
class name. Later, it checks the constraints that the input

objects in the rule satisfy. For example, our rule transforms
attributes whose type feature is DataType and are not mul-
tivalued, another rule can transform attributes whose type
feature is Class and are multivalued. All these constraints
need to be taken into account because the object(s) created
depend on them, and thus, their identifiers.
When creating a column (lines 5-7 in Listing 3), the second

parameter of the constructor sets the column’s name and the
third one makes use of the static method objectIDType(),
also placed in class CommonMeth. This method looks in the
target tuple space for a Type instance with name“Integer”. If
it does not exist, it is created; otherwise it is retrieved. The
method returns the identifier of the retrieved (or created)
object. Its Java code is displayed in Listing 6.

Listing 6: objectIDType method
1 public static String objectIDType(GigaSpace

gigaSpaceTrg) {
2 Type t = new Type();
3 t.setName("Integer");
4 Type t2 = gigaSpaceTrg.read(t);
5 if (t2==null){
6 t.setId("outMM.Type_Integer");
7 gigaSpaceTrg.write(t);
8 return "outMM.Type_Integer";
9 } else {
10 return t2.getId(); }
11 }

We can resort on that in order to know if an object with
name“Integer”exists, we only need to look for it in the target
tuple space (line 4 in Listing 6) with the read operation that
XAP provides. If it does not exist, we create it and set its
features (lines 6 and 7) using the write operation. Finally,
the identifier is returned in line 8 (if it was created) or line
10 (if it already existed).
The rule execution ends up with the last step (Listing 3,

line 9), when all the columns created are stored in the target
tuple space. They are all stored at once, with the write-
Multiple method.
For the complete source code of this example as well as

for a detailed description of this example, we kindly refer
the interested reader to [1].

3.3 Performance Evaluation
In this subsection, we discuss the performance of our trans-

formation approach by reporting results of an experiment.
By following the guidelines by Roneson and Hörst [23], we
used purposive synthetic scenarios for the aforementioned
Class2Relational transformation.

3.3.1 Setup
The main goal of the presented approach is to provide

good scalability, i.e., to load, represent, and transform very
large models. Thus, to validate our approach, we aim to
answer the following three research questions (RQ) based
on the Class2Relational example:

• RQ1: What is the absolute transformation time for a
representative set of large input models?

• RQ2: What are the input model size boundaries for
our approach?

• RQ3: What is the relative improvement with respect
to existing state-of-the-art approaches?

For answering RQ1 and RQ2, we have built several consid-
erably large Class models to see how long the Class2Relation-
al transformation execution runs take. For answering RQ3,
we have done a comparison with ATL since it is one of the
most used transformation language in academia as well as
in industry. It is important to point out here that we have
implemented our prototype in an equivalent way as ATL.
This is, we have a Java class for each ATL rule. Further-
more, rule matching, filtering, and model element generation
is performed in the same way as in ATL [26].

To compare the execution times, we have executed both
transformations, i.e, the Linda-based version and the ATL
version, on a machine running 64-bit Linux with 11.7 Gb
of RAM memory and 16 cores of 2.67GHz. For executing
the Linda-based version, we launched 16 execution threads,
where each thread is assigned to one unique core and deals
with a rule and a certain number of objects to transform.
Please notice that in these initial experiments, we have not
distributed the tuple spaces to different machines, this is,
both the source and target tuple spaces are created in the
same machine. However, all the 16 cores are used to con-
currently execute the Class2Relational transformation. For
executing the ATL version, we employed the EMF-specific
virtual machine of ATL in its version 3.3.1.

An important remark is the number of threads assigned
to each rule (i.e., Java class). We mentioned before that
each Java class corresponds to an ATL rule, and that each
thread transforms objects of a specific type (in fact, they
transform the objects filtered by each rule). We have 16
cores, so we have created 16 execution threads to avoid con-
text switching. In our concrete implementation, we have
assigned more threads to those rules that are heavier. The
more times a rule has to navigate the input model, the heav-
ier it is. In our example, this navigation is required during
the creation of objects (when an object needs data from
other objects in order to be created). So, for example, in
our example we have assigned 7 threads to the heaviest rule,
Class2Table, and 3 to other rules such as SingleValued-
DataTypeAttribute2Column, and 1 to the DataType2Type
rule. When a thread is released, it is dedicate to help with
the heaviest rule. We have come up with this configuration
of threads after running several experiments for this specific
case study using different configuration and conclude which
one is the most effective. As part of our future work, we
would like to automatize this choice.

3.3.2 Results
For collecting the measures to answer the stated research

questions, we are using the following metrics:

• CPU Time: Execution time in seconds, without the
time for loading the input model and storing the out-
put model.

• Model size: Number of objects instantiated from meta-
classes contained in the models.

• Speedup: Ratio between the execution time of the
Linda-based transformation and the ATL transforma-
tion.

We decided to measure the CPU time only for the trans-
formation execution, because so far, our models do not have
a concrete and persistent representation. Thus, we make use

#Objects ATL(sec) Concurrent(sec) Speedup
27,500 14.984 7.305 2.051
55,000 56.686 21.053 2.693
82,500 95.175 49.365 1.928

110,000 275.258 91.838 2.997
137,500 319.227 142.679 2.237
165,000 495.881 195.698 2.534
192,500 681.375 239.270 2.848
220,000 933.449 278.274 3.354
247,500 1,005.769 394.522 2.549
275,000 Exception 492.536 -

Table 1: Results of the performance evaluation (up
to 275,000 elements).

of a Java program to build automatically the input model
(create the objects) in memory and store them in the source
tuple space at runtime.
We explored that the first time an ATL transformation is

executed, it lasts for more than for succeeding runs. This is
because the ATL virtual machine is cold in the beginning,
and it needs to be warmed up. Since we want our approach
to be applied on big models and model transformations, we
consider that we should take into account the time spent by
ATL in the first execution. For this reason, the times shown
for the ATL execution have been taken from the first run,
where the virtual machine has not been warmed up before,
i.e., a fresh instance of the virtual machine is used for each
run.
The second and third columns of Table 1 summarize the

execution times for ATL and our approach, respectively.

3.3.3 Discussion of the results

Figure 4: ATL and Linda-based transformation per-
formance in comparison.

Figure 4 shows the execution times for both ATL and
our approach for input models composed of up to 275, 000
objects. The last value for ATL is not displayed as ATL is
not able to transform such a big model on our machine. In
fact, it throws the error GC overhead limit exceeded. The
problem that caused this exception is that almost all the
time is spent in garbage collection and the ATL program is
making little or no progress because the Java heap is too
small for such a load.

#Objects Time (hours)
550,000 0.545

1,100,000 2.407
1,650,000 5.269
2,200,000 9.049

Table 2: Results of the performance evaluation (up
to 2,200,000 elements).

In both cases, the times have an asymptotic quadratic
growth and tend to fit the polynomial function with a cor-
relation coefficient of 0.99 and whose formulas are:

yATL = 13.6122 + 1.748× 10−8x2

yconcurrent = 8.5956 + 6.2759× 10−9x2

As the two functions are of degree two, an interesting
value which allows us to estimate how many times the con-
current approach is faster than ATL, namely speedup, can
be computed with the following formula:

speedupi =
yATLi

yconcurrenti

For our executions, the speedup is computed in the fourth
column of Table 1 and, as average, this value is 2.57, what
means that for this concrete example the concurrent ap-
proach is more or less two and a half times faster.

A representative measure of the performance is response
time. Table 2 and Figure 5 give us an idea of how long
the transformation with our approach takes for large input
models. For example, the largest model we run counts on
2, 200, 000 objects and takes about 9 hours to get the result.

A restriction in our approach is that our implementa-
tion uses an in-memory data grid (which stores the data
in RAM memory) so another important point to consider is
the amount of memory the models need in order to be stored
and transformed. The last model transformed in Figure 5
is the biggest model that our machine (11.7 Gb) is able to
transform due to the memory limitations.

Figure 5: Results of Linda-based approach for very
large models.

Nevertheless, since Linda’s tuple spaces can be distributed
over several machines, this would solve the problem of the

memory limitation as long as we count on enough machines
where to distribute the spaces.
With the results presented in this subsection we have an-

swered the research questions presented earlier. The run-
time performance of our implementation seems appropriate
(RQ1). We also obtain a good scalability for input mod-
els, since we can transform models with up to 2,200,000
elements (RQ2). Finally, the performance and scalability
both in response time and size of input models are better
than ATL’s for the given scenario (RQ3). Recall that the
results obtained are for the Class2Relational case study with
our specific and non-generalized implementation. As future
work we want to consider more case studies and to develop
a more generic implementation.

3.3.4 Threats to Validity
Internal validity. The threats to internal validity are

the factors which might affect the results in the context of
our experiments. As we have stressed in previous subsec-
tions, our experiments have been carried out for the concrete
example of the Class2Relational case study. It is also worth
mentioning that the number of elements filtered by each rule
is proportional in the different input models we have used.
This means that, e.g., more elements are transformed by
rule SingleValuedDataTypeAttribute2Column than by rule
ClassAttribute2Column because there are always more non-
multivalued attributes with type an instance of a DataType
than with type an instance of a Class. For this reason,
more threads have been assigned to the former rule than to
the latter. If we had not had any information about the
quantity of each type of elements in the input models, the
distribution of the threads would have been different and we
would have obtained different performance measures.
External validity. Such threats may hinder that the re-

sults of the experiment are generalizable. The main threat to
external validity is the fact of having experimented only with
one case study. The current implementation of our approach
has been conceived for a specific case study. Also, the ATL
implementation of this case study has served us as a model
for our implementation. If we had used a different ATL real-
ization (e.g., using the imperative language features of ATL)
or a different transformation language as starting point for
this case study, we would have probably come up with a
different implementation which could have been better or
worse in terms of performance. Another threat of external
validity is the knowledge about the number of cores avail-
able beforehand. In our experiments, we knew we counted
on 16 cores, so we defined 16 threads and assigned them to
the different rules. But, what if we do not know the number
of cores beforehand? We have to take this into account for
future work.

4. RELATED WORK
With respect to the contribution of this paper, we first

elaborate on widely related approaches for storing and re-
trieving very large models, and second, we discuss closely
related work considering the performance of model transfor-
mations.
Storing/loading very large models. The scalabil-

ity problems of loading large models represented by XMI
documents into memory has been already recognized sev-
eral years ago. One of the first solutions for EMF models

is the Connected Data Objects (CDO)2 model repository
which allows to store models in all kinds of database back-
ends such as traditional relational databases or emerging
NoSQL databases. CDO supports the ability to store and
access large-sized models due to the transparent loading sin-
gle objects on demand and caching them. If objects are no
longer referenced, they are automatically garbage collected.
There are also several emerging projects that are consider-
ing to store very large EMF models, like MongoEMF3 and
Morsa [8]. Both approaches are built on top of MongoDB,
which is used as storage technology. In [5], Clasen et al.
elaborate on strategies for storing models in a distributed
manner by horizontal or vertical partitioning into the Cloud.

In our approach, we are reusing the storage of Gigaspaces
Technologies by transforming models and their associated
metamodels to a tuple representation to inherit the good
scalability from the underlying technology. Although the
stored tuples may be easily distributable, we have not con-
sidered this option in our experiments. Furthermore, by
exploiting Cloud Computing possibilities, we may also de-
ploy our approach on an Infrastructure-as-a-Service provider
to have on demand scale-in and scale-out support as men-
tioned in [5]. However, a deeper comparison with existing
approaches for storing large models is left as subject for fu-
ture work, because the focus of this paper was on evaluating
the transformation performance.

Transforming very large models. Several lines of
work consider the transformation of large models. In this
paper, we have been focusing on out-place model transfor-
mations running in batch mode. In particular, we read the
complete input model and produce the output model from
scratch by applying all matching transformation rules. How-
ever, to deal with large models, orthogonal techniques may
be applied. Especially, two scenarios have been discussed
in the past that benefit from alternative execution strate-
gies. First, if an output model already exists from a pre-
vious transformation run for a given input model, only the
changes in the input model are propagated to the output
model. Second, if only a part of the output model is needed
by a consumer, only this part is produced while other ele-
ments are produced just-in-time. For the former scenario,
incremental transformations [17, 22] have been introduced,
while for the latter lazy transformations [25] have been pro-
posed. In this paper, we proposed a fundamental approach
for parallelizing model transformation executions that may
be also combinable with incremental and lazy transforma-
tions.

Another interesting line of research for executing trans-
formations in parallel is the work on critical pair analysis
[13] in the field of graph transformations. This work has
been originally targeted to transformation formalisms that
do have some freedom for choosing in which order to apply
the rules. Rules that are not in an explicit ordering are con-
sidered to be executed in parallel if no conflict, e.g., add/for-
bid or delete/use conflicts, is statically computed. However,
the execution engines follow a pseudo-parallel execution by
going back to a sequential application of the rules. But the
general notion of critical pairs may be also a valid input for
distributing transformation rules. In particular, having non-

2http://projects.eclipse.org/projects/modeling.
emf.cdo
3http://code.google.com/a/eclipselabs.org/p/
mongo-emf

conflicting transformation rules allows for distributing them
easier without having negative side-effects.
The performance of model transformations is now consid-

ered as an integral research challenge in MDE. For instance,
Amstel et al. [27] considered the runtime performance of
transformations written in ATL and in QVT. In [30], sev-
eral implementation variants using ATL, e.g., using either
imperative constructs or declarative constructs, of the same
transformation scenario have been considered and their dif-
ferent runtime performance has been compared. However,
these works only consider the traditional execution engines
following a sequential rule application approach. The only
work we are aware of dealing with the parallel execution of
transformations is [5] where Clasen et al. [5] outlined several
research challenges when transforming models in the cloud.
In particular, they discussed how to distribute transforma-
tions and elaborated on the possibility to use the Map/Re-
duce paradigm for implementing model transformations.

5. CONCLUSIONS
This paper presents an emerging approach based on Linda

for executing model transformations concurrently. Due to
the distributed nature of Linda, this approach can be also
applied over distributed systems where a model is trans-
formed by several machines simultaneously, increasing sig-
nificantly the performance of the transformation process.
We have presented a case study where we compare the ex-

ecution times of a transformation implemented with our ap-
proach with the execution times of an equivalent ATL-based
transformation. Our approach has proved to be faster for
this particular case and also the scalability with respect to
the input model’s size seems to be fairly good. Nevertheless,
this is only the beginning and there are several lines that we
still have to explore in future work.
So far, we have defined a Java class for each ATL rule

in the transformation. Then, a specific number of threads
is assigned to each rule, because we know the number of
cores we count on beforehand (16 in our specific setting).
However, what if we do not know the number of cores be-
forehand? For this reason, we would like to make every
thread execute the same piece of code. This way, if there
are 3 threads working instead of 2, the target model is built
faster, but we do not need to modify the implementation nor
deal with the types of elements transformed by each thread.
For achieving this behavior, we want every thread to execute
the whole transformation over a subset of the input model.
Then, the more cores/machines participating in the trans-
formation, the more threads are launched for the same piece
of code.
Also, and as a more ambitious future line of research, we

would like to create our own concurrent model transforma-
tion language. This is, right now we are using Java code
to implement the transformations, but it would be ideal
to count on a language built on top of such implementa-
tion. Another possibility is to define a semantic mapping
between sequential transformation languages, such as ATL
or QVT, and our Linda-based representation, so that trans-
formations written in the former could be executed concur-
rently by using the later. Here we plan to investigate on a
higher-order transformation to produce parallelizable code
from high-level transformation languages.

6. ACKNOWLEDGMENTS
This work is partially funded by Research Projects TIN2011-

23795 and TIN2011-15497-E.

7. REFERENCES
[1] Atenea. Class2Relational example implemented in

Java based on Linda, 2013. http://atenea.lcc.uma.
es/Descargas/MTLL/Class2Relational.zip.

[2] J. Bézivin. On the unification power of models.
Software and System Modeling, 4(2):171–188, 2005.

[3] M. Brambilla, J. Cabot, and M. Wimmer.
Model-Driven Software Engineering in Practice.
Synthesis Lectures on Software Engineering. Morgan
& Claypool Publishers, 2012.

[4] F. Budinsky, E. Merks, and D. Steinberg. EMF:
Eclipse Modeling Framework (2nd Edition).
Addison-Wesley, 2006.

[5] C. Clasen, M. Didonet Del Fabro, and M. Tisi.
Transforming Very Large Models in the Cloud: a
Research Roadmap. In Proceedings of the 1st
International Workshop on Model-Driven Engineering
on and for the Cloud (co-located with ECMFA), 2012.

[6] J. S. Cuadrado. Towards a Family of Model
Transformation Languages. In Z. Hu and J. de Lara,
editors, Proceedings of the 5th International
Conference on the Theory and Practice of Model
Transformations (ICMT), volume 7307 of Lecture
Notes in Computer Science, pages 176–191. Springer,
2012.

[7] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Syst. J.,
45(3):621–645, July 2006.

[8] J. Espinazo-Pagán, J. S. Cuadrado, and J. G. Molina.
Morsa: A Scalable Approach for Persisting and
Accessing Large Models. In J. Whittle, T. Clark, and
T. Kühne, editors, Proceedings of the 14th
International Conference on Model Driven
Engineering Languages and Systems (MODELS),
volume 6981 of Lecture Notes in Computer Science,
pages 77–92. Springer, 2011.

[9] D. Gelernter. Generative communication in Linda.
ACM Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[10] D. Gelernter and N. Carriero. Coordination languages
and their significance. Commun. ACM, 35(2):96–107,
1992.

[11] GigaSpaces Technologies Ltd. GigaSpaces, 2013.
http://www.gigaspaces.com/datagrid.

[12] T. Goldschmidt and G. Wachsmuth. Refinement
Transformation Support for QVT Relational
Transformations. In Proceedings of the 3rd Workshop
on Model Driven Software Engineering (MDSE), 2008.

[13] R. Heckel, J. M. Küster, and G. Taentzer. Confluence
of typed attributed graph transformation systems. In
Proceedings of the First International Conference on
Graph Transformation (ICGT), volume 2505 of
Lecture Notes in Computer Science, pages 161–176.
Springer, 2002.

[14] E. Jakumeit, S. Buchwald, and M. Kroll. GrGen.NET
- The expressive, convenient and fast graph rewrite
system. STTT, 12(3-4):263–271, 2010.

[15] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.

ATL: A model transformation tool. Science of
Computer Programming, 72(1-2):31–39, 2008.

[16] F. Jouault and J.-S. Sottet. An AmmA/ATL Solution
for the GraBaTs 2009 Reverse Engineering Case
Study. In Proceedings of the 5th International
Workshop on Graph-Based Tools - Grabats 2009
(co-located with TOOLS), 2009.

[17] F. Jouault and M. Tisi. Towards Incremental
Execution of ATL Transformations. In L. Tratt and
M. Gogolla, editors, Proceedings of the 3rd
International Conference on Theory and Practice of
Model Transformations (ICMT’10), volume 6142 of
Lecture Notes in Computer Science, pages 123–137.
Springer, 2010.

[18] K. Lano and S. Kolahdouz-Rahimi. The UML-RSDS
manual, 2012.
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web.

[19] T. Mens and P. V. Gorp. A Taxonomy of Model
Transformation. Electr. Notes Theor. Comput. Sci.,
152:125–142, 2006.

[20] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
L. C. Briand and C. Williams, editors, Proceedings of
the 8th International Conference on Model Driven
Engineering Languages and Systems (MoDELS),
volume 3713 of Lecture Notes in Computer Science,
pages 264–278. Springer, 2005.

[21] OMG. MOF QVT Final Adopted Specification. Object
Management Group, 2005. OMG doc. ptc/05-11-01.

[22] A. Razavi and K. Kontogiannis. Partial evaluation of
model transformations. In M. Glinz, G. C. Murphy,
and M. Pezzè, editors, Proceedings of the 34th
International Conference on Software Engineering
(ICSE), pages 562–572. IEEE, 2012.

[23] P. Runeson and M. Höst. Guidelines for Conducting
and Reporting Case Study Research in Software
Engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[24] D. C. Schmidt. Guest Editor’s Introduction:
Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

[25] M. Tisi, S. M. Perez, F. Jouault, and J. Cabot. Lazy
execution of model-to-model transformations. In
J. Whittle, T. Clark, and T. Kühne, editors,
Proceedings of the 14th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS’11), volume 6981 of Lecture Notes in
Computer Science, pages 32–46. Springer, 2011.

[26] J. Troya and A. Vallecillo. A Rewriting Logic
Semantics for ATL. Journal of Object Technology,
10:5:1–29, 2011.

[27] M. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires.
Performance in Model Transformations: Experiments
with ATL and QVT. In J. Cabot and E. Visser,
editors, ICMT, volume 6707 of Lecture Notes in
Computer Science, pages 198–212. Springer, 2011.

[28] G. Wells. New and improved: Linda in Java. Science
of Computer Programming, 59(1-2):82–96, 2006.

[29] G. Wells, A. Chalmers, and P. G. Clayton. Linda
implementations in Java for concurrent systems.
Concurrency - Practice and Experience,
16(10):1005–1022, 2004.

[30] M. Wimmer, S. Mart́ınez, F. Jouault, and J. Cabot. A
Catalogue of Refactorings for Model-to-Model
Transformations. Journal of Object Technology,
11(2):2:1–40, 2012.

[31] M. Wischenbart, S. Mitsch, E. Kapsammer, A. Kusel,
B. Pröll, W. Retschitzegger, W. Schwinger,
J. Schönböck, M. Wimmer, and S. Lechner. User
profile integration made easy: model-driven extraction
and transformation of social network schemas. In
Companion Proceedings of the 21st World Wide Web
Conference (WWW), pages 939–948. ACM, 2012.

