
An MDE approach for Runtime Monitoring and Adapting Component-based
Systems: Application to WIMP User Interface Architectures

Javier Criado, Luis Iribarne, Nicolás Padilla

Applied Computing Group
University of Almerı́a, Spain

{javi.criado, luis.iribarne, npadilla}@ual.es

Javier Troya, Antonio Vallecillo

GISUM/Atenea Group
University of Málaga, Spain
{javiertc, av}@lcc.uma.es

Abstract—In certain systems, software must be adapted at
runtime to the requirements and changes occurring in the
context. A strategy to achieve this goal is to model such systems
as software architectures making use of the Component-based
Software Engineering (CBSE). Thus, the system can be adapted
through the reconfiguration of the software architectures. In
this paper we present a schema for the adaptation of software
architectures at runtime based on the system context observa-
tion. The software system is defined by means of architectural
models at two levels: abstract and concrete. We use a trading
process to regenerate concrete architectural models from their
abstract definitions and a component repository. We also use
Model-Driven Engineering (MDE) techniques to transform at
runtime such models in order to achieve the system adaptation
to the monitored context by using observers. This article
describes a case study of component-based user interfaces to
illustrate our approach.

Keywords-MDE, adaptive transformation, observer, trading

I. INTRODUCTION

Nowadays, many software systems need to self-adapt

according to changes in their execution environment, as

changes in the values of context variables, changes in user

interaction with the system, or changes due to external enti-

ties [1]. Ideally, these systems should self-adapt at runtime

with as little human intervention as possible. Furthermore,

these systems normally have a lot of information and it is

very complex to define runtime adaptation mechanisms. The

idea, then, is to develop adaptation mechanisms that leverage

software models, what is referred to as models@runtime.

It uses the concepts in Model-Driven Engineering (MDE)

and extends them with runtime capabilities. MDE aims to

raise the level of abstraction in program specification and

increase automation in program development. It proposes to

use models at different levels of abstraction for developing

systems. The use of executable model transformations in-

creases automation in program development. In this way,

higher-level models are transformed into lower-level models

until the model can be made executable by using either code

generation or model interpretation.

Regarding component-based architectures [2], MDE tools

and techniques play a key role in their design and deve-

lopment. Furthermore, experience is showing that MDE can

be even more effective for architectural model generation

at runtime [3]. Particularly, it is possible for different final

software architectures to be generated at runtime from the

same abstract specifications, according to end-user context

properties such as platform, user roles, component states, etc.

In this context it is important to consider variability mech-

anisms that provide the appropriate levels of adaptability

required to dynamically adapt models at runtime.

The proposal presented in this paper focuses on the

adaptation of component-based systems at runtime, repre-

sented as architectural models. These models contain the

specification of the components making up the architec-

ture [4], which combined together provide the required

software functionality. Within our system, we distinguish

between two levels of abstraction: the abstract level and

concrete level. The former defines the component types (in

addition to their specifications) to be included in the software

architecture, while the later contains references to concrete

components (within the repository) that will form part of

the final architecture. Thus, the architectural adaptation is

carried out by two processes: a transformation process of

the abstract definitions, followed by a regeneration process

at the concrete level [5].

The transformation process aims to enable the evolution

and adaptation of abstract architectural models. We follow

an MDE methodology so that we can achieve their change

and adaptation by using model-to-model transformations

(M2M). A transformation definition is composed by a set

of transformation rules that together describe how a source

model can be transformed into a target one. A transformation

rule, in turn, is a description of how one or more constructs

in the source language can be transformed into one or more

constructs in the target language. At the concrete level, the

realization of the software architecture is achieved by a

trader [6] that looks into existing repositories of concrete

components for those fulfilling the requirements imposed by

the abstract architectural model. The trader selects the right

set of components for the application. Every time a new

abstract architecture is identified (normally due to changes

in the user requirements or in the running environment), the

trader again finds the suitable components that realize it.

The main contribution of this paper is a new mechanism of

adaptation, provided by the use of observer objects that mon-

itor the state and behavior of the components accomplish-

ing the software architecture (i.e., monitoring the concrete

architectural model). In our proposal, observers are used to

trigger the model transformations that perform the adaptation

process. A second, and more interesting, use of observers

is to trigger a lower-level adaptation process whereby the

abstract architecture does not need to be changed, but only

one of its realizing components.

As experimental example scenario, we are interested in

modeling of simple and friendly UIs based on software
components, in a similar way as iGoogle widget-based user

interfaces do (i.e., a set of UI components). Thus, user

interfaces (UI) are described by means of architectural mo-

dels that contain the specification of UI components. These

architectural models (which represent the user interfaces)

can vary at runtime due to changes in the context—e.g.,

user interaction, a temporal event, visual condition, etc.

The rest of the article is organized as follows. Section

II describes the main scenario of the proposal. Section III

explains the adaptation process. Section IV presents an

example of adaptation of a component-based user interface

architecture. Section V reviews related work. Finally, Sec-

tion VI outlines the conclusions and future work.

II. BACKGROUND SCENARIO

Globalization of information and the knowledge society

on the Internet requires the modernization of Web-based

Information Systems (WIS). This is ready to be easily

adaptable, extensible, accessible and manageable at runtime

by different people and/or groups of people with common

interests. Special attention has been given to globalization

of information through a common system vocabulary using

ontologies and web semantics. However, WIS user interfaces

are still being constructed on the basis of traditional software

development paradigms, without taking into account in their

construction globalization issues such as distribution, open-

ing and changes. This means that a WIS UI must be able to

be dynamically reconstructed at runtime depending on the

type of interaction (individual or collective) and the purpose

of the interaction (management, technical, etc.).

Under this scenario, our interest is focused on studying

and developing an experimental methodology to solve the

self-adaptation problem of user interfaces on Web-based
Environmental Information Systems (a kind of WIS) [7]. The

experimental methodology initially works with simple and

friendly WIMP user interfaces (Windows, Icons, Menus and

Pointers) [8]. Such user interfaces are based on “bottom-

up” composition at runtime of widgets-type COTS interface

components. The methodology allows studying scenarios

for the interaction of evolutive and cooperative user inter-

faces. In the methodology user interfaces are considered

as architectures made-up of widgets-type components. This

���

���

���

���

��	
��

���
��
�

�����
������������

���
��
����
��
�

�����
������������

��	�	�����

��
��
	�

�����	�
���
���������������
�
����������
��������
���

��	
��

����
������������

���
��
�����
������������

��
���

���������	��
��������
������	��

���������������
�
�
��
������

����� �����	�!
"����
��
��
�

����

 ��������

Figure 1. Model-driven methodology

sort of architectures respect some principles of composition,

e.g., dependence between components, restrictions in use,

availability and visibility, etc.

Our proposal aims to structure the development life cycle

of component-based systems into four levels of abstraction,

from the task specification to the running software archi-

tectures (Figure 1). The Task and concepts level matches

the CIM (Computational-Independent Model) level in MDE,

it represents the tasks that need to be performed in order

to reach the system requirements and the domain objects

manipulated by these tasks. The Abstract Architectural
Model (AAM) level corresponds to the PIM (Platform-
Independent Model) level in MDE and is the abstract defini-

tion of a software architecture. It represents the architecture

in terms of what kind of components it must contain, how

the relationships between them are, and what specifications

these components have. The Concrete Architectural Model
(CAM) level corresponds to the PSM (Platform-Specific
Model) one in MDE and is the concrete definition of a

software architecture. It describes which concrete compo-

nents (available in the repository) best fulfill the abstract

definition of the architecture. Finally, the Final software
architecture level corresponds to the code level. It is made

up of the source code which will be interpreted or compiled,

generating in this way the running software system.

As we advanced, WIMP user interfaces will represent an

example of component-based architecture in our methodo-

logy. As in [9], our models of UI components, of interaction,

etc., correspond to the CIM level. The abstract UI would be

at the PIM level, and the concrete UI would be found at

the PSM one. The final UIs shown to the users would be

in the code level in MDE. Figure 2 shows an example of a

graphical UI that describes the four levels of the methodo-

logy. In this UI example a user needs a communication task

which requires the use of chat, and some communication

via audio and video. The abstract architecture is an AAM

model containing the Chat, Audio and Video abstract

components, and the concrete architectural model and its

final software architecture could be the ones in Figure 2.

According to the example, AAM is offered to the Seman-
ticTrader to calculate the configuration of concrete compo-

���

#�$$%&

���
��
����
��
�

�����������

�����
'��������
�(�	

'����
�'����)������

���

��	
��

���
��
�

�����������

����� '����

���	�������	���
������
�
�������
���(�����"�
��
�*
����
��
������������

(�����!��

������
��	+

��	�	�����
��
��
	�

 �����	�!
"������
��
�

����

������ ������

�����

 ��

��	
��

�

�������
	

��
��
��

�������
	

������,����
�		�

Figure 2. A component-based UI architecture example

nents that best meets the abstract definition, thus generating

a concrete architectural model (CAM). Let us suppose for

this example, among all possible configurations, the trader

chooses the ChatJABBER, AudioVideoCreatives
and VideoTVideoGrabber concrete components, which

realize the Chat, Audio and Video abstract compo-

nents, respectively (Figure 2). The concrete architectural

model generated by the SematicTrader process conforms

to the meta-model in Figure 3. In this way, CAM is

made up of ConcreteComponent elements whose type

could be simple or complex. Both types contain a ref-

erence to the corresponding concrete component, which

is located in the concrete component repository model.

ConcreteComponent elements can also contain infor-

mation about whether any of their attributes does not have

the default value (ModifiedAttribute) that their spec-

ification marks.

Throughout the development of this research work, we

decided to separate the abstract and concrete levels of

our component-based systems as well as the models that

represent the component repositories and those relating to

information monitored by observers. This has been adopted

to facilitate the system design as well as for monitoring and

processing the adaptation at runtime [10].

III. ADAPTATION PROCESS

As explained above, the architectural model adaptation

is achieved by using a two-stage process: a transformation

phase, which is focused on the abstract definitions of the

architectural models, and a regeneration phase focused on

the concrete definitions of them. This paper describes the

second phase in detail, which is focused on the concrete

architectural model level by means of an observer model.

Figure 3. CAM metamodel

A. Observer models

Our goal is to obtain adaptive architectures capable of

adapting to the context. To achieve this automatic response,

it is necessary to monitor those elements within the context

that can be monitored, and those elements whose change

generates the need for adapting the architecture. In order

to achieve this monitoring, we have included (in the meta-

model describing the component properties) the possibility

of specifying that an attribute of a component is “observ-

able” through an external process. It is also necessary to

link the observable properties of the components with those

requirements of the system they affect [11]. In this way,

if the value of some of these observed variables changes,

it will be possible to ascertain if the requirements are still

met and, if the architecture does not currently satisfy the

requirements, the system must be able to determine which

type of adaptation is needed to be performed (Sections III-B

and III-C).

Figure 4 shows the DSL that illustrates the relation-

ship between observers and the context variables related

to the properties being monitored. The meta-model de-

fines three sorts of observers: ComponentObserver,

ObserverObserver and ContextObserver. The first

type is intended to monitor the state of the components

running in the architecture. This element has a reference

to an EObject in order to be linked to the corresponding

component of the CAM model. The second one aims to

gather information about several observers, and the third one

is responsible for storing the monitored information of the

context variables. Therefore, for each concrete architectural

model (CAM), the system generates an observer model

(OBM) which stores information about the attributes that

are being monitored (both about the components and the

context). Thus, let us suppose an architecture with Chat,

Audio and Video components, where the video and audio

components have an “observable” property associated to the

bandwidth (i.e., rate of data transfer). Furthermore, the con-

text variable related to the system available bandwidth is also

being monitored. As a result, the observer model generated

for this architecture has three observers: ObVideoBandw,

Figure 4. The observer metamodel

related to the video component; ObAudioBandw, linked to

the audio component; and ObContextBandw, monitoring

the bandwidth context variable.

B. Adaptation Architecture

The system has a model for representing the information

being monitored. Apart from this, it needs to have a moni-

toring mechanism as well as an adaptive mechanism to make

architectural changes depending on the changes occurred

in the context. For building our adaptive schema, we have

chosen to separate the observation and the processing of

the observed information. Thus, there are three main parts

of the adaptation schema encapsulated in three complex

components (Observation, Adaptation, Regeneration). These

components communicate with another one named Archi-
tecturalElements, which manages the architectural elements

and repositories of the system (Figure 5).

Each software component of the final architecture will

have an observer component associated whenever there

is an element observer in the OBM related with that

component in the concrete architectural model (CAM). As

several changes could occur simultaneously in the observed

variables, the observation is centralized by the element

called ObservationManager, which is a subcomponent

of the Observation subsystem. Then, the Observation com-

ponent is responsible for providing the Adaptation complex

component with the changes produced in the context. It

is within this component, where a subcomponent named

ComplexEventProcessor has the task of processing

the observed changes and determining if the new values

satisfy the system requirements. If they are not fulfilled, the

software architecture needs to be adapted and the adaptation

options will be provided to the AdaptationManager.

C. Adaptation types

The AdaptationManager component can start three

different types of adaptation executions, depending on the

--
�������
..
!"��
�����

--
�������
..
���������

--
�������
..
#���
�
����

--
�������
..
�
��������
�������
��

--
�������
..
������$���
�%
������

--
�������
..
���������
��
���

--
�������
..
�����&�
���

--
�������
..
���������

--
�������
..
'���
���(
���

�/0����
�
���1�
���	

�20
���3�4�

	
�/0����
3�

�20
��
��
�%�����
	
�20��	
��

%�����
	

�/0��"���
��
������
�20��,���
��
������

�/0��,���
��
������ �20��"��	
��

�����

�/0��"���
��
������

�/0��"��	
��

�����
�20����
�
���1�
���	

�20����
�
���3�
���

�/0����
�
���3�
����20
��
�*
��!�

�/0
��
�*
����
��

�20����
3�

�/0����,���������
	
�/0��	
��

%�����
	

�/0
��
��
�%�����
	

�/0
���3�4�

	

�20����
3�

�/0
��
�*
��!�

�20
��
�*
����
��

Figure 5. The adaptation schema

information provided by the ComplexEventProcessor
and the existing components in the current architecture:

1) Modify an attribute of an existing component: This

operation is performed when there is a concrete component

of the architecture that is configurable and whose change

in the value of some of its editable attributes will imply

again the fulfillment of the requirements (taking into account

the new observed values of the context variables). This

operation affects the CAM. It involves the ModelHandler
component, which executes an M2M transformation called

ConcreteModelTransformation (explained in Section IV-B)

in order to modify the value of the attribute.

2) Replace a component: A replacement operation is

needed when a concrete component of the architecture does

not fulfill its function properly; for instance, there is an error

in the object implementing the component, or the context

variation that generates the concrete component does not

meet the current requirements. This operation affects the

CAM and Observer Model (OBM). This kind of operation

involves the use of the component ModelHandler, which

executes the ConcreteModelTransformation with the aim

of replacing a concrete component of the architecture and

establishing the new associated elements in the observer

model (e.g.: the new concrete component has an additional

observable property).

3) Delete a component: This operation is executed when

the changes in the context variables produce a breach of sys-

tem requirements. This can be solved by removing a certain

component that implements properties or features that are

not mandatory for the proper system operation. For example,

in a communication between two system users, a chat com-

ponent should be offered, but audio and video are optional

components. If the bandwidth decreases, the video or audio

component can be eliminated, without the communication

being completely disrupted. In this case, the operation affects

AAM, CAM, and OBM. The operation also involves the

use of the component ModelHandler, which executes the

ConcreteModelTransformation to remove the component of

the concrete architecture. The ModelHandler component

also modifies the abstract architectural model in order to

remove its associated abstract component.

4) Perform a greater change in the architecture: In this

adaptation option, the context changes do not simply require

the replacement or removal of a component. These are cases

in which there is a breach of the mandatory properties of the

architecture as required by the system. It is, therefore, nec-

essary to perform an architectural reconfiguration. The influ-

ence operation also affects AAM, CAM and OBM. In this

case, the operation involves two components, ModelHan-
dler and SemanticTrader. The ModelHandler component

executes a M2M transformation called AbstractModelTrans-
formation. It adapts the abstract definition of the architecture

depending on the context and the system requirements. It

also determines which new components must be inserted in

the architecture, which ones will be removed and how the

interconnection between them should be. The behavior of

this M2M transformation will not be explained in this work

because here we focus on the adaptation process whereby the

abstract architecture does not need to be recalculated. On the

other hand, the SemanticTrader component takes as input

the AAM model, generated by the AbstractModelTransfor-
mation, and generates the corresponding CAM model as

output. The CAM is calculated from the AAM, the concrete

components available in the system, the context variables

and the system requirements.

The features of each component (in terms of functional

and non-functional properties) are described in the compo-

nent repositories and are accessible by M2M transforma-

tions, the trading process and the AdaptationManager
component. Thus, within the adaptation schema, the system

is able to determine what type of operation is needed, in

addition to selecting the components that best fulfill the

requirements according to context.

Regardless of the adaptation option, from the new con-

crete architectural model generated, there will be an adap-

tation component responsible for generating code or inter-

preting the model to make up the final software architec-

ture. In our case, since the application domain is that of

user interfaces, there is a component called UIComposer
responsible for showing the final UIs.

IV. ADAPTATION EXAMPLE

In order to illustrate the adaptation process, we will start

from the component-based architecture shown in Figure 2.

Please, note that in this paper we will use a very simple

example to explore better the adaptation process using

observer models. Therefore, let us assume that a system

user has an interface providing the functionality of chat,

audio and video communication. Due to such communi-

cation task, the system must take into account the context

variable concerning the available bandwidth. Furthermore,

it is necessary to explain that the system requirements are:

(a) The interface should enable the communication between

users; (b) Communication should be as stable as possible;

(c) Both the interface and the communication should be as

comprehensive as possible. Otherwise, related to the system

context, the available bandwidth is 2 Mbps. Therefore, in

the abstract architectural model (AAM) it is specified that

the presence of Chat component is mandatory, while the

Audio and Video components are optional. The related

concrete architectural model (CAM) realized by the trader

is the one shown in Section II.

A. Monitoring the context

Within the CAM, the audio and video concrete com-

ponents have an “observable” attribute related with the

system bandwidth. Thus, the observer model (OBM) co-

rresponding to this CAM has two observers of type

ComponentObserver (see Figure 4), ObAudioBandw
and ObVideoBandw, which are in charge of monitoring the

use of the bandwidth from the audio and video components.

The OBM, in turn, contains another observer named Ob-
ContextBandw which is a ContextObserver element

that monitors the state of the context variable representing

the available bandwidth.

Considering the above, let us suppose that the ObCon-
textBandw observer detects a context change in which the

value of the available bandwidth decreases. As a result,

a notification of the context change is generated within

the Observation component of the adaptation schema (Fig-

ure 5). Then, the Observation component provides the

ComplexEventProcessor with the monitoring data.

Such component is responsible for examining the new

context values and determines the adaptation option that

should be carried out. Let us suppose that the available

bandwidth goes down to a value at which the current con-

crete component (VideoTVideoGrabber) no longer meets

the requirements since the needed bandwidth for normal

operation is higher than the available bandwidth, but the

value of the bandwidth is not so low as to have to remove

the video component. That is, the adaptation required by

the architecture does not require a change in its abstract

definition (eliminating the abstract video component or so

on), but it only has to modify the concrete video component

to meet the input requirements of the communication task.

Consequently, the ComplexEventProcessor deter-

mines whether it is necessary to modify or replace the

concrete video component. The AdaptationManager
checks if the current concrete video component has a con-

figuration option reducing the used bandwidth, that is, if

it has some “editable” property related to the bandwidth

context variable that provides a value that is smaller than

the current one. As the VideoTVideoGrabber concrete

component does not have that configuration option, the

AdaptationManager searches the concrete component

repository and resolves that the adaptation option to be

executed consists of replacing the existing video component

by the VideoVideoLab one. Next, the ModelHandler
performs the ConcreteModelTransformation.

B. Concrete Model Transformation

This M2M transformation is executed whether any of the

following adaptation options occurs: (a) modify an attribute

of an existing component, (b) replace a component, or (c)

delete a component. It is a M2M transformation of MIMO

(multiple-input multiple-output) type taking the concrete

architectural model (CAMi) and the corresponding observer

model (OBMi) as its input, and generating the new concrete

architectural model (CAMi+1) and the updated observer one

(OBMi+1) as output.

Since the whole proposal is developed within an MDE

framework, the kinds of operations to be executed by

the M2M transformation have been also described by

an operation model (OpM). This model is solved by

AdaptationManager and it is another input to the

ConcreteModelTransformation (CMT). The OpM models

are built conforming to a DSL which contains the three

possible sorts of operations for the three types of adaptation

performed by this CMT transformation: Modify, Replace
or Remove. The three types have in common an attribute

indicating the component affected by the adaptation opera-

tion. In addition, the Replace operation model contains

the name of the new concrete component to be inserted.

A Modify operation, in turn, describes the attribute to

be modified and also the new value it takes. Hence, since

the adaptation option to be executed is to replace the

VideoTVideoGrabber video component by the VideoVide-
oLab one, the OpMi will be the one shown in Figure 6.

Figure 6. The operation model for the concrete adaptation

Figure 7. A piece of the concrete architectural model generated by CMT

Table I
TWO CM TRANSFORMATION RULE EXAMPLES

helper def : isReplaceType() : Boolean =
OpMM!ConcreteAdaptationModel -> allInstances() ->
first().operation.oclIsTypeOf(OpMM!Replace);

rule ReplaceConcreteComponent{
from f: CAMM!SimpleConcreteComponent(
thisModule.isReplaceType() and
(f.concrete_comp_ref.concrete_component.component_name =
thisModule.getOpConcreteCompName())

)
to sccomp: CAMM!SimpleConcreteComponent(
component_name <- f.component_name + ’_Replaced’,
concrete_comp_ref <- ccref

),
ccref: CAMM!ConcreteComponentRef(
concrete_component <- thisModule.concreteComponentRef(
thisModule.getOpNewConcreteCompName())

)}

rule ReplaceObservedConcreteComponent{
from f: OBMM!ComponentObserver (
thisModule.isReplaceType() and (f.observed_component.
component_name = thisModule.getOpConcreteCompName())

)
to compob: OBMM!ComponentObserver(
observed_component <- thisModule.concreteComponentRef(
thisModule.getOpNewConcreteCompName()),
observed_value <- ’-’,
observer_name <- f.observer_name,
observed_properties <- thisModule.getNewProperties(
thisModule.getOpNewConcreteCompName()) -> collect (
p | thisModule.CreateObservedProperty(p)),
context_variable <- thisModule.getNewContextVariables(
thisModule.getOpNewConcreteCompName())
)}

The CMT transformation is therefore a parameterized

M2M transformation in which the parameter is the OpM

model. The ATL rules executed in this transformation check

the operation type (modify, replace or remove) and the

operation content, and execute their actions accordingly. In

the case of our example, the transformation rules associated

with the replacement of the concrete component and the ones

related with the creation of monitoring elements must be per-

formed. In Table I, we can see two example rules for the re-

placement operation. The new concrete component replaces

the old one by changing its name and updating the reference

to the concrete component of the repository. On the other

hand, the concrete component reference of the corresponding

observer element is updated and ObservedProperty
elements are created for each observable property of the

new component. The resulting concrete architectural model

(CAMi+1) of the CMT is shown in Figure 7. An updated

observer model is also generated as output. This OBMi+1

contains an updated ComponentObserver element asso-

ciated to the VideoVideoLab component and it is made up

of two ObservedProperty elements related to its two

observable properties.

The consistency of this M2M transformation at the con-

crete level is based on the following assumptions: the con-

crete source model is correct and well-formed; the abstract

definition of this model does not change (in the case of

the replacement of a component or the modification of an

attribute of an existing component); or the change in the

abstract definition, in the case of removing a component, has

no consequences to the other components of the architecture

(because there are no dependencies). This verification is per-

formed by the AdaptationManager component before

the invocation of the CMT, so that the transformation should

only check the OCL constraints in order to generate a correct

target model.

V. RELATED WORK

There already exist a lot of approaches that present an

architecture for systems dealing with models at runtime.

They normally use techniques like model-driven engineering

(MDE), aspect-oriented modeling (AOM) and component-

based architectures (CBA). Different approaches have been

proposed to address different problem domains. In [12],

the authors apply models at runtime for autonomic recon-

figuration of mass-production environments such as those

used to create cars or houses, where production costs are a

major constraint. Concretely, they focus on the case of smart

homes. They present how to achieve autonomic behavior by

leveraging variability models at runtime. They use variability

models and a dynamic product-line architecture and argue

that a system can activate or deactivate its own features dy-

namically at runtime by fulfilling certain context conditions.

In this way, it is these conditions triggering that start the

adaptation. In our approach, such adaptation is initiated, at

first, by our observers.

In [13], the authors based on aspect oriented modeling

in a dynamic software product line which derives products

that can be adapted at runtime in order to dynamically fit

new requirements or resource changes. The main difference

with our proposal is that we accomplish the adaptation

transforming the architectural model at the concrete level

instead of dynamically weaving the architectural aspects.

The authors in [14] also present a runtime architecture to

support dynamic software product lines, and they particu-

larly focus on taming the explosion in the number of artifacts

while providing a high degree of automation and validation.

They combine model-driven and aspect-oriented techniques.

In this way, they refine features as aspect models. As we

do, they use a model-driven approach and define several

meta-models (five in this case) with which the components

are specified. Each of these five architectural components

has a clear role and well-defined interactions with the other

components, as in our approach.

The approach in [15] focuses on models dealing with non-

functional properties, such as reliability and performance,

and it also presents a case study based on Web-service com-

positions. They claim that models for non-functional prop-

erties should coexist with the implementation at runtime. In

this way, automatic checking of the desired requirements

is performed while the system is running. However, this

approach can only deal with model evolution by continuous

estimation of its numerical parameters, but it cannot perform

more complex modifications to the model at runtime, such as

structural changes. Our proposal also allows defining adap-

tation rules associated with non-functional properties of the

architectural components. In our case, these rules are defined

in M2M transformations. Moreover, our trading process is

responsible for resolving the optimal concrete configurations

of the software architecture taking into account both the

functional and non-functional properties.

In [16], the authors present a models at runtime approach

based on aspect-oriented and model-driven engineering in

the context of mobile computing environments applications

that need to dynamically discover services from a wide

range of options that may be unknown during design. The

specific AOM technique they use is the SMARTADAPTERS

approach [17], which has formerly been applied to Java

programs and UML class diagrams. In our case, we focus

our approach for implementing component-based software

architectures; specifically, we have chosen user interfaces

as the application domain. Another interesting approach

is described in [18] where software adaptation is carried

out through MDE and components. The authors use UML

profiles to describe the components and their behaviors. This

approach named MOCAS relies on behavioral adaptation; in

contrast, our approach is based on architectural reconfigura-

tions to get the system adaptation.

Other than this, the concept of Observer is not new. Many

proposals define it for monitoring the execution of systems

and reasoning about some of its properties. In fact, the

OMG classifies different kinds of observers in its MARTE

specification [19]. As an example, they define TimedOb-
servers as conceptual entities that describe requirements and

predictions for measures defined on an interval between a

pair of user-defined observed events. They must be extended

to define the measure that they collect (e.g., latency or jitter)

and aim to provide a powerful mechanism to annotate and

compare timing constraints over UML models against timing

predictions provided by analysis tools. In this sense, they

are similar to our observers. The advantage of incorporating

them into DSLs by using our approach is that we cannot

only use them to describe requirements and constraints on

models but we also reason about their behavior. In addition,

we can use our observers to dynamically change the system

behavior, establishing adaptation rules from the component

monitoring, in contrast with the more “static” nature of

MARTE observers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a schema for the adaptation

of component-based systems at runtime based on the context

observation. The proposal focuses on architectural models,

which are defined in two levels of abstraction: the abstract

level and the concrete level. The first one defines the

component types to be included in the software architecture.

The second level contains references to concrete components

that will form part of the final architecture.

Therefore, the architectural adaptation is performed by

two processes: a transformation process of the abstract def-

initions, followed by a regeneration process at the concrete

level. The transformation process enables the evolution and

adaptation of abstract architectural models. We follow an

MDE methodology to achieve their change and adaptation

by using M2M transformations. At the concrete level, the

regeneration of the software architecture is achieved by

a trader looking up into existing repositories of concrete

components for those fulfilling the requirements imposed

by the abstract architectural model. The trader selects the

right set of components for the application and every time a

new abstract architecture is identified (due to changes in the

requirements or in the environment), the trader calculates

the new suitable components that realize it.

As an advantage (pros), we have presented an adaptation

schema, where observer elements are aimed to monitor the

state and behavior of the components accomplishing the

software architecture. In this way, observers are used to

trigger the model transformations for the adaptation process.

A more important goal of our observers is that they can be

used to trigger a lower-level adaptation process whereby the

abstract architecture does not need to be changed, but only

the concrete specification. This proposal is applicable to a

wide range of application domains, if they can be modeled

as component-based software architectures. As an example

domain, we have chosen the field of the “user interfaces”, so

we show an adaptation example of a UI in which a concrete

component is replaced. On the other hand (as a cons), this

approach has also a number of limitations. Mainly, M2M

transformations in abstract and concrete levels, as well as

the trading process that realizes the concrete UIs, add a

computational cost that must be taken into account with

regard to system performance.

As future work, we intend to build a wide repository of

user-interface components, thus we will be able to study

a broad range of adaptation scenarios. Moreover, we will

provide our trader realizing the concrete architectures with

a more powerful heuristic taking into account all the possible

properties of the components in relation to the context

variables impacting on the system. Additionally, we aim to

add traceability mechanisms in order to inspect the changes

occurred in the architectural models during some time.

Variability of architectural models can also be investigated to

study the adaptation and its possible improvements. Finally,

we want to investigate the performance of the approach to

define a more complete evaluation using model checking.

ACKNOWLEDGMENT

This work has been supported by the EU (FEDER) and

the Spanish Ministry MICINN under grant of the TIN2010-

15588, TRA2009-0309 and TIN2008-03107 projects, and

under a FPU grant (AP2010-3259), and also by the Junta

Andalucı́a under grant of the project TIC-6114.

REFERENCES

[1] B. Cheng, R. de Lemos, H. Giese et al., “Software engineer-
ing for self-adaptive systems: A research roadmap,” Software
Engineering for Self-Adaptive Systems, pp. 1–26, 2009.

[2] I. Crnkovic et al., “A classification framework for software
component models,” IEEE Transactions on Software Engi-
neering, vol. 37, no. 5, pp. 593–615, 2011.

[3] N. Bencomo and G. Blair, “Using architecture models to
support the generation and operation of component-based
adaptive systems,” Software Engineering for Self-Adaptive
Systems, pp. 183–200, 2009.

[4] L. Iribarne, N. Padilla, J. Criado, J. Asensio, and R. Ayala, “A
Model Transformation Approach for Automatic Composition
of COTS User Interfaces in Web-Based Information Systems,”
Inf. Syst. Manage., vol. 27, no. 3, pp. 207–216, 2010.

[5] J. Criado, C. Vicente-Chicote, L. Iribarne, and N. Padilla, “A
Model-Driven Approach to Graphical User Interface Runtime
Adaptation,” in Models@RT. CEUR-WS, 641:49–59, 2010.

[6] L. Iribarne, J. Troya, and A. Vallecillo, “A Trading Service
for COTS Components,” The Comp. J., 47(3):342–357, 2004.

[7] L. Iribarne et al., “The iSOLERES framework,” Spanish
Ministry, TIN2010-15588. http://www.ual.es/acg/soleres.

[8] J. Almendros-Jiménez and L. Iribarne, “An extension of uml
for the modeling of wimp user interfaces,” J. Visual Lang.
and Computing, vol. 19, no. 6, pp. 695–720, 2008.

[9] J. Cantera-Fonseca, J. González-Calleros, G. Meixner et al.,
“Model-Based UI XG Final Report,” May 2010.

[10] T. Vogel and H. Giese, “Adaptation and abstract runtime
models,” in ICSE 2010, pp. 39–48. ACM, 2010.

[11] J. Troya, J. Rivera, and A. Vallecillo, “On the specification of
non-functional properties of systems by observation,” Models
in Software Engineering, pp. 296–309, 2010.

[12] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic
Computing through Reuse of Variability Models at Runtime:
The Case of Smart Homes,” Computer, 42(10):37–43, 2009.

[13] C. Parra, X. Blanc, A. Cleve, and L. Duchien, “Unifying
design and runtime software adaptation using aspect models,”
Science of Computer Programming, 2011.

[14] B. Morin, O. Barais et al., “Models@RT to Support Dynamic
Adaptation,” Computer, 42(10):44–51, 2009.

[15] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli,
“Model Evolution by Run-Time Parameter Adaptation,” in
ICSE 2009, pp. 111–121. IEEE CSP, 2009.

[16] B. Morin, F. Fleurey, N. Bencomo et al., “An Aspect-
Oriented and Model-Driven Approach for Managing Dynamic
Variability,” in MoDELS’08, LNCS 5301, pp. 782–796, 2008.

[17] P. Lahire, B. Morin, G. Vanwormhoudt et al., “Introducing
Variability into Aspect-Oriented Modeling Approaches,” in
MoDELS’07, LNCS 4735, pp. 498–513, 2007.

[18] C. Ballagny, N. Hameurlain, and F. Barbier, “MOCAS:
A State-Based Component Model for Self-Adaptation,” in
SASO’09, pp. 206–215. IEEE, 2009.

[19] OMG, A UML Profile for MARTE: Modeling and Analyzing
Real-Time and Embedded Systems, OMG, June 2008.

