Evaluation of Model Transformation Approaches
for Model Refactoring

S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp
August 22, 2013

Abstract

This paper provides a systematic evaluation framework for compar-
ing model transformation approaches, based upon the ISO/IEC 9126-1
quality characteristics for software systems. We apply this framework to
compare five transformation approaches (QVT-R, ATL, Kermeta, UML-
RSDS and GrGen.NET) on a complex model refactoring case study: the
amalgamation of apparent attribute clones in a class diagram.

The case study highlights the problems with the specification and de-
sign of the refactoring category of model transformations, and provides
a challenging example by which model transformation languages and ap-
proaches can be compared. We take into account a wide range of evalu-
ation criteria aspects such as correctness, efficiency, flexibility, interoper-
ability, reusability and robustness, which have not been comprehensively
covered by other comparative surveys of transformation approaches.

The results show clear distinctions between the capabilities and suit-
abilities of different approaches to address the refactoring form of trans-
formation problem.

Keywords: Model transformation; Measurement; Quality characteristics;
Model restructuring.

1 Introduction

Model transformations are an essential part of model-driven engineering ap-
proaches to software development. Transformations are used to refine models
from platform-independent forms to platform-specific, to migrate models in re-
sponse to metamodel evolution, and generally to translate the semantic content
of a model from one language to that of another. Such transformations usually
have distinct source and target models and are exzogenous, with distinct source
and target languages [10]. Transformations can also be used to restructure and
refactor models, in order to improve the quality of models or to make them
conform to standards. Such transformations are often update-in-place, operat-
ing on a single model, and are endogenous, with the same source and target
language. A case study of this kind is used in this paper.

As transformations have become more widely applied, they have also become
large and complex software systems in their own right, to which model-driven
engineering can be applied [16, 25]. A range of model transformation approaches
(considered as combinations of a transformation language and a tool for the lan-
guage) have been developed. Some approaches emphasise declarative specifica-
tion, either logic-based or graph-theory based, others are imperative in nature,
and others combine declarative and imperative aspects (hybrid approaches).

Factors such as the interoperability of transformation approaches, the effi-
ciency of transformations implemented by means of particular approaches, and
the maintainability of transformations specified in particular approaches, have
become important factors in selecting an approach for a given transformation
problem category.

Therefore, a suitable broad-based evaluation framework is needed to com-
pare and assess the benefits and disadvantages of particular transformation ap-
proaches for specific categories of transformation problems. In this paper we
introduce an evaluation framework based upon the software quality characteris-
tics defined in the ISO/IEC 9126-1 and 25010 standards [7, 18, 19]. For each such
characteristic, we use its subcharacteristics defined by [18] as external measures
in the sense of the Goal-Question-Metric paradigm [6], and these measures will
in turn be evaluated based upon quantitative internal measures or attributes of
the transformation specification language and transformation implementation
tool of each approach. For example, a subcharacteristic of functionality is suit-
ability, which has quantitative measures including size, complexity, effectiveness
and development effort.

As an example of applying this framework, we compare five established
model transformation approaches from different language categories (GrGen:
graph transformation [20], Kermeta: imperative [11], QVT-R: declarative [36],
ATL: hybrid [21], UML-RSDS: general purpose MDE tool [27]) upon a trans-
formation problem which is typical of model refactoring transformations.

Our comparison is based on the characteristics of Functionality, Reliability,
Usability, Efficiency, Maintainability and Portability from ISO/IEC 9126-1. By
systematically comparing and evaluating the selected transformation approaches
on the case study, according to the ISO/TEC 9126-1 quality model, we can pro-
vide clear guidelines for the appropriateness of different types of transformation
approaches for refactoring transformations, and the specific advantages and dis-
advantages of particular approaches for this type of transformation problem.

Section 2 places this research in the context of previous surveys of transfor-
mation approaches. Section 3 defines the transformation case study in detail.
Section 4 defines the evaluation framework, and presents test cases. Sections 5,
6, 7, 8, 9 present the individual solutions to the problem. Section 10 compares
the different solutions on the relative values of their characteristics. Section 11
gives conclusions.

2 Related work

There have been a number of publications comparing model transformation ap-
proaches on different case studies. This previous research can be divided into (i)
work defining classifications for transformation approaches; (ii) work comparing
approaches using subjective measures; (iii) work comparing approaches using
objective measures.

A classification of model transformation approaches based on features is
given in [10], which defines a general terminology for describing model trans-
formation approaches. They cover a broad range of classification factors and
present two examples of transformation.

Mens and Van Gorp in [31] applied a multi-dimensional taxonomy to cate-
gorise tools, techniques or formalisms for model transformation based on their
common qualities. A number of functional and non-functional requirements for
model transformations are specified.

Taentzer et al. [43] generates a taxonomy for graph transformation tools by
focusing on AGG, AToM, VIATRA2 and VMTS, using the commonly-used ex-
ample of transforming from class diagrams to relational databases, but without
considering any quality attributes. Mohagheghi and Dehlen [34] provided an
initial framework for defining and evaluating quality across different categories
of model-driven engineering. This study also addressed the adaptation of the
quality framework to model transformations.

In [32], quality requirements are formulated for graph transformation tools
and these are analysed without focusing on a specific case study. The paper [41]
also highlights several desirable features of model transformation approaches
without focusing on any specific case.

In [39], Rose et al. describe the result of a migration case study at the
Transformation Tool Contest 2010 workshop, with nine graph and model trans-
formation tools applied to a model migration problem (the mapping of UML
state machines to activity diagrams). All solution experts perform a peer review
of the other solutions and the results are analyzed statistically. Afterwards, the
statistics are investigated critically by experts. The paper considers correctness
and tool maturity as the most important evaluation criteria; however, these
are evaluated subjectively. Their comparison is based on participant opinions
and not on empirical evidence. Furthermore, important characteristics such as
efficiency, complexity and modularity are not considered in this research.

A further paper based on subjective evaluations is [45], which shows the
result of an earlier Transformation Tool Contest in 2007. 11 participants using
graph-based tools attended the contest to perform a transformation from UML
activity diagrams to formal CSP processes.

Our paper described in [28] evaluates Kermeta, Viatra, QVT-R, UML-RSDS
and ATL on three case studies, a re-expression, a refinement, and the first rule
of the case study considered in this paper. Subjective evaluations are given on
the appropriateness of the approaches for each category of transformation.

In [1, 2] some key factors that influence the internal quality of model trans-
formations are presented and assessed by a specialized set of metrics on size,

functionality, modularity and consistency.

Vignaga [46] added complexity and performance to the list of quality at-
tributes in [1]. This study did not develop metrics for different transformation
paradigms and the evaluation is limited to the ATL transformation language.

Rose et al. [38] performed a comparative research study on four model
migration tools (AML, COPE, Ecore2Ecore and Epsilon Flock) using an exam-
ple of Petri net metamodel evolution and an evolution example involving the
Eclipse Graphical Modeling Framework [14]. They conducted a single dimension
research by selecting tools specialised for migration. The innovative feature of
this research is the advocation of nine quality attributes for comparing migration
tools, but these attributes are not based upon a standard framework.

In addition, Rose et al. [40] compared Flock to other languages for model mi-
gration, including ATL, Ecore2Ecore and COPE using a Petri net example. The
comparison is focussed upon the capabilities and conciseness of the approaches
for specifying migrations.

In [15] three model transformation approaches (two graph-based approaches
(CGT, AGG) and one hybrid approach (ATL)) are compared on a refactoring
example: the removal of unstructured cycles from UML activity graphs. This
example is the closest to the case study which we present here; however, the
scope of our comparison is wider, including three further categories of transfor-
mation approaches, and we provide a systematic measurement-based evaluation
framework to compare the approaches.

Objective measurement techniques such as dependency analysis and meta-
model coverage are proposed by Van Amstel [3] as analysis techniques for model
transformations. Van Amstel et al. investigate the factors influencing perfor-
mance of model transformations in [4]. This paper compares the performance of
particular execution engines of three transformation languages: ATL, QVT-R
and QVT-O on two case studies: the UML to relational database transforma-
tion, and a tree-to-tree transformation. The effect of language constructs is also
analysed by comparing different styles of implementation in ATL on the first of
these case studies.

Kapova et al. in [22] evaluate the maintainability of model transformations
developed in QVT-R. They generate 24 metrics for the evaluation and apply
these to three different transformations.

In this paper we follow the approach of [3, 4] in considering quantitative
measures of model transformations, compared across different transformation
languages and styles. We extend this approach by evaluating external software
characteristics using relevant internal quantitative measures. We consider also
a wider range of transformation approaches, and a more complex case study
than those used in [4].

3 Case study description

We have selected this case study as being typical of the category of refactor-
ing/restructuring transformations, involving the creation, deletion and reloca-

tion of elements within a single model, and requiring fixpoint iteration of pri-
oritised rules, and fine-grained control over rule execution to achieve optimal
results. For large models, computational optimisation of the transformation is
also needed. Evaluation of transformation approaches on this case study should
give results indicative of the suitability of the approaches for this general cate-
gory of problems.

The aim of the case study transformation is to remove from a UML class
diagram all cases where there are two or more sibling or root classes which all
own a common-named and typed attribute, and to rationalise and amalgamate
all such apparent clone copies of attributes.

It is used as one of a general collection of transformations (such as the
removal of redundant inheritance, or multiple inheritance) which aim to improve
the quality of a specification or design level class diagram.

Figure 1 shows the metamodel of the source and target language of this
transformation.

NamedElement
name: String
Generalization |generalisation 1 Entity Property Type
* specific 0.1 * * 1
owned type
specialisation 1 Attribute
* general

Figure 1: Basic class diagram metamodel

It can be assumed that:

Class name uniqueness: No two classes (instances of Entity) have the same
name.

Type name uniqueness: No two types have the same name.

Property name uniqueness in classes: The owned attributes (properties)
of each class have distinct names within the class, and do not have common
names with the attributes of any superclass.

Single inheritance: There is no multiple or redundant inheritance.

These assumptions Asm must also be preserved by the transformation.
The informal transformation steps are the following:

(1) Pull up common attributes of all direct subclasses: If the set g =
c.specialisation.specific of all direct subclasses of a class ¢ has two or more

elements, and all classes in g have an owned attribute with the same name
n and type t, add an attribute of this name and type to ¢, and remove
the copies from each element of g (Figure 2).

Cc (o4
n:t
A1 An A1 An
o
n:t *® * In:t

Figure 2: Rule 1

(2) Create subclass for duplicated attributes: If a class ¢ has two or more
direct subclasses g = c.specialisation.specific, and there is a subset g1 of
g, of size at least 2, all the elements of g1 have an owned attribute with
the same name n and type ¢, but there are elements of g — g1 without
such an attribute, introduce a new class ¢l as a subclass of ¢. ¢l should
also be set as a direct superclass of all those classes in g which own a copy
of the cloned attribute. Add an attribute of name n and type ¢ to ¢l and
remove the copies from each of its direct subclasses (Figure 3).

A1 An Bl |eee
n:t n: t

Figure 3: Rule 2

(3) Create root class for duplicated attributes: If there are two or more
root classes all of which have an owned attribute with the same name n
and type t, create a new root class ¢. Make ¢ the direct superclass of
all root classes with such an attribute, and add an attribute of name n
and type t to ¢ and remove the copies from each of the direct subclasses
(Figure 4).

A1 An B1 Bm I_T_|
o - ¢ oo
n:t n:t
Al |ies | An

Figure 4: Rule 3

It is a requirement of the transformation to minimise the number of new classes
introduced, to avoid introducing superfluous classes into the model. This means
that rule 1 “Pull up attributes” should be prioritised over rules 2 “Create sub-
class” or 3 “Create root class”. In addition, the largest sets of duplicated at-
tributes in sibling classes should be removed before smaller sets, for rules 2 and
3.

4 Evaluation framework

In this section we define an evaluation framework to evaluate and compare the
selected approaches (ATL, GrGen.NET, Kermeta, QVT-R, UML-RSDS), using
the ISO 9126-1 quality framework [18] and the Goal-Question-Metric paradigm
[6] to systematically identify and measure different characteristics of the ap-
proaches.

4.1 ISO software quality standard 9126-1

The International Organisation for Standardization (ISO) has defined a set of
ISO and ISO/IEC standards related to software quality [17, 18, 19]. For the pur-
pose of this research we selected the ISO/IEC 9126-1 framework, which is based
upon the definition of a Quality Model and its use for software evaluation [18].
This framework defines quality models based on general characteristics of soft-
ware, which are further refined into subcharacteristics. Table 1 enumerates the
six quality characteristics defined in ISO/IEC 9126-1 and their decomposition
into subcharacteristics.

Subsequently, a revised standard, ISO/IEC 25010, has been issued [19], in
this the Functionality subcharacteristics Security and Interoperability have been
promoted to the status of top-level characteristics. Understandability has been
renamed to Appropriateness, and Attractiveness as Likability.

Characteristics | Subcharacteristics
Functionality Suitability, Accuracy, Interoperability,
Security, Functionality compliance

Reliability Maturity, Fault tolerance,
Recoverability, Reliability compliance
Usability Understandability, Learnability, Operability,
Attractiveness, Usability compliance
Efficiency Time behavior, Resource utilisation,

Efficiency compliance

Maintainability | Analysability, Changeability, Stability,
Testability, Maintainability compliance
Portability Adaptability, Installability, Co-existence,
Replaceability, Portability compliance

Table 1: ISO/IEC 9126-1 quality characteristics

4.2 Model transformation quality factors

Relevant characteristics and subcharacteristics for evaluation of model trans-
formation approaches can be selected from the ISO/IEC 9126-1 and ISO/IEC
25010 quality framework. The ‘software product’ in this case is the transforma-
tion language and its associated tools and methods. The quality of the trans-
formation approach not only concerns the direct quality of its language and
tool support, but also the potential quality of transformations developed using
the approach. We will incorporate both aspects into our evaluation framework.
Our definitions of the characteristics and subcharacteristics are closely based on
[18]. For the top-level characteristics of ISO/IEC 9126-1, the definitions of [18]
coincide with the definitions of [19]. We decompose the characteristics and sub-
characteristics into measurable attributes (such as the syntactic complexity of a
specification). The first three columns of Table 2 summarize the chosen charac-
teristics, subcharacteristics and their corresponding measurable attributes. One
attribute may be related to more than one quality factor. The fourth column
of the table will be explained later.

Characteristics such as interoperability and adaptability can be interpreted
and evaluated in several different ways. Here, we have evaluated these charac-
teristics based upon key factors specific to model transformations. For example,
the ability to interwork with Eclipse is a key factor for the interoperability of a
transformation approach.

In cases where a numeric value is not appropriate for an attribute (such as
Fault tolerance, Maturity) a three-point scale is used to summarise the relative
values of attributes (e.g., values -1, 0, +1 to denote Low, Medium, High). In
cases where further distinctions are meaningful (abstraction level, correctness
properties, and usability properties) a five-point scale is used (e.g., values -2,
-1, 0, +1, 4+2 to denote None, Low, Medium, High, Comprehensive). Higher
numerical values always represent higher quality (even for attributes such as
Complexity, where a higher value represents lower complexity).

Characteristic Subcharacteristic Attribute ‘ Metric (Unit)
Functionality Suitability Abstraction level five-point scale
Size LOC
three-point scale
Complexity (overall) three-point scale
syntactic complexity # operators
features/entities
structural complexity # calls (total)
recursive calls
maz. call depth
Effectiveness three-point scale
Development effort person minutes
Execution time three-point scale
Maximum capability three-point scale
Accuracy Correctness five-point scale
syntactic (five-point)
termination (five-point)
confluence (five-point)
Completeness (via Effectiveness) | three-point scale
Interoperability Embeddability three-point scale
Close to well-known notation three-point scale
Interoperable with Eclipse three-point scale
Reliability Maturity History of use three-point scale
years in use
solutions documented
Fault tolerance Tolerance of false assumptions three-point scale
Usability (overall) (overall) five-point scale
Understandability Understandability (survey) five-point scale
Learnability Learnability (survey) five-point scale
Attractiveness Attractiveness (survey) five-point scale
Efficiency Time behavior Execution time three-point scale
Maximum capability three-point scale
Maintainability | Changeability (overall) three-point scale
Size three-point scale
Complexity (overall) three-point scale
Modularity (overall) three-point scale
factorisation % unique expressions
cohesion % internal calls
coupling % external calls
Portability Adaptability Extensibility three-point scale

Table 2: Selected quality characteristics for evaluating model transformation

approaches

4.2.1 Functionality

ISO/TEC 9126-1 and 25010 define functionality as “the capability of the software
product to provide functions which meet stated and implied needs when the
software is used under specified conditions.”

For a transformation approach, we interpret functionality as the capability
of the transformation approach to define and implement transformations which
meet the stated and implied needs of the transformation requirements. The
subcharacteristics of this quality are as follows, based on the corresponding
definitions of the subcharacteristics in [18]:

Suitability: The capability of a transformation approach to provide an appro-
priate means to express the functionality of a transformation problem,
at an appropriate level of abstraction, and to solve the transformation
problem effectively and with acceptable use of resources (developer time,
computational resources, etc.).

Accuracy: The capability of the transformation approach to provide a correct
transformation implementation.

Interoperability: The capability of a transformation approach to support
transformation composition and to be used within other transformation
and software development environments.

Functionality compliance: The adherence of the transformation language
and tool to standards. For example, the selected approaches in this pa-
per partially or completely use the OCL (Object Constraint Language)
standard notations in their specification languages.

We evaluate suitability using a set of attributes which have quantifiable mea-
sures. The abstraction level of a transformation approach, and the relative size
and complexity of specifications defined using the approach, are both factors
which influence the suitability of the approach: the higher the abstraction level,
the more direct it is to express transformation requirements in the transforma-
tion language, reducing the likelihood of errors being introduced at this stage.
Both the size and complexity of a transformation specification also affect suit-
ability: the larger the size and complexity, the more difficult it is to analyse
the specification and to verify its correctness with respect to requirements and
to verify its internal consistency. The development effort involved in specifying
and implementing a transformation in an approach is a further important factor
in measuring the suitability. As the amount of human resources which needs to
be spent on the development of transformation tasks increases, the less suitable
the approach becomes. The relative effectiveness of transformations produced
by the approach in solving the transformation problem is also considered signif-
icant, together with the computational resources the transformations require to
execute: the higher these requirements are, the less suitable is the approach.

Accuracy refers to the capability to achieve correctness and completeness
of the transformation specification and implementation. Correctness includes

10

ensuring the construction of target models which satisfy the language constraints
of the target language (syntactic correctness), and ensuring the termination and
confluence of the transformation implementation.

A complete transformation carries out all required functionality of the trans-
formation, for all models that satisfy the transformation assumptions. In this
paper we use the effectiveness of the transformation (the percentage of remov-
able attribute clones which are actually removed by the transformation) as a
completeness measure.

Interoperability means that the transformation approach should be interop-
erable with other model-driven development environments and tools. This is
difficult to evaluate in general; however, we consider that two important factors
in achieving a good level of interoperability is being able to interoperate with
the widely-used Eclipse environment for MDE, and having a notation close to
well-known notations such as the OCL. The transformation approach should
also support the embeddability of transformations developed by the approach
within larger transformation processes, developed with the same or different
approaches (internal or external composability).

Security is not generally a quality of interest for model transformation ap-
proaches.

4.2.2 Reliability

This characteristic is defined as “the capability of the software product to main-
tain a specified level of performance when used under specified conditions” in
[18, 19].

Important factors for reliability of transformations are the maturity of the
model transformation approach (in terms of a history of successful use), and
the fault tolerance capabilities of implemented transformations produced by the
approach.

Maturity is evaluated based on the number of years an approach has been
publicly available and the number of case studies to which it has been success-
fully applied.

Fault tolerance covers how well the transformations produced by the ap-
proach handle errors within models or within processing. This is evaluated by
identifying if the transformations can check the validity of models, and if they
can produce error messages which identify the error location in terms of the
transformation specification.

4.2.3 Usability

This is defined in [18, 19] as “The capability of the software product to be
understood, learned, used and attractive to the user, when used under specified
conditions”. For transformation approaches this can be interpreted as referring
to the clarity of transformation specifications defined using an approach, and
the simplicity of use of the transformation tools for an approach.

11

Understandability: How easy is it to comprehend a transformation specifica-
tion?

Learnability: To what degree can the transformation language and tool be
learned in a reasonable timescale and with reasonable effort?

Attractiveness: How acceptable is the language and tool for the user?

Empirical studies with representative users and tasks are considered one of the
best techniques to measure usability of software systems. In this paper we use a
survey of users to measure understandability, learnability and perceived attrac-
tiveness. People with different expertise were asked to fill in an online question-
naire. The form contains five questions. The first question identifies the level of
knowledge of the participant. For Understandability, the survey asks “How easy
is it to relate the informal to the formal specification?” For Learnability, the sur-
vey asks “How much effort is needed to understand the transformation?” This
is considered to be a learnability factor because it includes the effort required to
learn sufficient elements of the transformation notation to understand the mean-
ing of the transformation expressed in the notation. Finally, for Attractiveness,
the survey asks “How well structured is the transformation specification?” as
well as “How attractive is the specification notation?”

In addition to these questions related to perceived usability, we include a
small test case to assess the actual understanding of the transformation by a
participant: the participant needs to explain where in the code a particular
aspect of the transformation (promoting a duplicated attribute to a superclass)
is dealt with.

The difference between this score for actual understanding and the level of
prior knowledge is also taken as a factor for actual learnability.

Operability and Usability compliance of transformation tools are not con-
sidered in this paper but the tools and case studies have been uploaded to the
SHARE environment [23] to allow further investigation.

4.2.4 Efficiency

This characteristic is defined in [18, 19] as “The capability of the software prod-
uct to provide appropriate performance, relative to the amount of resources
used, under stated conditions.” For transformation approaches this is the capa-
bility of the transformation approach to specify efficient transformations.

In this section we consider specifically time behavior, defined as “the ca-
pability of implemented transformations to provide appropriate response and
processing times”. The efficiency of each transformation implementation is in-
vestigated by measuring the execution time on different input model sizes. Fur-
thermore, a series of models of increasing sizes are input to each implementation
to check the maximum size of model which can be processed in a reasonable
time (30 minutes or less).

12

4.2.5 Maintainability

In [18, 19] this characteristic is defined as “the capability of the software product
to be modified”. We interpret this as the capability of transformation specifica-
tions and implementations in an approach to be modified. Modifications may in-
clude corrections, improvements or other changes in requirements and functional
specifications. We consider specifically the subcharacteristic Changeability, de-
fined as “the capability of the transformation approach to enable a specified
modification of a transformation to be effectively implemented.” Changeabil-
ity is considered to be one of the most important properties of transformation
approaches in the research community [13].

We measure changeability indirectly by measuring size, complexity and mod-
ularity. A larger sized specification generally results in a less flexible transforma-
tion, likewise for increased complexity. In addition, the greater the modularity
of the specification, the easier it should be to change the transformation.

An alternative measure would be to estimate the additional development
effort required to implement the change.

4.2.6 Portability

This characteristic is defined as “the capability of the software product to be
transferred from one environment to another” in [18, 19]. This characteris-
tic concerns how much work is required to port a software product from one
environment to another.

We consider specifically the subcharacteristic adaptability by considering
how much effort is required to extend a transformation to a more general case of
the transformation task. The evolution of source or target metamodels is a com-
mon environmental change which affects transformations, and we specifically
consider how much work is required to extend the case study transformation to
operate on UML 2 class diagram models.

4.3 Goal Question Metrics paradigm

There are many ways of identifying and defining metrics. The Goal Question
Metrics (GQM) paradigm [6] is a goal-oriented approach which supports the
measurement process in the software engineering domain. A measurement goal
is analyzed through four different dimensions.

e Object of study: includes the selection of the entity or set of entities to
be investigated for the purpose of measurement.

e Purpose: the reason for investigating the entity or set of entities under
study.

e Quality focus: consideration of the attribute of interest for investigation
of each entity.

e Point of view: identifying the measurement which is useful.

13

In GQM, the goals of the measurement are identified. Several measurement
goals may be pursued at the same time. Goals are refined to a set of quantifiable
questions, and questions can be reused across goals. Finally, a set of metrics is
associated with every question in order to answer it in a quantitative way. The
same metrics may be associated to more than one question.

The GQM approach for measurement offers several advantages. For example,
writing goals allows us to focus on what the important issues are. Defining
questions enables us to make the goal more specific and suggests metrics that
are relevant to the goals. The resulting GQM lattice allows us to see the full
relationship between goals and metrics. It determines what goals and metrics
are missing or inconsistent, and provides a context for interpreting the data
after it is collected. In the following section we provide quantitative metrics for
each of the attributes of Table 2, considered as GQM goals.

4.4 Evaluation criteria

The third and fourth columns of Table 2 show the evaluation criteria and met-
rics for assessing the solutions to the refactoring case. The evaluation criteria
correspond to the list of measured attributes from the previous sections. These
criteria are divided into properties of the transformation language (such as ab-
straction level, specification size, complexity, development effort, provability of
syntactic correctness, extensibility, closeness to a well-known notation, under-
standability, modularity) and properties of an implementation in a particular
tool for that language (e.g., effectiveness, execution time, termination, conflu-
ence, Eclipse interoperability, maximum capability, fault tolerance). Maturity
is a feature of both aspects. The aspects should be separated because there may
be several different tools for a given language (e.g., we use Medini [30] for QVT,
but there are other tools for QVT).

Abstraction level is classified for the presented solutions to the problem
as Very high (42) for primarily declarative solutions, High (+1) for declara-
tive solutions with a significant imperative component, Medium (0) for hybrid
declarative-imperative solutions, Low (-1) for primarily imperative solutions
with some declarative component and Very low (-2) for entirely imperative so-
lutions. Declarative solutions generally express the transformation specification
in ways that are close to the requirements, thus reducing the risk of an incorrect
specification. Imperative specifications introduce program-level detail which in-
creases the distance of the transformation definition from the requirements.

Size (in lines of code) is classified as Low (+1), Medium (0), High (-1)
according to Table 3. The ranges were chosen based on the distribution of size
values for the case study solutions (24, 81, 83, 102, 653): the first quartile of
values is considered Low, the second and third Medium, and the 4th High. A
lower LOC value corresponds to a higher quality. Even if the ATL solution is
scaled by a factor of 3 (to 243) and the QVT solution by a factor of 1.5 (to 125),
to reflect that they are partial solutions, the classification of the approaches
would not be changed.

Syntactic complexity is due to the complexity of the expressions used within

14

‘ Value range ‘ Category ‘
0..50 lines Low (+1)
51..375 lines | Medium (0)
376+ lines High (-1)

Table 3: Size categories

the specification: the greater the number of expression operators (such as
=, :, —exists()) or references to metamodel entity types or features (such as
Generalization, ownedAttribute, specific, etc), the more effort is required to
comprehend and work with the specification. Syntactic complexity is measured
by summing the number of occurrences of operators, feature names and entity
type names in the transformation definition.

Structural complexity of a transformation is measured by the number of calls,
the number of recursive calls and the maximum call depth in the transformation
definition.

The factors of syntactic and structural complexity are summed to provide
an overall complexity measure because both are independent factors in the com-
plexity of a specification. Table 4 gives the classification of complexity as Low
(+1), Medium (0) or High (-1), based on the distribution of measured values
(102, 132, 152, 190, 1214) in the case study solutions. Scaling of the ATL (to
456) and QVT-R (to 285) solutions does not change the classifications of the
solutions.

‘ Value range ‘ Category ‘

0..120 Low (+1)
121..700 Medium (0)
701+ High (-1)

Table 4: Complexity categories

The effectiveness measure used is the proportion of clone copies of attributes
which are removed by the transformation. That is, if there are n copies of
attributes which could, in principle, be removed by the rules of Section 3, and
the implemented transformation removes m < n copies, the effectiveness is m/n.
Effectiveness measures of 75% or more are considered High (41), measures of
50% to 74% are considered Medium (0), measures below 50% as Low (-1). In
addition, a solution is optimal if the minimum possible number of new classes
are introduced.

Development effort is measured in person-minutes. Low (41) effort is con-
sidered to be 0 to 110 minutes, Medium (0) 111 to 360, and High (-1) over 360
minutes. These categories are based on the distribution of actual effort values
in the case study solutions (Table 20). Time taken to understand the problem
is not included, nor is the time taken to construct the test case models, but
iterative testing using these models is included. Scaling of effort for ATL places
it in the High category with Kermeta, scaling for QVT-R does not change its

15

classification.

Execution time of the transformation implementation does not include the
loading and unloading of models from the transformation tool. The execution
time was measured on the common SHARE platform [44], using a virtual ma-
chine with 1 GB of main memory and one processor core assigned to it. The
classification categories for execution time are based on the execution time for
the model of 100 copies of test case 2: Low (+1) (under 600ms); Medium (0)
(600ms to 500s); High (-1) (over 500s).

Maximum capability (to process a model within 30 minutes) is classified as
Low (-1), Medium (0), High (+1) according to Table 5. This is normalised based
on the actual values for the solutions (1000, 5000, 5000, 100000, 100000).

‘ Value range ‘ Category
0..3000 elements Low (-1)
3001..50000 elements | Medium (0)
50001+ elements High (+1)

Table 5: Maximum capability categories

Correctness is divided into syntactic correctness, termination and confluence.
Syntactic correctness includes not only the capability to establish the constraints
of the target metamodel of a transformation (in this case the properties Asm
of Section 3), but in addition the capability to establish or preserve correct in-
verse links to associations (in this case study the pairs general/specialisation
and specific/ generalisation of roles). The classification of correctness is given
by an average of three separate 5-point measures for syntactic correctness, ter-
mination and confluence. Each measure separately is rated -2 (None), -1 (Low),
0 (Medium), 1 (High) and 2 (Comprehensive).

Interoperability consists of Embeddability: how effectively the transforma-
tion can be reused within a larger quality improvement process, consisting of
transformations to (1) remove redundant inheritance, (2) remove multiple inher-
itance, (3) replace concrete superclasses by an abstract class and a new concrete
subclass of this class. The support for embeddability is classified according to
Table 6. Another factor for interoperability is the closeness to a well-known no-

Property Category

Both internal and external | High (41)
composition support
Only internal or external Medium (0)
composition support
No convenient mechanism | Low (-1)
for composition

Table 6: Embeddability categories

tation, which is graded by a three-point scale: High (+1) for a common syntax

16

and semantics to a well-known notation (in our examples, this is OCL); Medium
(0) for a variant syntax and/or variant semantics; Low (-1) for no similarity.

Interoperability with Eclipse is given by a three-point scale: High (+1) for
complete integration; Medium (0) for interoperability via exported/imported
data files only; Low (-1) for no interoperation mechanism.

Maturity is considered low (-1) for languages/tools of less than 4 years public
availability, medium (0) for 4 up to eight years availability, and high (+1) for
more than 8 years. These ranges are normalised based on the maturity values
of the case study approaches (3, 5, 7, 9, 9).

Fault tolerance (robustness) considers if there are facilities in transforma-
tions or the transformation execution environment to statically or dynamically
detect and handle erroneous situations, such as detecting invalid source models
where some of the transformation assumptions are false. The support for fault
tolerance is classified according to Table 7.

Property Category
Run-time checks High (4+1)
with exception handling

Capable of checking source Medium (0)

model validity
Lacks fault detection/response | Low (-1)
capabilities

Table 7: Fault tolerance categories

Modularity is composed of (1) factorisation: the percentage of unique subex-
pressions of rules, at or above a certain minimum syntactic complexity (7 here),
and (2) cohesion: the proportion of calls which are internal to modules (100% if
there are no calls of any kind), versus the proportion of calls between modules
(0% if no calls). These factors are not independent so are considered separately.
An approach has high (+1) modularity if both cohesion and factorisation are
high, low (-1) if both are low, and medium (0) otherwise. The factors of size,
complexity and modularity (3-point scales) are averaged to obtain an overall
maintainability score as a 3-point scale.

Extensibility considers how much effort is required to adapt the transforma-
tion to extended metamodels, specifically to the UML 2 class diagram meta-
model [37]. The support for extensibility is classified according to Table 8.

Property Category

Extension can be done in modular High (+1)
manner without substantial effort
Possible in principle, requires substantial | Medium (0)
extension of specification
Impractical due to effort required Low (-1)

Table 8: Extensibility categories

17

For measures of size, complexity, effectiveness, efficiency, execution time,
maximum capability, development effort, maturity, factorisation and cohesion
we have chosen specific boundary values to give a high-level classification of
measures (as Low, Medium, High, etc). These boundary values are based on
the actual distribution of values in the specific solutions, but can be varied
depending on the needs of the evaluator. With simple tool support, the effect of
such changes upon the overall ranking of the evaluated approaches (Table 23)
could easily be visualised.

The developers of the UML-RSDS, GrGen.NET, Kermeta and ATL solutions
were experts in the respective languages. The developer of the QVT-R solution
had experience of 2 years in using Medini QVT. There may be some justification
in weighting the evaluations of the QVT-R solution more favourably compared
to the other solutions because of this factor.

4.5 Test cases

The solutions are tested on five test cases of increasing size and complexity.
These test cases represent both typical scenarios which could be expected to
arise in class diagram modelling (test cases 1 to 4), and pathological examples
designed to check the behaviour of the transformation in extreme cases (test
case 5 and the duplications of test case 2). The test cases were formulated by
K. Lano and S. Kolahdouz-Rahimi in text format (for UML-RSDS) and Eclipse
XML format (for the other approaches). The test models can be found on the
SHARE site [23].

The first test case is a simple test for alternative applications of rule 2 “Create
subclass” from Section 3. Figure 5 shows the starting model.

S

1

A B c D
a:T1 a:T1 b:T2 b:T2
b:T2

Figure 5: Test case 1

Applying the rule to classes B, C, D is the preferred choice because it creates
fewer new classes than an application to A and B followed by an application to C
and D, although both solutions remove the maximum possible 2 clone attribute
copies.

The resulting model should therefore have a superclass of B, C' and D con-
taining an attribute with name “b” and type T2 (Figure 6).

18

A BCD
a:T1 b:T2
[Z\% 1
B C D
a: Tl

Figure 6: Test case 1 result

A larger test case, involving applications of rules 1 “Pull up attributes” and
3 “Create root class”, is shown in Figure 7.

A D ¢

a1 arTl b:T2
B c E F
b:T2 b:T2 b:T2 b:T2

Figure 7: Test case 2

The ideal result of applying the transformation to this test is shown in Figure
8, but other results are possible in which the factoring of duplicated attributes
is incomplete. For example, the sequence of rule applications:

b from E, F to D (rule 1)
b from D, G to DG (rule 3)
b from B, C to A (rule 1)
b from A, DG to ADG (rule 3)

fails to amalgamate the clone copies of attribute a, and has 80% effectiveness.
The third test case has 20 classes and 20 properties, with 13 clone copies,
and with a maximum inheritance depth of 4. A maximum of 11 clone copies
can be removed, with no more than four new classes introduced.
The fourth test case has 105 classes arranged in an inheritance hierarchy of
depth 3. Classes 1 to 5 are root classes, classes 6 to 30 inherit from these in

19

ADG
b:T2

—

a: Tl

Figure 8: Expected result of test 2

groups of 5 (e.g., classes 6 to 10 inherit class 1), and classes 31 to 105 inherit
the second level classes in groups of 3 (e.g., classes 31, 32 and 33 inherit from
class 6). There are 12 essentially different attributes, each with 10 clones. The
attribute aj, and its copies are placed successively in classes 31 4+ (kK — 1) * 5 to
414 (k —1) % 5. For this test case, a maximum of 92 clones can be removed (out
of 120), and a minimum of 14 new classes need to be introduced.

Test case 5 has 500 classes, each of which is a root class, and there are ten
attributes in each class, with the attributes of each class being a copy of those
in each other class (i.e., 5000 attributes, with 4990 clone copies). Only one new
class needs to be introduced, as a superclass of all the other classes, and all
redundant copies of the attributes can be removed.

In addition, we carried out ‘stress testing’ to measure the maximum capa-
bility of a transformation tool and implementation, in terms of the maximum
size of models which a transformation tool or implementation is capable of pro-
cessing. These tests were models formed from duplicated copies of test case 2
(omitting D and its subclasses), of sizes up to 10000 copies (40000 classes, 40000
attributes, 20000 generalisations).

5 UML-RSDS solution

UML-RSDS is a hybrid specification language, which defines system data by
UML class diagrams, together with OCL constraints, and defines behaviour
by operations of classes and by use cases which operate on the class diagram.
Each use case can be declaratively specified by a set Asm of preconditions,
and a sequence Post of postconditions. The use case should ensure Post at its
termination, if Asm holds at its initiation.

UML-RSDS is a general-purpose specification and design language for model-

20

driven development, with a software tool which produces executable Java im-
plementations of UML-RSDS models [27]. Transformations can be specified
in UML-RSDS in terms of the source and target metamodels they operate
upon (represented as class diagrams) and the transformation functionality (rep-
resented as constraints of use cases, operations, activities or other UML be-
havioural elements). The most abstract and declarative style of transformation
specification in UML-RSDS is in terms of use cases defined by OCL constraints.
We will use this style of specification for the case study.

5.1 Case study specification in UML-RSDS

The case study transformation specification in UML-RSDS consists of the class
diagram of Figure 1, and a single use case which represents the transformation.
The use case has precondition constraints expressing the assumptions Asm of
the transformation, and a sequence Post of three postcondition constraints (C1),
(C2), (C3) corresponding to the three informal rules. Each of these operates
on instances of Entity:

(C1):
a : specialisation.specific.ownedAttribute &
specialisation.size > 1 &
specialisation. specific— forAll(
ownedAttribute— exists(b | b.name = a.name & b.type = a.type)) =
a : ownedAttribute &
specialisation.specific. owned Attribute— select(
name = a.name)—isDeleted ()

This specifies that an instance (self) of Entity, and instance a of Property
match the constraint LHS if: (i) a is in the set of attributes of all direct sub-
classes of self, (ii) there is more than one direct subclass of self, and (iii) every
direct subclass of self has an attribute with the same name and type as a.

The conclusion specifies that (i) the property a is moved up to the superclass
self, (i) all other attributes with name a.name are deleted from all direct
subclasses of self.

s—isDeleted() is a built-in operator of UML-RSDS, which deletes the object
or set of objects s from their model, removing them from all entity types and
association ends.

Rule (C1) is applied first, to the class A with subclasses B and C, when
this transformation is executed on the second test case (Figure 7), moving the
copy of attribute b from class B up to class A, and deleting the copy of b in C.

21

(C2):
a : specialisation.specific.owned Attribute &
v = specialisation— select(
specific.ownedAttribute— exists(b | b.name = a.name & b.type = a.type)) &
v.size >1 =
Entity—exists(e | e.name = name + “_.2_" + a.name &
a : e.ownedAttribute &
e.specialisation = v &
Generalization—exists(g | g : specialisation & g.specific = e)) &
v.specific.ownedAttribute— select(name = a.name)—isDeleted()

The assumption specifies that an instance (self) of Entity, and instance a
of Property match the constraint LHS if: (i) a is in the set of attributes of all
direct subclasses of self, (ii) the set v of all specialisations of self whose class
contains a clone attribute of a has size greater than 1.

The conclusion specifies that: (i) a new class e is created, and the property
a is moved up to e, (ii) the specialisations of e are v, (iii) e is made a subclass
of self, and (iv) all the clone copies of a in the classes of v.specific are deleted.

This rule is applied first, to class S with v referring to subclasses A and B,
and operating on attribute a, when this transformation is executed on the first
test case (Figure 5). The rule creates a new subclass e of S and moves the copy
of attribute a from class A up to class e, and deletes the copy of a in B. The
rule is then applied to the subclasses C' and D of S to promote attribute b to
another new subclass e2 of S.

(C3):
a : ownedAttribute &
generalisation.size = 0 &
v = Entity— select(generalisation.size = 0 &
ownedAttribute— exists(b | b.name = a.name & b.type = a.type)) &
v.size >1 =
Entity—exists(e | e.name = name + “_.3_7 + a.name &
a : e.ownedAttribute &
v.ownedAttribute— select(name = a.name)—isDeleted () &
v—forAll(c | Generalization— exists(g |
g : e.specialisation & g.specific = ¢)))

This constraint matches against a class self and an attribute a, if: (i) self
is a root class, (ii) a is an attribute of self and has at least one clone in the
attributes of other root classes. v is the set of all root classes with a copy of a.

The effect of the constraint is then: (i) to create a new (root) class e, (ii) to
move ¢ into the attributes of e, (iii) to delete all clones of a from elements of
v, (iv) to make the elements of v direct subclasses of e.

On test case 2, this rule is applied to classes A and D to create a new
superclass AD, and to move attribute a up to this class.

The design and implementation of these constraints is automatically syn-
thesised by UML-RSDS, following the process described in [26]. The priority

22

ordering for the constraint implementations is based on the textual ordering of
the three constraints, so that the generated design carries out a fixpoint itera-
tion of constraint 1, then of constraint 2, then of constraint 3, all in a composite
fixpoint iteration:

((stat(C1)x*; stat(C2))*; stat(C3))x*

where stat(Cn) implements Cn. In other words, all possible applications of
(C1) are performed before any application of (C2), and (C3) is only applied
when there are no possible applications of (C1) or (C2).

Some optimisations can be carried out (with human guidance of the synthesis
process): since the conclusion of each constraint contradicts its antecedent,
testing that the conclusion holds for elements that match the antecedent is
superfluous and can be omitted. In (C2) a let definition has been used (the
variable v) in order to avoid repeated computation of the expression defining v.
Likewise in (C3).

The inverse directions of associations are automatically set when one di-
rection is set: in (C2) the update e.specialisation = v automatically removes
the elements of v from self.specialisation. Likewise in (C3) the assignment a :
e.ownedAttribute removes a from self .ownedAttribute. g is added to e.generalisation
when e.specific = g is set.

5.2 Evaluation properties

Table 9 summarises the evaluated attributes of the transformation language and
tools for the UML-RSDS solution, and for the other solutions. The data in this
table has not been scaled to reflect the smaller scope of the ATL and QVT-R
solutions: scaling only makes a difference to one classification (of -1 instead of
0 for ATL in terms of development effort).

5.2.1 Transformation language properties

The language is capable of a very high level of abstraction in terms of logical
formulae, and a primarily declarative specification can be given for this case
study, although the succedents of the constraints have a procedural character,
with precise orders of actions being specified.

There are no invocations of operations within the specification, so the struc-
tural complexity is 0. However, the specification fails to be modular because
there are repeated occurrences of duplicated expressions. For example, the test

ownedAttribute— exists(b | b.name = a.name & b.type = a.type)

occurs three times, once in each constraint antecedent, and should be factored
out into a query operation hasAttribute(n : String, t : Type) : Boolean of Entity.

The UML-RSDS language provides the capability for such factoring by the
use of operations invoked from constraints. There are 60 expressions of com-
plexity 7 or more in the rules, and 19 non-unique subexpressions of complexity

23

E =
Characteristic Attribute Unit Cé (B gv g g’
Functionality Abstraction level 5PS +2 “+1 -2 0 +2
(Suitability) Size LOC 24 102 653 81 83
3PS +1 0 -1 0 0
Complexity (overall) 3PS 0 +1 -1 0 0
syntactic complezity # operators 78 40 549 69 100
features 54 37 605 | 75 7
structural complexity # calls (tot) 0 23 54 6 11
rec c. 0 0 2 0 0
maz. cd. 0 2 4 2 2
Effectiveness 3PS +1 +1 +1 -1 -1
Development effort pers. min. 120 100 440 150 280
Execution time 3PS +1 0 0 -1 0
Maximum capability 3PS “+1 +1 0 -1 0
(Accuracy) Correctness (overall) 5PS 0 0 +1 0 -1
syntactic 5PS “+1 0 0 0 -1
termination 5PS +2 +2 +1 +1 0
confluence 5PS -2 -2 +1 -2 -2
Completeness 3PS “+1 +1 +1 -1 -1
Embeddability 3PS “+1 +1 +1 +1 0
(Interoperability) Close to well-known not. 3PS —+1 0 —+1 —+1 “+1
Interoperable w/ Eclipse 3PS 0 “+1 +1 “+1 +1
Reliability History of use 3PS -1 +1 0 +1 0
(Maturity) # YIU 3 9 7 9 5
SD 10 50 40 100 | 20
(Fault tolerance) Tolerance of false asm. 3PS 0 0 +1 “+1 +1
Usability (overall) 5PS 0 0 0 0 -1
Understandability 5PS -1 0 0 0 -1
Learnability 5PS -1 0 0 0 -2
Attractiveness 5PS 0 0 -1 0 0
Efficiency Execution time 3PS +1 0 0 -1 0
(Time behavior) Maximum capability 3PS “+1 “+1 0 -1 0
Maintainability (overall) 3PS 0 0 -1 0 0
(Changeability) Size 3PS +1 0 -1 0 0
Complexity (overall) 3PS 0 —+1 -1 0 0
Modularity (overall) 3PS 0 0 -1 +1 0
factorisation % UE 68 65 53 72 61
cohesion % 1C 100 | 100 | 56 100 | 91
coupling % EC 0 0 44 0 9
Portability Extensibility 3PS 0 0 0 -1 -1
(Adaptability)

Table 9: Evaluation results based on the characteristics of Table 2

24

7 or more, so the percentage of such unique subexpressions is 68%. Cohesion is
100%, as there are no calls within the specification.

Development effort for each constraint was about 30 to 50 minutes, not
including test case construction.

UML-RSDS has comprehensive support for the proof of syntactic correct-
ness, using a translation to the B formal method and proof tool [29]. The
transformation does not ensure that new classes have unique names, a more
complex naming scheme would be needed to ensure this, or an additional as-
sumption included that character “_” does not occur in any element name in
the source model. It can be shown that the transformation does not introduce
multiple inheritance: in (C2) the original direct subclasses v.specific of self are
set instead to be direct subclasses of the new class e, and this is set to be a direct
subclass of self. In (C3) the new class e is a root class with direct subclasses
the set v of original root classes.

Attributes have distinct names within classes in the target model, because
for (C1) there cannot already be an attribute of self with name a.name. For
(C2) and (C3) the attribute is added to a new empty class.

The transformation can be included in the sequence (1), (2), (3) of quality
improvement transformations defined in Section 4.4, some of its assumptions are
established by transformations (1) and (2), so it must sequentially follow these
transformations, it also does not interfere with their effect, so this sequential
composition is valid. Likewise, transformation (3) should sequentially follow
the transformation: (3) does not invalidate the transformation because the new
classes introduced by (3) are all empty (they have only inherited features), so
no new cases of duplicated attributes are introduced. The transformations can
be composed internally in UML-RSDS by means of use case inclusion. They
could also be composed externally by successive invocation of the Java programs
produced for each transformation.

Although the UML-RSDS specification language is closely based upon UML
notations, the language and tool only have a relatively short history of applica-
tion to transformation problems (3 years).

In the usability survey, 3 of 5 respondants considered that the specification
was well-structured and that low or medium effort was required to understand
the specification. However only one respondant correctly identified the part of
the specification responsible for moving duplicated attributes.

The solution can be used for extended class diagram metamodels; however,
problems arise with the use of object creation: if the objects have more meta-
attributes or features in the extended metamodel, then these will not be set
by the creation action as written. For example, Entity may gain an attribute
isAbstract to identify if it is abstract or not: the classes created by (C2) and
(C3) must set this attribute to ¢rue. UML-RSDS does not provide the ca-
pability to implicitly extend constructors, except by the use of default initial
values set in the metamodel. From the viewpoint of flexibility, it is preferable
to retain source model objects, rather than to copy or recreate them, in order
to avoid the problem of omitting the setting of their features. For example,
because property object a is moved, rather than recreated, in the rules, the

25

rules work for extended versions of Property without change, with respect to
the creation/relocation of properties. The transformation can be extended to
consider properties which are association member ends by making Entity a sub-
class of Type and permitting multi-valued attributes of class type, as in [37].
Clones of attributes would only be amalgamated if they had the same multi-
plicities, in addition only non-static attribute copies should be amalgamated.
To make the transformation more generic, the predicate checking the equality
of attributes (b.name = a.name & b.type = a.type) should be replaced in all
three constraints by a query b.equals(a) defined locally in Property.

5.2.2 Transformation implementation properties

The Java implementation is correct-by-construction with respect to the speci-
fication. Termination can be shown by using a variant function defined as the
total number of Property instances in the model. Each constraint application
reduces this measure by at least one.

However, the rules are not confluent: different choices in the ordering of
applications of the rules to elements will result in different models. They are
not optimally effective, since classes may be considered in any order, resulting in
some possible rationalisations of attributes being omitted. It is not possible to
declaratively specify fine-grained control over the order of processing elements
by a rule (postcondition constraint). In (C2) for example, we need to iterate
through the subclass attributes a of a class in descending order of the size of
the set of subclasses that contain a copy of a. Only by using a more explicit
style similar to that of the Kermeta solution, could such control be enforced.

Despite the non-determinacy in the execution of the transformation, it is
possible to reason that certain general properties hold true for the transfor-
mation; e.g., that each class in the source model is also a class in the target
model: EntityQpre C Entity. In particular, the set of leaf classes remain un-
changed by the transformation, and the set of attribute names and types in each
leaf class are preserved.

On the first test case the two occurrences of a are merged first, instead of
the three occurrences of b, so that two new classes are created, a non-optimal
result. The second test case results in the correct model, as shown in Figure
8. Alternative input formats of the model could produce non-optimal results,
however. On the third test case the transformation takes 10ms, and removes
10 of 11 clone copies in 10 steps, introducing 4 new classes. Its effectiveness
is 10/11 = 91%. On the fourth test case the transformation takes 50ms and
applies constraint (C1) 39 times, and constraint (C2) 16 times. It removes
92 clone copies, so has effectiveness 100%, but is non-optimal (2 additional
classes are introduced). On the fifth test case the transformation takes 97s and
eliminates all the cloned attribute copies, with only 1 new class being introduced,
an optimal result.

Table 10 shows the execution times (on the SHARE platform) and effec-
tiveness measures for the test cases considered. No special optimisations were
performed, such as inlining of calls in the implementation.

26

Test case | Number of | Number of | Ezxecution | Effectiveness
classes attributes | time (ms)

1 5 5 0 100% (non-optimal)

2 7 7 0 100% (optimal)

3 20 20 10 91% (non-optimal)

4 105 132 50 100% (non-optimal)

5 500 5000 96568 100% (optimal)

Table 10: Test case results for UML-RSDS

In general, the efficiency and effectiveness are high for class diagrams of the
structure and complexity likely to be encountered in most developments (the
first 4 test cases). The Java implementation generated by the UML-RSDS tools
shows an above-linear growth of execution time when constructing large sets of
elements, as in rule 3 in the final test case.

Table 11 shows the results of the maximum capability tests on the SHARE
platform. The primary cause in the time complexity explosion are the applica-
tions of rule 3, involving the construction and search of sets of Entity instances
of size dim, the number of duplications of test case 2. The results in each case
were optimal.

Test case | Number of | Number of | Execution | Effectiveness
classes attributes time
2*%100 400 400 90ms 100%
2%200 800 800 330ms 100%
2*500 2000 2000 2363ms 100%
2*¥1000 4000 4000 13s 100%
2*5000 20000 20000 156s 100%
2%10000 40000 40000 1137s 100%

Table 11: Maximum capability test results for UML-RSDS

UML-RSDS can express assumptions of a transformation, and check these
when a model is loaded. It has no capability for handling runtime errors, these
simply cause Java exceptions.

UML-RSDS is relatively immature, having been publicly available for two
years. About 10 case studies have been published. There is no interface to
Eclipse; instead, model input and output is by means of text files. There is
a facility to export and import metamodel and model data as XML files, for
interoperation with Eclipse.

6 GrGen.NET solution

GrGen.NET [20] is a graph rewrite system developed at Karlsruhe University,
Germany. It combines declarative graph transformation rules with imperative
features for the detailed programming of complex transformations. The basic
units of a GrGen.NET transformation are transformation rules, which operate

27

on one or more model elements, and which use graph patterns in the abstract
syntax of the source or target metamodels to identify relevant elements to which
the rule should be applied. The rewrite part of a rule specifies changes to models
to be carried out for each matching group of elements. These changes can be
element creation, deletion or feature modifications.

6.1 Case study specification in GrGen.NET

This section describes the GrGen.NET solution to the case study.

It is required to minimise the number of new classes introduced, i.e., to
prioritise rule 1 over rules 2 or 3. This can be formalized in GrGen syntax as
follows:

1 xgrs (rulel || rule2 || rule3)sx

The above script executes the three rules such that rule2 is only executed if
rulel fails (and similarly for rule3 and rule2). The * operator iterates as long
as at least one of the three rules matches.

Rule 1 “Pull up attributes” can be formally specified in GrGen syntax as
follows, where ‘Class’ is used instead of ‘Entity’ for consistency with UML:

1 rule rulel {

2 c:Class;

3 :SuperOf(c,gl); :SuperOf(c,g2);

4 gl:Class —:ownedAttribute—> al:Property —:type—> t:Type;
5 g2:Class —:ownedAttribute—> a2:Property ;

6 :SameAttribute (al,a2);

7 negative {

8 g3: Class;

9 :SuperOf(c,g3);

10 gl ;

11 negative {

12 g3 —:ownedAttribute—> a3:Property;

13 :SameAttribute (al,a3);

14 }

15

16 modify {

17 ¢ —:ownedAttribute—> a4:Property —:type—> t;
18 eval {

19 a4 ._name = al._name;

20

21 exec (RemoveAttributeFromSubclasses(c, a4) ;> [createlnverseEdges]);
22

23 }

Line 2 of the above listing declares that rule! requires the presence of a
class c¢. To ensure that ¢ has at least two subclasses, line 3 includes the helper
pattern with name SuperOf twice. The first pattern call (i.e., SuperOf(c,g1))
binds g1 as a subclass of ¢ while the second one does the same for g2.

Line 4 encodes a pattern consisting of a node of type Class, an edge of
type ownedAttribute, a node of type Property and an edge of type Type. The
node of type Class is bound to g1 (i.e., the first subclass of ¢) and the node of
type Property is bound to al. Clearly, this node represents an attribute of g1.
Following the same rationale, node t represents the type of that attribute.

Line 5 is very similar to line 4 but instead of :Type it contains nothing. The
type constraint for attribute a2 (i.e., the attribute of the second subclass) is
handled by SameAttribute(al,a2) on line 6. Besides checking that af and a2
have the same type, the helper pattern call checks that these attributes have
the same name (see below for the definition of SameAttribute).

28

In summary, lines 2 to 6 encode a pattern of a class with two subclasses
with the same attribute. This corresponds to the “two or more elements” from
the informal rule description (Section 3). In the following, we clarify how it is
ensured that all subclasses of ¢ have that attribute.

The GrGen language does not have a universal qualifier for patterns in
the left-hand side of a rewrite rule. However, all universally quantified con-
straints can be easily rewritten into negations of the corresponding existential
constraints. For rulel, we have to rephrase the informal rule description saying
“all classes in g have...” into “there is mno class in g that does not have...”.
Lines 7 to 15 formally express that there should not be a third subclass g3 that
does not have an attribute equal to al. Notice that we conveniently reuse the
helper pattern SameAttribute on line 13.

The modify block between lines 16 and 22 formalizes the side-effects of rulel.
The pattern on line 17 denotes the creation of a new attribute a4, which has
the type t of al. The eval expression between lines 18 and 20 assigns the name
of al to a4. Finally, line 21 ensures that the copies of al are removed from all
subclasses of ¢ (see below for the definition of helper RemoveAttributeFromSub-
classes).

Helper patterns “SameAttribute” and “SuperOf” are defined as follows:

1 pattern SameAttribute(al:Property ,a2:Property) {

independent {
if { al._name == a2._name; }
al —:type—> t:Type <—:type— a2;

}
}

pattern SuperOf(cl:Class, c2:Class) {
cl —:specialisation—> :Generalization —:specific—> c2;

}

OO A WN

Helper pattern SameAttribute contains an attribute constraint (“if...”) as
well as a conventional graph pattern. Both are embedded in a so-called inde-
pendent block. The use of independent is needed to allow that the edges of
type type as well as the node of type Type (both on line 4) of SameAttribute
are treated as completely free variables. Without the independent block, the
GrGen engine would forbid that these pattern elements would be matched by
host graph elements that were already matched elsewhere (which is undesirable
since among others the Type element is typically already matched in the context
of line 4 of rule?). In graph transformation jargon, the independent keyword
overrides the default isomorphic matching by homomorphic matching.

Helper pattern SuperOf imposes that between a superclass ¢! and a subclass
c2 there is a path consisting of an edge of type specialisation, a node of type
Generalization and an edge of type specific.

rulel also relies upon helper rules RemoveAttribute FromSubclasses and cre-
atelnverseEdges. The former is defined as:

1 rule RemoveAttributeFromSubclasses(c: Class, attr:Property) {

2 iterated {

3 ¢ —:specialisation —> :Generalization —:specific—> g:Class —:ownedAttribute—> a
:Property ;

4 :SameAttribute (a,attr);

5 modify {

6 delete (a);

7 }

8 }

9}

29

The iterated block between lines 2 and 8 of RemoveAttributeFromSubclasses
ensures that the embedded rewrite constructs are applied as long as matches are
found (instead of applying these constructs just for one match). Lines 3 to 4 of
RemoveAttribute FromSubclasses resemble strongly the first lines of rulel. The
two lines match all attributes from subclasses of ¢ that are equal to attribute
attr. The modify block between lines 5 and 7 deletes such attributes from these
subclasses.

Helper rule createlnverseEdges simply creates the inverse of those edges
that do not yet have a reverse edge. Alternatively, the reverse edges could have
been created explicitly in the modify part of the above rule definition. That
would have been slightly better for runtime performance but would probably
compromise the maintainability of the rule (computer cycles are cheaper than
human debugging time).

The informal specification of rule2 (“Create subclass”) is different from that
of rulel in that it deals with the case where one of the subclasses of ¢ does
not contain the attribute that is replicated across other subclasses of ¢. This
following GrGen specification is similar to that of rule! in that again g1 and g2
are defined as subclasses with a common attribute:

1 rule rule2 {

2 c:Class;

3 :SuperOf(c,gl); :SuperOf(c,g2);

4 gl:Class —:ownedAttribute—> al:Property —:type—> t:Type;
5 g2: Class —:ownedAttribute—> a2:Property;
6 :SameAttribute (al,a2);

7

8 g3: Class;

9 :SuperOf(c,g3);

10 negative {

11 g3 —:ownedAttribute—> a3:Property ;

12 :SameAttribute (al,a3);

14 modify {

15 ¢ —:specialisation—> :Generalization —:specific—> cl:Class;

16 cl —:ownedAttribute—> a4:Property —:type—> t;

17 eval {

18 a4 ._name= al._name;

19 }

20 exec(AddIntermediateClassAndRemoveAttributeFromSubclasses(c, a4, cl) ;> [

createlnverseEdges]) ;
21
22 }

The interesting (i.e., unique) part of the above listing is between lines 8
and 13. This part of the rules left-hand side specifies that there should be a
subclass g8 of ¢ that does not have an attribute equal to al.

The modify block of rule2 creates a new subclass ¢! of ¢ (cf., line 15) and
adds an attribute equivalent to al to ¢! (cf., line 16). Making ¢! the new
superclass of the former subclasses of ¢ is handled by helper rule AddInter-
mediateClassAndRemoveAttributeFromSubclasses. The rule also removes the
replicated attribute from these former subclasses:

1 rule AddIntermediateClassAndRemoveAttributeFromSubclasses(super: Class, attr:

Property , intermediate: Class) {
2 iterated {
3 super —:specialisation—> gOld: Generalization —:specific—> g:Class —:
ownedAttribute—> a:Property ;
4 intermediate; // <> super <> g
5 :SameAttribute (a,attr);
6 modify {
T delete (gOld) ;
8 intermediate —:specialisation —> gNew: Generalization —:specific—> g;
9 delete (a);

30

10 }
11}
12 }

Note that the above rule only affects those subclasses that contain the repli-
cated attribute (because of the pattern on line 3). Other subclasses are left
intact. The rule does not guarantee that the largest collection of duplicated at-
tributes in subclasses is matched, so the result for test case 1 can be non-optimal,
as for UML-RSDS.

Rule 3 “Create root class” can be formally specified in GrGen syntax as
follows:
rule rule3 {

:IsRoot (gl); :IsRoot(g2);

gl: Class —:ownedAttribute—> al:Property —:type—> t:Type;
g2:Class —:ownedAttribute—> a2:Property ;

:SameAttribute (al,a2);

modify {

c:Class —:ownedAttribute—> a3:Property —:type—> t;
eval {

0N oUW

©

a3 ._name= al._name;

[
o

}
exec (AttributeToRootClassesAndMakeSubclass(a3, c¢) ;> [createlnverseEdges]);

}
}

o
W =

This definition relies upon the following helper pattern and rule:

1 pattern IsRoot(root: Class) {

2 negative {

3 —:specific —> root;

4}

5}

6 rule AttributeToRootClassesAndMakeSubclass(attr:Property, super:Class) {
7 iterated {

8 :IsRoot (root); root:Class;

9 root —:ownedAttribute—> a:Property;

10 super; // super <> root

11 :SameAttribute (a,attr);

12 modify {

13 super —:specialisation —> gNew: Generalization —:specific—> root;
14 delete (a);

15 }

16 }

17 }

Although the rule3 rule appears to operate only on pairs of root classes,
which would be highly non-optimal in situations such as test case 5, the auxiliary
rule actually searches for all root classes with a given attribute and makes all
of these subclasses of the class ¢ created in rule3. Thus, the result for test case
5 is optimal: a single new root class is created by this rule, and one common
attribute moved up to it, then the other shared attributes are moved up to this
class by applications of rulel.

6.2 Evaluation properties

Table 9 summarises the evaluated attributes of the GrGen solution.

Although the GrGen solution is larger in size and structural complexity than
the UML-RSDS solution, it exhibits lower overall complexity. The approach has
higher maturity than UML-RSDS.

31

6.2.1 Transformation language properties

GrGen specifies transformations in terms of graph patterns, and hence its syntax
is related to a visual presentation of graph nodes and edges, representing the
abstract syntax of the source and target languages. In this respect it is at a high
level of abstraction, although some imperative code fragments are required for
complex transformations. The lack of universal quantifiers in source patterns
results in an unclear formulation in terms of double negations, which makes the
rules further from a direct logical interpretation, compared to UML-RSDS. The
notation is semantically close to OCL, but uses a variant syntax.

The transformation uses a similar strategy as the UML-RSDS transforma-
tion, and does not guarantee an optimal restructuring in all cases, because of
nondeterminism in the order of matching model elements.

There is no static GrGen verification support for proving syntactic correct-
ness. Nonetheless, it is simple to write GrGen assertions for the Asm constraints
of the problem, and then to evaluate these in the target model to verify syntactic
correctness. Inverse links to associations are set explicitly, unlike the implicit
updating of inverse links used in UML-RSDS.

Figure 9 shows part of the call graph of the GrGen.NET solution (there
are additional calls to SameAttribute from RemoveAttributeFromSubclasses, etc,
and an additional isRoot rule).

: AttributeToRootClassesAnd
Addint diateClassAndR
RemoveAttributeFromSubclasses() ove:tt?i;omu?elé?oiwsisbd:sseig MakeSubclass()

Rule1 Rule2 Rule3

SameAlttribute() SuperOf() createlnverseEdges()

Figure 9: Call graph of GrGen solution

If the entire transformation is considered as a single module, then it has
only internal calls, and cohesion is 100% and coupling 0%. If the rules were
separated into different modules, one for each rule, then the helper patterns
SameAttribute, SuperOf, createlnverseEdges should be factored into an auxil-
iary module accessed by the rule modules. In this case the cohesion would be
28%. There are 17 graph pattern expressions of size 7 or more, of which 6 are
non-unique, so the percentage of such unique expressions is 65%.

The transformation can be internally composed into a larger transforma-
tion process by means of a zgrs script sequentially composing the rules of the
transformations, and externally composed by sequencing the generated C# im-
plementations of transformations. Development effort was low.

32

GrGen.NET has been publicly available since 2003 and about 50 transfor-
mation case studies have been implemented using it.

In the usability survey, 4 of 5 participants considered the specification clearly
structured, and with low or medium effort to understand. All respondants
correctly identified the code used in the learnability test (no participant had
prior knowledge of GrGen).

The transformation could be extended to the full UML 2 class diagram lan-
guage, by means of additional rules and more detailed rule code. The factoring
of SameAttribute into a separate helper pattern potentially reduces the effort of
such extension.

6.2.2 Transformation implementation properties

A C# program is generated by GrGen.NET to implement the transformation.
As with UML-RSDS this makes for an efficient implementation with a high
maximum capability. The transformation engineer should never need to inspect
this code, instead all work on the transformation should be performed at the
specification level.

GrGen provides a convenient visual debugger which can be used for valida-
tion of a transformation. Faults arising from conflicting rules can be avoided
by explicit scheduling of the rules, so that only one rule is applicable at a given
time. Assumptions of a transformation can be checked in the source model.
There are no runtime exception handling facilities embedded in synthesised
transformations.

Table 12 gives the test results for GrGen, evaluated on the SHARE environ-
ment.

Test case | Number of | Number of | Ezxecution | Effectiveness
classes attributes | time (ms)

1 5 5 80 100% (non-optimal)

2 7 7 100 100% (optimal)

3 20 20 90 100% (optimal)

4 105 132 100 100% (optimal)

5 500 5000 472580 100% (optimal)

Table 12: Test case results for GrGen
The maximum capacity results are shown in Table 13. The results for these
were optimal.
7 Kermeta solution
Kermeta is a procedural language, built upon the type system of MOF [11].
Transformations are defined as sets of classes and operations which access and

manipulate the elements of a model. Kermeta provides a meta-programming
environment, with its own action language. Models may be manipulated by

33

Test case | Number of

Number of ‘ Ezecution ‘ Effectiveness

classes attributes time
2*100 400 400 1192ms 100%
2*200 800 800 8332ms 100%
2*%1000 4000 4000 123s 100%
2%10000 40000 40000 464s 100%

Table 13: Maximum capability test results for GrGen

the creation and deletion of elements, and by the setting of element features.
Logical data structures such as sets can be used to store selected sets of elements
within a Kermeta program, and OCL-style operators such as select and each can
be used to iterate over elements within a collection. Standard program control
structures such as conditionals, sequencing and operation invocation can also
be used. This ‘programming with models’ paradigm permits detailed control
over the transformation processing.

7.1 Case study specification in Kermeta

The approach taken to solve the case study in Kermeta is to traverse through
the model starting with the leaf nodes, and working upwards towards the root.
To extract the first base set of nodes, which are the leaves, all the class nodes
which have no children are selected (line 5 in the following listing). The lambda
expression (lines 3 to 7) simplifies the code, enabling all the leaf classes to be
extracted in a single line of code. This provides a set leafNodes of class nodes,
which we can consider as a base set of classes to be processed by the rules.

1 var leafNodes : Set<String> init Set<String >.new

2 root.Eelement.select{ e | e.isIlnstanceOf(Class) }.each{ c |
3 var cl : Class

4 cl ?7= ¢

5 if cl.specialisation.size() == 0 then

6 leafNodes .add (cl.name)

7 end

8}

The first part of the process when applying the rules is to ensure that the
nodes for the next iteration are extracted. This is an important step and needs
to be completed first, as the links below the parents could potentially be changed
during the application of the given rule. Furthermore, each parent class should
be added only once to the list, as duplicates in rules can cause considerable
errors. In code segment 2 below, the code specifies the correct processing order,
and note also that the list of classes are merely class names (line 15), this avoids
the need to continuously clone classes. The parent nodes for each of the nodes
in the base node are processed by calling the given rule, and on completion the
parent node is marked as complete (line 26). Marking the node as processed,
implies that all nodes below such a node have also been processed, and the next
iteration should focus on the nodes above it.

34

1 var procNodes : Set<String> init Set<String >.new
2 var rl : Rulel init Rulel.new

3 rl.root := model.clone(root)

4 nodes.each{ cs |

5 var ¢ : Class

6 ¢ i= rl.root.getClassFromString(cs)

7 c.specialisation.each{ p

8 var fd Boolean init true

9 procNodes.each{ pc |

10 if p.specific.name == pc and p.specific.donel == void then
11 fd := false

12 end

13 }

14 if fd then

15 procNodes.add(p.specific.name)
16 end

17 }

18

19 nodes.each{ cs |

20 var c : Class

21 c := rl.root.getClassFromString (cs)

22 c.generalisation.each{ g |

23 var cl : Class

24 cl := g.general

25 rl.ProcessSuper(cl)

26 cl.donel := 1

27 }

28 }

For rule 1 “Pull up attributes” the Kermeta support for sets was used to ex-
tract the common set of properties. A set of properties is created and initialized
with the owned attributes of one of the classes from the list which is marked as
processed, then the intersection between this set and the set of properties, of
the next class that is not yet processed, is calculated. The resulting set provides
the common properties between the two classes, continuing in this manner the
final set (iset on line 10 of the following code segment) should contain the set
of properties which are common to all the classes. Also, at any time during the
processing if the base set becomes empty the process can be terminated (line
16 in the following segment), implying that there are no common properties.
The common properties are removed from the list, and added to the parent
node (lines 14 and 13, respectively). A new iteration starts, by making use of
the parents in the previous iteration as the base set of classes, and finally it
terminates when there are no more classes in the base set.

1 var propSet : Set< Set<Property> > init Set< Set<Property> >.new
2 ¢c.specialisation .each{ s

3 var sc : Class

4 sc := s.specific

5 var prop : Set<Property> init Set<Property >.new
6 sc.ownedAttribute.each{ p | prop.add(p) }

7 propSet .add (prop)

8}

9 var iset : Set<Property>

10 iset := Process(propSet)

11 if iset.size() > O then

12 stdio.writeln (”Common Properties”)

13 addPropertiesSuper (c, iset)

14 remPropertiesChildren (c,iset)

15 else

16 stdio.writeln (”No Common Properties”)

17 end

The approach taken to apply rule 2 “Create subclass”, follows a similar
approach to walk the model as rule 1, the difference is the way in which the
base set of nodes are processed. In this scenario, the set of classes extracted in
each application of the rule are the largest set of subclasses which have common
properties (line 17 below). clsMgr maintains, for each child class cl, the set of
other child classes which have some common attribute with ¢l (lines 4 to 14).
cont is then a set of maximal size from these sets. This set is then processed

35

and a new parent class is created and the properties are moved into the parent
class (line 19). The classes which are not included in the largest set also need to
be processed in order to completely ensure that the rule application is complete.
In this case the remaining classes are grouped together and rule 2 is applied to
these classes (line 20).

1 stdio.writeln (”Processing General: ” 4 cl.name)

2 var children : Set<Class> init cl.getChildren ()

3 var clsMgr : ClassMgr init ClassMgr.new

4 children .each{ cl |

5 clsMgr.newSet (cl)

6 children .each{ c2 |

7 if cl.name != c2.name then

8 if cl1.checkCommon (c2) then
9 stdio.writeln (”Common found”)
10 clsMgr.addClass (cl,c2)
11 end

12 end

13 }

14 }

15 stdio.writeln (" Processing Containers”)

16 var cont : Container

17 cont := clsMgr.getLargestSet ()

18 if cont.data.size() > 0 then

19 processProperties (cont , cl)

20 processRemProperties (cont,cl)

21 end

On test case 1, for example, the larger set {B, C', D} of subclasses with b : T2
as a common attribute is chosen as cont, instead of the smaller set {4, B} with
a: T1in common.

To apply rule 3 “Create root class”, we used a slightly different process as
there is no need to walk through the model, all that needs to be done is to find
all the root nodes in the structure and apply rule 1. In the case that there are
common properties, a new root class is created (line 6 below). Using this root
class the process is then to apply a similar process as for rule 2 to optimise the
properties. In the case where there are not common properties, once again we
apply rules similar to rule 2; however, now the process is applied to a list of
classes as there is no common parent class.

1 var rl : Rulel init Rulel.new

2 rl.root := model.clone(root)

3 if rl.ProcessClasses (nodes).size () > 0 then
4 var name : String init 77

5 nodes.each{ p | name.append(p) }

6 var newClass : Class init Class.new
7 newClass .name := name

8 nodes.each{ cs |

9 var ¢ : Class

10 ¢ := root.getClassFromString (cs)
11 var spec : Generalization init Generalization .new
12 spec.general := newClass

13 spec.specific = c

14 root.ERelation .add (spec)

15 c.generalisation .add(spec)
16 }

17 rl.ProcessSuper (newClass)

18 root . Eelement .add (newClass)

19 root := model.clone(rl.root)

20 end

21 var r3 : Rule3 init Rule3.new

22 r3.root := model.clone (root)

23 r3.ProcessClass (nodes)

24 root := model.clone (r3.root)

The full listings of this solution can be found on the SHARE site for the
paper [23].

36

7.2 Evaluation properties

Table 9 summarises the evaluated attributes of the transformation language and
tools for the Kermeta solution.

Although the complexity and size of the Kermeta solution are significantly
higher than the UML-RSDS and GrGen solutions, the language does provide
more precise control over rule applications, for example, to take the largest
collection of subclasses of a class which satisfy rule 2 as the first match for
this rule. Such control is very complex or impossible to express in the more
declarative languages.

7.2.1 Transformation language properties

Kermeta is at a low level of abstraction, and the solution is written in an ex-
clusively imperative manner. This has negative consequences for the size and
complexity of the solution, and also leads to a higher development effort; how-
ever, greater power is available to the specifier, and more detailed control over
the transformation processing. This results in higher effectiveness than the
declarative solutions, and imposes a specific deterministic processing to achieve
confluence.

The transformation is decomposed into several modules and operations. Ex-
tension to a larger subset of UML 2 should be facilitated by this decomposition.
However, a substantial amount of new transformation code would be required.

Figure 10 shows the calling dependencies between the classes and operations
of this solution. Dashed lines indicate internal dependencies (cohesion) of mod-
ules, solid lines indicate external dependencies (coupling). 56% of the calls are
internal to modules. It can be seen that ProcessRulel and ProcessRule2 are
recursively defined. There are 17 expressions of size 7 or more, of which 9 are
non-unique, giving a factorisation value of 53%.

In the usability survey, 3 of 5 respondants considered that there was no clear
structure to the specification, 4 of 5 respondants found that a large or very large
effort was required to understand it. 3 of 5 respondants correctly identified the
code segment for the learnability test.

7.2.2 Transformation implementation properties

The use of recursion for the top-level control of the application of the rules
makes proof of termination less clear than for UML-RSDS and GrGen. The
fact that updates to the model are carried out in many places in the code also
hinders proof of syntactic correctness. Kermeta provides an assertion capability,
so that assumptions can be checked at runtime.

Table 14 shows the results of the four main test cases using Kermeta on the
SHARE environment.

Table 15 gives the results of the maximum capability tests which could be
executed for Kermeta on the SHARE environment. The construction of large
sets of elements in the applications of rule 3 “create root class” appears to be the
main source of execution costs and memory resource usage. Compared to the

37

ResManager ModelAspects ClassMgr PropertyMgr
_________ ! —_——————— === ==a
 gecssbomsinay | 7Sl " L Ry <]

LoadModel()) | (@ |m======== 1.5, add() 1 U 1
:.ﬂ equals() : 'ﬂ - _\‘_ 1 _)idg()_t‘_/l/_
oo o R=-—-=-- . R S
Save() Hheck(:ommon()# *éwsa() S ! \ a”;d"‘ies‘go(-:-
1 geiRefproperty < +add0\ass()/ .~ Marklargest() h
removeProperty | 1
I'. _ CheckProperty() € | Marklargest() 1 ! etcommonpropert <€
1 \getCommon() A1 o ! 1%“_5;0“3&0 (_J'_
1

1 getchildren() 1
L

< '4\ProcessRu\e

rocessRule3() ; *

\4 Process() = -
)

tProcessRuleNode3(;

RuleManager

‘| > addPropertiesSuper()

. >,

YempropertiesChildren()

ProcessClasses() —

7/ N
, rd
~—ProcessSuper() \

Process()(J-

——
Nadaproperty) < zderopem/()
NemoveProperty() I removeProperty(T
createGeneral() \ L—)
createGeneral() <«—'
A () Il
» ProcessPropertyset(; ProcessPropertyset()
ProcessProperties() A\

/ProcessGenera\() ~

4

ProcessProperties() -

TrF’rocessC\ass() —_—
4

Rule1

Rule2

Rule3

Figure 10: Calling dependencies of Kermeta solution

Test case | Number of | Number of | Execution Effectiveness
classes attributes | time (ms)

1 5 5 0 100% (optimal)
2 7 7 10 100% (optimal)
3 20 20 10 100% (optimal)
4 105 132 20 100% (optimal)
5 500 5000 out of memory | -

Table 14: Test case results for Kermeta

38

other solutions, more memory is consumed in the processing of sets of elements
due to the overheads involved in enforcing a precise iteration order over the class
hierarchy of a model.

Test case | Number of | Number of | Execution | Effectiveness
classes attributes ‘ time

2*100 400 400 13s 100% (optimal)

2%200 800 800 100s 100% (optimal)

2*500 2000 2000 1500s 100% (optimal)

2*1000 4000 4000 12600s 100% (optimal)

Table 15: Maximum capability test results for Kermeta

Application of rule 3 was generally the most expensive component of the
execution.

Kermeta has good support for interconnection with Eclipse. It has been
available since 2005, and it has an extensive history of use, with over 40 pub-
lished case studies (e.g., [35, 33]).

8 ATL solution

ATL [21] is a hybrid model transformation domain-specific language containing
a mixture of declarative and imperative constructs. ATL transformations are
unidirectional, operating on read-only source models and producing write-only
target models. During the execution of a transformation, source models may be
navigated but changes are not allowed. Target models cannot be navigated.

ATL modules define the transformations. A module contains a mandatory
header section, an import section, and a number of helpers and transforma-
tion rules. The header section provides the name of the transformation module
and declares the source and target models (which are typed by their metamod-
els). Helpers and rules are the constructs used to specify the transformation
functionality.

Declarative ATL rules can be classified as matched rules and lazy rules. Lazy
rules are like matched rules, but are only applied when called by another rule.
They both specify relations between source patterns and target patterns. The
source pattern of a rule specifies a set of source types and an optional guard
given as a Boolean expression in OCL. A source pattern is evaluated to a set of
matches in source models. The target pattern is composed of a set of elements.
Each of these elements specifies a target type from the target metamodel and
a set of bindings. A binding refers to a feature of the type (i.e., an attribute,
a reference or an association end) and specifies an expression whose value is
used to initialize the feature. Lazy rules can be called several times using a
collect construct. Unique lazy rules are a special kind of lazy rules that always
return the same target element for a given source element. The target element is
retrieved by navigating the internal traceability links, as in normal rules. Non-
unique lazy rules do not navigate the traceability links, but create new target

39

elements in each execution.

In some cases, complex transformation algorithms may be required, and
it may be difficult to specify them in a declarative way. For this reason, ATL
provides two imperative constructs: called rules and action blocks. A called rule
is a rule called by other ones in a procedural style. An action block is a sequence
of imperative statements and can be used instead of, or in combination with, a
target pattern in matched or called rules. The imperative statements in ATL
are the usual constructs for attribute assignment and control flow: conditions
and loops.

ATL has two execution modes, the normal (default) execution mode and the
refining one:

e In the default execution mode, the ATL developer has to specify the way
to generate each of the expected target model elements. This execution
mode suits most ATL transformations where source and target models are
different.

e The refining execution mode was introduced to ease the programming of
in-place transformations. With the refining mode, ATL developers can
focus on the ATL code dedicated to the generation of modified target
elements.

Ideally, the transformation in our case study should be defined using the
refining mode, since we are dealing with an in-place transformation. However,
the current version of the refining mode still faces many limitations, as we
describe in Appendix A. For this reason, we present both a solution given in an
ideal and hypothetical ATL refining mode (given in Appendix A), and another
one in the following section in the default mode. Although we only define one
rule of the original specification from Section 3 in this mode, this definition
is representative of the style of ATL default mode specification which can be
used for the case study, and the other rules can also be defined using the same
approach. A more imperative variation of the solution could be given, however
this would not overcome the essential limitation of the default mode, i.e., that
update-in-place transformations can only be simulated by selective copying.

8.1 Case study specification in ATL

This implementation (for rule 1 of the case study) is composed of 5 matched
rules, 1 lazy rule, and a variable which is used internally in a rule. The reason
that there are so many rules is that we need a matched rule to copy objects of
each type in the metamodel. This is because in the default mode, those objects
not explicitly copied by rules do not appear in the target model.

The two simplest matched rules are the following. The first one copies
objects of type Generalization, while the second one copies objects of type
Type.

40

1 rule Copygeneralization {

2 from

3 g : ClassDiagram! Generalization
4 to

5 gOut : ClassDiagram! Generalization (
6 specific <— g.specific ,

7 general <— g.general

8)

9}

10

11 rule CopyType{

12 from

13 t : ClassDiagram ! Type

14 to

15 tOut : ClassDiagram ! Type(

16 name <— t.name

17)

18 }

When applied to test case 2 from Section 4.5, these rules copy the four
generalisations and two types (T'1 and T2) from the source to the target model.

We need to be careful when copying the objects of type Property. We differ-
entiate between those properties contained in classes which are subclasses, (i.e.,
those classes which have generalizations) and those contained in classes which
are not subclasses (those classes which do not have any generalizations). The
following matched rule copies all the properties contained in classes which are
not subclasses.

1 —— This rule copies properties (all of them) from classes which are not
2 — subclasses .

3 rule CopyPropertiesNonSubclasses{

4 from

5 p : ClassDiagram ! Property ,

6 c : ClassDiagram! Class (c.ownedAttribute—>includes (p) and
7 c.generalisation —>size () = 0)

8 to

9 pOut : ClassDiagram ! Property (

10 name <— p.name,

11 type <— p.type

12)

13 }

The matching in the rule’s LHS is performed with two objects: the property
to be copied and the class that contains it. It is checked that the class is not
a subclass. Applied to test case 2, the rule copies the attributes A :: a, D :: a
and G :: b.

For other classes, the properties to be copied are those which do not appear
in all the siblings of their direct superclass. The following rule deals with this
case.

1 —— This rule copies those properties belonging to subclasses which are
2 — not repeated in all the subclasses of a class.

3 rule CopyPropertiesSubclasses{

4 from

5 p : ClassDiagram!Property ,

6 ¢ : ClassDiagram! Class ,

7 cSup : ClassDiagram! Class (c.ownedAttribute—>includes (p) and

8 c.generalisation —>exists (g | g.general = cSup) and

9 cSup.specialisation —>exists (g | not

10 g.specific.ownedAttribute—>exists (pr | pr.name = p.name)))
11 to

12 pOut : ClassDiagram ! Property (

13 name <— p.name,

14 type <— p.type

15)

16 }

The matching in this rule is performed with three objects: the property p to
copy, the class ¢ that contains it (which is a subclass) and the superclass cSup
of such a class. In the condition in the rule’s LHS, it is checked that there is a
sibling of the subclass which does not contain a property with the same name

41

as the one in the matching. This rule is not applicable to any elements in test
case 2.

Finally, there is a matched rule to copy all the classes. Special care has to
be taken when copying the elements in the ownedAttribute reference, because
those properties which are repeated in all the subclasses of a class must not
be copied. Furthermore, if the class being copied is a superclass all of whose
subclasses contain a property with the same name and type, a property with
such name and type should be created and referenced by the class created. The
rule is the following.

1 — This rule copies all the classes and adds to those new

2 — classes those attributes created by rules CopyPropertiesSubclasses
3 — and CopyPropertiesNonSubclasses, when it corresponds. Besides,

4 —— it adds new attributes in a superclass when it corresponds.

5 rule CopyClasses{

6 from

7 ¢ : ClassDiagram! Class

8 to

9 cOut : ClassDiagram ! Class (

10 name <— c.name,

11 generalisation <— c.generalisation ,

12 specialisation <— c.specialisation

13)

14 do{

15 —— If c is not a subclass, all the attributes are copied by

16 —— rule CopyPropertiesNonSubClasses, so we make the new

17 —— class contain them

18 if (c.generalisation —> size () = 0){

19 cOut.ownedAttribute <— c.ownedAttribute;

20 Yelse{

21 —— If ¢ is a subclass, those attributes not repeated in its

22 —— siblings are copied by rule CopyPropertiesSubclasses,

23 —— so we add them here.

24 —— We assume there is not multiple inheritance

25 thisModule.cSup <— c.generalisation—>first ().general;

26 for (p in c.ownedAttribute){

27 if (thisModule.cSup.specialisation —>exists (g |

28 not g.specific.ownedAttribute—>exists(pr | pr.name

29 = p.name))){

30 cOut.ownedAttribute <— cOut.ownedAttribute—>append (p) ;
31 }

32 }

33

34 —— Furthermore, if ¢ is a superclass, we create a new attribute in
35 —— it if all its subclasses contain an attribute with the same
36 —— name and type

37 if (c.specialisation —>size () >0){

38 for (p in c.specialisation—>first ().specific.ownedAttribute){
39 if (c.specialisation —>forAll(g | g.specific.ownedAttribute
40 —>exists (pr | pr.name = p.name and pr.type = p.type))){
41 — A call to lazy rule CreateProperty is made

42 cOut.ownedAttribute <— cOut.ownedAttribute—>

43 append (thisModule.CreateProperty (p));

44

45 }

46 }

47

48 }

The copy of attributes is realized by the rule’s imperative part. If the class
in the rule’s LHS is not a subclass, then all their attributes are copied (using the
<+ operator on line 19 of the above code segment). ATL’s engine looks in the in-
ternal traces for those properties created by rule CopyPropertiesNonSubClasses
and makes the new class reference them. If the class is a subclass, the rule copies
those attributes which are not repeated in all the siblings of the class. Finally,
the last part in the imperative section checks, if the class is a superclass, that
all of its children own attributes with a common name and type. In such cases,
it creates a new property with the lazy rule CreateProperty and makes the class
reference it. The lazy rule receives a property as argument and creates a new
property with the same features. The lazy rule is:

42

1 —— lazy rule that copies the property received as argument
2 lazy rule CreateProperty{

from
p : ClassDiagram!Property
to
pOut : ClassDiagram ! Property (
name <— p.name,
type <— p.type

COONO U AW

)

-

i

Applied to test case 2, CopyClasses copies all the classes and links them
by their copied generalisations. For classes A, D and G their copied attributes
are assigned to the class copies. The last part of the rule and CreateProperty
creates the A :: b and D :: b attributes in the target and adds them to the copies
of A and D respectively.

8.2 Evaluation properties

The properties of the ATL default mode solution for rule 1 are shown in Table
9.

8.2.1 Transformation language properties

The declarative parts of the ATL language are at a high level of abstraction;
however, this type of problem requires the use of imperative features, as in the
solution for rule 1 presented here. Therefore we classify the solution as hybrid.

The ATL approach used for rule 1 would suffer potentially from the same
problems of lack of confluence and failure to achieve 100% effectiveness as the
UML-RSDS and GrGen.NET solutions, if used for the other rules: no control
over the order of applications of a rule to elements is possible.

The specification is relatively similar to the informal description of the trans-
formation; however, a significant difference is the separation of the copying of
unchanged parts of the model (which is implicit in the rule descriptions) from
the explicit modifications needed (promotion of the duplicate copies of an at-
tribute). The latter is performed in the CopyClasses rule.

The need for explicit copying rules leads to a high syntactic complexity, as
do the imperative code blocks in CopyClasses. Structural complexity is 8 since
there are 6 invocations of rules by other rules within the specification (5 implicit
calls and 1 explicit), and a maximum call depth of 2. Figure 11 shows the call
graph.

As with the UML-RSDS solution it is possible to reason about general prop-
erties, for example, that the set of classes is not diminished by the transfor-
mation. Proof of syntactic correctness is complicated by the copying strategy,
e.g., it is not clear if CopyClasses can introduce duplicated attributes of a class.
There is no simple variant which is decreased by each rule application, unlike the
solutions of UML-RSDS and GrGen. This makes formal proof of termination
more difficult.

There is no formal tool support for verification. Some initial work on ATL
verification using SMT provers has been carried out, for simple declarative ATL
transformations in default mode [8].

43

CopyClasses
\Z \ CreateProperty

CopyPropertiesNonSupclass
CopyGeneralization

CopyPropertiesSubclass
CopyType

Figure 11: Call graph of ATL solution (rule 1)

One ATL transformation can be sequentially composed with another (the
transformations being defined in separate modules) by means of a Java script.
This technique is needed here to carry out the fixed-point iteration of rule 1.

The use of standard OCL notation within rules assists in the interoperability
and comprehensibility of ATL specifications. ATL is a relatively mature lan-
guage. It was first available in 2003, and has over 100 published case studies
[5].

There are 32 expressions of complexity 7 or above, of which 9 are duplicated,
so the percentage of unique expressions of complexity 7 or above is 72%.

Extension to full UML class diagrams could be carried out in principle, with
considerable additional complexity to the rules, and with additional rules (at
least one copy rule for every entity type in the metamodel — there are over 30
such entity types). This effort may be eased for UML by using the existing
UML2Copy.atl module for copying UML model data [42]. However, the rule 1
copy rules for generalisations and properties cannot be reused for rule 2 and 3
of the problem, since different copying criteria are necessary for these rules, and
this leads to a multiplicity of variants of copying rules.

8.2.2 Transformation implementation properties

The above ATL solution defines one application of rule 1, and this clearly termi-
nates, because the ATL rules are all linear iterations over their source domains.
However, termination of the completed solution would be difficult to show, be-
cause the individual ATL rules do not reduce any simple variant value such as
Property.size. Confluence may fail, since different orders of iteration over the
source domains may produce different result models. ATL provides runtime
checking for rule conflicts, and gives error messages indicating the specification
lines responsible, if there is a runtime error.

As with the other solutions, the ATL solution depends on the absence of
multiple inheritance in the source model in order to operate correctly.

Table 16 shows the test case results for ATL on the SHARE environment.
Only test case 2 was attempted. All possible applications of rule 1 were per-

44

formed successfully.

Test case | Number of | Number of | Execution | Effectiveness
classes attributes | time (ms)
2 | 7 | 7 | 84 | 40% (non-optimal)

Table 16: Test case results for ATL

The maximum capability tests were carried out as shown in Table 17. Only
applications of rule 1 were performed in each case. While the ATL tools were
able to execute all of the capacity test cases, up to size 50000 elements, only the
first (with an execution time of 19 minutes) completed in a reasonable time.

Test case | Number of | Number of | Execution | Effectiveness
classes attributes time

2*100 400 400 1142s 40%

2*200 800 800 10888s 40%

2*500 2000 2000 150999s 40%

2*1000 4000 4000 173292s 40%

2*5000 20000 20000 147978s 40%

Table 17: Maximum capability test results for ATL

9 QVT-R solution

In this section we describe the application of the QVT-Relational language
and Medini QVT tools to the quality improvement case study. QVT-R is a
declarative model-transformation language, defined in an OMG standard [36].
It is based on the concept of relations between the source model(s) and tar-
get model(s): the transformation attempts to establish a number of relations
between source and target models by creating or modifying elements in the tar-
get models. Individual relations typically relate source elements of a specific
source entity type to target elements of specific target entity types. A relation
can rely on certain previous properties and relations already being established
(the when clause of a relation), and can invoke subordinate relations and ac-
tions (the where clause). Transformation execution is initiated by top relations,
which operate in non-deterministic order upon all matching elements in source
models.

9.1 Case study specification in QVT-R

It is complex to specify this task in QVT-R because of the lack of default copy
rules. Such rules can be defined explicitly but this is not trivial for cases where
large parts of a model are copied and other parts are deleted or modified. We
have adopted the strategy of using marker relations from [12] to implement this
transformation. The elements to be modified are selected and marked in a first

45

step, then the input model is copied to an updated target model, with specific
rules applied to the marked elements, and deleted elements are not copied.
We found this approach simpler than using an update-in-place strategy for the
transformation.

Rule 1 “Pull up attributes”

This rule is implemented by identifying those Generalization objects such that
the linked classes of the object satisfy rulel. In order to generate the list of such
Generalization, we declare a top relation, which is applied to every instance of
Generalization. The when clause of this rule declares that the general end (su-
perclass) has more than one subclass, and more than one subclass has attributes
with the same name and type. In the where clause of this rule another relation
CheckRulel is called which has the Generalization instance as its argument.

1 transformation QualityImprovement (source:KCL, target :KCL)

2 {

3 top relation TakeGeneralization {

4 checkonly domain source sourcegen : KCL:: Generalization {
5 specific = sub : KCL:: Class {

6 ownedAttribute = prop : KCL:: Property{}}};

7 enforce domain target targetgen :KCL:: Generalization {};
8 when { sourcegen.general.specialisation.size() > 1 and

9 sourcegen . general.specialisation —>exists (

10 ¢ | c.specific.name <> sub.name and

11 c.specific.ownedAttribute—>exists (

12 p | p.name = prop.name and p.type.name = prop.type.name)); }
13 where { CheckRulel(sourcegen ,targetgen); }

14

Here, KCL is the name of the metamodel of the transformation (Figure 1).

It is required to prioritise Rule! over Rule2. This can be ensured by using
CheckRulel, which specifies that no sibling class exists without a copy of the
property, i.e., that all of the subclasses have an attribute with the same name
and type.

1 relation CheckRulel {

2 checkonly domain source sourcegen : KCL:: Generalization {
3 specific = subsource : KCL:: Class {

4 ownedAttribute = prop : KCL:: Property{} } };

5 enforce domain target targetgen :KCL:: Generalization

6 { specific = subtarget : KCL:: Class {} };

7 when { sourcegen.general.specialisation.size () > 1 and

8 sourcegen . general.specialisation —>exists (

9 c | c.specific.name <> subsource.name

10 and

11 not c.specific.ownedAttribute—>exists (

12 p | p.name <> prop.name));

13 where { CopyGeneralisationForRulel (sourcegen ,targetgen) and
14 CopyClass (subsource ,subtarget); }

15 }

If the conditions of rule! are satisfied, the corresponding Generalization is
copied. The CopyGeneralisation rule is a non-top relation and only matches its
arguments in the source and target model [12]. Tt acts as a marker relation to
identify those generalisations that meet the conditions of rule 1. Likewise for
CopyClass.

1 relation CopyGeneralisationForRulel {
2 checkonly domain source sourcegen : KCL:: Generalization {};

3 enforce domain target targetgen : KCL:: Generalization {};
4

}

The next step is to assign a superclass to the selected Generalization. The
TakesuperClass relation takes all the classes from the input model and in the

46

when clause of the relation selects the classes that have a specialisation element
which has already been copied by the CopyGeneralisation rule. Furthermore,
this rule performs the main task of moving the property from the subclasses to
the superclass. This happens by accessing the property of the subclass in the
checkonly domain of the relation and then adding it into the owned properties
of the superclass. In order to copy the name of the superclass the relation
CopyClass is called in the where clause of this rule.

1 top relation TakesuperClass{

2 checkonly domain source s : KCL:: Class {

3 specialisation = spsourcesuper : KCL:: Generalization {

4 specific = spe : KCL:: Class {

5 ownedAttribute = prop : KCL:: Property {} } } };

6 enforce domain target t :KCL:: Class {

7 specialisation = sptargetsuper : KCL:: Generalization {},

8 ownedAttribute = prop : KCL:: Property {} };

9 when { CopyGeneralisationForRulel (spsourcesuper ,sptargetsuper); }
10 where { CopyClass(s,t); }

11 }

The strategy for Rule 2, “create subclass” is similar and can be found in
Appendix B.

9.2 Evaluation properties

Table 9 summarises the evaluated attributes of the transformation language and
tools for the QVT-R solution.

9.2.1 Transformation language properties

The QVT-R language is at a very high level of abstraction, and the solution
is expressed in terms of logical relations. However, the nature of the problem,
which involves copying, creating, deletion and modification of model elements,
leads to an obscure specification of the transformation in QVT-R.

The transformation is of moderate size and complexity, and has been mod-
ularised by factorisation of conceptually distinct predicates, and by sequential
decomposition, into a selection phase followed by a restructuring phase. Figure
12 shows the call graph of this solution. There are 46 expressions of size 7 or
more, of which 28 are unique, giving a factorisation of 61%.

If the transformation is modularised into two modules according to Figure
12, then there is 1 inter-module call (from CheckRule2 to CopyClass) and 10
intra-module calls, i.e., the cohesion is 91%.

The correctness of the transformation cannot be established because of some
remaining problems:

e The transformation removes copies of a property which has clones from
subclasses but also it adds all copies into the superclass (it does not keep
one copy and destroy the other copies). Therefore, we need additionally
to remove duplicate copies from the superclass.

e It is not possible to prioritize the rules in QVT: even though the conditions
for rulel and rule2 have been made disjoint, both transformations could
potentially apply at different locations in a model at the same time.

47

TakeGeneralization
TakeGeneralizationForRule2

CopyClass
CheckRulet CheckRule2

CopyGeneralisation
ForRulet

G " \ TakesuperClassFor X
eneratenewclass Rule2 CopyGeneralisation
ForRule2

TakesuperClass GenerateSuperSuperClass

Figure 12: Call graph of QVT-R solution

e The transformation is not complete. The QVT relational language does
not support any technique for ruled “Create root class”, as there is no
connection in the model between different root classes.

e Further copy rules are needed to map parts of the source model which are
not matched by the restructuring rules.

For similar reasons it seems unlikely that the approach could be easily extended
to larger class diagram metamodels.
Development effort for the transformation was quite high, and needed re-
search into specialised patterns for defining copy transformations in QVT-R.
In the usability survey three respondants considered the structure to be
clear, but all considered the understandability effort to be large or very large.

9.2.2 Transformation implementation properties

As with the other declarative and hybrid language solutions, the confluence of
the QVT-R solution cannot be established. Termination should follow since no
recursion is used; however, the two-phased copying approach means that there
is no simple variant which is reduced by every rule application.

The Medini tool provides run-time exception handling: errors in processing
result in termination of the transformation and an error message giving the
specification lines where the error occurred.

For test case 1 there should be one application of rule 2. However, in the
implementation all a and b properties are moved to the same new superclass.
Test case 2: the implementation performs this testcase correctly for rule 1 (not
rule 3) and the execution time is 109ms. Test case 3 takes 159ms but is not
completely processed. Test case 4: the implementation performs all rule 1
applications which can be done in the first iteration, removing 56 of 92 clones.
The time taken is 297ms. Test case 5 could not be completed (out of memory
error).

48

Table 18 shows the test case results for QVT-R on the SHARE environment.

Test case | Number of | Number of | Execution Effectiveness
classes attributes ‘ time (ms)

2 7 7 109 40% (non-optimal)

3 20 20 159 55% (non-optimal)

4 105 132 297 61% (non-optimal)

5 500 5000 Out of memory | —

Table 18: Test case results for QVT-R

The maximum capability tests were carried out as shown in Table 19. Pro-
cessing of larger models was not possible (an out of memory error was produced).
Only applications of rule 1 were performed.

Test case | Number of | Number of | Execution | Effectiveness
classes attributes ‘ time

2*%100 400 400 1610ms 40%

2*200 800 800 2359ms 40%

2*500 2000 2000 38s 40%

Table 19: Maximum capability test results for QVT-R

QVT-R is defined by an international standard [36]. Version 1.0 was released
in 2008, and there are 20 published case studies. Medini QVT has been available
since 2007.

10 Comparison of approaches

In this section we evaluate the relative capabilities of each transformation ap-
proach, and we provide a summary ranking of the approaches according to the
ISO 9126-1 quality characteristics.

10.1 Comparative evaluation of quality measures

We give comparisons of each approach with respect to the quantitative metrics
of size, complexity, modularity and development effort. We also summarise
the results of the usability survey, and discuss what correlations exist between
different measures for the solutions.

10.1.1 Size

A simple size metric is the number of lines of code in a transformation spec-
ification. Line counts have deficiencies as measures, but they provide a quick
comparison of the relative size of different transformation specifications. Table
9 shows the size measures for the solutions.

49

The declarative approaches have generally lower size metrics than the hybrid
or imperative approaches. As in the following sections, it should be noted that
the ATL and QV'T solutions only covered one and two of the three rules of the
problem, respectively. If these solutions were scaled up by a factor of 3 and
1.5, respectively, then a complete ATL solution would have an estimated size of
243 lines, and a complete QVT-R solution 125 lines. This does not change the
classification of these solutions as Medium size.

The ranking of the solutions on the basis of size (using the scaled-up values
for QVT-R and ATL) is: UML-RSDS; GrGen; QVT-R; ATL; Kermeta.

Size correlates inversely with abstraction level, except that QVT-R requires
a larger specification than its abstraction level would suggest, due to the limi-
tations of the language for this category of problem.

10.1.2 Complexity

Table 9 compares the complexities of the approaches, based on the syntactic
complexities, the structural complexities and the overall complexities.

Again, Kermeta has significantly higher complexity than the more declara-
tive approaches. ATL (scaled) is however in second place, due to the complex
processing needed for this problem. UML-RSDS, whilst very concise in terms of
lines of code, has in compensation a high density of complex expressions within
its constraints.

Scaling up the complexities of the ATL and QVT-R solutions produces the
figures of 456 and 285 respectively, which does not alter their classification on
the three-point scale. The ranking of the complete solutions on the basis of
complexity is: GrGen; UML-RSDS; QVT-R; ATL; Kermeta.

The Pearson correlation coefficient of Size with Complexity (using all five
solutions, with scaling of ATL and QVT-R) is 0.99.

10.1.3 Development effort

The development effort of a transformation refers to the time spent on expressing
each individual rule of the requirements in the specific transformation language
(the time for understanding the problem or the specification notation is not
considered here, nor is the time taken in constructing test cases, but iterative
testing during writing the specification is included).

Table 20 shows the development effort time for each rule in the five different
transformation languages. Table 9 presents a summarised view of the same
data.

Unsurprisingly, the larger and more complex the specification, the more
effort was required to develop it, with Kermeta and ATL (scaled) again the
highest in this score. Notice however that the effort per line is actually lower
for Kermeta than for UML-RSDS.

If the effort for ATL and QVT-R are scaled up, they have values of 450
and 420 respectively, placing them close to Kermeta in terms of effort. The

a0

Rule 1 (min) | Rule 2 (min) | Rule 3 (min) | Summary
UML-RSDS | 40 30 50 Medium
GrGen 40 30 30 Low
Kermeta 120 160 160 High
ATL 150 - - Medium
QVT-R 120 160 - Medium

Table 20: Development effort

ranking of the complete solutions on the basis of development effort is: GrGen;
UML-RSDS; QVT-R; Kermeta; ATL.

The correlation of size with development effort, using all the solutions, with
scaling, is 0.58. The correlation of complexity with development effort, using
all the solutions, with scaling, is 0.67.

10.1.4 Correctness

Correctness was assessed by three separate 5-point measures of syntactic cor-
rectness (ability of the approach to prove that the target models constructed
satisfy the language constraints Asm), termination (ability of the approach to
prove termination) and confluence (ability of the approach to prove confluence
or determinacy of the transformation).

Table 9 shows the individual results for each of these aspects, and an overall
correctness value. The overall correctness value is based on the average of the
values for the three specific correctness measures.

UML-RSDS supports proof of syntactic correctness by direct induction over
transformation steps that Asm is preserved. Inverse links of associations are set
automatically. Termination is proved by showing that Property.size is strictly
decreased by each transformation step. However, the lack of detailed control
over the transformation execution means that confluence cannot be proved (and
indeed it fails — simply re-ordering the elements in the input model file can pro-
duce non-isomorphic result models). For GrGen the results are similar, except
that syntactic correctness is less clear because the specification notation is fur-
ther removed from pure logic, with operation calls and sequencing in the rule
definitions. Unlike UML-RSDS, there is no tool support for correctness proof.
Again, confluence fails. Kermeta is able to enforce an optimal clone-removal
strategy and achieve confluence in principle. Establishing syntactic correctness
and termination is obstructed by the complex control flow and use of recur-
sion. The QVT-R solution has minor errors in syntactic correctness. For both
ATL and QVT-R confluence fails, and proof of termination is obstructed be-
cause there is no simple variant that is reduced by each rule application. The
ordering of the solutions with regard to correctness is: Kermeta; UML-RSDS;
GrGen; ATL; QVT-R.

ol

10.1.5 Usability factors

Understandability, learnability and attractiveness of the approaches (restricted
here to these aspects as they concern the specification language, rather than the
tool) were evaluated by a survey of informatics professionals ranging from PhD
students to senior academics.

Table 21 summarises the results of the survey which was described in Section
4.2.3. The answers are coded on a five-point scale from 0 to 4. For each question
we consider the average value of the response across the different respondants.
The table also includes derived values, such as Overall Understandability, cal-
culated from the perceived understandability U! and the actual understanding
U2.

N

a .

g : g =
Question S O X < &
Expertise level (E) 0.4 0.4 0.4 1.0 0.8
Perceived Understandability (U1) 1.2 2.2 0.6 1.8 0.4
Actual Understanding (U2) 1.6 2.4 3.2 2.6 1.0
Overall Understandability 1.4 2.3 1.9 2.2 0.7

(= AVG(U1,U02)) Low Medium | Medium | Medium | Low

Perceived Learnability (L1) 1.4 1.8 0.8 1.8 0.4
Actually Learned (L2 = U2 - E) 1.2 2.0 2.8 1.6 0.2
Overall Learnability 1.3 1.9 1.8 1.7 0.3
(= AVG(L1,L2)) Low Medium | Medium | Medium | None
Well structured solution (A1) 1.6 2.8 1.2 2.8 1.2
Attractive Notation (A2) 2.8 1.2 0.6 2.0 2.4
Overall Attractiveness 2.2 2 0.9 2.4 1.8
(= AVG(A1,A2)) Medium | Medium | Low Medium | Medium

Table 21: Summary of usability survey question responses

The overall ranking of approaches with regard to usability is therefore: ATL
(6.3); GrGen (6.2); UML-RSDS (4.9); Kermeta (4.6); QVT-R (2.8).

This ordering is inversely correlated with the values for complexity and size
and development effort, and positively correlated with modularity, as could be
expected by analogy with similar results for programs [9].

The Pearson correlation coefficient of usability with complexity for Kermeta,
UML-RSDS and GrGen is -0.663, indicating a moderately strong linear depen-
dency. The correlation coefficient of usability with size for Kermeta, UML-RSDS
and GrGen is -0.55. The correlation coefficient of usability with modularity is
0.69 for Kermeta, UML-RSDS, GrGen and ATL, indicating a positive linear

correlation.

92

10.1.6 Modularity

As discussed in Section 4, modularity is considered both in terms of how fac-
torised the specification is and how the proportion of calls within modules (co-
hesion) relates to the proportion of calls between modules (coupling). Table 9
includes one row for the overall modularity of the specifications, and one row
for each contributing factor (factorisation, cohesion, coupling).

Only the Kermeta and QVT specifications were decomposed into modules
on the basis of the transformation rules. Modules consisted of the main rule
processing for each of the required rules, together with auxiliary rules/operations
for this processing. All the notations are capable of increasing the factorisation
to 100%, and of further modularising the problem, so the UML-RSDS, ATL and
GrGen solutions also have a potential modularity score of High.

Modularity is negatively correlated with development effort: -0.72 when all
the solutions are considered, using scaling of effort for ATL and QVT-R, and
the numeric value of factorisation 4+ cohesion for modularity. Likewise it is
negatively correlated (-0.88) with size and (-0.90) with complexity.

The ordering of the solutions with respect to modularity is: ATL; UML-
RSDS; GrGen; QVT-R; Kermeta.

10.1.7 Correlation results

Table 22 summarises the correlation results we have obtained between the dif-
ferent measures of the solutions. Except as indicated above, the correlations
considered all five solutions, with measures of size, complexity and development
effort for ATL and QVT-R being scaled up. The correlation results indicate
that the expected relationships hold between these measures, and give some
evidence of the validity and consistency of the selected measures.

Size | Complexity | Dev. Effort | Usability | Modularity
Size 0.99 0.58 -0.55 -0.88
Complexity | 0.99 0.67 -0.66 -0.90
Dev. Effort | 0.58 | 0.67 -0.68 -0.72
Usability -0.55 | -0.66 -0.68 0.69
Modularity | -0.88 | -0.90 -0.72 0.69

Table 22: Correlation results of measures

10.2 Evaluation summaries

For each approach, we can generate a summary of its quality characteristics
based upon the measured values for its attributes. The different attribute mea-
sures could be combined using some scheme of numeric weighting, and like-
wise for the combination of subcharacteristics which contribute to a quality
characteristic. Due to space limitations we will use a simple count of the at-
tribute values for each subcharacteristic which score +1 or more on the three

%]

or five-point scales for the attribute/subcharacteristic (in Table 9). This allows
decision-makers to gain a quick overview of the merits of a particular approach,
in the event of a close contest between two approaches, the detailed measure-
ment values for the approaches can be compared. The values of this count are
not affected by scaling up the size, complexity and development effort for ATL
and QVT-R.

In conclusion, we could consider GrGen, UML-RSDS and Kermeta as good
candidates to select for carrying out this transformation, on the basis of their
overall rankings in terms of the ISO 9126-1 characteristics (Table 23).

Approach Funct. | Rel. | Usab. | Effic. | Maint. | Port. | Total
as) 1@) @ |6 o | e
UML-RSDS | 8 0 0 2 1 0 11
GrGen 8 1 0 1 1 0 11
Kermeta 6 1 0 0 0 0 7
ATL 3 2 0 0 1 0 6
QVT-R 3 1 0 0 0 0 4

Table 23: Overall ranking of approaches

It should be noted that this ranking of approaches is specific to this type of
refactoring problem: in particular, GrGen and UML-RSDS are favoured over
ATL and QVT-R because of their stronger support for update-in-place trans-
formations. The inefficiency of model copying solutions for such problems is
evident in the execution results for ATL and QVT-R compared to the other
solutions. Different categories of transformation problem, such as model migra-
tions, would produce different rankings.

It is notable also that none of the approaches satisfies more than half of the
quality subcharacteristics, which is perhaps due to the relative immaturity of
the model transformation field. In particular, none of the approaches satisfy
any usability characteristics.

The fundamental problems of this case study are:

o The need to match multiple elements, including sets of arbitrary size.
e The need to control the order of application of rules.

e The need to support update-in-place transformation. The transformation
is input-destructive and it is very inefficient to implement by means of
copying models.

e The need to provide optimisations. The complexity of expressions used in
matching and updates would produce inefficient implementations without
the use of optimisation.

e The need to support fixpoint iteration of rules.

The solutions have addressed these problems in different ways, depending
on the facilities available in the different languages:

o4

Multiple element matching: In the UML-RSDS solution this is addressed
by using multiple quantifiers iterating over quantified variables which serve
as pivot elements for the constraint, and deriving the sets of interest (sets
of sibling classes with cloned attributes) from these multiple pivot ele-
ments.

In GrGen, the sets of elements are specified implicitly by means of graph
patterns, positive and negative. Modifications involving such sets are per-
formed by procedural iteration of updates applied to the individual ele-
ments.

In the Kermeta solution, sets of elements are constructed by iterations
over the sets of all classes or attributes in the model, these sets are then
passed to operations which update the model based on the sets.

In ATL multiple elements can be gathered into sets by means of the using
construct, the sets are derived from the input elements of the rule.

In the QVT-R solution, the sets of classes containing copies of a specific
attribute need to be precomputed by a sequentially preceeding transforma-
tion. The attributes which have copies to be removed are identified by the
‘marking’ pattern of [12]. These steps considerably complicate the trans-
formation specification and are a consequence of the element-by-element
pattern matching and processing in QVT rules.

A more powerful solution than these would be to provide direct quantifi-
cation/matching over sets of elements as pivots for transformation rules,
as proposed for the CGT language in [15].

Control of rule ordering: In UML-RSDS rule applications are ordered based
on rule priority: rule 1 takes precedence over rule 2, and rule 2 over rule
3. The priority is syntactically defined by rule ordering.

In GrGen, an explicit zgrs statement defines the processing order of the
rules.

In Kermeta, the ordering of the rules is defined by an explicit algorithm
invoking the rules in the required order.

In ATL, the ordering in matched rules cannot be controlled. Some matched
rules may however depend on others, if they need elements created by the
other rules. The ATL engine handles this by means of traceability links.
Regarding declarative rules, matched rules do have preference over lazy
(and unique lazy) rules, since the latter are executed when invoked from
the former.

In QVT-R, the relative ordering of the top-level relation executions can be
controlled by the use of when and where clauses, a rule that should occur
after another should contain a when clause condition that can only be es-
tablished by its predecessor. An example is the CopyGeneralisationForRulel
relation in the above specification.

%)

A fine level of control, e.g., to iterate over classes from the leaves of the
inheritance hierarchy upwards, is required to give an optimal solution to
the problem. Such control is achieved in the Kermeta solution by explicitly
processing the classes from leaf classes up to their superclasses. For the
declarative languages, a new transformation language construct to specify
particular orders of matchings in a model could be useful. Such a facility
will be added in the next version of UML-RSDS.

Update-in-place execution: This is directly supported by GrGen, Kermeta
and UML-RSDS. In QVT-R this form of execution leads to unclear spec-
ifications when deletion is combined with creation and modification, and
instead a strategy based on copying the input model to the output model
is used. In-place transformations are supported in ATL with the use of the
refining mode; however, this execution mode is still immature and only
matched rules are allowed. A solution with the default execution mode
requires model copying as with the QVT-R solution.

Optimisation facilities: In UML-RSDS execution of the constraints is opti-
mised by factoring out repeated occurrences of expressions within con-
straints using let variables (v in C2 and C3), and by omitting negative
application condition tests.

In GrGen, helper operations are used to factor out repeated expression
evaluations. In-lining of operation calls can be used to optimise execution.

In Kermeta, repeated evaluation of expressions can be avoided by calling
an operation to evaluate the expression once, and storing its result to use
in multiple places.

In ATL, using definitions (local variables of rules) as well as helpers can
be used to avoid duplicated expressions.

In QVT-R, subrelations can be defined to factor out some repeated calcu-
lations, and the precomputation of sets of elements used repeatedly can
be used to optimise computations.

Fixpoint iteration: In UML-RSDS, this is the default implementation of con-
straints that both read and write some entity type or feature.

In GrGen and Kermeta, it needs to be explicitly programmed as an it-
eration which halts when no further elements matching the application
conditions of any rule exist in the model.

In QVT-R, it is the standard implementation of top-level rules, and it is
the standard implementation of ATL matched rules.

QVT-R does not seem suitable for this type of transformation problem, be-
cause of the difficulty of handling sets of elements, and the lack of support
for input-destructive update-in-place transformations. ATL is not currently
suitable because of the limitations of the refining mode. In terms of size, com-
plexity and development time, UML-RSDS and GrGen have clear advantages

96

over Kermeta, and in terms of maturity, GrGen and Kermeta are preferable
to UML-RSDS. If guaranteed optimal solutions were required, then Kermeta
would be the most appropriate approach to use.

11 Conclusions

The paper has established an evaluation framework and procedure by which
organisations can compare and select transformation approaches for a particular
problem, using quantitative measures. This can be summarised as:

e Identify a subset or simplified version of the problem, which retains the
essential characteristics of the problem:;

e Define the external characteristics of concern to the organisation;

e Define the subcharacteristics and internal attributes for these external
characteristics, using a standard such as ISO/IEC 9126-1;

e Provide quantitative metrics for attributes, using an approach such as
GQM;

e Apply the candidate transformation approaches to the sample problem,
and evaluate the measures for the solutions achieved in each approach;

e Select the approach/approaches to be adopted for the full-scale problem
based on the resulting rankings of the characteristics of the approaches.

In this paper, the sample problem was simplified by using a small metamodel,
compared to UML class diagrams. It nonetheless presents the same key issues
as the full restructuring problem.

The comparison on this case study has clearly identified the advantages and
disadvantages of different transformation approaches for restructuring/refactor-
ing transformation problems. Specific deficiencies of particular approaches have
been identified, such as the lack of appropriate language support in QVT-R and
ATL. General deficiencies of transformation approaches have also been identi-
fied, such as the need for fine-grained control over the order in which elements of
a model are selected for matching against a rule, and intrinsic language support
for matching sets of elements at a time.

The results of the paper are specific to the category of update-in-place refac-
toring transformation problems. Different results and rankings of approaches
can be obtained for other categories of problems. In [24] we applied the frame-
work to refinement and migration transformation problems, and observed that
Kermeta seems to be the most suitable approach for small refinement problems,
with ATL becoming more appropriate for medium-sized problems. For migra-
tion, specialised languages such as Epsilon Flock achieve the highest scores.

Future work will apply the evaluation framework defined in this paper more
widely to other categories of transformation problems at different levels of scale.
The impact of language style (such as graphical versus text-based specification)

o7

upon quality characteristics could also be evaluated. The comparison of ap-
proaches on this case study is being continued with further contributions as a
transformation case in the TTC 2013 conference.

Acknowledgements

Kevin Lano and Shekoufeh Kolahdouz-Rahimi would like to thank Iman Poer-
nomo and the HortModa EPSRC project.

References

[1]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

M. van Amstel, C. Lange, M. van den Brand, Using Metrics for Assessing the
Quality of ASF+SDF Model Transformations, Proceedings of the 2nd Interna-
tional Conference on Theory and Practice of Model Transformations, ICMT ’09,
2009, pages 239-248.

M. van Amstel, C. Lange, M. van den Brand, Metrics for Analyzing the Quality
of Model Transformations, 12th ECOOP Workshop on Quantitative Approaches
on Object Oriented Software Engineering, 2008.

M. van Amstel, M. van den Brand, Model Transformation Analysis: Staying
Ahead of the Maintenance Nightmare, ICMT, 2011, pages 108-122.

M. van Amstel, S. Bosems, I. Kurtev, L. Pires, Performance in Model Transfor-
mations: Experiments with ATL and QVT, ICMT, 2011, pages 198-212.

ATL model zoo, http://www.eclipse.org/m2m/atl/atlTransformations, 2012.

V. Basili, G. Caldiera, D. Rombach, The goal question metric approach, in Ency-
lopedia of Software Engineering, editor Marciniak, J., Wiley, 1994.

P. Botella, X. Burgués, J. Carvallo, X. Franch, G. Grau, J. Marco, C. Quer,
ISO/IEC 9126 in practice: what do we need to know?, Software Measurement
European Forum (SMEF 2004).

F. Buttner, J. Cabot, M. Gogolla, On validation of ATL transformation rules by
transformation models, MoDeVVa 2011.

J. Chhabra, Code cognitive complexity: a new measure, Proceedings WCE 2011,
London, UK, 2011.

K. Czarnecki, S. Helsen, Feature-based survey of model transformation approaches,
IBM Systems Journal, no. 3, vol. 45, pages 621-646, 2006.

Z. Drey, C. Faucher, F. Fleurey, V. Mahe, D. Vojtisek, Kermeta Language Refer-
ence Manual, https://www.kermeta.org/docs/KerMeta-Manual.pdf, April, 2009.

T. Goldschmidt, G. Wachsmuth, Refinement transformation support for QVT
relational transformations, FZI1, Karlsruhe, Germany, 2011.

J. Gray, Y. Lin, J. Zhang, Automating change evolution in model-driven engi-
neering, IEEE Computer 39 (6), pp. 51-58, 2006.

R. Gronback, Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit, isbn 978-0-321-53407-1, Addison-Wesley, 2009.

R. Grgnmo, B. Mgller-Pedersen, G. Olsen, Comparison of Three Model Transfor-
mation Languages, ECMDA-FA, 2009, pages 2-17.

98

[16]
[17]
18]
[19]

[20]

21]
[22]

23]

[24]

[25]
[26]
[27]

28]

[29]

[30]
31]

32]

E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, O. Marchi dos Santos, transML:
A Family of Languages to Model Model Transformations, MODELS 2010, pages
106-120, Springer-Verlag, LNCS volume 6394, 2010.

ISO/TEC 9126, en.wikipedia.org/wiki/ISO/IEC_9126, 2001.

ISO/IEC, ISO/IEC 9126-1, Software engineering — Product quality — Part 1:
Quality Model, 2001.

ISO/IEC JTC1/SC7, ISO/IEC 25010, Software product Quality Requirements
and Evaluation (SQuaRE), 2007.

E. Jakumeit, S. Buchwald, M. Kroll, GrGen.NET: the expressive, convenient and
fast graph rewrite system, International Journal on Software Tools for Technology
Transfer (STTT), 12: 263-271, 2010.

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool,
Sci. Comput. Program. 72(1-2) (2008) 31-39.

L. Kapova, T. Goldschmidt, S. Becker, J. Henss, Fvaluating Maintainability with
Code Metrics for Model-to-Model Transformations, QoSA, 2010, pages 151-166.

S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P.
Van Gorp, Quality improvement case study comparison,
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&
vdi=XP-TUe_SCP_ESEiC11_QualityImprovement_Update_Resubmission.vdi,
2012.

S. Kolahdouz Rahimi, Measurement and comparison of model transformation ap-
proaches using a systematic procedural framework, PhD thesis, King’s College
London, 2013.

K. Lano, S. Kolahdouz-Rahimi, Model-driven development of model transforma-
tions, International Conference on Model Transformations, 2011.

K. Lano, S. Kolahdouz-Rahimi, Model-transformation design patterns, ICSEA
2011.

K. Lano, S. Kolahdouz-Rahimi, The UML-RSDS toolset,
http://www.dcs.kel.ac.uk/staff /kcl/uml2web, 2012.

K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, Comparative Evaluation of Model
Transformation Specification Approaches, International Journal of Software In-
formatics, vol. 6, no. 2, pp. 233-269, 2012.

K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification techniques for
model transformations, Modevva, MODELS 2012.

Medini QVT, http://projects.ikv.de/qvt, 2012.

T. Mens, K. Czarnecki, P. Van Gorp, A tazonomy of model transformation, Proc.
Dagstuhl Seminar on “Language Engineering for Model-Driven Software Devel-
opment”. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, 2005.

T. Mens, P. Van Gorp, D. Varro, G. Karsai, Applying a Model Transformation
Taxonomy to Graph Transformation Technology, Proceedings of the International
Workshop on Graph and Model Transformation (GraMoT 2005), Electronic Notes
in Theoretical Computer Science, pages 143-159, volume 152, 2006.

99

[33]

[34]
[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

N. Moha, S. Sen, C. Faucher, O. Barais, J-M. Jezequel, Evaluation of Ker-
meta for Solving Graph-based Problems, International Journal on Software
Tools for Technology Transfer, Volume 12, Issue 3-4, pp 273-285, 2010.
http://dx.doi.org/10.1007/s10009-010-0150-1

P. Mohagheghi, V. Dehlen, Developing a Quality Framework for Model-Driven
Engineering, MoDELS Workshops, pages 275—-286, 2007.

P-A. Muller, F. Fleurey, J-M. Jezequel, Weaving executability into object-oriented
meta-languages, MODELS/UML 2005, LNCS vol. 3713, pp. 264278, 2005.

Object Management Group, Query/View/Transformation Specification, 2010.

Object Management Group, UML superstructure, version 2.3, OMG document
formal/2010-05-05, 2009.

L. M. Rose, M. Herrmannsdoerfer, J. R. Williams, D. S. Kolovos, K. Garcés, R.
F. Paige, F. A. C. Polack, A Comparison of Model Migration Tools, MoDELS (1),
2010, pages 61-75.

L. M. Rose (case proponent), M. Herrmannsdoerfer (editor), S. Mazanek (editor),
P. Van Gorp (editor), S. Buchwald, T. Horn, E. Kalnina, A. Koch, K. Lano, B.
Schaatz, M. Wimmer, Graph and Model Transformation Tools for Model Migra-
tion, Software and Systems Modeling (SoSym), 2012.

L. Rose, D. Kolovos, R. Paige, F. Polack, Model migration with Epsilon Flock,
International Conference on Model Transformations 2010, Springer-Verlag.

S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of
model driven software development, http://cui.unige.ch/sendall/files/sendall-
tech-report-EPFL-model-trans.pdf, pages 42-45.

System and Software Engineering Lab, Vrije Universiteit Brussel, Belgium. MDE
Case Studies, http://ssel.vub.ac.be/ssel/research:mdd:casestudies.

G. Taentzer, K. Ehrig, E. Guerra, J. De Lara, T. Levendovszky, U. Prange, D.
Varro, Model Transformations by Graph Transformations: A Comparative Study,
Model Transformations in Practice Workshop at MoDELS 2005, Montego Bay,
Jamaica, 2005.

P. Van Gorp, P. Grefen, Supporting the internet-based evaluation of research soft-
ware with cloud infrastructure, Software and System Modelling, vol. 11, no. 1,
http://dblp.uni-trier.de/rec/bibtex/journals/sosym/GorpG12, 2012.

D. Varré, M. Asztalos, D. Bisztray, A. Boronat, R. Geiss, J. Greenyer, P. Van
Gorp, O. Kniemeyer, A. Narayanan, E. Rencis, E. Weinell, Transformation of
UML Models to CSP: A Case Study for Graph Transformation Tools, Applications
of Graph Transformations with Industrial Relevance, pages 540-565, 2008.

A. Vignaga, Metrics for measuring ATL model transformations, MaTE, Depart-
ment of Computer Science, Universidad de Chile, 2008.

60

