
Fully Verifying Transformation Contracts for
Declarative ATL

Bentley James Oakes∗, Javier Troya†, Levi Lúcio∗, and Manuel Wimmer†
∗School of Computer Science, McGill University, Canada

levi@cs.mcgill.ca, bentley.oakes@mail.mcgill.ca
†Business Informatics Group, Vienna University of Technology, Austria

{troya,wimmer}@big.tuwien.ac.at

Abstract—The Atlas Transformation Language (ATL) is today
a de-facto standard in model-driven development. It is under-
stood by the community that methods for exhaustively verifying
such transformations provide an important pillar for achieving
a stronger adoption of model-driven development in industry.

In this paper we propose a method for verifying ATL
model transformations by translating them into DSLTrans, a
transformation language with limited expressiveness. Pre-/post-
condition contracts are then verified on the resulting DSLTrans
specification using a symbolic-execution property prover.

The technique we present in this paper is exhaustive for the
declarative ATL subset, meaning that if a contract holds, it will
hold when any input model is passed to the ATL transformation
being checked. We explore the scalability of our technique using
a set of examples, including a model transformation developed
in collaboration with our industrial partner.

Index Terms—Model transformation, Formal verification,
ATL, Contracts, Symbolic execution, Pre-/Post-conditions

I. INTRODUCTION

Graph-based model transformations have become in the
last few years the main means for manipulating models in
model-driven development. Their simplicity, their allowance
for mathematical treatment, and the fact that they can natively
manipulate domain-specific concepts expressed in metamod-
els, all make graph-based model transformations an excel-
lent compromise between strong theoretical foundations and
applicability to real-world problems. In particular, the Atlas
Transformation Language (ATL) [3] has come to prominence
in the model-driven development community. This success is
due to ATL’s flexibility, support of the main meta-modelling
standards, usability that relies on good tool integration with
the Eclipse world, and a supportive development community.

Because of the importance of ATL in both the academic
and the industrial arenas, specification verification is of prime
importance: firstly because the correctness of software built
using model-driven development techniques typically relies
on the correctness of many operations executed using model
transformations; and secondly because tools that allow build-
ing verified software are in strong demand, especially in
industry where quality and security standards have to be met.

In this paper we address this issue by proposing a novel
technique to verify visual pre-/post-condition contracts on ATL
specifications. A contract holds for the transformation if, for all
input models where the contract’s pre-condition is found, the
contract’s post-condition is also found in the corresponding

output model (with optional traceability constraints between
the elements of the input and output models). Otherwise, the
contract does not hold.

For example, this paper considers the well-known Families-
to-Persons transformation from the ATL zoo [1], where
mother(s), father(s), daughter(s) and son(s) belonging to a
family are translated into men and women who are members
of a community. One possible contract would try to assert that,
for any input model containing a family that includes a mother
and a daughter, a man is produced in the output community.
We would expect the contract not to hold for the Families-to-
Persons transformation, because there can exist families that
are composed of only a mother and her daughter.

The main contribution of our technique is that, if our prover
demonstrates that the contract holds, then it will hold for any
input model given to the ATL model transformation. We can
thus guarantee the user can safely execute the model trans-
formation without any need for additional testing or runtime
checking, as seen in other ATL verification approaches. Our
contract language is based on pre-/post-condition contracts,
but also includes propositional logic operators for combining
contracts. This is further discussed in Section III-D.

We prove that contracts hold or not by translating ATL
specifications into transformations defined in a model transfor-
mation language called DSLTrans [7]. A theoretical framework
has been developed for the DSLTrans model transformation
language in which pre-/post-condition contracts can be shown
to hold for all input/output pairs resulting from executing a
given DSLTrans model transformation, or to not hold for at
least one of those input/output pairs [17]. A fully automatic
property prover based on this theory has been shown to be
applicable to industrial problems [20].

In this paper we focus on verifying the declarative part of
ATL, given its similarity to the DSLTrans model transforma-
tion language. It is common practice to use this subset of
the language for the majority of transformation requirements.
Additionally, using only declarative ATL normally results in
clearer, more readable and more maintainable model transfor-
mations than when the imperative part of the language is used.

The presentation of our work will follow this outline:
Section II briefly introduces DSLTrans and its relevant

constructs. Following this, Section III presents the Families-
to-Persons transformation, introduces its ATL representation

52



Fig. 1. The UnionWomanRule DSLTrans rule

and DSLTrans counterpart, and explains some relevant pre-
/post-condition contracts for this transformation.

Section IV focuses on the higher-order transformation that
automatically transforms declarative ATL specifications into
their semantically-equivalent DSLTrans counterparts.

Performance results obtained from applying our tool to a
number of examples, including a transformation obtained from
our industrial partner, are presented in Section V. These results
are discussed within the section and show that our technique
is feasible, even for sizable transformations.

Finally, we wrap-up in Sections VI and VII by describing
related work and presenting our conclusions and future work.

II. DSLTRANS MODEL TRANSFORMATION LANGUAGE

DSLTrans is a visual graph-based and rule-based model
transformation engine that has two important properties en-
forced by construction: all its computations are both terminat-
ing and confluent [7]. These properties stem from the fact that
DSLTrans does not allow unbounded loops during execution,
making it a Turing-incomplete computing language [7]. Be-
sides their obvious importance in practice, termination and
confluence were instrumental in the implementation of our
verification technique for pre-/post-condition contracts.

Model transformations are expressed in DSLTrans as sets
of graph rewriting rules, having an upper part (named Match-
Model), a lower part (ApplyModel) and, optionally, negative
application conditions. The main construction used in the
scheduling of model transformation rules in DSLTrans is a
layer. Each model transformation rule in the layer cannot
match over the output of any other rule, and cannot modify
the input graph during the rewriting phase (termed out-place
execution). Layers are organized sequentially and the output
model that results from executing a given layer is passed as
input to the next layer in the sequence.

A DSLTrans rule can match over the elements of the input
model of the transformation and also over elements that have
been generated so far in the output model. Matching over
elements of the output model of a transformation is achieved
using a DSLTrans construct called backward links. Backward
links allow matching over traces between elements in the input
and the output models of the transformation. These traces are
explicitly built by the DSLTrans transformation engine during
rule execution.

For example, we depict in Figure 1 a rule in the DSLTrans
language. When a rule is applied, the graph in the match

part of the rule is searched for in the transformation’s input
model, together with the classes in the apply part of the rule
that are connected to backward links, graphically represented
with dotted lines. An example of a backward link can be
observed in Figure 1 connecting the HouseholdRoot and the
CommunityRoot match classes. During the rewrite part of rule
application, the instances of classes in the apply part of the
rule that are not connected to backward links, together with
their adjacent relations, are created in the output model. The
UnionWomanRule rule in Figure 1 will therefore create a has
relation per matching site found. Although not present in this
rule, copying object attribute values from the match to the
apply part of the rules is also part of the DSLTrans language,
as illustrated in Section III-C.

In addition to the constructs presented in the example in
Figure 1, DSLTrans has several others: existential matching
which allows selecting only one result when a match class
of a rule matches an input model, indirect links which allow
transitive matching over containment relations in the input
model, and negative application conditions which allow the
transformation designer to specify conditions under which
a rule should not match. These constructs are not currently
used in our verification approach, and the interested reader is
referred to [7] for further information.

III. THE FAMILIES-TO-PERSONS TRANSFORMATION

In order to highlight some of the relevant behavior of
both ATL and DSLTrans, we present the Families-to-Persons
transformation. This transformation is found in the ATL zoo,
and has also been discussed in a number of related works on
verification and testing [13].

A. Transformation Overview

The Families-to-Persons transformation operates on families
made up of fathers, sons, mothers, and daughters, and trans-
forms them into communities made up of male and female
members. The source and target metamodels1 are displayed
in Figure 2. The source metamodel, Households, contains the
elements Family and Member. These elements are connected
by edges, which are typed father, mother, son, and daughter.
The target metamodel, Community, represents a Community
made up of Man and Woman elements (the Person class is
abstract), which are connected to the Community by a has-
typed edge.

1The authors acknowledge that these metamodels are quite artificial, and
do not adequately represent real-world families or persons.

Fig. 2. Households and Community metamodels



The purpose of the transformation is to convert elements of
type Member into elements of type Person. Every Member
with the role of father or son is transformed into a Man.
Likewise, Members with the role of mother or daughter are
transformed into a Woman. As for the fullName given to the
Person created, it is composed of the firstName of the Member
concatenated with the lastName of the Family to which the
Member belongs.

B. The Families-To-Persons ATL Transformation

Listing 1 shows the Families-to-Persons ATL transforma-
tion. Note that for simplification purposes only the rules
involving father and mother relations are shown.

This transformation is slightly different from the one in the
ATL Transformation zoo [1]. In order to consider a higher
subset of features of the declarative part of ATL, we have
included more than one in-pattern element in some rules. This
increases the complexity of internal traces, since now Persons
are not only created from Members, but from the combination
of Members and Families. As mentioned, the intention of this
transformation is to translate Households units in the source
model into Community units in the target model. The operation
of this transformation, as well as all transformations in ATL, is
split into two major steps: creating objects and setting values.
Note that this two-step process, however, is not explicit in
ATL, and is described here to reduce the conceptual delta
between ATL and DSLTrans.

Listing 1. A portion of the Families-to-Persons ATL Transformation
1 module Families2Persons;
2 create OUT : Persons from IN : Families;
3
4 rule Households2Community { -- R1
5 from
6 hh: Families!Households
7 to
8 c : Persons!Community (
9 has <- hh.have->collect(f | thisModule.
10 resolveTemp(Tuple{mem=f.father,fam=f}, ’m’)), --B11
11 has <- hh.have->collect(f | thisModule.
12 resolveTemp(Tuple{mem=f.mother,fam=f}, ’w’)) --B12
13 )}
14
15 rule Father2Man { -- R2
16 from
17 mem : Families!Member, fam : Families!Family
18 (fam.father=mem)
19 to
20 m : Persons!Man (
21 fullName <- mem.firstName + fam.lastName --B2
22 )}
23
24 rule Mother2Woman { -- R3
25 from
26 mem : Families!Member, fam : Families!Family
27 (fam.mother=mem)
28 to
29 w : Persons!Woman (
30 fullName <- mem.firstName + fam.lastName --B3
31 )}

The first step of the transformation is to create target
objects and trace links, the latter being created implicitly and
automatically by ATL.

• R1 - Households elements are transformed into Com-
munity elements. Traceability links between them are
implicitly created.

• R2 and R3 - Members who are connected by mother and
father links to a Family are transformed into Man and
Woman elements, respectively. Trace links between pairs
of Family-Member and Man and between Family-Member
and Woman are implicitly created.

In the second step, target object feature values are set. These
are the rule components marked B11, B12, B2, and B3 in
Listing 1. For example, B11 sets the has relationship between
the Community and a Person. The way the appropriate Person
is selected is internally resolved by using the trace links. In
particular and to explicitly show the resolving mechanism, we
make use of the ATL resolveTemp operation, which makes it
possible to point to any of the target model elements generated
from a given (sequence of) source model elements by an ATL
rule. As for the Persons that are created, their names are set
to be the firstName of the Member from which it is generated,
plus the lastName of the Family to which the Member belongs,
as we can see in B2 and B3.

C. DSLTrans Representation

An excerpt of the DSLTrans transformation corresponding
to the ATL Families-to-Persons transformation shown in List-
ing 1 is displayed in Figure 3. This excerpt shows three out of
five rules. Rule Households2Community corresponds to rule
R1 in Listing 1, Father2Man corresponds to rule R2 and
UnionFather to binding B11.

The process of constructing a DSLTrans transformation
from an ATL one is described in the next section. For now
note that DSLTrans specifications obtained from ATL always
include only one rule per layer, meaning all rules execute
sequentially. This is due to the sequential semantics of ATL
that we replicate in DSLTrans. Also, note that rule Father2Man
in Figure 3 performs an attribute copy from the match to the
apply part of the rule, graphically represented with arrows
from the ApplyModel to the MatchModel. More precisely, it
fills in the fullName attribute of the generated Man instance
by concatenating the firstName and lastName attribute values
found respectively in the member and family instances iden-
tified by the match part of the rule. This operation replicates
the concatenation of the firstName and the lastName occurring
in the rule component marked B2 in Listing 1.

Fig. 3. A portion of the Families-to-Persons DSLTrans transformation



D. Proving Contracts

Given a transformation written in the DSLTrans transforma-
tion language, our contract prover can prove whether pre-/post-
condition contracts will hold or not hold on all executions of
this transformation. If a contract holds, then whenever the pre-
condition matches over an input model, then the post-condition
will match over the corresponding output model.

Contracts are proved through a process that first symboli-
cally constructs all possible executions of the transformation,
resulting in a set of so-called path conditions. Each path
condition will represent a set of concrete executions of the
transformation, where each concrete execution is an input/out-
put model pair.

Our proving algorithm begins by generating one empty
path condition, representing the case where no rules in the
transformation have been executed. Then, each rule in each
layer is examined, and its MatchModel and ApplyModel graphs
are combined with the graph of each path condition generated
thus far. As each layer in the transformation is considered,
the set of path conditions will grow to represent all allowed
combinations of rules. As rules may depend on each other
because of backward links, such dependencies are verified by
the path condition generation algorithm in order to exclude
impossible rule combinations. The final set of path conditions
produced by the algorithm will then abstract the infinite
set of all concrete transformation executions. This is further
described in [17], along with a formal discussion of the validity
and completeness of this work.

Pre-/post-condition contracts form an implication, which
needs to be checked for each path condition generated for
the transformation by the above algorithm. In broad terms,
a contract holds on a path condition if either the contract’s
pre-condition cannot be isomorphically found in the path
condition, or the contract’s pre-condition together with its post-
condition can be found in the path condition. The contract
does not hold on the path condition if its pre-condition can
be isomorphically found in the path condition but its post-
condition cannot. Finally, a contract holds for a transformation
if it holds for all of its generated path conditions. Contracts
are formally described in [17], while extensive discussion of
the contract language is found in the PhD thesis of Selim [19].

For example, Figure 4 describes a contract that we want
to prove over all transformation executions. The statement it
describes is: ‘a family with a father, mother, son, daughter
should always produce two men and two women in the target
community’. Note that the traceability links in the contract
require that the output elements be generated from the attached
input elements. Our contract prover is then able to prove
whether or not this contract will hold for all transformation
executions, and produce any counter-examples if they occur.

Our contract language also allows reasoning about the
attributes of elements in the models. Figure 5 describes a
contract determining if the full name of the produced Person
has been correctly created from the last name of the Family
and the first name of the Member.

Fig. 4. A contract to verify that two Woman and two Man elements are
correctly produced from the corresponding Members

Fig. 5. A contract to verify proper construction of the name attribute

Fig. 6. A contract to verify whether a Man element will be produced from
a Family containing a daughter element and a mother element - this contract
will not hold

Figure 6 describes a contract that does not hold over all
executions of the transformation. The contract’s statement is,
‘a family with a mother and a daughter will always produce a
community with a man’. It is easy to see that the input model



Fig. 7. Using propositional logic to express contracts

which contains only mother and daughter elements should
not produce a man in the target community. Our contract
prover will then find multiple counter-examples which cause
the contract to not hold.

Contracts can also be combined using propositional logic
and binding sites to enhance the expressiveness of the con-
tract language [20], [19]. The last contract presented for the
Families-to-Person transformation, in Figure 7, demonstrates
the use of this propositional logic in our contract prover.
Note the implication between the two contracts. For each path
condition where the first contract holds, the second contract
must not hold and the match sites for the elements connected
by the equal relation must be the same. This contract’s
statement is ‘If a Community is connected to a Person element,
that Community is connected to only that one Person element’.

Note that the contract language we present in this paper
relies only on constructs that are found in the input and output
metamodels, plus traceability links. Given that both ATL and
DSLTrans operate on EMF metamodels, the contract language
can thus be used seamlessly to describe pre-/post-conditions
we wish to check on either ATL or DSLTrans transformations.
This fact is a major advantage for our work: contracts can be
expressed exactly in the same language and have the same
semantics for both an ATL transformation and its semantically
equivalent DSLTrans representation.

IV. MAPPING ATL INTO DSLTRANS

In this section we first present the features of the declarative
part of ATL that we consider for the translation to DSLTrans.
Then, we describe the mapping between ATL transformations
and DSLTrans transformations.

A. ATL Subset Selected

In this first version of our translator from ATL to DSLTrans
we have considered almost the complete set of features avail-
able in the declarative part of the ATL language. In Table I we
show the features that we consider and those that we do not.
The using block that can be used in ATL rules is an optional
mechanism for declaring local constants. Consequently, the
same rule can be written without using this block. Regarding
helpers, they can be seen as simple OCL queries that are
reusable throughout the transformation. For this reason, once
again, equivalent rules can be written with and without helpers.

TABLE I
FEATURES OF DECLARATIVE ATL CONSIDERED

Matched Rules X Filters X
Lazy Rules X OCL Expressions X

Several Bindings X Helpers ×
Several InPatternElements X Conditions ×

Several OutPatternElements X Using Block ×

Finally, conditions, such as if then else endif expressions that
can be written in bindings, are not considered in our approach
either. In the case where the condition checks something on
the matching element of the ATL rule, then such a rule could
be divided into two rules where the information about the con-
dition is added in the filters, so that including the condition in
the binding is avoided. An example of an ATL transformation
containing the non-considered features and an equivalent one
considering them can be found on our website [2].

Consequently, the fact that our current prototype does not
consider the three features mentioned above does not impose
significant limitations on the ATL transformations that can be
translated into DSLTrans, since we can avoid having these
three features by writing the ATL transformations slightly
differently. This makes our current implementation sufficiently
powerful to be of interest. In any case, we plan the inclusion
of these features in future versions of our mapping.

B. Mapping between ATL and DSLTrans

In order to map ATL onto DSLTrans, we must explicitly
represent the semantics of ATL in DSLTrans. This includes
using backward links to make explicit in DSLTrans the implicit
binding step in ATL for resolving associations between objects
created in the transformation. We will explain the mapping
we have established by using the Families-To-Persons case
study shown in Listing 1 as a running example, whose partial
DSLTrans representation is shown in Figure 3. The process is
divided into two steps.

In the first step, every matched rule in ATL is translated into
a rule in DSLTrans. Matched rules are declaratively matched
by the ATL engine, so they are not called explicitly from any-
where. The order of these rules in DSLTrans does not matter,
since they are independent from each other. Consequently, we
choose the same order as in which they appear in the ATL
transformation.

The match part of the created rules contains the elements
appearing in the from part of the ATL rules. If the ATL rule has
a filter, then some more elements and associations may appear
in the match part in order to satisfy the conditions of the filter.
An example of this are the Member and Family elements in
rule Father2Man in Figure 3, which are linked by association
father as indicated in the filter of R2 in Listing 1.

In the apply part of the rules created, there is an element
for each element created by the ATL rule (in the to part). As
well, associations are created between the elements when this
is specified in the ATL rule.

If there are bindings in the elements created in the ATL
rule that are initializing attributes (not references), then these



attributes must appear in the elements created in the apply
part. Besides, attributes must also appear in the elements in the
match part if their value is used to initialize the values of the
attributes in the apply part. An example are attributes fullName
and lastName of Member and Family in rule Father2Man,
which are used to initialize attribute fullName of Man. Note
that, in this step, bindings that initialize references are ignored,
such as bindings B11 and B12 in rule R1.

In the second step, a rule in DSLTrans is created for every
binding that initializes the value of a reference in the ATL
transformation. These rules are independent from each other,
so the order does not matter. However, they must go after
the rules created in the first step in order to properly utilize
backward links as rule dependencies.

An example of such rules is the rule UnionFather in
Figure 3, which corresponds to binding B11 in Listing 1. In
these rules, the elements that appear in the match part are the
elements that are traversed in the navigation of the binding,
which is written in OCL, plus the associations between them.
In our example, the binding includes types Households (hh
is of type Households), Family and Member, and associations
have and father. The apply part contains the association that
the binding in ATL is initializing, has in our example, plus
the elements representing the source and target classes of
such association. These elements must have been created in
previous rules – created in the first step of the mapping. In
fact, backward links are included in the rule in order to indicate
from which element(s) in the match part the element in the
apply part was created. We see the use of these backward links
in rule UnionFather, where they link the elements that have
been created in the previous two rules.

Lazy rules are used in ATL when we want a reference to
point to a concrete element that we create. They give a hybrid
flavor (mix of declarative and imperative) to the declarative
part of ATL. We also consider them in the second step of the
mapping. When a lazy rule is called, we include the elements
that are created by the lazy rule in the apply part created from
the binding that is calling the lazy rule.

The mapping between ATL and DSLTrans has been imple-
mented with a higher-order transformation (HOT) developed
in ATL and available on our website [2]. It is composed of
two main matched rules, each of which realizes one of the
two steps explained.

V. RESULTS AND DISCUSSION

In this section we present an evaluation of our higher-order
transformation and contract-proving technique. In particular,
we are interested in the following research questions:

• RQ1: Is our technique applicable to a variety of ATL
transformations?

• RQ2: How does the time and memory usage of the
contract prover differ for each of our case studies?

• RQ3: Given a particular contract, can we reduce the time
taken for contract proving?

• RQ4: Does the output of our higher-order transformation
differ significantly from a hand-built transformation?

A. Study Setup
This section will describe the case studies used in order

to answer our research questions. Our intention is to verify
transformations of different sizes and ‘shape’ in order to
reason about how the characteristics of the transformation
affects our contract prover.

1) Families-To-Person Transformation: The Families-to-
Persons transformation described in Section III involves a
number of interesting concepts with regards to our verification
work. In particular, the rules producing elements in the output
model are non-trivial, as those elements have their attributes
set through manipulation of the attributes in the input model.
This case study tests our technique’s ability to correctly
transform these attribute-setting rules and then prove contracts
on these transformations.

As well, this case study is technically challenging to prove
contracts on, as multiple elements in the transformation’s rules
are similar. For example, multiple rules contain a Family
element. In order to prove contracts, our contract prover must
be able to correctly ‘disambiguate’ these elements. That is, if
there are similar elements in two rules, the contract prover
must consider whether these elements match over separate
elements in the input model, or over the same element.

2) Copier Transformations: The following ‘copier’ trans-
formations were taken from the ATL zoo [1], and transformed
by the HOT into DSLTrans transformations. The purpose of
these transformations is to copy elements from the input model
into the output model, which may be useful in transformation
chaining. The ER-Copier transformation’s input and output
metamodel is the entity-relationship metamodel, while the
ECore-Copier transformation operates on a subset of the
ECore metamodel.

The first copier transformation, ER-Copier, is relatively
small, composed of only five ATL rules which are transformed
into nine DSLTrans rules by the higher-order transformation.
As is a common structure for these ‘copier’ transformations,
the first rules in the transformation copy input elements
into the output model. Then, the following rules create the
associations between elements.

The second copier transformation, ECore-Copier, is a larger
transformation. The ATL representation has 11 rules, and the
DSLTrans version has 24 rules. Therefore, this case study
represents a larger test of our technique. Indeed, thousands
of potential rule combinations are created, directly addressing
the scalability research question (RQ2).

The contracts we wish to prove on these copying trans-
formations determine if elements have been correctly copied
and combined by the transformation. For example, Figure 8
and Figure 9 present two contracts we wish to prove on the
ECore-Copier transformation. The statement for Contract 1
is, ‘All bi-directional associations (represented by two inverse
EReferences instances) between EClass instances should have
the same end points, i.e., the EClass instances should have
equivalent names.’, while the statement for Contract 2 is ‘If
there is an EStructuralFeature instance in the target model, it
must have the equivalent EClass instance as a container as



Fig. 8. Contract 1 for the ECore-Copier transformation

Fig. 9. Contract 2 for the ECore-Copier transformation

the corresponding source model EStructuralFeature instance
has in the source model.’

3) Sliced Transformations: We also examined the output of
our HOT on a larger version of the ECore-Copier transforma-
tion. This transformation is composed of 15 ATL rules, which
was transformed into 63 DSLTrans rules by the HOT. Due to
the exponential effect on contract proving time and memory
of adding more rules to a transformation, we considered the
time to verify contracts on this transformation to be infeasible.
Therefore, we implemented an optimization which ‘slices’ the
DSLTrans transformation to only consider those rules that
are needed for a particular contract to be proved, directly
addressing the corresponding research question (RQ3).

To perform these experiments, we sliced the 63-rule Large-

ECore-Copier DSLTrans transformation for the contracts pre-
sented in Figure 8 and Figure 9. Slicing was performed
manually, though in future work we expect to automate this.

The first step in slicing was to examine the elements in the
contract, and determine which rules could either match over
or produce those elements. The second step was to determine
if those rules required elements that were found in yet other
rules, in an iterative process. This dependency analysis was
performed very conservatively, and future work will attempt to
optimize the process to eliminate more rules. The needed rules
are placed into a new transformation, which is likely smaller
than the original transformation. However, the number of rules
in the slice depends on the particular elements involved in the
contract and the rules. For example, slicing the Large-ECore-
Copier transformation for Contract 1 produced a DSLTrans
transformation with 13 rules, while a slicing for Contract 2
produced a transformation with 17 rules. Note that the reason
for the larger number of rules needed for Contract 2’s slice
is that the element EStructuralFeature in the contract is a
supertype of multiple elements.

4) Industrial Transformation: In order to validate our
higher-order transformation, we have applied it to an indus-
trial transformation from earlier contract proving work [20].
The transformation in question takes models defined in a
proprietary industrial metamodel, and translates them into
the AUTOSAR metamodel, which is an industry standard.
Therefore, this transformation is used for model-evolution
purposes. Note that the contracts we wish to prove on this
transformation are also reproduced from [20].

Our intention with this case study is two-fold. First, we are
interested in comparing the time and memory consumption of
this industrial example to the other transformations. Secondly,
we will compare the time and memory usage of the contract
prover when executed on the DSLTrans transformation pro-
duced by our higher-order transformation, and on the hand-
built transformation found in that earlier work. These results
will provide an answer to RQ4 of whether the DSLTrans
representation generated by the higher-order transformation
is sufficiently efficient for contract verification to replace the
hand-built version.

B. Measures

In order to objectively answer our research questions, con-
tract prover experiments were conducted for all case studies
mentioned above. For each case study, the success of our con-
tract prover rests on whether the contracts we have indicated
hold or do not hold on all path conditions (as appropriate).

The following information was collected during the contract
proving process for each case study:

• Number of rules in each transformation
• Number of path conditions produced by the contract

prover
• Time required in order to generate all path conditions
• Number of contracts to be proved on the case study
• Time required to prove the contracts
• Total memory usage required by the contract prover



TABLE II
PERFORMANCE RESULTS

ATL/ DSLTrans Rules Path Conds. Gen. Time (s) Contracts Proved Time (s) Memory (MB)
Families-to-Person 5 / 9 52 1.54 4 31.45 45
ER-Copier 5 / 9 70 0.48 1 1.70 43
Ecore-Copier 11 / 24 57890 2894.44 1 1401.45 7800
Sliced Transformation (Contract 1) 15 / 13 73 3.50 1 9.11 72
Sliced Transformation (Contract 2) 15 / 17 28 0.95 1 0.46 71
Industrial (from [20]) 5 / 7 3 0.07 9 0.16 43
Industrial (from HOT) 5 / 9 3 0.17 9 0.26 48

Note that the number of rules in the ATL transformation
may be different from the DSLTrans transformation produced
by the higher-order transformation. Therefore, both counts are
reported.

The experiments were run on a 2013 Macbook Air with
an Intel Core i5-4250U and 8 GB of RAM, running on Arch
Linux and Python 2.7.9. Each experiment was conducted at
least five times, with results averaged. Timing information
was obtained by using the Python timing package time. Mem-
ory information was obtained using the /usr/bin/time
command. Note that the memory usage information will also
record the space overhead required by the Python interpreter.

All the artifacts used for our experiments can be found on
our website [2].

C. Results

Table II shows the performance results for proving contracts
on our case studies. We shall now discuss these results in the
context of each of our research questions.

1) RQ1: Applicability of the Technique: To answer our
first research question, we have tested our contract prover on
a number of transformations of varying sizes and purposes.
Most of our transformations were sourced from the ATL zoo,
as well as one transformation from our industrial partner.
For each case study, contracts we expected to hold were
successfully proved. For other contracts, which do not hold
in all cases, counterexamples were produced that indicate the
exact combination of rules where the contract is not guaranteed
to hold. For example, we attempted to prove the daughter-
MotherProp contract (seen in Figure 6) on the Families-to-
Person transformation. Our contract prover correctly indicated
that for input models that only contain daughter and mother
elements, it is not guaranteed that there is a Man element in
the output model.

Success of our contract prover on these case studies lets us
conclude that we can apply our technique to a variety of ATL
transformations.

2) RQ2: Time and Memory Characteristics: To answer our
second research question, we refer to the results in Table II
which contains the performance results of our case studies.

Note that while the number of path conditions generated
is certainly dependent on the number of DSLTrans rules
in the transformation, there is not a linear formula that
can be applied. For example, the industrial transformation
produced fewer path conditions than the equally-sized ER-
Copier transformation. This discrepancy is due to rules in
the industrial transformation completely overlapping with each

other (as described in [20]). Therefore, the exact number
of path conditions produced depends on the complex way
in which rules combine with each other. As well, the time
taken for path condition generation is also affected by the
size of the rules themselves. Our path condition generation
is implemented using graph-matching and rewriting, meaning
that larger rules will take longer to combine [17].

The memory usage of our contract prover is dependent upon
the number of DSLTrans rules in the transformation, and on the
number of path conditions that are created. Note that for small
transformations with a few DSLTrans rules, the memory usage
is around 45 MB, which is consistent with the overhead to run
the Python scripts. For larger transformations which produce
thousands of path conditions, significant memory usage is
seen. For example, the ECore-Copier transformation produces
over 50,000 path conditions which consume about 7.8 GB of
memory. We note that while this consumption of resources is
feasible for a desktop or laptop computer, future work will
focus on further efficiency improvements.

Overall, our approach stays within a modest time and
memory budget. The smaller transformations have their path
conditions generated within a few seconds, and have their
contracts proved within a minute. Note that the time to prove
contracts is proportional to both the number of path conditions
generated for a transformation, as well as the number of
contracts to be proved on that transformation.

3) RQ3: Reducing Contract Proving Time: As can be
seen with the ECore-Copier transformation results, larger
transformations create many more path conditions, straining
time and memory budgets. This research question examines
the possibility of ‘slicing’ large transformations based on two
different contracts.

The results in Table II show the dramatic reduction in
contract proving time when slicing is performed, as described
in Section V-A3. The original transformation of 15 ATL rules
and 63 DSLTrans rules is sliced into 13 DSLTrans rules for
Contract 1, and 17 rules for Contract 2. This lowers the
contract proving time from a number of hours to less than
15 seconds, as fewer path conditions have to be built and then
matched by the contract.

As mentioned, this slicing procedure was performed man-
ually for these experiments. However, as it is so effective
in improving performance, our future work will focus on
improving and automating this technique.

4) RQ4: Higher-Order Transformation: Our last research
question investigates our use of an automatic higher-order
transformation to generate DSLTrans transformations from



ATL transformations. In particular, we are interested in
whether our contract prover is more efficient on a hand-
built transformation, or whether the automatic transformation
suffices in its place. The results in Table II show that while
path condition generation time and contract proving time have
increased, the same contracts held in both cases. Therefore
we conclude that the HOT produces a transformation that
is a sufficient replacement for a hand-built transformation in
the context of proving contracts. Future work will attempt to
generalize this result.

Further optimizations of the produced transformation may
also be possible. In particular, the DSLTrans representation
of ATL transformations generated by the HOT contains more
rules than the hand-built transformation, with only one rule in
each layer in the transformation. We are currently investigating
whether there is a potential for optimization by producing
fewer rules, or by placing independent rules into the same
layer in a pre-processing step.

D. Threats to Validity

This subsection will discuss what we believe to be the major
threats to the validity to our work.

The higher-order transformation has not been formally ver-
ified. Thus, we cannot be completely sure that the DSLTrans
transformations that are automatically produced are directly
equivalent to the original ATL transformation. However, two
arguments can be made for the HOT’s correctness. The first is
that the HOT is relatively simple, as explained in Section IV.
It consists of two steps: first creating the rules that generate
the output elements and then creating the rules that generate
the relations between output elements. This two-step approach
makes ATL’s semantics explicit, and makes the DSLTrans
transformations generated by the HOT easily understandable
as well as traceable back to their original ATL specifications.
Second, we have compared the contract proof results between
a transformation created by hand [20], and the corresponding
transformation generated by our higher-order transformation.
The results were the same, with similar proving times and
memory usage. For future work, we are interested in verifying
the higher-order transformation itself using the contract prover
we present here.

Scalability is always an issue when exhaustive approaches
such as ours are proposed. We have shown with our exper-
iments that our contract prover scales to reasonably sized
transformations when the slicing technique is used. However,
more experiments with large transformations and contracts
involving many elements are necessary to confirm our positive
results on the usability and scalability of our technique.

DSLTrans is a Turing-incomplete computing language, hav-
ing limited expressiveness. This means that ATL transfor-
mations that use the refining mode for realizing in-place
transformations or imperative constructs cannot in general
be translated into DSLTrans to be verified by our approach.
However, our technique can be used to verify the declarative
subset of ATL, including the class of out-place transformations

that is so often used in practice. We are thus confident our
technique is usable for a large class of real-world problems.

VI. RELATED WORK

There has been already an extensive work on verifying
different aspects of model transformations, e.g., cf. [4] for
a survey. With respect to the contribution of this paper, we
summarize previous contributions for checking different kind
of contracts for model transformations whereas the concrete
approaches range from testing to verification approaches.

In [13], [22] the authors describe a method where ‘Tracts’
can be specified for model transformations. Tracts define a
set of constraints on the source and target metamodels, a
set of source-target constraints, and a tract test suite, i.e.,
a collection of source models satisfying the source con-
straints. The accompanying TractsTool can then automatically
transform the source models into the target metamodel, and
subsequently verify that the source/target model pairs satisfy
the constraints. The advantages of this are that the approach
is not computationally-intensive, as tests can be narrowly
focused in a modular way. Besides the Tracts approach, there
are several other approaches supporting the testing of model
transformations based on different kind of contracts such as
model fragments [18], graph patterns [15], [6], Triple Graph
Grammars (TGGs) [23], dedicated testing languages [16],
[10], or as used in Tracts OCL constraints [9], and even a
combination of these mentioned approaches [11]. While these
mentioned approaches resort to black-box based testing, there
are also approaches which allow for white-box based testing
of model transformations such as [14].

In contrast to testing approaches, the presented approach in
this paper allows for contracts to be proved for all possible
transformation executions, i.e., for all possible input models.
However, we also keep the same implication idea: the pre-
condition of a property sets constraints on the input models
to the transformation, and then, the post-condition defines
constraints on the output model.

Previous work has also proposed the idea of transforming
ATL to formal domains. The work of [21] describes a formal
semantics for ATL, such that ATL transformations can be
expressed in the formal language Maude. Once expressed in
Maude, properties can then be verified over the execution of
this transformation, such as reachability of particular states, or
that no more than one rule is matched on each source element.
In our work, we transform the ATL transformation into the
DSLTrans transformation language to prove transformation
contracts which is not in the scope of [21].

The work in [8] automatically transforms transformations
in a number of transformation languages (such as ATL) to
OCL. As well, similar to our system, the invariant, pre- and
post- conditions are described in a graph format. However,
in [8] the counter-example conditions for each property are
generated. Then a model finder generates a possible counter-
example model, before the system determines if the model
can be satisfied or not. Note that due to incomplete searching
of the model space, the model finder may not find every



counter-example. In contrast, our system works by matching
the property onto path conditions, which abstracts all possible
transformation executions. Thus, our property prover can give
a stronger proof. The work by Anastasakis et al. [5] transforms
model transformations to Alloy in order to verify if given
assertions, i.e., properties, hold for the given transformations.
If no target model is found by Alloy for a given source model,
the assertion does not hold. As Alloy needs bounds for the
model search, models outside the given bounds are not found.
In [12] the authors are checking different kinds of model
transformation properties based on OCL and the usage of
KodKod which requires concrete bounds for property proving.

To the best of our knowledge, in this paper we presented
the first approach to fully prove properties defined as contracts
for model transformations expressed in declarative ATL.

VII. CONCLUSION

In this paper, we have presented our novel technique
to fully verify pre-/post-condition contracts on declarative
ATL transformations. This approach is centered around trans-
forming ATL transformations into DSLTrans, our reduced-
expressiveness transformation language. Then, our path condi-
tion generator is able to produce a set of path conditions, which
represent all possible transformation executions. Contracts are
proved to either hold or not hold on each path condition, and
thus on all transformation executions.

This paper has also presented a number of case studies
designed to answer our four research questions. Results in-
dicate that our contract prover is applicable to a variety of
ATL transformations, and that contracts can be proved using
a feasible amount of time and memory. As well, we have also
introduced a ‘slicing’ technique, which selects only the rules
which are needed to prove a particular contract. This results
in a significant decrease in contract proving time. Finally, we
investigated whether our automatically-produced transforma-
tion is a suitable replacement for a hand-built transformation
in contract proving.

Our future work will attempt to address any limitations
of this work. In particular, we aim to produce a tool that
can be used off-the-shelf to prove properties about a class
of existing ATL transformations, fully automatically, by using
the DSLTrans language as a hidden back-end. Already, we
have begun work to integrate our approach into the Eclipse
environment. Another ongoing concern of ours is the time
and space requirements to prove contracts on large transfor-
mations. As mentioned, we intend to improve and automate the
slicing algorithm, as well as investigate other implementation
speedups. ACKNOWLEDGEMENTS

The authors warmly thank the reviewers for their insightful
comments on this submission, as well as Gehan Selim and
Cláudio Gomes for their work on the implementation of the
contract prover. Bentley James Oakes and Levi Lúcio are
researchers working for the NECSIS project, funded by the
Automotive Partnership Canada.

The work of Javier Troya and Manuel Wimmer is funded
by the European Commission under ICT Policy Support Pro-
gramme, grant no. 317859 as well as by the Christian Doppler
Forschungsgesellschaft and the BMWFW, Austria.

REFERENCES

[1] ATL Zoo. http://www.eclipse.org/atl/atlTransformations.
[2] ATL2DSLTrans Artifacts. http://msdl.cs.mcgill.ca/people/levi/files/

MODELS2015.
[3] Atlas Transformation Language – ATL. http://eclipse.org/atl.
[4] M. Amrani, L. Lucio, G. M. K. Selim, B. Combemale, J. Dingel,

H. Vangheluwe, Y. L. Traon, and J. R. Cordy. A Tridimensional Ap-
proach for Studying the Formal Verification of Model Transformations.
In ICSTW, pages 921–928, 2012.

[5] K. Anastasakis, B. Bordbar, and J. M. Küster. Analysis of Model
Transformations via Alloy. In Proc. of MoDeVVa, 2007.

[6] A. Balogh et al. Workflow-driven tool integration using model trans-
formations. In Graph Transformations and Model-Driven Engineering,
pages 224–248. Springer, 2010.

[7] B. Barroca, L. Lúcio, V. Amaral, R. Félix, and V. Sousa. Dsltrans:
A turing incomplete transformation language. In Software Language
Engineering, pages 296–305. Springer, 2011.

[8] F. Büttner, M. Egea, E. Guerra, and J. De Lara. Checking model trans-
formation refinement. In Theory and Practice of Model Transformations,
pages 158–173. Springer, 2013.

[9] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL contracts for
the verification of model transformations. ECEASST, 24, 2009.

[10] A. Garcı́a-Domı́nguez, D. S. Kolovos, L. M. Rose, R. F. Paige, and
I. Medina-Bulo. EUnit: A Unit Testing Framework for Model Manage-
ment Tasks. In MODELS, pages 395–409. Springer, 2011.

[11] P. Giner and V. Pelechano. Test-Driven Development of Model Trans-
formations. In MODELS’09, pages 748–752. Springer, 2009.

[12] M. Gogolla, L. Hamann, and F. Hilken. Checking Transformation Model
Properties with a UML and OCL Model Validator. In Third International
Workshop on Verification of Model Transformations, pages 16–25, 2014.

[13] M. Gogolla and A. Vallecillo. Tractable model transformation testing.
In ECMFA, pages 221–235. Springer, 2011.

[14] C. A. González and J. Cabot. ATLTest: A White-Box Test Generation
Approach for ATL Transformations. In MODELS, pages 449–464, 2012.

[15] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Rets-
chitzegger, J. Schönböck, and W. Schwinger. Automated verification of
model transformations based on visual contracts. Autom. Softw. Eng.,
20(1):5–46, 2013.

[16] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model comparison: a
foundation for model composition and model transformation testing. In
GaMMa’06, pages 13–20. ACM, 2006.

[17] L. Lúcio, B. Oakes, and H. Vangheluwe. A technique for symbolically
verifying properties of graph-based model transformations. Technical
report, Technical Report SOCS-TR-2014.1, McGill U, 2014.

[18] J.-M. Mottu, B. Baudry, and Y. L. Traon. Model transformation testing:
oracle issue. In ICSTW, pages 105–112. IEEE, 2008.

[19] G. M. Selim. Formal Verification of Graph-Based Model Transforma-
tions. PhD thesis, Queen’s University, 2015.

[20] G. M. Selim, L. Lúcio, J. R. Cordy, J. Dingel, and B. J. Oakes. Specifi-
cation and verification of graph-based model transformation properties.
In Graph Transformation, pages 113–129. Springer, 2014.

[21] J. Troya and A. Vallecillo. A Rewriting Logic Semantics for ATL.
Journal of Object Technology, 10(5):1–29, 2011.

[22] A. Vallecillo, M. Gogolla, L. Burgueno, M. Wimmer, and L. Hamann.
Formal specification and testing of model transformations. In Formal
Methods for Model-Driven Engineering, pages 399–437. Springer, 2012.

[23] M. Wieber, A. Anjorin, and A. Schürr. On the Usage of TGGs for
Automated Model Transformation Testing. In Theory and Practice of
Model Transformations, pages 1–16, 2014.


