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Abstract 

Vanadium carbonitrides (VCxN1-x) were prepared via mechanosynthesis from mixtures 
of elemental vanadium and carbon with different V/C atomic ratios under a nitrogen 
atmosphere using a high-energy ball mill. We obtained the full composition range of 
carbonitrides at room temperature. The products were characterized using X-ray 
diffraction, scanning electron microscopy and electron energy loss spectroscopy. The 
results showed particle-sized products with high sinterability and very high 
microhardness. 
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Introduction 

Transition metal carbonitrides are important materials because of their unique and 

outstanding combination of physical properties, such as high melting points, high 

hardnesses, good thermal and chemical stabilities, and excellent electrical and thermal 

conductivities, among others. These properties make carbonitrides useful materials for a 

wide range of applications, such as coatings and cutting tools. Furthermore, 

carbonitrides are widely being used in the preparation of advanced engineering ceramic-

based composites that are employed in several applications in key high-level 

technologies1-3.  

 Currently, the most common synthesis methods for producing carbonitrides are 

chemical vapor deposition from organometallic precursors4-9, thermal diffusion3,10, 

solid-state reactions from precursor oxides and carbides11-13, and self-sustaining high-

temperature synthesis from vanadium carbide14. This last procedure appears to be a 

good alternative to the classic metallurgic methods for synthesizing borides, carbides, 

nitrides and carbonitrides15-23. It has been established that the physical and chemical 

properties of these solid solutions depend on their compositions (C/N ratio)3,24-25; 

however, the aforementioned methods do not allow for the synthesis of these materials 
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over the entire composition range. Our group has previously reported26-28 that 

mechanical synthesis methods provide good results in the synthesis of these types of 

compounds, affording particles with nanometric sizes. There are examples in the 

literature of the synthesis of VC using mechanical processes29-30, as well as examples of 

other carbonitrides synthesized using self-propagating or combustion reactions induced 

by milling26-27,31-32. In the present paper, we synthesize vanadium carbonitride from its 

constituent elements using reactive milling. Reactive milling is an easier, faster and 

more economical process than the previous methods. The microstructural 

characterization and hardnesses of the final products are also presented. 

 

Experimental 

Graphite powder (<270 mesh, Fe≤0.4%, Merck), vanadium (99.5% purity, <100 

mesh, Aldrich) and nitrogen (99.9%; H2O≤3 ppm, O2 ≤2 ppm and CnHm ≤5 ppm; Air 

Liquide) were used in this work. 

Different C-V powder mixtures were milled under 11 bars of high-purity 

nitrogen gas using a modified planetary ball mill (Fritsch model Pulverisette 7) at a 

rotation rate of 700 rpm for both the rotation of the supporting disc and the 

superimposed rotation in the direction opposite to the vial. Six tempered steel balls and 

5 g of reactive powder (C-V) were placed in a tempered steel vial (67Rc) for each 

milling experiment. The volume of the vial was 45 ml. The diameter and weight of the 

balls were 15 mm and 13.85 g, respectively. The powder-to-ball mass ratio (PBR) was 

1/16. The vial was purged with nitrogen gas several times, and then the desired nitrogen 

pressure (11 bars) was achieved prior to milling. The vial was permanently connected to 

the gas cylinder during the milling experiments through a rotary valve and a flexible 

polyamide tube. The pressure was continuously monitored using a SMC solenoid valve 

(model EVT307-5DO-01F-Q, SMC) connected to an ADAM-4000 series data 

acquisition system (Esis Pty Ltd.). The self-sustaining reaction inside the vial was 

detected from the time–pressure value, which was monitored during milling. This 

record exhibited a peak when the ignition occurred due to the heat generated by the 

highly exothermic reaction. 

X-ray powder diffraction patterns were recorded using a Philips X’Pert Pro 

diffractometer equipped with a Θ/Θ goniometer using Cu Kα radiation (40 kV, 40 mA), 

a secondary Kβ filter, and an X’Celerator detector. The diffraction patterns were 

scanned from 10° to 90° (2Θ) at a scan rate of 0.42º min−1. Silicon powder (NIST) was 
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used to correct the XRD peak shifts. The lattice parameter, a, of the VCxN1−x phases 

was calculated from the entire set of peaks in the XRD pattern using the Lapods 

computer program assuming a cubic symmetry. The average crystalline size of the 

powder was estimated using the Scherrer equation. 

The iron contamination in the milled samples was determined using Fe2+ 

permanganometry.  

The formation of carbonitrides was also studied using a high-resolution 

transmission electron microscope (Philips CM200, Eindhoven) equipped with a super 

twin objective lens and operated at 200 kV with a LaB6 filament. The TEM was 

equipped with a parallel electron energy loss (EELS) spectrometer (Model 766-2K, 

Gatan, München, Germany). The N, C and V core-loss edges were recorded in the 

diffraction mode with a camera length of 470 mm using a 2-mm spectrometer; the 

entrance aperture yielded an energy resolution at the zero-loss peak of 1.4 eV. Spectra 

were recorded for dark current and channel-to-channel gain variation. After subtraction 

of the background using a standard power-law function, the spectra were deconvoluted 

for plural scattering with the Fourier-ratio method and normalized to the jump. All of 

these treatments were performed within the EL/P program (Gatan). 

Microstructural observations were conducted using scanning electron 

microscopy (SEM model JSM 5400 Jeol). The SEM images were recorded at 30 kV. 

For the SEM observations, the powdered samples were dispersed in ethanol and 

supported on a metallic grid. 

The different samples were sintered using a pressureless process. The samples 

were first shaped (green bodies) and then sintered at high temperature. The forming 

process was performed using cold isostatic pressing at 2000 bars for 5 min. The green 

bodies were sintered at 1750ºC for 60 min (heating rate of 5°C/min, free cooling) under 

an inert atmosphere (helium gas, H2O≤3 ppm, O2≤2 ppm and CnHm≤0.5 ppm, Air 

Liquide) in a horizontal furnace (Thermolyne Type 59300 model no. F-59340-CM). 

Vickers microhardness measurements (FM-700, Future-Tech, Hardness tester) 

were conducted on cross sections of pellets under a load of 1 kgf for 15 s. An average 

hardness was calculated from 20 indents per specimen. 

 

Results and discussion 

Table I presents the different compositions prepared via mechanosynthesis and the 

required preparation times: 
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Table I. Milling times of the final vanadium carbonitrides. 

x (VCxN1-x) 0.00 0.25 0.30 0.40 0.50 0.55 0.60 0.75 0.85 0.95 1.00 

 Combustion Time 
(min) -- -- 120 61 32 42 53 56 61 55 -- 

Milling Time (min) 480 300 150 90 60 70 80 80 90 80 240 

 

We can observe two different synthesis mechanisms: the combustion induced by 

the milling process mechanism (self-auto-propagating reaction), which corresponds to 

the carbonitrides with compositions of x=0.3 to 0.95, and the diffusion mechanism, 

which corresponds to the compositions (x=0.25) and (x=0 and 1).  

Fig. 1 shows the X-ray diffraction patterns for the composition VC0.5N0.5 with 

different milling times, which was obtained via the combustion mechanism, as an 

example. The diffraction peaks of vanadium broaden as the milling time increases (prior 

to 30 min, which is the ignition time); after 32 min of the SHS process, only the 

diffraction peaks of the carbonitride are observed. After the combustion reaction, the 

milling continues for another 30 minutes to ensure that the reaction is complete and to 

homogenize the newly formed material. As shown in Fig. 1, the composition of the 

sample does not change during this time.  
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Fig. 1. X-Ray diffraction patterns of the sample with a nominal composition of VC0.5N0.5 at different 
milling times. 
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For the sample with a composition of x=0.25, the reaction follows a diffusion 

mechanism similar to that for VC and VN. Fig. 2 presents the X-ray diffraction patterns 

for this sample at different milling times. The analysis of the XRD patterns indicates 

that the V peaks broaden with increasing milling time due to the refinement of the 

crystallite size, the formation of defects, and microstrains in the milled samples. 

Furthermore, the diffraction patterns begin to exhibit peaks corresponding to vanadium 

carbonitride. After 3 h of milling, the VCN peaks are the most prominent peaks in the 

diffraction pattern. Further increasing the milling time to 5 h led to a continuous 

increase in the intensities of the VCN diffraction peaks; the considerable broadening of 

the VCN diffraction peaks suggests that this phase was obtained with a very refined 

microstructure and a high level of microstrains.  
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Fig. 2. X-ray diffraction patterns of the sample with a nominal composition of VC0.25N0.75 at different 
milling times. 
 

 

The sample with a composition corresponding to x=0.3 is special due to a 

combustion reaction during the milling process, but the required ignition time is higher 

than the ignition time for the other compositions. Moreover, the final product is not only 

carbonitride because a mixture of products is obtained (VCxN1-x, V2N and V2C), as 

shown in Fig. 3.  
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Fig. 3. X-Ray diffraction pattern of the final product of the sample with a nominal composition of 
VC0.3N0.7. 
  

 The literature indicates that the self-propagating reaction induced by ball milling 

is similar to the self-sustaining high-temperature synthesis (SHS), in which the 

nomenclature is the same as that proposed by Yen33 (MSR), and it can be divided into 

three steps. 

1. An activation period in which the particle size decreases, the number of defects 

increases and, in some cases, a small amount of product is formed via the diffusion 

process. 

2. An ignition period in which a very high local temperature is reached, the reaction 

propagates for the whole sample and the product is formed instantly. 

3. After the ignition period, a partial combustion occurs, which means that extra milling 

time is required to complete the reaction and to homogenize the formed product. 

On the other hand, according to data in the literature26-27,32-37 for reactions that 

follow an MSR process, the condition is always an adiabatic temperature above 2000 K, 

and in the same family of compounds, this reaction mechanism typically occurs in a 

determined range of compositions. Therefore, in a review of this type of grinding-

induced reaction, Takacs36 commented that the high ignition time is ocassionally caused 

by small amounts of reaction products formed via diffusion at the beginning of 

grinding, which inhibit the reaction as inert additives; thus, when combustion does not 

occur before a minimum time, the reaction proceeds via diffusion. On studies of SHS, 

Yeh et al.38-40 found that during the formation of carbonitrides of Ti, Nb and Ta, after 

combustion, a propagation front is generated that runs across the sample and that the 
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front extension decreases as the carbon content increases. In this type of reaction, 

nitrogen is incorporated in the second stage of the process, and as the front extension 

decreases, a smaller amount of nitrogen is incorporated. The maximum incorporation of 

nitrogen occurs for C/N = 1. For this reason, and taking into account that for 

compositions with C/N > 0.7, the quantity of metal available for the reaction is less, it 

becomes difficult to prepare samples with nitrogen-deficient compositions using this 

procedure. Yeh et al.12 applied SHS to obtain vanadium carbonitride, VCxN1-x, for 

compositions over x = 0.3; within the range of x = 0.3 to x = 0.7, they observed that 

afterburning occurs along the sample after combustion. For x = 0.5, the formed 

carbonitride presented the highest nitridation value, and nitrogen-deficient carbonitrides 

were obtained for x values between 0.5 and 0.7. For x = 0.3, the products were a 

nitrogen-deficient carbonitride and V2N because there was less C available and because 

V2N is not soluble with carbide phase, and thus, the reaction does not proceed toward 

formation of the compound. In the case of MSR reactions, both carbon and nitrogen 

react together with the metal; thus, preparing nitrogen-deficient compositions is feasible 

using MSR reactions. These two methods are in some ways parallel, but they may also 

be complementary for the preparation of these materials. Our results are in good 

agreement with the literature14, 38-40, in which the limit of x = 0.25 is commonly used to 

prepare compounds using these processes (MRS and SHS). Similarly, with the 

composition x = 0.3, the formation of other compounds is detected, as also observed for 

Nb, Ta, Hf and V. 

The crystallite sizes of the different samples were estimated using the Scherrer 

equation, and these values are presented in Table II. The lattice constants of the VCN 

cubic unit cell were determined from the entire set of peaks in the diffraction patterns, 

which were recorded from 10 to 90 °2θ for all samples. Least-squares fittings of the 

XRD peaks were performed using the Lapoud program.37, and the results are presented 

in Table II. 

Table II also presents the lattice parameters calculated using Vegard’s law for the 

different compositions. The comparison of these values with the experimentally 

calculated values with the Lapoud program reveals some deviation, indicating that the 

obtained compounds are deformed and/or, in many cases, the obtained compounds are 

not stoichiometric, being deficient in nitrogen, as previously observed by Yeh et al .14 in 

their study of this family of compounds obtained using SHS. 
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The level of iron contamination was calculated from chemical analysis of the 

total iron content by titration and revealed that contamination by this metal occurred 

during grinding, although it never exceeded 4%. The corresponding percentages of iron 

and the values are included in Table II, which indicate that the samples obtained by 

combustion present values of approximately 1% and increase to near 4% in samples 

obtained by diffusion. This result and the degree of crystallinity of the obtained samples 

represent one of the advantages of the combustion mechanism. The combustion 

mechanism also has an economic advantage because of shorter milling times. 

 
Table II. Lattice parameter (a), crystallite size, maximum strain and iron contamination 
of the final product. 

Sample a(Å) L. Vegard a (Å) DDC (nm) Microstrains (10-3) %Fe 

VC0.25N0.75 4.1457 4.1388 8.25 1.252 3.5 

VC0.30N0.70 4.1471 -- 18.30 0.692 2.1 

VC0.40N0.60 4.1496 4.146 163.50 0.242 0.9 

VC0.50N0.50 4.1521 4.148 127.05 0.182 0.8 

VC0.55N0.45 4.1536 4.143 112.65 0.153 0.8 

VC0.60N0.40 4.1547 4.144 148.35 0.146 1.2 

VC0.75N0.25 4.1586 4.153 157.30 0.133 0.7 

VC0.85N0.15 4.1612 4.156 158.15 0.128 0.6 

VC0.95N0.05 4.1638 4.158 150.00 0.137 0.7 

 
 

The characterization was completed by measuring energy loss spectra in the 

transmission electron microscope. Fig. 4 shows the nitrogen and C K-edges for the 

different prepared samples. The data in the literature for such compounds, particularly 

titanium carbonitride41-43, show that the carbon K-edge of a carbide is identified by two 

peaks centered at approximately 283 eV (π bond) and 292 eV (σ bond), in which the 

first is of higher intensity than the second; the free amorphous carbon is identified by a 

peak at 285.6 eV and a broader and higher intensity peak at 296 eV. Finally, the 

carbonitride presents the same peaks as the carbide, 283 eV and 292 eV, but in this case, 

the second peak was slightly more intense than the first peak because of the inverse 

relationship for the orbital occupation density involved with respect to the carbide. 

Figure 4 shows that 

• The composition x = 0.25 has a spectrum with the peak at 286 eV and a higher 

intensity peak at 296 eV; according to the literature41-43, this behavior indicates 

the presence of amorphous carbon or a nitride with the amorphous carbon on a 
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grain boundary. However, this composition is obtained by a diffusion 

mechanism, and more milling time was required. The X-ray diffraction patterns 

(Fig. 2) exhibit broad and asymmetric peaks with some level of microstrains. 

We believe that all of these results contribute to deforming and changing the 

appearance of the peak corresponding to the carbon K-edge. 

• The composition x = 0.3 shows two peaks positioned at 283 eV and 293 eV, in 

which the first peak has a greater intensity than the second peak. This result is 

similar to the spectrum of a carbide according to the data from the literature, but 

note that in our case for this composition, we obtained a mixture of phases, 

carbonitride and carbide, which could explain the change in the spectrum. 

• For other compositions, we obtained two peaks at 283 eV and 293 eV, in which 

the second peak was of higher intensity than the first, corresponding to a 

carbonitride. 

• On the other hand, the peaks corresponding to K-edge of nitrogen increased as x 

decreased. 

 

 
Fig. 4. EELS spectra at the C K-edge and N K-edge of the different carbonitrides prepared. 

 

The morphology studies for the different samples are shown in Fig. 5. The 

composition of x = 0.25, which was obtained via a diffusion mechanism, exhibits great 

heterogeneity, and their agglomerates, which are formed by small crystallites, can range 

in size up to 1-2 μm. The sample with a composition of x = 0.3 exhibits greater 

heterogeneity of particles and fibers, which is reasonable because this sample is not a 
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single phase; it is a mixture of compounds. For the following compositions, we can 

observe the same morphology in the form of flakes due to the high temperatures reached 

during the combustion reaction. 

 The prepared samples were sintered to measure their microhardnesses. First, 

green bodies were obtained as pellets, with 400 mg of sample, by employing isostatic 

pressing. Then, they were sintered at 1750ºC for 1 h under a helium atmosphere. The 

densities of the samples were measured using the Archimedes method, and the 

microhardness values were obtained using the equipment described in the Experimental 

Section; these values are shown in Table III.  

 
Table III. The densification and microhardnesses of the prepared carbonitrides 

 
 

The data in Table III show a relatively good densification for the different 

samples. The composition VC0.25N0.75 has the lowest microhardness and density values, 

which is in agreement with the results of Mittere44, showing that an increase in the 

amorphous carbon phase fraction results in a reduction in hardness. Furthermore, the 

microhardness values are higher than those obtained for vanadium nitride and lower 

than those for vanadium carbide and increase as the percentage of carbon increases, 

which is in good agreement with Grigore45. The highest value corresponds to the 

composition VC0.5N0.5, and this composition has, according to the calculated lattice 

parameter, the best stoichiometric characteristics. This behavior was previously 

observed by Yeh et al.14 in a study of vanadium carbonitride obtained using SHS 

methods and by some other authors 46-47, who found a direct relationship between the 

microhardness for ternary nitrides (Ti, Zr)N and (Ti, Al)N and VN, in which the greater 

Sample Mechanism Densification (%) Microhardness (Hv) 
VC0.25N0.75 Difusion 88 1434 
VC0.30N0.70 Combustion 97 1530 
VC0.40N0.60 Combustion 94 1520 
VC0.50N0.50 Combustion 89 1617 
VC0.55N0.45 Combustion 91 1528 
VC0.60N0.40 Combustion 93 1530 
VC0.75N0.25 Combustion 92 1554 
VC0.85N0.15 Combustion 88 1525 
VC0.95N0.05 Combustion 89 1565 
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the percentage of nitrogen and the closer the compound is to being stoichiometric, the 

higher the hardness. Moreover, we only have microhardness data from samples 

supported on steel layers; the highest microhardness value was observed by Aghaie et 

al.10 (2200 Hv) in a sample prepared by soaking with a gradient of carbonitride, carbide 

and vanadium nitride. Our value is not considerably different than this value, and the 

microhardness values of the bulk samples are lower than those of the films 48 -49. 

To complete the characterization of the samples, their morphologies were 

investigated using scanning electron microscopy. The SEM observations were 

performed on a transverse view of broken tablets to avoid surface phenomena. Fig. 5 

presents the microphotographs for the different compositions, and a large percentage of 

sintering can be observed in all samples; the high densification observed suggests that 

the microstructure that developed in the ground powder promotes the cold welding of 

the particles, which exhibit compactness close to full density. The composition with the 

least carbon content exhibits some imperfections and porosity, which is consistent with 

the obtained microhardness and density values. 
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Fig. 5. Micrographs of VCxN1-x before and after sintering. 

 
In summary, we can conclude that reactive milling is a good method for 

obtaining these types of compounds: it is possible to obtain all composition ranges; the 

procedure is inexpensive, is performed at room temperature, and requires only short 

synthesis times; and particles are obtained with high sinterability, very high 

microhardness and low contamination. 
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