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ABSTRACT 

 A method for the synthesis of hollow lanthanide doped yttrium oxyfluoride (YOF) 

spheres in the micrometer size range with cubic structure based on the pyrolysis at 

600ºC of liquid aerosols generated from aqueous solutions containing the corresponding 

rare earth chlorides and trifluoroacetic acid has been developed.  This procedure, which 

has been used for the first time for the synthesis of YFO based materials, is simpler and 

advantageous when compared with other methods usually employed for the production 

of hollow spheres since it does not require the use of sacrificial templates. In addition, it 

is continuous, which is desirable because of practical reasons. The procedure is also 

suitable for doping the YOF spheres with europium cations resulting in down 

converting red phosphors when activated with UV light, or for co-doping with both Er
3+ 

and Yb
3+

 giving rise to up-converting phosphors, which emit intense red light under 

near infrared (NIR) irradiation. Because of their optical properties and hollow 

architecture, the developed materials may find applications in optoelectronic devices 

and biotechnology.  

 

 

KEY WORDS: Yttrium oxyfluoride, hollow spheres, europium, erbium, 

lumincescence 
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1. Introduction 

In the last years, many research efforts have been focussed on the development of well 

dispersed hollow spherical particles of different luminescent lanthanide (Ln) based 

compounds [1-12] due to their multifunctional character, which make them suitable for 

a large variety of applications. Thus, Ln-based luminescent compounds, usually 

consisting of a host matrix doped with Ln cations, find important applications in 

lighting [13], display devices [14], solid state lasers [15] and biotechnology (labelling, 

imaging, drug delivery) [16,17], to mention a few. The main advantages of this kind of 

luminescent materials over other well known phosphors (quantum dots, organic dyes) 

are their high chemical and thermal resistance, photostability, low toxicity and their 

versatility, since they may be designed as down-conversion (DC) phosphors (when 

doped with Eu, Tb, Sm, Dy), which usually are excited by ultraviolet (UV) light, or as 

up-conversion (UC) phosphors (when co-doping with Yb and mainly Er or Tm) [16]. 

These UC phosphors, which show visible emission after excitation with infrared (IR) 

radiation, are of particular interest for bioapplications when compared with DC 

phosphors since, contrary to UV radiation, IR light does not cause photodamage to 

living organisms and penetrates deeply in tissues [17]. The hollow architecture confers 

to these materials low effective densities and a high encapsulation ability, which are 

very important for some of the above applications.  For example, the combination of a 

hollow structure and luminescent properties enables the possibility of using these 

materials for simultaneous drug delivery and cells tracking by fluorescence imaging 

[18]. For optoelectronic applications, the hollow structure could also reduce the usage 

of the raw materials and eliminate the cost in commercial production, because most 

contribution to the photoluminescence comes from the phosphor surface [10].  
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Hitherto, most reports dealing with luminescent Ln-based systems consisting of hollow 

spheres, involve the use oxidic (oxides [4,6,7,10], phosphates [1.3], vanadates) 

[9,11,12] or fluoride [2,5,8] hosts. The former have the advantages of their high 

chemical and thermal stability, whereas fluorides are more preferred than oxides from 

the optical point of view, since the former have lower vibrational energies and 

consequently, the quenching of the exited state of the Ln cations through multiphonon 

relaxation is minimised, resulting in a higher quantum efficiency of luminescence 

[17,19]. Less attention has been paid to Ln oxyfluorides (LnOF), which have been 

suggested as excellent hosts since they combine the main advantages of oxides with 

those of fluorides [20]. In fact, to best of our knowledge, only a single report on the 

synthesis of Eu:YOF hollow spheres can be found, which resulted in a rather 

heterogeneous system consisting of aggregated hollow structures along with some other 

irregular particles [21]. 

The most usual procedures for the synthesis of hollow architectures are based on the use 

of sacrificial (polymers [22], silica [23], carbon [24], among others) templates, which 

have to be previously fabricated and finally removed through a multistep and time-

consuming process. Therefore, the availability of template-free methods for the 

synthesis of hollow particles would be highly desirable. Spray pyrolysis is a well 

established procedure for the synthesis of dense spherical particles of different inorganic 

materials, which is based on the thermal decomposition of liquid aerosols generated 

from solutions of the corresponding metal cations [25,26]. However, it has been shown 

than under certain experimental conditions (mainly nature of precursors and 

temperatures),  it is possible that the precipitation of precursors during the drying of the 

aerosol droplets takes place preferentially at the droplet surface, thus leading to the 

production of hollow spheres [25-26]. This aerosol procedure is of particular interest 
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since it is continuous and involves a higher yield than other solution based procedures, 

which is highly desirable because of practical reasons.  

In this paper, we report for the first time a template-free simple method for the synthesis 

of luminescent hollow Ln-doped YOF spheres based on the pyrolysis at 600ºC of liquid 

aerosols generated from aqueous solutions of rare-earth (RE) chlorides and 

trifluoroacetic acid (TFA). It has been shown by Mosiadz el al. [27], who recently 

studied the thermal decomposition of yttrium trifluoroacetate under different 

atmospheres (Ar or air), that the trifluoroacetate species decompose on heating at 

~275ºC, resulting in yttrium fluoride (YF3). These authors also reported that the 

presence of water induces the hydrolysis of YF3 to yttrium oxyfluorides (YOF and/or 

Y7O6F9) when the heating temperature was raised above 600ºC [27]. The use of this 

fluoride source is essential to avoid instantaneous precipitation of rare earth fluoride 

(REF3) in the starting solutions, which would be produced when using other inorganic 

fluoride salts. As proof of concept, the here developed procedure is first illustrated for 

the preparation of Eu
3+

 doped samples, which shows DC luminescence. In this case, the 

effects of Eu content on theirs optical properties are also analyzed in order to find the 

optimum system for their potential applications in optical imaging. The suitability of the 

reported method for the synthesis of UC phosphors is also demonstrated by using both, 

Er
3+ 

and Yb
3+

, as doping cations. It must be mentioned than whereas the spray pyrolysis 

procedure has been widely used for the synthesis of different oxidic hollow particles, 

this is the first report showing its suitability for the synthesis of fluoride containing Ln 

based compounds.   

 

2. Experimental section 

 2.1.Reagents.  
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Yttrium chloride (YCl3 · 6H2O, Aldrich, 99.9%), europium chloride (EuCl3 · 6H2O, 

Aldrich, 99.9%), ytterbium chloride (YbCl3 · 6H2O, Aldrich, 99.9%) and erbium 

chloride (ErCl3 · 6H2O, Aldrich, 99.9%) were used as RE precursors, whereas 

trifluroroacetic acid (CF3-COOH, Aldrich, >99%) was used as fluoride source. All 

chemical were used as received. 

2.2.Particles synthesis.  

The spherical hollow particles of the selected RE-based YOF were synthesized by 

pyrolysis of liquid aerosols in the apparatus schematized in Fig. 1, according to the 

following procedure. Aqueous solutions were first prepared by dissolving proper 

amounts of the RE precursors. The total RE concentration in these solutions was kept at 

0.2 mol dm
-3

. For the down conversion system, the Ln/Y  (Ln = Eu or Er +Yb) molar 

ratio was varied in the 2-16% range whereas for the up-conversion sample. the Er/Y and 

the Y/Yb ratios were fixed at 2 and 10%, respectively. An aliquot of trifluoroacetic acid 

was then admixed so that its final concentration was 0.2 mol dm
-3

and these starting 

solutions were nebulized using a glass nozzle and air at constant pressure (0.5 kg cm
-2

) 

as a carrier gas. The resulting aerosols were introduced into an expansion chamber and 

transported through two consecutive furnaces kept at 250 and 600ºC, respectively, in 

which, the liquid droplets were dried and thermally decomposed. The resulting particles 

were finally collected in a glass filter with a very high efficiency. 

2.3. Characterization.  

Particle shape was examined by transmission (TEM, Philips 200CM) and scanning 

(SEM-FEG, Model S4800, Hitachi) electron microscopy. Particle size distributions 

were obtained by laser diffraction (Malvern Mastersizer). The high angle angular dark 

field-scanning transmission electron microscopy (HAADF-STEM) image and the EDX 

(energy-dispersive X-ray spectroscopy)  line profile were performed using  a  FEI FEG 
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(filed emission gun) -TEM Tecnai G2 F30 S-Twin, equipped with a HAADF detector 

from Fischione Instruments and a SDD X-Max energy-dispersive x-ray spectrometer 

(EDXS) detector from Oxford  Instruments. The quantitative composition of the 

samples was analyzed by inductively coupled plasma atomic emission spectroscopy 

(ICP-AES, Horiba Jobin Yvon, Ultima 2). 

The crystalline structure of the prepared samples was assessed from their X-ray 

diffraction pattern (XRD, Panalytical, X´Pert Prowith an X-Celerator detector) collected 

at intervals of 0.03° (2) and an accumulation time of 3000 s. Crystallite size was 

obtained from the XRD reflection at ~32.9º (2θ), using the Scherrer formula. Unit cell 

parameters were determined from the XRD data (collected at intervals of 0.02° (2) for 

an accumulation time for interval of 4000 s) by Rietveld refinement using the Xpert 

HighScore Plus software. The starting parameters were taken from [28].  

The infrared spectra (FTIR) of the nanophosphors diluted in KBr pellets were recorded 

in a Jasco FT/IR-6200 Fourier transform spectrometer. Thermogravimetric analyses 

(TGA) were performed in air at a heating rate of 10°C min
-1

,
 
using a Q600 TA 

Instrument.   

BET specific surface area was measured in a Micromeritics ASAP 2010 apparatus with 

nitrogen at 77K. Before measurements, the samples were heated under vacuum at 150ºC 

for two hours. 

The excitation and emission spectra of the Eu-doped nanophosphors dispersed in water 

(0.5 mg cm
-3

) were recorded in a Horiba Jobin-Yvon Fluorolog3 spectrofluorometer 

operating in the front face mode. Lifetime measurements were obtained under pulsed 

excitation at 532 and 266 nm by using the second and fourth harmonics of a neodymium 

doped yttrium aluminium garnet (Nd:YAG) laser (Spectra Physics model DCR 2/2A 

3378), respectively, with a pulse width of 10 ns and a repetition rate of 10 Hz. The 
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fluorescence was analyzed through an ARC monochromator model SpectraPro 500-i 

and then detected synchronously with an EMI-9558QB photomultiplier and recorded by 

a Tektronix TDS420 digital oscilloscope. The UC spectra of the powdered samples 

were obtained using a Ti: sapphire laser (model 3900S Spectra Physics) operating at ~ 

980 nm to excite the Yb
3+

 ions with different excitation powers. Er
3+

 luminescence was 

detected by the EMI-9558QB photomultiplier tube, in the visible range, or by a Judson 

InGaAs photodiode in the IR spectral range.  

The photographs showing the luminescence of the Eu-doped and Er, Yb codoped 

phosphors were taken under illumination with ultraviolet radiation (= 254 nm), filtered 

from a Hg discharge a lamp, and under irradiation with the Ti-saphire laser (=980 nm), 

respectively. 

 

3. Results and discussion 

3.1. Synthesis and characterization 

Irrespective of their europium content, all synthesised Eu-doped samples showed 

similar morphological characteristics, which are illustrated here for the sample having a 

12% Eu (Eu/Y mol ratio) chosen as a representative example. As observed in Fig. 2, 

this sample was mostly composed of spherical particles as expected from the spray 

pyrolysis technique. The volumetric size distribution obtained for these spheres (Fig. 3) 

was bimodal, showing two modes centred at and 3.6 and 0.35 m. Such a broad size 

distribution is usually observed when using a pneumatic nebuliser, which requires a 

high gas pressure, thus inducing collisions among the aerosol droplets, and therefore, 

their coalescence into bigger entities [29,30].  The observation of the sample under the 

TEM microscope (Fig. 2, bottom) suggests that the spheres were hollow, since the 

contrast of the areas close to the particles surface is darker than that of their inner part. 



9 
 

Such suggestion was further confirmed by using the HAADF-STEM imaging 

techniques where the signal intensity is proportional to (Z
3/2

 x t), where Z is the atomic 

number and t is sample thickness. The HAADF-STEM image taken for a single sphere 

is shown in Fig. 4a, whereas the analysis of the intensity profile of this image along the 

scanned line is displayed in Fig. 4b, which clearly shows a much higher intensity 

(higher density) at the particle outer shell. The Eu, Y and F elemental distribution 

obtained measuring the  EDX line-profile spectra along the scanned  line, follow the 

same profile than the intensity of the HAADF signal (Fig. 4c), indicating that these 

elements are accumulated at the surface of the sphere, thus confirming the hollow 

morphology. According to these analyses, the shell thickness was ~75 nm. 

As a consequence of their hollow nature, a rather high specific BET surface area (10 m
2
 

g
-1

) was obtained for this sample from the measured N2 adsorption isotherm (Fig. 5), 

which is typical (type II) of non-porous or macroporous systems. 

The FTIR spectrum recorded for this sample (Fig. 6) indicates the complete 

decomposition of precursors after the pyrolysis process since it only displays two 

absorption at 3400 and 1650 cm
-1

 due to absorbed water, very weak features at 1400-

1300 cm
-1

, which might be due to adsorbed carbonate ions coming from atmospheric 

CO2, and lattice vibrations at <700 cm
-1

, which are very similar to those previously 

observed for the YOF phase [31]. In agreement with this observation, the XRD pattern 

of the sample (Fig. 7, top) was consistent with the ICDD file for cubic YOF (01-075-

0051), although the reflections appeared shifted to lower 2 values, probably due to the 

substitution of Y
3+

 (ionic radius in eightfold coordination =  1.02 Å) by Eu
3+

 cations 

(ionic radius in eightfold coordination =  1.07 Å)  in the YOF lattice. Similar XRD 

patterns were obtained for the other Eu-doped samples, which according to the ICP 

analyses presented Eu/Y mol ratio values close to the nominal ones (Table 1), indicating 
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the stoichiometric incorporation of Eu to the YOF matrix. The analysis of the unit cell 

parameters (Table 1) of these samples gives additional information on this matter. Thus, 

when the unit cell volume was plotted as a function of the Eu content (Fig. 7, bottom) a 

linear increase of such magnitude was observed for doping levels in the 2-12% range, 

confirming the incorporation of the whole amount of Eu added to the Eu:YOF structure. 

However, the further increase of the Eu content up to 16% resulted in an increase of the 

unit cell volume lower than expected (Fig. 7, bottom), which seems to suggest the 

segregation of some Eu cations from the YOF lattice at such doping levels. It should be 

also noted that the size of the crystalline domains estimated for the hollow spheres was 

~20 nm, irrespective of the Eu doping level, which is clearly lower than the shell 

thickness determined from EDX line-profile analysis (~75 nm). This finding seems to 

indicate that the hollow spheres are polycrystalline. 

When Er
3+

 (2%) and Yb
3+

 (10%) were used as doping cations instead of Eu
3+

, hollow 

spherical particles quite similar to those shown in Fig. 2 were obtained. The XRD 

pattern of this sample (Fig. 8) was also consistent with cubic YOF (ICDD file 01-075-

0051). The successful incorporation of the doping cations to the spheres was confirmed 

by ICP analyses which gave an Er and Yb content similar to the nominal values (Table 

1),  as well as by their unit cell parameters, which were lower than those corresponding 

to the Eu-doped samples (Table 1), as expected from the lower values of ionic radius of 

Er
3+

 (1.0 Å) and Yb
3+

 (0.98 Å), when compared with that of Eu
3+

 (1.07 Å). 

3.2. Luminescence properties 

3.2.1. Down-converting Eu-doped YOF phosphors.  

The emission spectra recorded for the Eu:YOF nanophosphors using an excitation 

wavelength of 395 nm (direct excitation of the Eu
3+

 ground state to a higher level of the 

4f-manifold (
7
F0-

5
L6) [31] are shown in Fig. 9. As observed, all spectra displayed the 
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emission bands due to the 
5
D0- 

7
FJ (J =0, 1, 2, 3 and 4) electronic transitions expected 

for the Eu
3+

cations in the YOF matrix, having the most intense emissions in the 580-620 

nm region [31-33]. It is important to mention that the relative intensity of the 
5
D0-

7
F2 

emission band was much higher than that associated to the 
5
D0-

7
F1 transition, which has 

been previously observed for this system and attributed to the localization of the Eu
3+

 

cations in crystallographic sites without inversion centre [31]. In Fig. 9, it can be also 

observed that the intensity of the emission bands increased as increasing the Eu doping 

level up to a 12% due an increase of the emission centres, and then decreased for higher 

(16%) Eu content, suggesting the presence of the well known concentration quenching 

effect at such Eu content. To gain further information on this luminescent behaviour, 

lifetimes of 
5
D0 Eu manifold have been measured under the excitation provided by the 

second harmonic of a pulsed Nd:YAG laser (exc = 532 nm). This excitation efficiently 

populates the 
5
D1 multiplet (

7
F0 → 

5
D1 transition) which then populates the 

5
D0 state via 

non-radiative relaxation [34] from where the different visible emissions originate. It has 

been verified that the emission spectra under this excitation are coincident with those 

obtained after 395 nm excitation shown in Fig. 9. The normalized temporal decays of 

the 
5
D0 level, measured at em = 612 nm (

5
D0 → 

7
F2 transition), for different Eu 

concentrations are shown in Fig. 10. After an initial rise, that corresponds to the filling 

of the 
5
D0 emitting level from the upper 

5
D1 level, the luminescence decays follow, in 

all cases, a mono-exponential time dependence:  

   tItI  exp0  

 The emission lifetimes () obtained for the different Eu concentrations are shown in 

Table 1. As observed, the emission lifetimeremained almost constant  (2.2 ± 0.2 ms) in 

the 2-12% Eu content range and then decreased (1.4 ± 0.2 ms) at higher Eu doping 

levels (16%). It has been also checked that similar values of (are obtained when the 
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decays are measured in the other luminescence bands originated from the 
5
D0 Eu level 

(data not shown). Consequently, it can be concluded that concentration quenching is 

present in our samples for doping levels above 12%. Therefore, the most efficient 

among the here obtained Eu:YOF phosphors showing the most intense emissions is that 

containing a 12 % of Eu (mole ratio).
 
 

The luminescence quantum yield can be estimated from the comparison of the different 

luminescence emissions from the 
5
D0 multiplet, particularly comparing the intensities of 

the electric-dipole allowed transitions (
5
D0  

7
FJ; J =2,4) with that associated to the 

5
D0 

 
7
F1 transition (emi ~ 590 nm) that corresponds to a purely magnetic dipole character. 

The transition 
5
D0  

7
F6 is not considered, because it is not observed in the 

luminescence spectra, in accordance with the results in other Eu
3+

 – doped hosts [35-

37]. 

The dipole strength of the magnetic-dipole allowed the 
5
D0  

7
F1 transition is 

practically independent of the ion’s surroundings, so that the transition rate can be 

calculated incorporating the corresponding local field correction, provided that the 

refractive index of the material is known. Considering that this index is not expected to 

change appreciably for our cubic YOF phase when compared with that of the 

rhombohedral one, we can take then the value of the radiative rate for the dipolar 

magnetic transition (A0-1   50 s
-1

) reported for the latter [32] to calculate its value for 

those of electric dipole character (A0-2, A0-4) corresponding to our samples.  

The ratio between radiative rates of the electric dipole transitions (A0-2,4) and the dipolar 

magnetic one (A0-1) are related to the corresponding ratios of the intensities of their 

respective luminescence bands as:  


























4,2010

104,20

104,20




hI

hI
AA

    (2) 
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where I0-J is the integrated emission intensity and 0-J the center frequency of the 
5
D0  

7
FJ transition (J = 1,2,4), that can be evaluated experimentally from the luminescence 

spectra. The calculated transition rates are found to be independent of Eu
3+

 

concentration, within a 5 % standard deviation from the mean values: A02 = 342 s
-1

 and 

A04 = 58 s
-1

.  

The corresponding total radiative probability of the 
5
D0 level can be now calculated as:  

1

4,2

010 450 



   sAAAAA
J

Jedmdrad

   (3)

 

which corresponds to a radiative lifetime of rad = 2.2 ms.  

The luminescence quantum yield (QY) is obtained from the ratio between the 

radiative transition probability (Arad) and the total transition probability (radiative 

plus non-radiative, Anr), which is given by the reciprocal of the experimental 

lifetime (exp):  

exp

exp





rad

radradnorad

rad A
AA

A
QY 






    (4) 

The calculated values for the different doping levels are included in Table 1. It can be 

observed that the efficiency remains above QY = 90 % for doping levels up to [Eu
3+

]  

12 % and decreases to QY = 64 % for the highest Eu content (16 %).  

It is also possible to calculate the Judd-Ofelt intensity parameters (,  = 2,4), which 

are related to the radiative emission rates as:  

 




 
6,4,2

2

,2

7

0

5

0

2

3

3

4,20

4

4,20
43

64









FUD

e

hc
A ed   (5) 

where ed is the local field correction factor and 
 

2

4,2

7

0

5
FUD


 are the squared 

reduced matrix elements of the transition 
5
D0  

7
F2,4, being 

 
0032.0

2

2

72

0

5 FUD  
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and 
 

0023.0
2

4

74

0

5 FUD  the only nonzero elements [37]. From the 

experimentally determined transition probabilities given above and the reported values 

of the local field correction factor,  ed = 4,98 [32] ), we obtain 2 = 7.0  10
-24

 m
2
 and 

4 = 2.4  10
-24

 m
2
, which are slightly higher than the values reported for other YOF 

phases [32].  

It must be noticed the similar analyses for the Eu:YOF system have been addressed only 

in a few previous works, which were conducted on phosphors with orthorhombic 

structure and that the obtained QY values were much lower (~~50%) [31,32] than those 

measured for our samples. Therefore, the here developed Eu:YOF hollow spheres show 

the higher luminescence efficiency so far reported, which might be related to their 

different crystalline structure (cubic), among other factors (purity, crystallinity). In 

addition, concentration quenching has been found to be present in our samples at much 

higher levels of Eu doping (16%) than in these previous works (5%), which is 

advantageous from the practical point of view since, as a consequence, phosphors with 

higher emissions intensity can be obtained. 
 

Additional information on the luminescent properties of the Eu doped nanophophors 

was obtained from the excitation spectrum recorded by monitoring the most intense 

Eu
3+

 emission (618 nm), which is illustrated for the case of most efficient sample 

(Eu0.12Y0.88OF) (Fig. 11, top). This spectrum displayed the excitation bands 

corresponding to the direct excitation of the Eu
3+

 ground state to higher levels of the 4f-

manifold (between 270 and 400 nm) [33] along with a strong band whose maximum 

lyes at beyond the wavelength range of our equipment (<250 nm). A similar band has 

been previously for Eu:YOF samples and attributed to a Eu-O charge transfer transition 

(CTB) caused by electron delocalization from the filled 2p shell of O
2-

 to the partially 

filled 4f shell of Eu
3+

[33]. As observed in Fig. 11 (bottom), the intensity of the Eu
3+
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emissions was considerably higher when exciting through such CTB band (250 nm) 

than by direct excitation of the Eu
3+

 electronic levels (ex = 395 nm). It was also found 

that the lifetime values obtained for all transition originated from the 
5
D0 Eu level under 

excitation into the CTB (266 nm) were very similar (Table 1) to those obtained for the 

direct excitation of the Eu cations (ex = 532 nm). These results indicate that the former 

excitation path, which gives rise to a strong red emission (Fig. 11, inset), is more 

favourable for the potential applications of these phosphors. 

3.2.2. Up-converting Er,Yb-codoped YOF phosphors.  

After excitation of the Yb cations at ex  980 nm (
2
F7/2  

2
F5/2 ground state 

absorption), different energy transfer processes (ET 1-3) lead to excitation of different 

excited state levels of Er ions, as it is sketched in Fig. 12. A first resonant transfer 

process (ET-1) occurs between the 
2
F5/2 Yb level and 

4
I11/2 Er level (

2
F5/2  

2
F7/2 (Yb

3+
): 

4I15/2  
4
I11/2 (Er

3+
)), that subsequently populates the lower lying 

4
I13/2 Er multiplet. 

Consequently, two near IR DC emissions at 980 nm and 1.5 m appear in the emission 

spectra of our Er(2%), Yb(10%) codoped YOF sample, as shown in Fig. 13 (a). The 

first one originates from the spectrally overlapped Yb and Er transitions (
2
F5/2  

2
F7/2 

and 
4
I11/2  

4
I15/2 , respectively) while the last one corresponds to the Er (

4
I13/2   

4
I15/2) 

transition.  

Energy transfer up-conversion is also produced after Yb
3+

 excitation, giving rise to two 

emissions in the visible spectral range, shown in Figure 13b. The red one (630 nm < em 

< 700 nm) corresponds to the 
4
F9/2  

4
I15/2 transition while the green one (500 < em < 

570 nm) is associated to emission from the thermally coupled 
2
H11/2 & 

4
S3/2 multiplets 

(
2
H11/2 & 

4
S3/2  

4
I15/2). The corresponding energy transfer schemes, also indicated in 

Fig. 12, are ET-2: (
2
F5/2  

2
F7/2 (Yb

3+
): 4I13/2  

4
F9/2 (Er

3+
)), reaching the 

4
F9/2 red 
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emitting level and ET-3: (
2
F5/2  

2
F7/2 (Yb

3+
): 4I11/2  

4
F7/2 (Er

3+
)), reaching the 

4
F7/2 

level and then, by non-radiative relaxation, the 
2
H11/2 & 

4
S3/2 manifold. 

The power dependence of the up-converted emissions are presented, in a double 

logarithmic plot in Fig. 14. As it can be observed, both the green and red emissions 

exhibit a quadratic dependence indicating that, in both cases, the emission of an up-

converted photon involves the absorption of two excitation photons, in accordance with 

the need of two energy transfer processes in order to reach the visible emitting Er 

multiplets, as mentioned above.  

Let us finally indicate that the green to red emission ratio of Er
3+

 ions can be modified 

by different factors, such as the nature of the host material, dopant concentration, 

particle size or excitation power [ 20, 38-48]. In the case of the YOF microspheres here 

presented, it is apparent that the red emission dominates, in agreement with previous 

observations [20,31,43], giving the material a bright red appearance as shown in the 

inset of Figure 13b. It is important to mention that this feature gives to this material an 

important advantage for imaging biomedical applications when compared with other 

Yb
3+

 /Er
3+

  doped materials which, in many cases, use hosts were the green emission 

dominates [38,41], considering the substantially reduced absorbance of biological 

tissues in the red spectral range in comparison to the green portion of the spectra, thus 

increasing then the penetration depth [44]. 

 

4. Conclusions 

Lanthanide doped yttrium oxyfluoride (YOF) hollow spheres in the micrometer size 

range with cubic structure have been synthesized by pyrolysis at 600ºC of liquid 

aerosols generated from aqueous solutions containing the corresponding rare earth 

chlorides and trifluoroacetic acid.  This procedure, which has been used for the first 



17 
 

time for the synthesis of YFO based materials, is simpler and advantageous when 

compared with other methods usually employed for the production of hollow spheres 

since it does not require the use of sacrificial templates. In addition, it is continuous 

which is desirable because of practical reasons. When doped these spheres with Eu
3+

 

cations down converting red phosphors resulted upon UV excitation showing a 

concentration quenching effect at much higher Eu doping levels than other previously 

reported samples of the same nature, which involves improved luminescent properties. 

Up-converting hollow phosphors have been also prepared by codoping the with Er
3+ 

and 

Yb
3
 cations, which emit bright purer red light after NIR excitation than other commonly 

used matrices. Because of their optical properties and hollow architecture, the 

developed materials may find applications in optoelectronic devices and biotechnology. 
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Figure Captions  

Figure 1. Schematic diagram of the apparatus used to synthesize the hollow spherical 

Ln-doped YOF particles. 

Figure 2. SEM (top) and TEM (bottom) images of the Eu:YOF particles synthesised by 

spray pyrolysis according to procedure described in the experimental section 

Figure 3. Volumetric size distribution obtained from laser diffraction for the sample 

shown in figure 2. 

Figure 4. a) HAADF-STEM image of a spherical particle, b) Intensity profile of the 

HAADF signal along the scanned line; and c) Y, Eu and F elemental distribution along 

the scanned line. 

Figure 5.  N2-isothem obtained for the sample shown in figure 2 

Figure 6. FTIR spectrum recorded for the samples shown in figure 2 

Figure 7.  Top: X-ray diffraction patterns recorded for the Eu:YOF samples having 

different Eu content and ICDD file for cubic YOF. Bottom: Evolution of the unit cell 

volume determined for the Eu-doped samples 

Figure 8. X-ray diffraction patterns recorded for the Er.Yb codped YOF sample. The 

ICCD file for cubic YOF is also included.  

Figure 9. Emission spectra em= 393 nm) of the Eu:YOF samples with different Eu 

content.  

Figure 10. Normalized temporal decays of the 
5
D0 level, measured at em = 612 nm 

(
5
D0 → 

7
F2 transition), for different Eu concentrations. The decays follow a mono-

exponential time dependence with lifetimes (that remain constant for Eu 

concentrations up to 12 % and becomes shortened for 16 % Eu content.  

Figure 11. Excitation spectrum em= 612 nm) of the Eu:YOF sample containing a 12% 

of Eu (top) and emission spectra recorded for the same sample using different excitation 
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wavelengths (bottom). Inset: Photograph of the Eu:YOF sample containing a 12% of 

Eu, taken under UV (250 nm) illumination 

Figure 12. Schematic energy levels of Yb
3+

 and Er
3+

 ions indicating the different 

energy transfer processes (ET-1-3) occurring after Yb
3+

 excitation (ex ~ 980 nm), 

populating different Er
3+

 excited states and giving rise to different emissions in the near 

infrared and visible spectral ranges.  

Figure 13. (a) IR- and (b) up-converted luminescence of Er/Yb: YOF, after Yb
3+

 

excitation (ex ~ 980 nm). The corresponding electronic transitions for the different 

emission bands are indicated in the figure. The inset shows a photograph of the up-

conversion emission of the powders exhibiting a bright red colour. 

Figure 14 Double logarithmic plot of the power dependence of the up-converted 

emissions. Both (red and green) emissions exhibit a quadratic dependence (slope 1.9 

and 2.0). 
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Table 1. Nominal and experimental Ln/Y mol ratio (Ln = Eu, Er and Yb), unit cell 

parameter and unit cell volume for the Eu doped and Er,Yb codoped samples. The 

lifetime () and quantum yield (QY) values measured for the Eu-doped samples (em = 

612 nm) are also included. Errors are given in parenthesis. 

 

Eu 

(mol%) 

Nom. 

Eu 

(mol%) 

Exper. 

Er 

(mol%) 

Nom. 

Er 

(mol%) 

Exper. 

Yb 

(mol%) 

Nom. 

Yb  

(mol%) 

Exper. 

a (Å) V (Å
 
3
) (ms)

 

QY 

(%) 

2.0 2.0     5,4181(9) 159,0530  2.0± 

0.2 

91 

4.0 4.1     5,4204(9) 159,2546 2.1± 

0.2 

95 

8.0 8.2     5,4251(8) 159,6700 2.0± 

0.2 

91 

12.0 12.3     5.4310 (7) 160,1945 2.0± 

0.2 

91 

16.0 16.5     5,4316(4) 160,2427 1.4± 

0.2 

64 

  2.0 2.1 10.0 9.7 5,4100(10)  158,3508   
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 Hollow lanthanide doped YOF spheres have been synthesised through a 

template-free procedure 

 Strong red emissions are observed for Eu-doped spheres under UV illumination 

 Concentration quenching of luminescence takes place in the spheres at very high 

Eu doping levels 

 Bright red emission is observed for Er,Yb codoped spheres, making this matrix 

advantageous for biomedical imaging 
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