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ABSTRACT

Semantic Web Services (SWSs) have become a preeminent research
area, where various underlying frameworks, e.g. WSMO or OWL-
S, define Semantic Web ontologies to describe Web services, so that
they can be automatically discovered, ranked, composed, and in-
voked according to user requirements and preferences. Specifically,
several service discovery and ranking techniques have been envi-
sioned, and related tools have been made available for the commu-
nity. However, existing approaches offer a limited expressiveness
to define preferences that are highly dependent on underlying tech-
niques. Furthermore, discovery and ranking mechanisms usually
suffer from performance, interoperability and integration issues that
prevent a wide exploitation of semantically-enhanced techniques.

In order to address these issues, current research focus is on de-
veloping lightweight SWSs descriptions, which enable interoperabil-
ity of existing approaches, and corresponding discovery and rank-
ing solutions that offer a better performance with a contained loss
on precision and recall. In this thesis dissertation, we address those
challenges by proposing SOUP, a fully-fledged preference ontolog-
ical model that serves as the foundations for the development of
lightweight tools, namely EMMA and PURI, to both improve dis-
covery performance and integrate current ranking proposals, corre-
spondingly.

Our contributions have been thoroughly evaluated and validated
with both synthetic and real-world scenarios. First, SOUP prefer-
ence model expressiveness and independence has been validated by
completely describing complex scenarios from the SWS Challenge.
Moreover, we have carried out an experimental study of EMMA
that shows a significant performance improvement while obtaining
a negligible penalty on precision and recall. Finally, PURI has been
applied within the EU FP7 project SOA4All, successfully integrating
its three existing ranking mechanisms (objective, NFP-based, and
fuzzy based) into an interoperable discovery and ranking solution.
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RESUMEN

Los Servicios Web Semánticos (SWSs) se han convertido en un área
de investigación muy activa, en la que diversos frameworks, como
WSMO u OWL-S, definen ontologías de la Web Semántica para des-
cribir servicios Web, de forma que puedan descubrirse, ordenarse,
componerse y ejecutarse automáticamente, de acuerdo a los requi-
sitos y preferencias del usuario. En concreto, diversas técnicas de
descubrimiento y ranking han sido propuestas, incluyendo herra-
mientas relacionadas. Sin embargo, las propuestas existentes ofre-
cen una expresividad limitada para definir preferencias, siendo muy
dependientes de los formalismos subyacentes. Además, las técnicas
semánticas actuales sufren de problemas de rendimiento, interope-
rabilidad e integración, impidiendo su explotación efectiva.

Para solucionar estos problemas, la investigación se centra ac-
tualmente en el desarrollo de descripciones de SWSs ligeras, las cua-
les faciliten la interoperabilidad de las propuestas actuales, así como
en soluciones para el descubrimiento y el ranking que proporcionen
mejor rendimiento con una disminución acotada en su precisión. En
esta memoria de tesis, resolvemos esos desafíos mediante la pro-
puesta de SOUP, un completo modelo ontológico de preferencias
sobre el que hemos desarrollado unas herramientas ligeras, llama-
das EMMA y PURI, que mejoran el rendimiento del descubrimiento
e integran las propuestas actuales de ranking, respectivamente.

Nuestras contribuciones han sido evaluadas aplicándolas a esce-
narios sintéticos y reales. En primer lugar, la expresividad e indepen-
dencia del modelo de preferencias SOUP se ha validado mediante
la descripción completa de escenarios complejos del SWS Challenge.
Además, hemos llevado a cabo un estudio experimental de EMMA
que muestra una mejora de rendimiento significativa, obteniendo
una penalización en la precisión insignificante. Por último, hemos
aplicado PURI dentro del proyecto SOA4All, integrando sus tres me-
canismos de ranking (objetivo, basado en NFP, y en lógicas difusas)
en una solución de descubrimiento y ranking interoperable.

xxi





PART I

INTRODUCTION AND
BACKGROUND





1

INTRODUCTION

A science only advances with certainty,
when the plan of inquiry and the object of
our researches have been clearly defined;
otherwise a small number of truths are
loosely laid hold of, without their
connexion being perceived, and numerous
errors, without being enabled to detect
their fallacy.

Jean-Baptiste Say (1767–1832)
French economist

T his thesis dissertation presents our results on Improving Se-
mantic Web Services Discovery and Ranking processes,
proposing a lightweight, integrated approach based on a

novel preference model that enables the optimization, interoperabil-
ity and integration of discovery and ranking mechanisms. In this
chapter we present an overview on the contributions discussed in
this dissertation, firstly introducing our research context in §1.1 so
that the summary of contributions discussed in §1.2 can be properly
understood. Furthermore, §1.3 contextualizes this thesis within a
number of projects under the actual research work has been done.
Finally, §1.4 describes the structure of this document.
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CHAPTER 1. INTRODUCTION

1.1 RESEARCH CONTEXT

Our research work is contextualized in the current trend of seman-
tically enriching information published on the Web, in order to im-
prove the user experience in tasks related to finding, extracting and
combining that information. Concerning Web Services, this has
lead to the adoption of the so-called Semantic Web Services (SWSs),
which apply Semantic Web technologies in order to automate com-
mon Web service tasks, such as discovery, ranking, composition and
execution [85]. In the following we further introduce this context,
focusing on SWS discovery, ranking and user preferences.

1.1.1 Semantic Web and Service Web

The current Web is aimed at providing information and services
that are directly consumed by human beings. Although most of the
content is stored in databases, the information is presented without
the structural information found in databases. From a machine point
of view, it is very difficult to process all this information, so the Web
can not be automatically manipulated by computers [6].

The Semantic Web (SW) vision [14] constitutes an extension to
current Web, where information has associated semantics that can
be processed and understood by machines. Thus, using Semantic
Web (SW) technologies, all this information can be automatically
processed, extracting knowledge to feed algorithms, in order to al-
low autonomous interaction between computers, and to improve the
cooperation between people and computers. Unfortunately, this vi-
sion has not yet succeeded because “[current web applications] have
little ability to interact with heterogeneous data and information
types” [77].

That original vision of the SW has been refocused in a Web
of Data, which aims to use the Web as a large “traditional” data-
base [71]. Linked Data (LD) is a successful initiative within the Web
of Data that consists of a number of principles for publishing, con-
necting and querying data, relying on SW technologies [45], such as
Resource Description Framework (RDF), RDF Schema (RDFS) and
OWL ontology languages, and the SPARQL query language [6].
If the published data is freely available using an open license it is

4



1.1. RESEARCH CONTEXT

commonly identified as Linked Open Data (LOD). Datasets that of-
fer their information using LOD principles increased their number
from 12 to 203 between 2007 and 2010 [45], and, currently, there ex-
ist 328 LOD datasets1. Furthermore, the triples that they offer also
increased from 500 million to 26.9 billion in the same period [45].

Another development to the current static, syntactic Web that fo-
cuses on providing a more dynamic interaction is offered by Web
Services technologies. According to the World Wide Web Consor-
tium (W3C), “a Web Service is a software system designed to sup-
port interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format (specif-
ically WSDL). Other systems interact with the Web service in a man-
ner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards” [17].

Web Services (WSs) are the building blocks to provide a world
of distributed computing on the Web, envisioning a Service Web
where a large amount of stakeholders publish and consume services
in order to dynamically access a concrete functionality taking bene-
fit of Web infrastructures and Service Oriented Architectures. This
scenario involves the use of mechanisms that allow to discover pub-
lished services according to user requirements, and to rank those
discovered services in terms of user preferences.

However, current WSs technologies have an important flaw: us-
age and integration of WSs needs to be performed manually. Thus,
discovery and ranking mechanisms are supported by syntactical in-
formation descriptions, so these processes cannot take benefit of the
SW. In order to realize that Service Web vision, there is a need for
semantically aware descriptions and related technologies that allow
for an automatic and flexible discovery and ranking of services.

1.1.2 Semantic Web Services

As stated before, current WSs technologies do not allow the automa-
tion of common processes such as discovery and ranking, which

1According to http://thedatahub.org/group/lodcloud; last accessed: Aug.,
2012.
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Static

Dynamic

Syntactic Semantic

WWW
URI, HTML, HTTP. . .

Semantic Web
RDF, RDFS, OWL. . .

Web Services
UDDI, WSDL, SOAP. . .

Semantic Web Services
WSMO, OWL-S. . .

FIGURE 1.1: The Semantic Web Services vision.

are necessary to develop Service-Oriented Computing, among oth-
ers like execution and composition. Furthermore, SW standards can
be applied to markup information on the Web, adding semantics so
machines are able to process and understand that information. In
this scenario, a semantic markup of WSs definitions naturally comes
up as the solution to perform automatic service discovery, execu-
tion, composition and interoperation [64]. Thus, a Semantic Web
Service (SWS) can be simply defined as a WS whose description is
in a language that has well-defined semantics [85].

This vision of joining together both WS and SW technologies
to develop SWSs is usually shown as in Figure 1.1. We start from
a static and syntactic World Wide Web (WWW), mainly focused on
providing billions of information pages, where users have to interact
directly with the Web to gather the required information. Because
of the inherent characteristics of the current Web, this information
is difficult to find, extract and interpret by computers, so the SW
appears as a powerful solution, giving semantics to this static infor-
mation. Furthermore, to improve new forms of interaction and to
develop processes between computers connected to the Web, WSs
technologies are used within this dynamic environment. Finally,
SWSs transform the current Web from a static collection of infor-

6



1.1. RESEARCH CONTEXT

mation into a distributed device of computation, using the SW as
its foundation, so this information becomes processable and inter-
pretable by a computer [19].

A SWS framework should concentrate on three key aspects, in
order to enable such SWS vision. Firstly, it has to define exhaustive
description frameworks for semantically describing WSs and related
aspects. Secondly, it has to support ontologies to describe WSs, us-
ing them as its underlying data model, so machines are able to inter-
pret all that information. Finally, a complete SWS framework has to
define semantically driven technologies that support the automation
of WS usage processes.

The most important proposals concerning SWS frameworks are
the Web Service Modeling Ontology (WSMO) [73] and the OWL
Ontology of Services (OWL-S) [62]. They support the previously
presented aspects of a SWS framework, and provide tools to actu-
ally put into practice the SWS vision. Furthermore, there are other
framework proposals that take other approaches, such as METEOR-
S project that aims at extending current Web standards [68], and Se-
mantic Web Services Framework (SWSF) [9], which is another W3C
member submission to standardize SWS.

Recently, lightweight approaches have been being proposed in
order to ease the adoption of SWS by simplifying semantic descrip-
tions of services and user requests. Thus, lightweight service on-
tologies, such as WSMO-Lite [89], MicroWSMO [60], and the Mini-
mal Service Model (MSM) [69], simplify the semantic annotation of
web services, integrating these annotations within traditional, non-
semantic service descriptions using either Semantic Annotations for
WSDL and XML Schema (SAWSDL) [27] or Semantic Annotations
for RESTful Services (SAREST) [78].

1.1.3 Discovery and Ranking

Once a service description using any SWS framework has been pub-
lished, it is normally made available from a repository, where po-
tential users fetch for desired services. This fetching involves two
separate processes (sketched in Figure 1.2), that are referenced to-
gether as service retrieval, as well as service procurement [74]:

7
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Domain
Ontologies

Service
Repository Discovery

—
—
—

Discovered
Services

Ranking
—
—
—

Ranked
Services

—
—
—

User
Request

FIGURE 1.2: SWS retrieval activities.

1. Discovery, where candidate services, which fulfills the user
requirements, are obtained from a repository.

2. Ranking, where the previous set of candidate services are or-
dered with regards to user preferences.

Therefore, a user request contains the semantic description of
both requirements and preferences that are analyzed by discovery
and ranking mechanisms, correspondingly. On the one hand, user
requirements are considered as hard constraints that have to be met
in order to consider a service published in the repository as a can-
didate. On the other hand, user preferences are often interpreted
as soft constraints, whose degree of fulfillment determines to what
extent one previously discovered service is preferred over another.

With respect to SWS discovery, McIlraith et al. [64] define it as
the process of “automatically locating Web services that provide a
particular service and that adhere to requested properties”. This
definition is very agnostic about the type of properties that the re-
quester can use. Additionally, it does not consider the common sce-
nario where discovery processes return not only one but a set of
candidate services. The most common scenario in discovery process
results in a search within the published services using functionality
requirements to obtain a set of compatible services. SWS discov-

8



1.1. RESEARCH CONTEXT

ery is usually performed by Description Logic reasoners, because
semantic definitions are commonly based on this logic formalism.

The next step on SWS retrieval is to rank services in order to actu-
ally select the best one that fulfills the user request. In opposition to
discovery, ranking processes focus on user preferences, which often
state an order based on Quality of Service (QoS) or non-functional
propertys (NFPs). Using these preferences, the set of discovered ser-
vices are ranked so the best service can be chosen [76]. Besides,
user preferences transform the ranking process into an optimiza-
tion problem, so plain discovery techniques cannot be directly ap-
plied in this case, as they are mostly based on Description Logic
formalisms [44].

1.1.4 Preferences

In the SWS retrieval scenario, user requests describe both require-
ments and preferences on services. Concerning requirements, they
state the needed functionality a user is looking for, so they are linked
to the discovery process, as it fetches candidate services from the
repository that offer that requested functionality. In turn, prefer-
ences are interpreted solely by ranking mechanisms to order dis-
covered services. While user requirements are usually directly sup-
ported by SWS frameworks, so discovery proposals rely on their
models, preference models are often defined by concrete ranking
mechanisms using them.

User preferences define the optimality criterion that is applied
when selecting a service among a set of candidates. These pref-
erences usually refer to QoS properties relevant to the user [11],
though a service provider can also define preferences on service
properties and prospective users. In any case, preference descrip-
tions are evaluated in order to rank candidate services previously
discovered. This ranking process can be interpreted as an optimiza-
tion problem that obtains the best service according to the stated
preferences [32].

There are several formalisms that can be used to represent pref-
erences. Thus, preferences modeled as utility functions have been
widely used in economics [29, 49] and web systems [5, 34, 92]. An-
other formalism based on partial orders were proposed in database

9



CHAPTER 1. INTRODUCTION

systems field [22, 52]. The main difference between these two for-
malisms is that the former constitutes a quantitative approach while
the latter is qualitative.

Although quantitative approaches are more general because
most preference relations can be defined in terms of utility func-
tions, there are some intuitive preferences that cannot be captured
by these functions [22] (see also §5.1 for further discussion). On the
other hand, qualitative approaches have higher expressiveness and
are more intuitive and user-friendly, though they are not directly
applicable to a SWS scenario because they do not take into account
that properties may be expressed using different abstraction levels
depending on the stakeholder.

Preference queries from database systems can be also applied
to the SWS scenario with ease. Furthermore, utility functions and
quantitative models are usually applied when defining preferences
to rank SWS. Moreover, recommender systems are also supported
by preferences that model information extracted from the user inter-
action to offer relevant recommendations.

1.2 SUMMARY OF CONTRIBUTIONS

The main objective of our research work is to improve SWS discov-
ery and ranking processes, focusing not only on conceptual aspects
enabling user preferences modeling and interoperability, but also on
implementation level improvements, regarding performance, scala-
bility, and integrability of discovery and ranking mechanisms.

Concerning preference modeling, we propose a comprehensive
model to define service requests including user preferences, inde-
pendently of the underlying formalisms used for describing, discov-
ering and ranking services. This model effectively decouples the
conceptual definition of preferences from the discovery and ranking
implementation to be used, providing users with a higher reusabil-
ity, flexibility and expressiveness for their preference definitions.

Our proposed preference model serves as the foundations for the
rest of our research work. Using this model as a vocabulary and an
upper ontology to abstractly define both service descriptions and
user requests, we designed a generic optimization framework that
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analyzes service requests to automatically generate filters that are
applied to service repositories before actually performing discovery
and ranking processes. As a result, both processes are significantly
improved, offering better performance and scalability at a small cost
on precision and recall. Moreover, the abstract descriptions provided
by our model enable the application of our optimizations to any
available SWS framework.

Furthermore, the inherently better interoperability provided by
our preference model enables the integration of different discovery
and ranking mechanisms. Consequently, we devised an integrated
architecture for SWS discovery and ranking that further improve the
flexibility to define and evaluate user preferences, taking a hybrid
approach that integrates corresponding ranking mechanisms. This
architecture offers a unique, lightweight façade to the whole discov-
ery and ranking process.

This dissertation presents our contributions on preference mod-
eling, discovery optimization, and flexible, integrated ranking, tack-
ling specifically identified challenges on those areas. Note that chal-
lenges on preference modeling (C1 and C2) are closely related to
those on service discovery performance (C3) and interoperable, in-
tegrated ranking (C4 and C5), because preference models constitute
the foundation for descriptions that drive SWS discovery and rank-
ing processes [76].

(C1) Expressiveness of preference models

Challenge Description: Most of the current discovery and rank-
ing mechanisms offer a restricted number of facilities to define
user preferences, consequently constraining preference expres-
siveness. Moreover, current approaches mostly rely on quan-
titative preferences. Therefore, there is a need for a generic,
highly expressive preference model that offers users a compre-
hensive set of facilities to define and combine both quantitative
and qualitative preferences, which are more intuitive and user-
friendly.

Contributions: We propose in [38] a highly expressive ontologi-
cal model, based on a strict partial order interpretation of user
preferences, that offers several facilities to define qualitative
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and quantitative preferences and combine them. We validated
our proposal using use case scenarios from different domains,
including the most complex scenario from the SWS Challenge.
An early approach that models quantitative preferences as util-
ity functions was also explored in [30].

(C2) Independence of user request models from underlying dis-
covery and ranking mechanisms

Challenge Description: Since each mechanism proposed in the
literature provides its own inherent model, both discovery and
ranking mechanisms are implemented taking into considera-
tion that corresponding model. As a result, there is a high de-
pendency between models and implementations, constraining
the expressiveness provided by each proposal as it depends on
the formalisms used by its discovery and ranking mechanisms.
Moreover, neither preference models nor heterogeneous mech-
anisms can be integrated together in a hybrid solution because
of the inherent coupling found in current proposals.

Contributions: Precisely, we developed a hybrid solution for
SWS discovery and ranking that separates preference models
from the actual mechanisms that rank services [33]. In this
approach, we split user requests depending on the preference
facilities used, and each part is routed to an appropriate dis-
covery or ranking mechanism. Concerning ranking, we also
presented an interpretation of this process as an optimization
problem, effectively decoupling preference modeling from the
ranking algorithm by introducing transformations from pref-
erence statements to a Constraint Satisfaction Optimization
Problem (CSOP) [32].

(C3) Performance of service discovery process

Challenge Description: Most proposals on SWS discovery do not
scale well, because they are based on inefficient logic formal-
isms [44]. As a consequence, performance issues show up in
several scenarios. There is a need for optimized techniques
that allow a more performing discovery process, and some
proposals are emerging in this field, providing caching, query
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rewriting, query execution planning or repository optimiza-
tions, among other solutions. However, they are usually cou-
pled with a particular discovery mechanism and/or a prefer-
ence model, making difficult to apply this techniques in differ-
ent scenarios.

Contributions: In [36] we discussed the requirements that any
query-based discovery mechanism should fulfill in order to of-
fer an optimized, decoupled experience to the user. Taking
decoupling requirements into account, we developed a filter-
ing approach that analyzes user requests in order to minimize
the amount of data from the SWS repository to be accessed by
any discovery mechanism, improving the scalability and per-
formance of the process, regardless of the actual implementa-
tion used to discover services [41].

(C4) Interoperability between discovery and ranking mechanisms

Challenge Description: In a typical scenario, users are presented
with a restricted set of facilities to define their preferences, de-
pending on the concrete discovery and ranking mechanisms to
be used. Due to the existing inter-dependence, if a user wants
to define their preference using other facilities, corresponding
mechanisms have to be used instead of the original ones. How-
ever, interoperability issues may arise when users need to com-
bine preference facilities from different mechanisms based on
heterogeneous underlying formalisms. Consequently, an up-
per, common preference model is necessary in order to allow
users to flexibly choose different mechanisms depending on
their particular needs – e.g. some users may find highly expres-
sive mechanisms more useful despite their low performance,
but others may prefer a more performing solution.

Contributions: We proposed an extension to a logic rule based
ranking mechanism [87] that extended their preference model
allowing the definition of utility functions in addition to ten-
dencies [34, 35]. This proposal provided users with a higher
interoperability and flexibility, as they could choose between
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both facilities, without knowing the underlying ranking mech-
anism that needs to be executed [37].

(C5) Integrability and adaptability of different mechanisms

Challenge Description: Once interoperability issues at concep-
tual level are solved by the introduction of an expressive, com-
mon preference model, mechanisms should be also integrated
at implementation level. In order to combine preferences from
different ranking mechanisms, they have to be integrated in
a seamless, efficient way, so that a single entry point for the
hybrid ranking process is presented to the user.

Contributions: An early approach on integrating discovery and
ranking mechanisms using a hybrid architecture is presented
in [31]. Using that hybrid architecture, we successfully de-
signed a solution to integrate several ranking mechanisms, that
were validated in the context of EU FP7 SOA4All project [40].

1.3 THESIS CONTEXT

This thesis work has been developed in the context of the Applied
Software Engineering (Ingeniería del Software Aplicada – ISA) re-
search group2 at the University of Seville. Starting from the deep
background on Service Oriented Computing of the research group,
we began a research line on Semantic Web Services, focusing on
discovery and ranking processes. Concretely, our work has been de-
veloped during our participation in the following research projects
and networks:

• WEB-FACTORIES: Fábricas Software para Sistemas con Arqui-
tectura Orientada a Servicios Web. CICYT project referenced
as TIN 2006-00472. We started our thesis during this project,
developing current approaches and applying semantics to clas-
sical discovery and ranking processes.

• ISABEL: Ingeniería de Sistemas Abiertos Basada en LínEas de
productos. Excellence project of the Andalusian Government,

2http://www.isa.us.es
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referenced as TIC-2533. Our participation in this project al-
lowed us to obtain our first contributions on preference mod-
eling and integrated discovery and ranking architectures.

• SETI: reSearching on intElligent Tools for the Internet of ser-
vices. CYCIT project referenced as TIN2009-07366. In this
project we focused on preference modeling and improvement
of current discovery techniques by filtering repositories.

• SOA4All: Service-Oriented Architectures For All. EU FP7 IST
project, referenced as 27867. Our participation in the latter
stage of this project led to a complete validation scenario for
our thesis work, especially on preference modeling and inte-
grated ranking.

• S-CUBE: Software Services And Systems Network of Excel-
lence. Funded by the EU FP7, referenced as 215483. This
project allowed us to validate and discuss our proposals with
the research community focused on our topics.

• THEOS: Tecnologías Habilitadoras para EcOsistemas Software.
Project funded by the Andalusian Government referenced as
TIC-5906. Finally, in this ongoing project we started to apply
our developed proposals to different domains and scenarios.

1.4 STRUCTURE OF THIS DISSERTATION

This dissertation is divided in four parts that describe our thesis
work using the following structure:

Part I: Introduction and Background introduces the research back-
ground of our thesis work. Chapter 1 describe the research
context and summarizes our contributions with respect to sev-
eral identified challenges in that context. Then, Chapter 2
analyzes the related work in preference modeling, discovery
and ranking, comparing different proposals with respect to the
challenges.

Part II: Improving SWS Discovery and Ranking presents all three
contributions developed during our thesis work. Chapter 3
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showcases SOUP, a highly expressive preference model that
serves as the foundations for the rest of our proposal. Thus,
Chapter 4 discusses EMMA, which is a filtering approach to
improve SWS discovery processes, while Chapter 5 describes
our PURI framework, which provides an infrastructure to in-
tegrate different ranking mechanisms using our common pref-
erence model.

Part III: Evaluation of Results thoroughly analyzes and evaluate
our contributions. First, we validate our preference model us-
ing use case scenarios in Chapter 6. Second, a comprehen-
sive evaluation of EMMA is discussed in Chapter 7, applying
our filtering approach to various SWS matchmakers. Finally,
Chapter 8 presents the application of PURI framework to a
concrete use case scenario, showing the benefits of an inte-
grated ranking solution.

Part IV: Final Remarks concludes our dissertation in Chapter 9 by
summing up our contribution with respect to the degree of
fulfillment of the identified challenges, also including future
work that has been identified to continue our research work
from the obtained results.

Additionally, we include three appendices that complement this
dissertation: specifying the thesis work performed in the context of
the EU project SOA4All (Appendix A); showcasing complete evalu-
ation results of EMMA (Appendix B); and discussing an additional
evaluation of EMMA applied to a WSMO scenario (Appendix C).
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2

BACKGROUND

Nothing has such power to broaden the
mind as the ability to investigate
systematically and truly all that comes
under thy observation in life.

Marcus Aurelius (121-180)
Roman emperor

A fter introducing the research context of this dissertation and
the concrete challenges that we identified, this chapter de-
scribes the state-of-the-art on preference modeling for the

discovery and ranking processes (§2.2), optimizations to improve
service discovery performance (§2.3), and integration approaches
for discovery and ranking mechanisms (§2.4). We analyze current
proposals on those subjects in terms of a comparison framework de-
fined in §2.1 which is based on the challenges identified in §1.2.
As summarized in §2.5, the conclusions obtained from this litera-
ture review serve the purpose of further supporting our thesis and
motivating our research contributions.
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2.1 INTRODUCTION

During the development of our thesis, we have identified a number
of issues that have not been successfully and completely addressed
yet. In §1.2 we equate those issues with five challenges ahead on
SWS discovery and ranking. In order to analyze to what extent
those challenges are actually present in state-of-the-art proposals,
we devise a comparison framework that defines a normalized scale
to measure each challenge separately. As using quantitative mea-
sures for each challenge is out of the scope of this comparative study,
we cluster current proposals using three levels of fulfillment (low,
medium and high), presenting a qualitative comparison that can be
analyzed jointly with other challenges.

Using this comparison framework, we have systematically an-
alyzed several proposals on discovery and ranking. The conclu-
sions of our literature review are discussed in the following research,
where each section groups works depending on whether their main
contribution is aligned with preference modeling, discovery opti-
mization, or integrated ranking challenges, discussing our inter-
pretation for each corresponding level. However, some proposals
present approaches that may address challenges from more than
one topic. Consequently, they may be analyzed in corresponding
sections, though they are only presented in one of the sections, for
the sake of clarity.

2.2 PREFERENCE MODELING

As discussed in §1.1.4, user requests containing preference defini-
tions are necessary to perform SWS discovery and, especially, rank-
ing. However, early approaches on SWS discovery and ranking, as
in Benatallah et al. [13], Li and Horrocks [59], or Sycara et al. [86], do
not rely on a separate preference model, but on functionality-based
descriptions that specify user requirements as desired features of
service offers, described using a SWS framework, such as OWL-S
or WSMO. In consequence, ranking is performed using matching
degrees obtained from a logics-based discovery, limiting both per-
formance (cf. §2.3) and the available facilities to define preferences.
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An extension to DAML Ontology of Services (DAML-S) to in-
clude QoS profiles is proposed by Zhou et al. [93]. Their extension
is divided in three layers with different roles. Thus, the QoS profile
layer provides support for the different roles of the provisioning pro-
cess: service provider, user requests (inquiries), and templates. This
layer provides three common superclasses for matchmaking. The
constraints that can be defined in each profile can be described by
properties definitions and cardinality. The QoS property definition
layer allows to specify the domain of the QoS properties, i.e. core,
input, output, preconditions and effects. Finally, the QoS metrics
layer defines how each QoS property is measured, and who is the
organization that guarantees that measurement. Zhou et al. provide
a basic profile with commonly used QoS properties defined, such as
cost, response time, reliability and throughput. Their proposal only
allows order constraint between QoS parameters, so it performs dis-
covery and ranking using Description Logics and matching degrees.

Another DARPA Agent Markup Language (DAML)-based pro-
posal is also presented by Bilgin and Singh [15], where they provide
a DAML-based query language, instead of just extending OWL-S.
Using this language, they advertise QoS attributes and perform the
ranking. They provide a simple ontology for service categories and
QoS attributes associated to these categories. The main drawback of
this approach is the limitation on the expressiveness of queries, due
to the use of DAML as its foundation. Thus, user preferences can-
not be expressed in those queries, and are inherent to their ranking
algorithm, as in [93].

Maximilien and Singh [63] present a framework and a QoS on-
tology for dynamic selection. They provide a complete, agent-based
architecture to perform service ranking, that uses a layered QoS on-
tology, including a QoS upper ontology, which defines basic con-
cepts associated with a QoS parameter, such as measurement, rela-
tionships, and aggregate support. Using that layer, the QoS middle
ontology defines the most frequent QoS parameters and metrics en-
countered in distributed systems, such as availability, cost, perfor-
mance, etc. Finally, a user-defined lower ontology defines concepts
from the domain of each service. This framework constitutes a very
comprehensive solution to describe QoS in SWS, and it is referenced
by other authors [25, 57, 67]. However, user preferences based on

19



CHAPTER 2. BACKGROUND

QoS parameters from their ontology have to be defined externally to
the ontology itself, in a QoS policy description that the agent-based
architecture applies to perform the ranking process.

Another extension to OWL-S is QoSOnt, proposed by Dobson
et al. [25], which is an ontology that describes QoS attributes and
metrics. Their approach is similar to the one from Maximilien and
Singh, separating QoSOnt ontology in different smaller ontologies.
Thus, the base ontology contains basic QoS concepts, such as At-
tribute and Metric. Then, concepts specific to some attribute can be
built into separate ontologies on top of the base concepts. For in-
stance, a separate ontology for availability can be specified, which
contains concepts and metrics that can be only applied to availability
specification. Additionally, generic metrics concepts can be defined
in another separate ontology, for reuse. These metrics also define
the user preferences applied to them, using the acceptability direc-
tion, that is the preferred tendency of metric values (e.g. the higher
the best). However, Dobson et al. do not explicitly show how to per-
form selection, and their proposal suffers from Ontology Web Lan-
guage (OWL) limitations, so they have to use an ad hoc eXtensible
Markup Language (XML) language to allow custom data ranges.

A different semantic framework for service discovery is present-
ed by Pathak et al. [67], which models mappings between ontolo-
gies. They propose to use domain specific ontologies to define QoS
properties among user preferences and service descriptions. In their
work, ranking is done using matching degrees at a first stage, such
as the degrees defined in [59]. Then, values from QoS parameters
are collected in a quality matrix and normalized, in order to calculate
a fixed, weighted utility function for each candidate service. Then,
candidates whose utility function is above a given threshold, are
passed to the final step of the process, where they are ranked by one
QoS parameter that is applied to a ranking function in order to ob-
tain the optimal service with regard to user preferences. These user
preferences are specified in two different stages: (1) weights for each
QoS parameter used in the computation of the utility function, and
(2) ranking attribute and ranking function used at the final stage.

Wang et al. [91] also define a QoS-aware ranking model for SWS
that makes use of QoS matrices. They provide an extension to
WSMO ontology that enables handling QoS parameters. Within
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this extension, users may define expressions that provide the actual
value of a measured QoS parameter, and also the associated pref-
erence. This preference is defined in terms of relative weights and
preferred tendency, namely smaller, larger or closer to a given value.
Wang et al. define a QoS preference model and an algorithm based
on a QoS matrix that contains values of QoS parameters. Before,
in a previous step, discovery is performed by matching functional
properties. The ranking algorithm first normalize matrix values in
order to homogenize them. Then, a uniformity analysis is done ap-
plying different formulas depending on the tendency preference of
each QoS parameter. Finally, for each service (represented by a row
in the normalized matrix), the evaluation result can be computed by
adding the resulting values for each parameter applying the corre-
sponding weights.

Siberski et al. [79] propose an extension to SPARQL so that pref-
erences are described directly using the query language, without be-
ing based on existing preferences and non-functional properties on-
tologies, as in other semantic ranking approaches [34, 38, 91]. They
provide a PREFERRING clause that states preferences among values
of variables, similar to FILTER expressions. The preference model
is based on a qualitative approach that define preferences as par-
tial orders [52]. However, this approach does not have the flexibility
and reasoning facilities that provides a solution based on an exter-
nal ontology, and it uses non-standard SPARQL extensions without
providing an implementation.

Other proposals to model preferences on SWS are more focused
on ranking mechanisms, so their preference model are specifically
tailored towards their implementations. Toma et al. [87] presents a
multi-criteria approach based on logic rules, modeling preferences
by including simple annotations to WSMO goals. These annotations
can define weights and tendencies as in [91], using a logic program-
ming rules approach to evaluate QoS parameters and rank services.

In turn, Lamparter et al. [58] provide a more complex ontology
to represent service offers and requests that conforms the founda-
tions for a discovery and ranking process performed using rules in
SWRL [46] and SPARQL queries. These queries include predicates
that have to be evaluated at run-time, so they include an extension to
SPARQL that is implemented using different proposed algorithms.
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TABLE 2.1: Preference modeling in discussed proposals.

Proposal (C1) (C2)

Early approaches (2003-04) [13, 59, 86] Low Low
Zhou et al. (2004) [93] Low Low
Bilgin and Singh (2004) [15] Low Low
Maximilien and Singh (2004) [63] Low Medium
Dobson et al. (2005) [25] Low Medium
Pathak et al. (2005) [67] Low Low
Wang et al. (2006) [91] Medium Low
Siberski et al. (2006) [79] High Low
Toma et al. (2007) [87] Medium Low
Lamparter et al. (2007) [58] High Medium
Palmonari et al. (2009) [66] High Medium

Thus, a query for a user request is provided, though this query de-
pends on rules that change the matchmaking policy, e.g. allowing
matching degrees as in [86]. The provided preference model is based
on utility functions that are evaluated within query execution.

Finally, Palmonari et al. [66] propose the definition of policies,
though they provide more facilities to express relative weights and
different offered policies. Thus, each service may offer several poli-
cies that can be requested depending on the user preferences. The
ranking process is performed using a hybrid approach that evalu-
ates properties and then combine them for each defined policy. The
extensibility and generality of the allowed policies offer a highly ex-
pressive preference model.

In Table 2.1 discussed proposals are summarized in terms of
both expressiveness (C1) and independence (C2) challenges iden-
tified in §1.2. The considered levels of fulfillment to compare each
proposals are interpreted as:

(C1) Expressiveness. Each proposal offers a number of facilities to
define preferences, providing a concrete degree of expressive-
ness that depends on the complexity and completeness of the
underlying preference model:

Low: Approaches that do not provide facilities to let users de-
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fine their own preferences are considered to provide a low
expressiveness.

Medium: We consider a proposal to offer a medium expres-
siveness if it provides some simple facilities to define pref-
erences, such as tendencies or weights.

High: In turn, a highly expressive solution allows users to de-
fine preferences using and possibly combining complex fa-
cilities, as utility functions or fuzzy rules.

(C2) Independence. In order to evaluate this challenge, we measure
the independence degree between discovery and ranking mech-
anisms and their corresponding preference model, using the fol-
lowing scale:

Low: An implementation with low independence means that
the preference model is tightly associated with the under-
lying mechanisms used to perform discovery and ranking,
resulting in a system that cannot be integrated, adapted or
extended to support other preference facilities.

Medium: When proposals offer separate and/or external onto-
logical models to define preferences, they are considered
to offer a medium independence, as those models only in-
clude facilities that can be managed by the corresponding
implementation.

High: If the preference model is generic enough and not tied to
the underlying formalism used to effectively discover and
rank services, the corresponding proposal may present a
high independence.

On the one hand, classical approaches do not tend to allow the
definition of user preferences at all [13, 59, 86]. Other approaches
only focus on QoS modeling but do not offer facilities to define
preference over those QoS attributes [15, 93], or rely on externally
user-defined ontologies [25, 63]. More recent discovery and ranking
solutions offer a wide variety of preference models, increasing the
expressiveness from weight and tendencies [87, 91] to utility func-
tions [58]. However, only two of them offer both qualitative and
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quantitative preference constructs that allow for a higher expres-
siveness [66, 79].

On the other hand, C2 analysis shows that preference models
often present a low independence degree with the associated dis-
covery and / or ranking mechanism, making difficult to reuse these
models, as they are defined in an ad hoc manner depending on the
underlying mechanism. Nevertheless, models defined using exter-
nal, extensible ontologies offer a medium degree of independence
that ease their reuse in other scenarios.

2.3 SERVICE DISCOVERY OPTIMIZATION

In order to improve discovery engines, Stollberg et al. [84] provides
a caching mechanism that reduces the search space and minimizes
matchmaking operations. The proposed cache uses a graph that
stores relationships between user requests described as WSMO goal
templates, and their related services. Thus, goal instances are com-
pared with cached templates in terms of semantic similarity, and if
there is a match, only the related services stored in the graph are
used for the subsequent discovery.

Carenini et al. [20] propose a customizable hybrid architecture
for SWS discovery and ranking named GLUE2. GLUE2 offers a set
of specialized discovery components, such as functional discovery,
dynamic discovery, non-functional discovery, and ranking, among
other additional components [66]. Based on WSMO, GLUE2 enables
the configuration of the discovery workflow on a case by case basis,
optimizing each scenario using the most appropriate components.

An hybrid matchmaker called iMatcher that uses information re-
trieval techniques to improve the discovery process is presented by
Kiefer and Bernstein [50]. In this proposal, authors use a SPARQL
extension (iSPARQL [51]) that enables the introduction of similarity
operators into query elements. Thus, different similarity strategies
are combined with logic-based discovery in order to improve preci-
sion and recall of the matchmaking process. Additionally, machine-
learning can also be applied to choose the most appropriate strategy
to be included in the hybrid matchmaking, for each case.

Concerning the need for an improved discovery process which
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TABLE 2.2: Performance of discovery approaches.

Proposal (C3)

Pref. model. approaches (§2.2) Low
Stollberg et al. (2007) [84] Medium
Carenini et al. (2008) [20] Medium
Kiefer and Bernstein (2008) [50] High
Agarwal et al. (2009) [3] Medium
Klusch et al. (2009) [54] Medium
Sbodio et al. (2010) [75] High

tackles scalability issues, Agarwal et al. [3] discuss a hybrid ap-
proach that uses different discovery mechanisms together, in or-
der to improve discovery performance. They also propose a simple
filtering stage based on an efficient classification-based discovery.
However, this filter rely on a less expressive user request. Thus, the
preference model also suffers from the issues identified in previous
sections.

A different approach is taken by Klusch et al. [54] in OWLS-MX,
where they present a hybrid matchmaker that combines informa-
tion retrieval techniques, such as syntactic similarity, with classical
DL-based discovery, in order to improve OWL-S service matchmak-
ing. Their comprehensive evaluation proves that hybrid approaches
present a better performance than classical ones. Moreover, similar
solutions have been also proposed by the authors for WSMO [53]
and SAWSDL [55] service matchmaking.

Finally, Sbodio et al. [75] introduce SPARQL queries to describe
OWL-S service pre- and post-conditions, and user requests, provid-
ing a matchmaker implementation based on agents called SPARQ-
Lent. They discuss a complete discovery solution that uses SPARQL
queries to modify and ask the agent’s knowledge base, evaluat-
ing their proposal against OWLS-MX using Semantic Web Service
Matchmaking Evaluation Environment (SME2). They provide some
optimizations to their discovery algorithm, that performs better than
some OWLS-MX variants.

The three levels defined in our comparison framework to com-
pare proposals focused on service discovery optimization are the
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following:

(C3) Performance. Concerning the optimization of service discov-
ery, we compare the scalability and performance of each pro-
posal, ranking them in the following terms:

Low: Proposals offering a low performance do not scale well
in general, mainly because they only use logic-based tech-
niques to perform discovery.

Medium: Most approaches try to improve performance by us-
ing different strategies, such as caching, filtering, or query
rewriting, presenting better results. Consequently, we rate
these solutions as a medium performance, as they focus on
a single strategy.

High: Higher performing discovery techniques usually apply a
mixture of strategies that provides a better user experience
in this scenario.

As shown in Table 2.2, discovery and ranking approaches pre-
sented in the previous Section suffer from scalability and perfor-
mance issues (C3), mainly because of the logics-based and ad hoc
formalisms used. However, proposals discussed in this Section pro-
vide some sort of optimization techniques that improve performance
considerably, though they may still present scalability issues. The
most common approach to optimize discovery and ranking is to use
hybrid solutions that can take benefit from several mechanisms at
the same time. Particularly, [50] offers an intelligent hybrid match-
making that is able to improve the process considerably by choosing
the most appropriate techniques for each case.

Note that these proposals cannot be analyzed with regard to
§2.2 challenges, because they are mostly focused on SWS discovery
and do not provide separate preference models. However, ranking
mechanisms can be easily incorporated into the process in hybrid
approaches, as in the case of [20] that is actually integrated with
Palmonari et al. [66] ranking proposal.
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2.4 INTEROPERABLE AND INTEGRATED RANKING

Concerning hybrid proposals, a semantically-enabled matching us-
ing CSOPs is presented by Kritikos and Plexousakis [57], based
on [74]. They propose an ontology similar to the proposed by Max-
imilien and Singh [63], mixing requests and QoS-aware service de-
scriptions within OWL-S. Moreover, they present a matching algo-
rithm to infer equivalences between differently named QoS param-
eters that are semantically equivalent, although it is generally un-
decidable. Their extension ontology, OWLQ, is separated in several
facets that concentrates on a particular part of their QoS WS descrip-
tion, such as connection with OWL-S instances, the actual QoS de-
scriptions, metrics facets that provide classes to formally define QoS
metrics, units, etc. They use CSOPs to perform the matchmaking
of compatible provided services, and then select the best service by
means of a weighted composition of utility functions, which balance
the worst and best scenarios to compute the utility value.

Another approach that merges discovery and ranking algorithms
execution is presented by Vu et al. [90]. They provide an extension
to WSMO ontology in order to support QoS properties. Their exten-
sion model is based on axioms from the underlying WSMO ontol-
ogy. They show a QoS-aware discovery framework that takes QoS
values of WSs based on user feedback and perform the discovery
process, ranking the services in terms of QoS compliance. Actually,
the ranking of services is obtained with regard to user preferences,
defined by relative weights. Additionally, they sketch both a cen-
tralized architecture and a scalable one, that can be deployed into a
peer-to-peer network.

Concerning the integration of SWS frameworks, there are some
proposals in the literature that address this issue to tackle interoper-
ability. Chabeb et al. [21] discuss a systematic approach to generate
mappings between OWL-S, WSMO and plain Web Service Descrip-
tion Language (WSDL) services, matching concepts from the dif-
ferent SWS ontologies using similarity techniques that validate the
inferred correspondences. Their resulting ontology merges concepts
from different SWS frameworks, as opposite to the following two
approaches, that only capture part of those SWS ontologies, offering
a more concise approach.
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TABLE 2.3: Interoperability and integration analysis.

Proposal (C4) (C5)

Pref. model. approaches (§2.2) Low / Med Low / Med
Disco. optim. approaches (§2.3) Medium Med / High
Kritikos and Plexousakis (2006) [57] Medium Low
Vu et al. (2006) [90] Medium Medium
Chabeb et al. (2009) [21] High Low
Norton et al. (2010) [65] High Low
Pedrinaci and Domingue (2010) [69] High Medium

Thus, Norton et al. [65] present a similar proposal, where the
authors take a ’union’ approach to integrate OWL-S, WSMO, and
WSMO-Lite descriptions. They present several SPARQL CONSTRUCT
queries that transform SWS descriptions to and from the Semantic
SOA Reference Ontology, a standard proposed by OASIS.

Another ontological model of integration is proposed by Pedri-
naci and Domingue [69], who present a service repository called
iServe that exposes service descriptions as linked data in terms of
a Minimal Service Model (MSM). This model integrates not only
OWL-S, WSMO, SAWSDL and WSMO-Lite services, but also Mi-
croWSMO [60] or SAREST [78] descriptions of Web APIs. However,
its minimal nature constraints the expressiveness of service defini-
tions and user preferences, but provides a lightweight solution to
discover services using SPARQL endpoints.

Table 2.3 sums up how the previously discussed proposals cope
with interoperability (C4) and integrability (C5) research challenges,
where each level of fulfillment corresponds with the following inter-
pretation:

(C4) Interoperability. At conceptual level, we analyzed to what de-
gree proposals provide interoperable preference models, so that
users can flexibly choose and combine facilities from different
ranking mechanisms depending on their needs.

Low: Proposals offering a low interoperability do not provide a
separate semantic model to define user preferences, so they
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cannot be combined and reused with models proposed by
the rest of the proposals.

Medium: Most analyzed approaches present a medium inter-
operability, as they semantically define their models using
separate ontologies or extensions to existing ones, enabling
their interoperability with other proposals.

High: Solutions that are designed to be highly interoperable
provide several preference constructs that can be extended
and composed together with external preference models.

(C5) Integrability. Finally, integrability measures to what extent dis-
covery and ranking mechanisms can be easily integrated, adapt-
ed or extended at implementation level, e.g. using their inter-
faces and provided hooks.

Low: Proprietary, difficult to extend proposals are rated to have
a low integrability, because their underlying ranking mech-
anisms are very different, particularized for a concrete sce-
nario.

Medium: Proposals that provide components that are easier to
integrate, because, for instance, they offer hybrid architec-
tures or SPARQL endpoints are rated at a medium degree
of integrability.

High: Hybrid architectures that can be also extended with new
mechanisms to customize discovery and ranking processes
are considered highly integrable.

Proposals already presented in §2.2 offer a low to medium de-
gree for both challenges. On the one hand, early approaches [13, 59,
86] do not provide a separate semantic model to define user pref-
erences, so they cannot be combined and reused with models pro-
posed by the rest of the proposals, producing a low interoperability
and a corresponding low integrability. However, other proposals
are rated at a medium interoperability, as they semantically define
external models that can be easier extended and adapted,

In turn, discovery optimization proposals discussed in §2.3 pres-
ent a medium to high rating for both C4 and C5. Most propos-
als allows for customization and adaptation of their mechanisms
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to different SWS frameworks and use case scenarios. Furthermore,
some proposed architectures provide a higher integrability because
of their hybrid nature, that allows to configure different components
to work together in a discovery and ranking scenario.

Integration solutions described in this section offer a high grade
of interoperability (C4) because they are highly interoperable by de-
sign [21, 65, 69]. Nevertheless, [57, 90] provide external ontologies
that can be adapted to different scenarios, offering a medium inter-
operability in comparison. With respect to integrability (C5), only
[69, 90] present some facilities to integrate them using different ar-
chitectures, obtaining a medium rank for this challenge.

2.5 SUMMARY

From the results of our literature review, we obtain several conclu-
sions that motivate our thesis work presented in this dissertation.
Concerning preference modeling, though there are some proposals
that provide highly expressive facilities to define preferences, they
all present low independence between models and implementations,
making difficult to extend or adapt their models to other scenarios.
Therefore, there is a need for a highly expressive and generic pref-
erence model that has to be designed independently from underly-
ing discovery and ranking mechanisms to be used to evaluate those
preferences. Chapter 3 discuss our proposal on this subject.

In turn, current service discovery optimization techniques offer
fair solutions to improve the perceived performance of this process.
However they are designed to work in particular scenarios using a
specific discovery mechanism. In Chapter 4 we present a discovery
optimization technique that can be integrated into every discovery
and ranking scenario, because it is independent from the applied
mechanisms. Moreover, our proposal can be also applied on top of
other optimized discovery proposals, such as the analyzed ones.

Finally, a flexible discovery and ranking solution is not sup-
ported by current proposals, because their models are not com-
pletely interoperable and consequently their implementations can-
not be easily integrated in order to offer the flexibility that power
users need. Moreover, hybrid architectures offer the highest integra-
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bility among current proposals. In order to provide a highly inter-
operable discovery and ranking solution that can combine several
preference facilities that may be evaluated by different mechanisms,
we propose in Chapter 5 an integrated ranking solution based on
our preference model that takes an hybrid approach to seamlessly
integrate ranking mechanisms.
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A PREFERENCE MODEL FOR
SEMANTIC WEB SERVICE

DISCOVERY AND RANKING

When we program a computer to make
choices intelligently after determining its
options, examining their consequences, and
deciding which is most favorable or most
moral or whatever, we must program it to
take an attitude towards its freedom of
choice essentially isomorphic to that which
a human must take to his own.

John McCarthy (1927–2011)
American computer scientist

P reference modeling constitutes an essential component for
the execution of discovery and, especially, ranking mecha-
nisms, providing facilities to define user requests and pref-

erences. In this chapter we describe our proposed preference model,
introducing in §3.1 our motivation and thesis. §3.2 presents an ab-
stract upper ontology to define both services and user requests, that
serves as the common model for the rest of our contributions. Then,
§3.3 further describes our preference model and its facilities to define
preferences within a user request. We developed a concrete applica-
tion to WSMO framework as shown in §3.4. Finally, we sum up
the main characteristics of our solution to model preferences for dis-
covery and ranking in §3.5, discussing its fulfillment degree with
respect to our identified challenges on preference modeling.
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3.1 INTRODUCTION

SWS definition frameworks provide comprehensive tools to describe
services and their interactions. Although they offer facilities to also
state user requests, preferences cannot be described at the same de-
tail level, i.e. users cannot define complex desires for a concrete ser-
vice request. For instance, WSMO user requests, denoted by goals
[73], only support the description of requirements about a request in
the form of capabilities and interfaces. In turn, preferences to rank
services fulfilling those requirements cannot be directly expressed
by using a standard WSMO goal definition, which only provides
means to define non-functional properties / values pairs. In other
words, preferences are not considered first-class citizens in WSMO,
in comparison to service capabilities, whose definitions are more ex-
pressive. Other frameworks, such as OWL-S [61] or SAWSDL [27],
do not even define a specific model to describe user requests at all.

Discovery and ranking proposals try to fill this gap, extend-
ing SWS frameworks to support preferences definition [91, 93], or
just providing separate user preferences descriptions [58, 63], us-
ing different formalisms as discussed in §2.2. Consequently, these
formalisms actually determine the level of expressiveness of each
proposal (C1), while resulting in a high dependence between user
preferences definition and its corresponding discovery and ranking
implementations (C2).

In order to overcome these identified challenges in current pro-
posals, we present a Semantic Ontology of User Preferences (SOUP),
which is a highly expressive, intuitive model of user preferences.
This proposal adapts a well-known model designed for database
systems [52] that allows to define preferences constructively and
user-friendly. Starting from an abstract model that defines both ser-
vice, user requests and preferences description at the same semantic
level, next sections describe SOUP in detail, also introducing ele-
ments that conform the foundations to our proposals on improving
discovery (Chapter 4) and ranking integration (Chapter 5). Further-
more, we describe our model application to WSMO definitions, ex-
tending its goal element in order to allow the specification of pref-
erences using SOUP. Additionally, Chapter 6 presents our proposal
validation that consists on the complete definition of a discovery
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scenario from the SWS Challenge1. Particularly, we validated SOUP
using the Logistics Management scenario, that contains several ser-
vice descriptions and user requests contextualized in a transporta-
tion and logistics domain. In the following we use concepts from
these domains to illustrate the different facilities provided by our
model to define preferences.

3.2 AN ABSTRACT UPPER ONTOLOGY OF SERVICES

As discussed before, service descriptions, user requests and pref-
erences should be semantically described at the same detail level.
Therefore, there is a need for the definition of an ontological model
that leverages preference descriptions as first-class citizens in the
discovery and ranking scenario. Moreover, this model has to provide
intuitive and user-friendly facilities to easily define both require-
ments and preferences, so that service descriptions can be matched
with user requests. Furthermore, these facilities have to conform a
sufficiently expressive model so that a user can fully describe any
preference, without being limited by a concrete formalism or repre-
sentation.

In order to specify a preference model, firstly we need to estab-
lish a clear separation between requirements that have to be met,
and preferences that have to be taken into account once require-
ments have been fulfilled. Typically, requirements are hard con-
straints that are used to filter service repositories in the discovery
process, while preferences are used to rank previously discovered
services so that the most appropriate service can be selected after
the ranking process. Therefore, preferences define a strict partial or-
der in our model, providing a framework to compare and rank a set
of services.

Figure 3.1 shows the upper ontology of SOUP, which is repre-
sented using a UML-based notation for OWL ontologies [18] that
we also use throughout the rest of this dissertation. UserRequest
and ServiceDescription are the root concepts in our proposal. On
the one hand, a ServiceDescription describes features provided
by the service itself, using the hasFeature object property to link

1http://sws-challenge.org
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hasPreference

hasFeature

FIGURE 3.1: Upper ontology of services.

corresponding terms about functionality, NFP, input and output pa-
rameters, among others. Listing 3.1 shows an excerpt of an abstract
service description from the logistics scenario using our upper ontol-
ogy, where some of the functional and NFP terms of service :ws1 are
defined. Its graphical representation is also depicted in Figure 3.2,
where namespaces are omitted for the sake of clarity.

LISTING 3.1: Example of an abstract service description.

1 :ws1 a soup:ServiceDescription;
2 soup:hasFeature :transOrder, :basePrice. # among others . . .
3
4 :transOrder a soup:FunctionalTerm;
5 soup:refersTo logistics:TransportOrder.
6 :basePrice a soup:NonFunctionalTerm;
7 soup:refersTo logistics:BasePrice.

On the other hand, a UserRequest is the materialization of user
desires with respect to a particular service request. These desires
are described using requirements and preference terms, which are
linked with the particular UserRequest instance using respectively
hasRequirement and hasPreference object properties. Terms re-
lated with requirements state hard constraints that have to be ful-
filled in order to consider a certain service as a matching candidate
with respect to the user request. For instance, users searching for
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ws1 : ServiceDescription

transOrder : FunctionalTerm basePrice : NonFunctionalTerm

TransportOrder : DomainConcept BasePrice : DomainConcept

hasFeature hasFeature

refersTo refersTo

FIGURE 3.2: Graphical representation of the abstract service.

services usually interpret functionality, service classification terms,
input and output parameters, among others, as requirements on
their desired service. In turn, preferences can be considered as soft
constraints whose degree of fulfillment determine to what extent a
candidate service is preferred against other candidate services that
also fulfill the user requirements. In other words, ranking mecha-
nisms evaluate preference terms in order to obtain the best candidate
service with respect to a user request.

An example of a user request :goalD1 defined within the SWS
Challenge logistics scenario is showcased in Listing 3.2, along with
its graphical representation in Figure 3.3. This request comprises a
complex functional requirement term, which may contain pickup
and delivery time among other information regarding the trans-
portation of clothes, and a preference term referring to the base
price. Precisely, the concrete preference term that should be used
when instantiating this request (a LowestPreference as defined in
§3.3.2) is discussed in Chapter 6.

LISTING 3.2: Example of an abstract user request.
1 :goalD1 a soup:UserRequest;
2 soup:hasRequirement :clothesOrder;
3 soup:hasPreference :lowestPrice.
4
5 :clothesOrder a soup:FunctionalTerm;
6 soup:refersTo logistics:TransportOrder.
7 :lowestPrice a soup:PreferenceTerm;
8 soup:refersTo logistics:BasePrice.

Both requirements and preferences are related with one or more
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goalD1 : UserRequest

clothesOrder : FunctionalTerm lowestPrice : PreferenceTerm

TransportOrder : DomainConcept BasePrice : DomainConcept

hasRequirement hasPreference

refersTo refersTo

FIGURE 3.3: Graphical representation of the abstract user request.

DomainConcept classes, which are referred inside each term, and ex-
plicitly stated using the refersTo object property. Domain concepts
usually represent service properties related to the domain-specific
ontology used for service description, such as functional classifica-
tion, input and output parameters types, process description, be-
havioral parameters, and non-functional properties, with the latter
being specially important for preference terms definition. The above
examples contains some logistics concepts such as a transport order
and the base price for shipping.

Both functional and non-functional requirements specification
has been widely discussed in the literature [74], and SWS frame-
works provide sufficiently expressive facilities to define them, so in
the following we will focus on preference modeling. Moreover, the
validation scenario described in Chapter 6 consists on a series of
user requests whose requirement terms can be simply considered
as property/property value pairs, so it is not necessary to define a
complex hierarchy of functional terms in order to validate the upper
ontology. Nevertheless, concrete applications may extend our upper
ontology adding specialized terms in order to achieve a better inte-
gration with their discovery and ranking mechanisms, as in the case
of our filtered discovery solution presented in Chapter 4.

3.3 SOUP: DEFINING AN ONTOLOGY OF USER

PREFERENCES

Concerning preference terms, Figure 3.4 presents the middle ontol-
ogy of SOUP, where we differentiate atomic preferences from com-
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FIGURE 3.4: Middle ontology of preferences.

posite ones. Thus, a PreferenceTerm can be an AtomicPreference,
or a composition of two preference terms by applying a Composite
Preference. On the one hand, atomic preferences are those which
refers to a single domain concept, and can describe either a qualita-
tive or a quantitative preference that users may have with respect to
the referred service concept. On the other hand, composite prefer-
ences relate different preferences between them, so that a complex
preference can be described using the hasOperands to associate a
composite preference with its components.

As a preference is always related to some domain concepts, it can
be intuitively expressed as “I prefer y rather than x”, where x and y
are instances of those concepts. This relationship between concept
instances can be mathematically interpreted as a strict partial order.
Therefore, we define a preference in general as:

Definition 3.1 - Preference.
Let C be a non-empty set of domain concepts, and dom(C) the set
of all possible instances of those concepts. We define a preference as
P = (C,<P ), where <P⊆ dom(C)× dom(C) is a strict partial order
(irreflexive, transitive and asymmetric), and if x, y ∈ dom(C), then
x <P y is interpreted as “I prefer y rather than x”.
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If we consider a finite set of concept instance pairs (x, y) ∈<P ,
P can be represented as a directed acyclic graph, also known as
Hasse diagrams [23], where each node corresponds to a concept in-
stance, and edges represent the preference relationship <P . This
representation is used to return ranking results in PURI (see Chap-
ter 5). Furthermore, each preference term instance defines its order
depending on the concrete concepts referred (C) and some operand
values that determine the evaluation of the <P relation.

At this level we also add information about which particular
ranking implementation is able to analyze and evaluate a certain
preference term, associating this term with an instance of a Ranking
Mechanism via the isEvaluatedBy object property. Our integrated
ranking solution discussed in Chapter 5 makes use of this infor-
mation in order to dynamically instantiate relevant ranking mecha-
nisms when evaluating a particular preference term. Consequently,
in order to abstract our preference model definition from the ranking
implementation, we intentionally omit this property in the follow-
ing.

Each preference construct derived from the hierarchy shown in
Figure 3.4 is defined both formally and intuitively in the following,
including a motivating example described in natural language from
the SWS Challenge scenario used to validate our proposed model in
Chapter 6, where some of these constructs are applied to describe
that scenario goals. A formal discussion of the algebra of the de-
scribed preference terms can be found at [52], where the foundations
of our model are thoroughly discussed.

3.3.1 Qualitative atomic preferences

The first group of preferences that we present in the following cor-
responds to the qualitative and atomic constructs, which means that
every preference P = (C,<P ) that belongs to this kind refers to
a single domain concept that represents a non-numerical service
property, i.e. |C| = 1. Figure 3.5 shows the available hierarchy
of preference terms belonging to this group. Note that different
terms use specific object properties to associate their operands to
values from the referred domain concept, depending on the seman-
tics of each preference construct. In each example, italics text cor-
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FIGURE 3.5: Qualitative atomic preference terms hierarchy.

respond to service property values or instances used as operands,
while typewriter text are used to denote domain concept classes
that represents those properties.

Definition 3.2 - FavoritesPreference.
Let FAV ⊆ dom(C) be a non-empty, finite set of preferred values for
property C, and x, y ∈ dom(C) property values from two services.
PFAV = (C,<PFAV) is a FavoritesPreference iff

x <PFAV y ⇐⇒ x /∈ FAV ∧ y ∈ FAV

A favorites preference defines a finite set of property values that
constitute the desired values of the referred service property. Thus,
services whose value for that property is a member of the favorite
set are preferred to services that provide any other values from the
property domain. An instance of this preference constructor has
many operands as the cardinality of the favorite values set, associ-
ated using the favors object property.

Example: I prefer services that provide carriageForward as a possible
PaymentMethod.
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Definition 3.3 - DislikesPreference.
Let DIS ⊆ dom(C) be a non-empty, finite set of disliked values for
property C, and x, y ∈ dom(C) property values from two services.
PDIS = (C,<PDIS) is a DislikesPreference iff

x <PDIS y ⇐⇒ y /∈ DIS∧ x ∈ DIS

As opposite to FavoritesPreference, a dislikes preference defines
a set of property values that the service should not provide for the
referred property in order to be preferred to another service whose
property values coincide with any of the values in the associated
dislikes set. In this case, operands are linked to the term via the
disfavors object property.

Example: I prefer SWSs that do not offer refundForDamage as an
available Insurance option.

Definition 3.4 - FavoritesAlternativePreference.
Let FAV ⊆ dom(C) and ALT ⊆ dom(C) be two non-empty, fi-
nite sets of preferred values for property C, and x, y ∈ dom(C)
property values from two services. PFAV,ALT = (C,<PFAV,ALT) is a
FavoritesAlternative Preference iff

x <PFAV,ALT y ⇐⇒ (x ∈ ALT ∧ y ∈ FAV) ∨
(x /∈ FAV ∧ x /∈ ALT ∧ y ∈ ALT) ∨
(x /∈ FAV ∧ x /∈ ALT ∧ y ∈ FAV)

A favorites or alternative preference is an extension of Favorites
Preference, where there are two favorite sets. The second set is
called alternative set, and links their values with the altFavors ob-
ject property. In this case, services whose property values are in the
favorite set are the most preferred. Otherwise their values should
be on the alternative set. If this is not the case either, then the
corresponding services will be undesirable, because their property
values are not member of any of the two sets. Note that favors
property is inherited because of the subclass relationship between
FavoritesPreference and FavoritesAlternativePreference.
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Example: I prefer SWSs whose PaymentMethod is carriagePaid, but if
that is infeasible, then it should be carriageForward.

Definition 3.5 - FavoritesDislikesPreference.
Let FAV ⊆ dom(C) and DIS ⊆ dom(C) be two non-empty, finite sets
of preferred and disliked values for property C, and x, y ∈ dom(C)
property values from two services. PFAV,DIS = (C,<PFAV,DIS) is a
FavoritesDislikesPreference iff

x <PFAV,DIS y ⇐⇒ (x ∈ DIS∧ y /∈ FAV) ∨
(x /∈ DIS∧ x /∈ FAV ∧ y ∈ FAV)

It is also possible to combine a FavoritesPreference with a
DislikesPreference in the following form: a given service property
should have a value on the defined favorite set. Otherwise, values
should not belong to the dislikes set. If none of these two conditions
hold, then the service will be less preferred than others fulfilling
the first or the second condition. Again, subclass relationships bring
both favors and disfavors object properties to this preference term.

Example: I prefer SWSs that provide refundForLoss as an option for
Insurance, but if that is infeasible, then it should not be refundFor-
Damage.

Definition 3.6 - ExplicitPreference.
Let G = {(v1, v2), . . . } be a non-empty, finite directed acyclic graph
that represents “better-than” relationships between its nodes vi ∈
dom(C) corresponding to values of property C, and V be the set of
nodes belonging to G. Then, a strict partial order E = (V,<E) is
induced as follows:

a) (vi, vj) ∈ G =⇒ vi <
E vj

b) vi <
E vj ∧ vj <

E vk =⇒ vi <
E vk

Therefore, given x, y ∈ dom(C) property values from two services,
PE = (C,<PE) is an ExplicitPreference iff:

x <PE y ⇐⇒ x <E y ∨ (x /∈ V ∧ y ∈ V)
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FIGURE 3.6: Quantitative atomic preference terms hierarchy.

An explicit preference can be used to explicitly represent the strict
partial order between a pair of property values. Thus, a directed
acyclic graph comprising better-than relationships can be defined
using several explicit preferences. In this case, prefersMore denote
the value that is considered better than the prefersLess value.

Example: SWSs that provide carriageForward as a possible value for
the PaymentMethod are more preferred than those that provide the
carriagePaid value.

3.3.2 Quantitative atomic preferences

When the referred domain concept of an atomic preference is a nu-
merical property, the quantitative constructs shown in Figure 3.6
may be used to express user preferences on that single property.
Therefore, dom(C) values are numbers that support the total order
operator < and the subtraction −.
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Definition 3.7 - LowestPreference.
Let x, y ∈ dom(C) be values for property C from two services. PL =

(C,<PL) is a LowestPreference iff:

x <PL y ⇐⇒ x > y

A lowest preference does not have any operand, but prefer services
whose property values are as low as possible for the referred service
property.

Example: I prefer SWSs that provide a BasePrice as low as possible.

Definition 3.8 - HighestPreference.
Let x, y ∈ dom(C) be values for property C from two services. PH =

(C,<PH ) is a HighestPreference iff:

x <PH y ⇐⇒ x < y

In opposition to the last constructor, a highest preference is used
when property values should be as high as possible.

Example: I prefer SWSs that provide a PaymentDeadline as long as
possible.

Definition 3.9 - AroundPreference.
Let z ∈ dom(C) be the most preferred value of C. For all values
v ∈ dom(C) we define:

dist(v, z) = |v− z|

Then, given x, y ∈ dom(C) property values from two services, Pz =

(C,<Pz) is an AroundPreference iff:

x <Pz y ⇐⇒ dist(x, z) > dist(y, z)
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An around preference determines which property value is better
by determining the distance of each values to a concrete value pro-
vided as an operand of this preference term using the hasValue ob-
ject property. Thus, services which provide exactly that value are
preferred to the rest of them. If this is infeasible, services with closer
values to the operand are preferred.

Example: I prefer SWSs that provide a BasePrice closer to 180 Euros.

Definition 3.10 - BetweenPreference.
Let [low, up] ∈ dom(C)× dom(C) be the preferred values interval of
C. For all values v ∈ dom(C) we define:

dist(v, [low, up]) =


0 if v ∈ [low, up]

low− v if v < low

v− up if v > up

In this case, given x, y ∈ dom(C) property values from two services,
P[low,up] = (C,<P[low,up]) is a BetweenPreference iff:

x <P[low,up] y ⇐⇒ dist(x, [low, up]) > dist(y, [low, up])

In this case, a service should have values for the referred prop-
erty between a range that are defined as operands in the prefer-
ence (using hasLowerBound and hasUpperBound to actually define
range bounds). If this is not the case, between preferences prefer ser-
vices closer to the interval boundaries, computing the distance as in
around preferences.

Example: I prefer SWSs that provide a PaymentDeadline within the
interval of [45, 60] days.

Definition 3.11 - ScorePreference.
Let f : dom(C) → R be a scoring function and < the usual less-
than order in R. P f = (C,<P f ) is a ScorePreference iff for x, y ∈
dom(C):

x <P f y ⇐⇒ f (x) < f (y)
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FIGURE 3.7: Composite preference terms hierarchy.

A score preference basically defines a scoring function (i.e. a util-
ity function like in [34], linked via hasScoringFunction) that takes
a property value as its argument and returns a real value that can
be interpreted in the following form: the higher the value returned
by the function is, the more preferred the property value entered as
the argument. Note that this kind of preference is not as intuitive
as the rest, but it is still useful when a user wants to express com-
plex grades of preference, using for instance a piecewise function
depending on the property values.

Example: I prefer SWSs with the highest score with respect to Price
PerKg, where the scoring function is defined as:

f (pricePerKg) =
−1
50

pricePerKg + 1

3.3.3 Composite Preferences

The last group of preference constructs are used to compose two
different preference terms by stating the preference relationship be-
tween each component term, which can be also a composite prefer-
ence. Composite preferences refersTo property associate the pref-
erence with the union of the properties referred by component pref-
erences.
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These complex constructors are defined in the following for two
preferences, though they can be trivially generalized to a greater
number of preferences. Consequently, our model does not initially
restrict the number of preference terms that can be composed using
composite preferences.

Definition 3.12 - BalancedPreference.
Let P1 = (C1,<P1) and P2 = (C2,<P2) be two different preferences
defined after C1 and C2 properties, and x = (x1, x2), y = (y1, y2) ∈
dom(C1) × dom(C2) be two value tuples for each property. P =

(C1 ∪ C2,<P1⊗P2) is a BalancedPreference iff:

x <P1⊗P2 y ⇐⇒ (x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2))∨
(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

A balanced preference P combines two preference terms P1 and
P2 using the Pareto-optimality principle, which considers that P1 and
P2 are equally important preferences. Thus, a service SWS1 is bet-
ter than another service SWS2 with respect to P , if SWS1 is better
than SWS2 with respect to P1 and SWS1 is not worse than SWS2

with respect to P2, and vice versa. Intuitively, this preference balance
the fulfillment of each preference component, so that the composite
preference is the average degree of preference taking both compo-
nents into account.

Example: I prefer SWSs that best fit (with an average satisfaction)
the following three (atomic) preferences: the lowest BasePrice, the
PaymentDeadline within the interval of [45, 60] days, and provided
Insurance options of refundForLoss or refundForDamage. See Fig-
ure 6.4 for a graphical instantiation of this example.

Definition 3.13 - PrioritizedPreference.
Let P1 = (C1,<P1) and P2 = (C2,<P2) be two different preferences
defined after C1 and C2 properties, and x = (x1, x2), y = (y1, y2) ∈
dom(C1) × dom(C2) be two value tuples for each property. P =

(C1 ∪ C2,<P1&P2) is a PrioritizedPreference iff:

x <P1&P2 y ⇐⇒ x1 <P1 y1 ∨ (x1 = y1 ∧ x2 <P2 y2)
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In the case of a prioritized preference P that compose two prefer-
ence terms P1 and P2, P1 is considered more important than P2.
Thus, P2 is evaluated only if P1 does not mind (i.e. service prop-
erty values compared using P1 do not return enough information to
rank those services). In this case, operands have to be evaluated in a
specific order, so the hasOperands property should be properly spe-
cialized to account for operands ordering. For instance, the range of
the property could be defined as an RDF list.

Example: I prefer SWSs that provide carriageForward as a possible
PaymentMethod. In the case of equal satisfaction degree on that pref-
erence, I prefer SWSs whose BasePrice are closer to 180 Euros. See
Figure 6.2 for a graphical representation of this prioritized prefer-
ence.

Definition 3.14 - NumericalPreference.
Let f and g be two scoring functions that define score preferences
P f = (C1,<P f ) and Pg = (C2,<Pg), respectively, and F : R×R→ R

be a combining function. For x = (x1, x2), y = (y1, y2) ∈ dom(C1)×
dom(C2), P = (C1 ∪ C2,<rankF(P f ,Pg)) is a NumericalPreference iff:

x <rankF(P f ,Pg) y ⇐⇒ F( f (x1), g(x2)) < F( f (y1), g(y2))

Finally, a numerical preference is the combination of a number of
score preferences using a function that takes the values returned by
the score preferences as its arguments and returns another real num-
ber that gives information about the global preference, considering
all the properties referred by concrete score preferences. Notice that
component preferences must be score preferences in order to prop-
erly compose them using a combining function, which is associated
with this term using the hasCombiningFunction object property.

Example: Provided that f (basePrice) and g(pricePerKg) are already
defined and they range within the interval [0, 1], I prefer SWSs that
have a higher combined score, where the combining function is de-
fined as:

F(basePrice, pricePerKg) = 0.8 ∗ f (basePrice) + 0.4 ∗ g(pricePerKg)
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3.4 APPLICATION TO A WSMO SCENARIO

Our defined preference model can be applied to different scenarios,
because it offers a comprehensive set of facilities to define complex
user preferences. However, particular use cases may need an ex-
tension and/or adaptation of the provided model in order to better
reflect service requests defined in these cases. In order to apply our
model to these scenarios, preference terms can be specialized, cre-
ating a lower ontology that extends the hierarchy of available terms
according to the concrete scenario needs. For instance, §8.3 describes
an extension of different preference facilities to take benefit of spe-
cific ranking mechanisms that provides monitoring properties and
fuzzy logic based preferences.

Furthermore, as the proposed preference model is general and
independent from the formalism, it can be applied as an exten-
sion to current SWS frameworks, such as WSMO, OWL-S, or even
SAWSDL, so that these frameworks can support user preference
modeling. Concerning WSMO, our proposed model can be im-
plemented as an extension of its meta-model. Thus, user requests
from our model corresponds to WSMO goals. Moreover, function-
ality terms are already supported by WSMO capabilities and in-
terfaces, so that user requirements described in our model can be
easily translated into them. However, preference terms have to be
added to the specification of goals. Therefore, in order to apply our
preference model to WSMO, we define a new meta-model class in
Listing 3.3, preferenceGoal, which is a subclass of goal that adds a
hasPreference property where preference terms can be linked with
a user goal.

LISTING 3.3: WSMO goal extended with preferences.

Class preferenceGoal sub-Class goal
hasNonFunctionalProperties type nonFunctionalProperties
importsOntology type ontology
usesMediator type {ooMediator, ggMediator}
requestsCapability type capability
multiplicity = single-valued

requestsInterface type interface
hasPreference type PreferenceTerm
multiplicity = single-valued
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This implementation allows a seamless integration of preference
information in WSMO, without actually modifying the goal meta-
model, because it is only refined. Thus, current WSMO discovery
and ranking proposals could be still applied to extended goals trans-
parently. A different approach can be found in [34], where pref-
erences are included within nonFunctionalProperties section by
using logic programming rules, although it is only applied to pref-
erences defined as utility functions.

Listing 3.4 shows an example of how to describe a WSMO goal
using our proposed implementation to include an instance of our
preference model. Thus, goal D1 from §6.2 can be described in
WSMO easily. The domain ontology for the Logistics Management
scenario is supposed to be properly defined in Logistics.wsml.

LISTING 3.4: Extended goal description with preferences from D1.

namespace {_"GoalD1.wsml#", lm _"Logistics.wsml#",
wsml _"http://www.wsmo.org/wsml/wsml-syntax/",
pref _"http://www.isa.us.es/ontologies/PreferenceModel.wsml#"}

preferenceGoal GoalD1

capability D1requestedCapability
preference D1preference

ontology preferenceOntology

instance D1preference memberOf pref#LowestPreference
pref#refersTo hasValue lm#BasePrice

From the above example, one concludes that transforming user
requests modeled using our proposed ontology for preferences to
a WSMO goal is a straightforward process, provided that the onto-
logical model is expressed in the Web Service Modeling Language
(WSML) [81]. Also notice that the WSML variant used in Listing 3.4
includes new keywords to link specialized goals to preference terms
which are described in a separate ontology.
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3.5 SUMMARY

In this chapter, a highly expressive preference model for SWS discov-
ery and ranking named SOUP is presented. This model, specified
as an ontology, represents a novel approach that leverages prefer-
ence descriptions so that they become a first-class citizen in SWS
frameworks. Additionally, SOUP has been validated using a com-
plex discovery scenario from the SWS Challenge in order to prove
the applicability of our solution to an actual discovery and ranking
scenario (see Chapter 6). The main benefits of our proposed model
can be summarized as follows:

• Expressiveness. The model is sufficiently expressive to de-
scribe complex user desires about requested services, provid-
ing a comprehensive hierarchy of preference terms.

• Intuitive semantics. Based on a strict partial order interpre-
tation of preferences, the model is user-friendly and machine-
readable, so preferences may be automatically processed and
inferred.

• Qualitative and Quantitative. Available constructs allow to
express both qualitative and quantitative preferences, and even
combine them in a general preference term.

• Independence. Our proposal is not coupled with a concrete
SWS solution, neither with a discovery nor ranking mecha-
nism, so it is not limited by the formalisms used to implement
these mechanisms.

• Extensibility. Because the model is presented as an ontology,
it can be further extended with new preference constructs with
ease.

• Applicability. Our model can be implemented within any
SWS framework, extending current proposals to leverage pref-
erence descriptions.

An implementation of our model that extends WSMO goals is
also discussed. This actual application consists in a seamless exten-
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sion of WSMO constructs to allow the definition of complex prefer-
ences, that can be used within any discovery and ranking solution,
provided that it supports or adapts the proposed preference onto-
logical model.

Regarding our thesis on preference modeling, our proposed pref-
erence model achieves a high expressiveness because of the high
number of preference facilities offered to the user. Consequently,
challenge C1 is completely fulfilled, providing a step forward on
state of the art on SWS preference modeling. Furthermore, our pro-
posal obtains a high fulfillment of challenge C2, allowing the ap-
plication and adaptation to any SWS framework and enabling the
seamless integration of discovery and ranking mechanisms.

We have published our contributions on preference modeling in
several conferences. First, we proposed an initial approach to model
user preferences using utility functions in [30]. Concerning model
independence, we presented a hybrid, independent discovery and
ranking solution in [33], while transformations mechanisms from
models to ranking implementation was proposed in [32]. Finally, we
published the definition and validation of SOUP in [38].
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4

OPTIMIZING DISCOVERY AND
RANKING PROCESSES

Simplicity is prerequisite for reliability.

Edsger W. Dijkstra (1930–2002)
Dutch computer scientist

Lightweight solutions to discover and rank services have been
preeminently gaining interest within the community, as
more services are going to be accessible in the near future.

In this chapter, we present an optimization to discovery and ranking
processes, which takes a novel approach to offer a more lightweight
SWS discovery, consisting on an additional filtering stage. The
motivation of our work is further discussed in §4.1. Then, §4.2
presents our proposal to optimize service discovery processes. We
apply it to a concrete OWL-S scenario, discussing our Enhanced
MatchMaking Addon (EMMA) implementation of devised filters
in §4.3. Finally, we outline our thesis contribution with respect to
the relevant challenges in this area in §4.4.
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4.1 INTRODUCTION

The number of currently available services in public repositories1 is
expected to explode in the future, so that billions of services will
be able to be consumed in the Web [24]. Furthermore, currently
available semantic descriptions, in terms of SWS classical ontologies
such as OWL-S or WSMO, present a high complexity for defining
and processing them. Both issues lead to a scenario where discov-
ery mechanisms based on different logic formalisms have scalabil-
ity issues. Consequently, current research efforts focus on provid-
ing improvements and optimizations of those mechanisms, using
lightweight semantic technologies, in order to enhance the usability
of SWS [26, 28].

In order to alleviate the scalability problem on semantic discov-
ery mechanisms, there are some proposals that provide different
techniques to improve the discovery performance, such as index-
ing or caching descriptions [84], using several matchmaking stages
[3], and hybrid approaches that include non-semantic techniques
[54]. Our proposed Enhanced MatchMaking Addon (EMMA) takes
a novel approach of reducing the input for discovery mechanisms,
so that the resulting process is more streamlined, only reasoning
about services which actually matter with respect to the user re-
quest. Thus, services that can be discarded a priori, because they are
not related at all with requirements and preferences stated by the
user, are filtered so that the search space is considerably reduced
prior to actual discovery.

For example, consider the following scenario: a semantic ser-
vice repository contains thousands of services related to logistics
and transportation domains, such as couriers, warehousing, truck
rentals, and packaging. If a user looks for a service that is able to
compute the time needed to deliver some goods to a particular city,
it is not necessary to process the whole repository to discover can-
didate services for the user request, but only consider the portion
of services that are specifically related to couriers domain concepts
that appear on the request, in this case. Thus, using lightweight

1At the moment of writing, seekda! service crawler has indexed 28,606 ser-
vices, ProgrammableWeb has registered 6,990 web APIs, and iServe repository con-
tains 2,193 SWS descriptions.
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technologies to preprocess the repository, the search space can be
reduced in order to save computational resources and improve dis-
covery performance.

For the proposed preprocessing, the user request is analyzed in
order to extract the concepts that are being used in its semantic def-
inition (in the above example, some of them could be Goods, City or
Time, for instance). Then, the repository is filtered so that only ser-
vices that use those concepts or related ones are selected to become
the input for the subsequent discovery process (e.g. services whose
definitions refer to Goods, City and/or Time concepts, in the latter
case).

Filtering is performed in our approach by two different SPARQL
[72] queries, namely Qall and Qsome. The former returns only those
services whose definitions contain all the concepts referred by a user
request, assuming that services have to fulfill every term of the re-
quest in order to be useful for the user. In turn, the latter query
selects service definitions that refer to some (at least one) of the con-
cepts referred by a user request, assuming that those services may
satisfy its requirements and/or preferences to some extent, despite
the missing information.

Our solution does not pretend to provide yet another discov-
ery mechanism, but to introduce a preprocessing filtering stage,
based on an accepted standard, that yields a notable improvement
on heavyweight semantic processes, such as matchmaking of ser-
vices. Furthermore, our proposed filtering does not add a notice-
able amount of execution time with respect to matchmaking, be-
cause SPARQL queries used present a linear complexity on the size
of the dataset and graph patterns included [70].

To the best of our knowledge, there is no proposals on filtering
semantically-enhanced service repositories, but it is acknowledged
that some sort of preprocessing can alleviate discovery and rank-
ing tasks performed on those repositories [3]. Furthermore, our
analysis of current approaches discussed in §2.3 corroborates this
hypothesis. Consequently, in this chapter we thoroughly describe
our thesis contribution with respect to the identified challenge on
discovery optimization (C3). Our solution not only improves SWS
discovery performance, but is applicable on top of any current dis-
covery mechanism, allowing interoperability and integration with
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FIGURE 4.1: Service retrieval architecture including a filtering stage.

existing service repositories. An actual application of EMMA on top
of OWLS-MX hybrid matchmaker is used to illustrate this point in
our carried out experimental study, which is showcased in Chap-
ter 7.

4.2 EMMA: PREPROCESSING REPOSITORIES USING

SPARQL

As discussed before, current SWS discovery and ranking tend to be
complex, heavyweight processes. In this thesis we propose the in-
troduction of a preprocessing stage that improves the performance
of those processes without changing the underlying mechanisms, by
filtering service candidates from a repository with respect to the user
requirements before actual discovery. In the following we present
our abstract proposal and how it can be implemented using stan-
dard, automatically generated SPARQL 1.0 queries.

4.2.1 Filtering a Service Repository

Once services and user requests are well established, the concrete
optimizations that can be used to improve discovery and ranking
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processes has to be defined. Our proposal adds a new preprocessing
stage previous to the discovery process, where the service repository
is filtered, using SPARQL queries as described in §4.2.2. In Figure 4.1
the proposed architecture is showcased. The aim of the filtering
stage is to obtain S ′ services from the original repository S that
may be possibly matched with the user request U in the discovery
process, discarding those ones that cannot fulfill that request at all.

In a general scenario, our proposed filtering stage discriminates
service descriptions depending on whether the concepts referenced
within their terms are present in the user request or not. To this
extent, two different filters can be applied, offering different filtering
levels. On the one hand, one of the filters (Qall) only returns service
descriptions that refer to the whole set of related concepts described
in the user request. On the other hand, a more relaxed filter (Qsome)
returns those service descriptions that refer to some (at least one)
of the concepts that are also referred by the user request. In turn,
services whose features do not refer to any of the related concepts
referred in the requirements of the user request are discarded by
both filters, because in that case it can be inferred that they are not
related to the service the user is searching for.

Using the upper ontology discussed in §3.2 as an abstract vocab-
ulary to help our discussion, we can describe our generic proposal
as follows. Let D = (O,S ,U ) be a 3-tuple that represent a discovery
scenario as outlined in Figure 4.1, where each element of the tuple
is defined in the following.

Definition 4.1 - Domain ontologies (O).
Let Oi be a certain domain ontology whose concepts can be referred
by the user request and service descriptions from a certain discovery
scenario D. We define the set of domain ontologies O as the set of
ontologies that can be used to define the rest of the elements from
that scenario, i.e. the user request and service descriptions.

O = O1 ∪ · · · ∪ On

The set of domain ontologies, in addition to SWS models, are
used to formulate service descriptions that are stored in a concrete
service repository, which defined as follows:
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Definition 4.2 - Service repository (S).
Let OSi be a subset of O. A service repository S is a set of service
descriptions Si that are defined by several terms tij. Each term re-
fer to a set of concepts Cij defined in the ontology OSi . Therefore,
each Si is represented as a set of tuples that relate terms with their
corresponding set of referred concepts:

Si = {(ti1, Ci1), . . . , (tin, Cin) : Ci1 ∪ · · · ∪ Cin ⊆ OSi}

Similarly, a user request contains requirements in the form of
terms that refer to some subset of concepts from a domain ontology

Definition 4.3 - User request (U ).
Assuming OU ⊆ O, we define a user request U as:

U = {(t1, C1), . . . , (tn, Cn) : C1 ∪ · · · ∪ Cn ⊆ OU}

In order to better illustrate previous definitions, consider an sce-
nario where a user is searching for a courier service like the de-
scribed in Listing 4.1. The corresponding user request U is defined
as follows:

U = {(inputTermu1, {logi:Goods}),
(inputTermu2, {geo:City}),
(outputTermu1, {logi:Time})}

This user is going to search for services described in a repository
S that contains three services related to travel domains, such that:

S1 = {(inputTerm11, {geo:City}),
(outputTerm11, {logi:Perishable})}

S2 = {(inputTerm21, {logi:Goods}),
(inputTerm22, {geo:City}),
(outputTerm21, {logi:Time})}

S3 = {(inputTerm31, {logi:Message}),
(outputTerm31, {logi:POBox})}
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Finally, the global domain ontology in this example could be
simply considered as the set of concepts involved in previous de-
scriptions, i.e. O = {geo:City, logi:Perishable, logi:Goods, logi:Time,
logi:Message, logi:POBox}.

Once the elements that conform the discovery scenario D =

(O,S ,U ) are properly defined, the two previously introduced filters
can be used alternatively to obtain a S ′ ⊆ S so that the subsequent
discovery process defined by D′ = (O,S ′,U ) can perform better.

In order to simplify both filters definitions, we denote with CSi

the subset of concepts from OSi that are actually referred in the
terms featured in Si. Equivalently, CU is the subset of referred con-
cepts in U .

CSi = {c ∈ OSi : ∃(tij, Cij) ∈ Si|c ∈ Cij}
CU = {c ∈ OU : ∃(tj, Cj) ∈ U|c ∈ Cj}

Consequently, in the example described before, the correspond-
ing concepts subsets of O for the service descriptions in S and the
user request U are the following:

CS1 = {geo:City, logi:Perishable}
CS2 = {logi:Goods, geo:City, logi:Time}
CS3 = {logi:Message, logi:POBox}
CU = {logi:Goods, geo:City, logi:Time}

The application of both filters to a service repository S return a
subset S ′ depending on the corresponding filter applied. In the case
that S ′ = Qall(S ,U ), the application of the filter returns a subset of
S only containing services whose referred concepts are a superset
of those referred by a user request U , i.e. all concepts referred by the
user request are referred by returned service descriptions.

Definition 4.4 - Qall filter.

Qall(S ,U ) = {Si ∈ S : CU ⊆ CSi}
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In turn, if we identify S ′ = Qsome(S ,U ), the filter selects those
services from S that share at least one referred concept with the user
request U , so the intersection of corresponding referred concepts sets
cannot be empty.

Definition 4.5 - Qsome filter.

Qsome(S ,U ) = {Si ∈ S : CU ∩ CSi 6= ∅}

Results of applying both filters to the described example are, in
the first proposed filter case: Qall(S ,U ) = {S2}, and in the second
case: Qsome(S ,U ) = {S1,S2}.

Although Qall effectively reduces the discovery search space (i.e.
Qall(S ,U ) ⊆ S) and, consequently, processing time, it may exces-
sively restrict the candidate services to be considered for the sub-
sequent discovery process, whose resultant precision and/or recall
may be affected, as we corroborate in our experiments in Chapter 7.
Thus, the proposed Qsome filter relaxes the former one by consider-
ing each concept referenced in the user request as a matching al-
ternative within the set of concepts referred by service description
terms. In this case, service descriptions that do not refer to any
concept used in the user request are discarded for the following dis-
covery stage. In general, Qall(S ,U ) ⊆ Qsome(S ,U ) ⊆ S , so filtering
repositories using Qsome, the amount of services that are considered
for discovery (and ranking) is reduced less than in the Qall scenario.
However, the overall performance improvement is also high, while
it slightly affects the process precision/recall relation, as analyzed
in Section Chapter 7.

4.2.2 A SPARQL Implementation

The abstract description of our proposed filters Qall and Qsome intro-
duced previously can be implemented in any existing SWS discov-
ery scenario using SPARQL SELECT queries. Given a concrete user
request defined using an existing SWS framework, both EMMA fil-
ters can be instantiated as SPARQL queries that select correspond-
ing services from an RDF-based repository, which contains descrip-
tions based on the same SWS framework. In this case, generated
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queries have to be also based on graph patterns ranging over that
SWS framework RDF representation. Nevertheless, to better account
for interoperability some proposals that integrate SWS framework
definitions [21, 69] can also apply our proposed filters.

Queries need to be instantiated for each user request U , because
they depend on the structure of that request. In order to compose
Qall andQsome filters, some analysis has to be done, because concrete
concepts referred by the user request are used in the corresponding
SPARQL query. Specifically, query generation depends not only on
the structure of the ontology our proposal is being applied to, but
also on the concrete instance U of the user request itself, especially
on the concepts referred by its terms (CU ). As a consequence, queries
have to be tailored depending on the corresponding instances man-
aged by each discovery process. However, the generation of Qall and
Qsome SPARQL queries can be done automatically, maintaining the
transparency for the user of our proposed filtering stage within the
discovery process.

On the one hand, Qall filter is implemented as a query that
searches for services whose featured terms refer to every concept
referred in the user request. Thus, for each term and its correspond-
ing concepts, Qall query contains a triple pattern that matches ser-
vice definition triples that contains those concepts, depending on
the structure of the underlying SWS ontology. On the other hand,
Qsome query is generated similarly, but each triple pattern matching
a user request referred concept is grouped with the rest as alterna-
tive patterns, i.e. using the UNION keyword, because Qsome searches
for services whose terms refer to at least one concept referred by the
user request. An application of both queries to OWL-S is presented
in the following section.

4.3 APPLICATION TO EXISTING SWS FRAMEWORKS

Our proposed preprocessing stage can be easily adapted to any SWS
framework, such as WSMO, OWL-S, SAWSDL or WSMO-Lite, so
that it can be virtually included within any discovery process. In
order to do so, elements from the filter definition discussed in §4.2.1
have to be identified with corresponding user requests and service
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descriptions expressed using a specific SWS framework. Therefore,
the SPARQL implementation of both filters contains triple patterns
that refers to services (S), requests (U ), terms and domain concepts
(CSi and CU ) on the target SWS framework. In the following, EMMA,
which is a concrete OWL-S implementation of our filters, is pre-
sented, but Appendix C also discusses another early implementation
to WSMO services.

4.3.1 Applying EMMA to OWL-S

In order to implement an application of our proposed filtering stage
that relies on OWL-S descriptions, they have to be published in a
triple store and queries have to be defined in terms of OWL-S con-
structs. Basically, both service descriptions (S) and user requests (U )
are modeled as ServiceProfiles. A service profile may contain sev-
eral terms that further define features of an OWL-S service function-
ality, such as Inputs, Outputs, Preconditions, and Results. List-
ing 4.1 presents an example OWL-S service profile RDF description.

LISTING 4.1: OWL-S service profile example.
1 :GoodsCityTimeProfile a profile:Profile;
2 profile:hasInput :GoodsInput;
3 profile:hasInput :CityInput;
4 profile:hasOutput :TimeOutput.
5
6 :GoodsInput a process:Input;
7 process:parameterType logi:Goods.
8 :CityInput a process:Input;
9 process:parameterType geo:City.

10 :TimeOutput a process:Output;
11 process:parameterType logi:Time.

This service profile example corresponds to the user request used
in examples from §4.2.1. We only consider input and output terms
from OWL-S user requests, though preconditions and results may
also be analyzed (cf. Appendix C). Although both inputs and out-
puts can be related to the corresponding service profile by using the
abstract hasParameter OWL-S property, we explicitly relate profiles
to inputs and outputs with hasInput and hasOutput properties. In
consequence, our filters are refined to take into account the stated
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difference between inputs and outputs terms in OWL-S descriptions,
so that more accurate results can be obtained.

LISTING 4.2: Qall SPARQL query applied to OWL-S.

1 SELECT DISTINCT ?service
2 WHERE {
3 ?service a service:Service;
4 service:presents ?profile.
5 # ? profile has at least two inputs and an output . . .
6 ?profile profile:hasInput ?inputTerm1.
7 ?profile profile:hasInput ?inputTerm2.
8 ?profile profile:hasOutput ?outputTerm1.
9 # . . . and referred input concepts are Goods . . .

10 {?inputTerm1 process:parameterType logi:Goods}
11 # . . . City . . .
12 {?inputTerm2 process:parameterType geo:City}
13 # . . . and the output concept is Time
14 {?outputTerm1 process:parameterType logi:Time}
15 }

Listing 4.2 and Listing 4.3 presents our proposed Qall and Qsome

filter queries as issued by EMMA, respectively. The identified corre-
spondences between the elements of our abstract filtering proposal
and OWL-S constructs are introduced for both SPARQL queries,
as described in §4.2.2, so that EMMA can directly use them to fil-
ter an OWL-S repository. In this example, both queries have been
generated from the user request U = {(inputTerm1, {logi:Goods}),
(inputTerm2, {geo:City}), (outputTerm1, {logi:Time})}, where their
referred concepts to be matched against service descriptions are:

CU = {logi:Goods, geo:City, logi:Time}

Note that the presented OWL-S application refines the filters pro-
posed in §4.2, taking into account that each type of term in U should
be matched with the corresponding terms from service descriptions
Si. In consequence, CU and CSi sets of concepts are split in two
subsets each, depending on the type of term (input or output), and
compared with the corresponding one to obtain both filters results.
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LISTING 4.3: Qsome SPARQL query applied to OWL-S.
1 SELECT DISTINCT ?service
2 WHERE {
3 ?service a service:Service;
4 service:presents ?profile.
5 # match a l l inputs and outputs of the profile . . .
6 ?profile profile:hasInput ?inputTerms.
7 ?profile profile:hasOutput ?outputTerms.
8 # . . . that refer to some concepts of the user request
9 {?inputTerms process:parameterType logi:Goods}

10 UNION {?inputTerms process:parameterType geo:City}
11 UNION {?outputTerms process:parameterType logi:Time}
12 }

In principle, if RDFS entailment regime were applied to the RDF
dataset of the service repository, making the inferred knowledge
explicit, Qsome could have been written using a more concise and
general approach that does not need to process the user request
instance in order to explicitly reflect its referred concepts. Thus, lines
9 to 11 in Listing 4.3 could be substituted by the following excerpt,
with :reqProfile being the concrete ServiceProfile instance that is
used to look for requested services. However, if we have to account
for inference as considered in §4.3.3 because a basic entailment is
the only available in our querying system, then Qsome as defined in
Listing 4.3 is more convenient.

?inputTerms process:parameterType ?inputConcepts.
?outputTerms process:parameterType ?outputConcepts.
:reqProfile rdf:type service:Service.
:reqProfile profile:hasInput ?reqInputTerms.
:reqProfile profile:hasOutput ?reqOutputTerms.
?reqInputTerms process:parameterType ?inputConcepts.
?reqOutputTerms process:parameterType ?outputConcepts.

4.3.2 Automatic Generation of Filter Queries

Right before the filtering is executed, EMMA has to generate cor-
responding SPARQL queries using OWL-S user requests. Conse-
quently, generation algorithms needs to be applied to the OWL-S
ontology, as discussed in §4.2.2. Essentially, the user request U (de-
fined as a service profile like in Listing 4.1) has to be analyzed to
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obtain the concepts that are referred by each description term (CU ).
The automatic generation of queries can also differentiate terms in
order to get better results with basic entailment regimes.

For the evaluation discussed in Chapter 7, EMMA filtering que-
ries generated from OWLS-TC user requests only take inputs and
outputs into account, though service profiles may contain more in-
formation terms that could be also analyzed to obtain more referred
concepts from the corresponding domain ontology [39]. Therefore,
for each OWLS-TC user request, its service profile is traversed iden-
tifying each input and output, and adding a triple pattern to the
corresponding query to match services with the same referred pa-
rameter types.

4.3.3 Dealing with SPARQL Entailment

If the RDF dataset does not contain subclassing knowledge as ex-
plicit triples, there are two different approaches to deal with the
SPARQL basic entailment regime issues. On the one hand, the im-
plicit knowledge concerning subclasses can be retrieved using a DL
reasoner [43, 80], so that corresponding RDF triples can be added
to the RDF dataset, providing RDFS entailment. As this inferencing
process is time-consuming, it may be executed periodically on the
whole repository to properly update the dataset, in order to mini-
mize its impact on query execution. However, this approach does
not account for the fact that at the moment a query is executed, the
RDF dataset may not contain all the corresponding inferred triples.

On the other hand, queries can be rewritten, explicitly including
subclasses of the concepts referenced in user requests. Thus, a DL
reasoner is executed when generating SPARQL queries for both Qall
and Qsome filters to obtain the related subclasses for each concept
referred in the user request. As a consequence, service descriptions
whose referred concepts are subclasses of user request concepts can
also be returned by our filtering stage, improving the accuracy of
the results.

For instance, the chosen reasoner (Pellet [80] in EMMA imple-
mentation) may infer that Capital instances are also City instances,
because there is a subclass relationship between these classes. Then
both of them can be considered as valid alternatives for a referred
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concept in a service description, if the user is looking for a service
that features a City concept as its input. Thus, an additional pattern
alternative where ?inputTerms refers to a Capital concept have to
be included in line 9 of Listing 4.3. Similarly, Qall queries can also be
modified to take concept subclasses into account. In this case, line
10 of Listing 4.2 have to be modified to the same patterns used in
the Qsome case for City concept, i.e.:

{?inputTerms process:parameterType geo:City}
UNION {?inputTerms process:parameterType geo:Capital}

4.4 SUMMARY

Although Semantic Web query languages are not widely used for
SWS discovery and ranking, they can certainly play a role in these
processes. As discussed in Chapter 2, some authors extend SPARQL
query language to directly support these stages, but our proposal
sticks to the recommendation at the time of writing (1.0), provid-
ing two different filter queries that may be used before actual dis-
covery process in order to reduce the set of available services from
the initial repository. Consequently, the reduced search space fur-
ther improves scalability and performance in discovery and ranking
stages, decreasing the total execution time and memory consump-
tion of these processes, with a contained penalty on precision, recall
and fallout.

In this chapter we only presented EMMA an its application to
OWL-S by means of a prototype implementation. Nevertheless,
Chapter 7 discusses comprehensive evaluation tests that we have
also run, analyzing the actual reduction of the search space. The
conclusions obtained are mainly that our proposal effectively reduce
the search space, obtaining a better performance at a contained loss
on precision. Furthermore, it conforms a generic solution, adaptable
to any SWS framework that a potential user may want to use.

Our proposal of including a (possibly multiple) filtering stage be-
fore the discovery and ranking processes has several benefits in addi-
tion to the already discussed optimization of discovery and ranking
processes by reducing the search space. These additional benefits
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are enumerated in the following:

• Proposed filters are generic, so they can be used no matter
what kind of user request and service descriptions are defined
for each concrete scenario. Corresponding SPARQL queries
can be generated automatically from a given user request.

• Our proposal does not distinguish between types of concepts,
i.e. both functional and non-functional concepts can be used to
filter the repository. In consequence, concepts being used for
both discovery and ranking stages can be considered.

• Filters can be applied to any SWS framework because they are
based only on domain concepts referred by service descrip-
tions and user requests. An application to the OWL-S frame-
work is implemented in EMMA prototype.

• Our filtering stage can be applied to improve any currently
available matchmaking implementation. The actual improve-
ment on the overall discovery performance depends on the na-
ture of the matchmaker, as discussed in Chapter 7.

• Our proposal is based on the current standard query language
for the Semantic Web, i.e. SPARQL 1.0. Nevertheless, our pro-
posed queries do not use any extension to the standard, so
they are compatible with most SPARQL implementations.

In conclusion, our proposal follows the current research trend
on developing lightweight, scalable applications and extensions that
effectively enable the adoption of Semantic Web technologies, by
improving current discovery mechanisms in terms of scalability and
performance, while offering a contained penalty on precision with
respect to classical, heavyweight approaches to SWS matchmaking.
As a consequence, challenge C3 can be completely fulfilled by ap-
plying our filters proposed in this thesis.

EMMA proposal along with the thorough evaluation discussed
in Chapter 7 has been published in [41]. Previously, we had also
published an initial analysis of the requirements of query-based,
optimized discovery mechanisms in [36], and a technical report de-
scribing the application of EMMA to WSMO [39].
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INTEGRATING RANKING
MECHANISMS

Any inaccuracies in this index may be
explained by the fact that it has been
sorted with the help of a computer.

Donald Knuth (1938–)
American computer scientist

O ur third and last contribution proposed in this thesis im-
proves the interoperability and integrability of ranking pro-
cesses. In this chapter we discuss our proposal on inte-

grating different ranking mechanisms using our devised preference
model to enable the needed interoperability. We motivate our ap-
proach with respect to relevant challenges in §5.1. Our solution
architecture is described in §5.2. Then, §5.3 thoroughly discusses
the Preference-based Universal Ranking Integration (PURI) frame-
work implementation to integrate ranking mechanisms. Finally,
§5.4 sums up our proposal and analyzes the fulfillment of the chal-
lenges.
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5.1 INTRODUCTION

In the current service retrieval scenario, where service repositories
are being actively developed [69, 83] in order to foster a growth
in the number of services, ranking mechanisms have been long-
acknowledged to be required for the selection of the best retrieved
offerings with respect to certain user-defined preferences.

Each ranking mechanism usually provides an ad hoc preference
model that constrains the expressiveness of user preferences, which
are tightly coupled with the underlying ranking mechanism applied.
However, in order to allow the expression of complex preferences for
end users, they should be provided with more flexibility to define
preferences, so a service retrieval and ranking system may integrate
several ranking mechanisms, providing a higher number of facili-
ties to state user preferences. Nevertheless, interoperability issues
between preference models may appear, as they cannot be easily
combined, and potential synergies may remain unexploited. For in-
stance, consider a sample user request informally defined as:

“I want to look for services that can deliver some goods to a
city, preferring the cheaper ones though the deadline for the
payment of the service should also be fair enough.”

In this request, the user not only states the desired functionality
(to deliver goods), but their preferences about some service prop-
erties. Concretely, the user is looking for services with the lowest
possible base price, but also considering that the payment deadline
should be fair. After retrieving the compliant services with respect
to functionality, a ranking process have to be performed in order to
rank the result list in terms of the user preferences, simplifying the
selection of the best service for the user. These preferences have to
be expressed in terms of some model of a particular ranking mech-
anism that has to be chosen to perform that process.

On the one hand, the lowest price preference can be modeled us-
ing ranking approaches that allow to define the desired tendency of
a given attribute, usually a NFP of a service, such as base price in the
example. Thus, retrieved services should be ranked according to the
price value in ascending order. NFP-based simple ordering propos-
als [25] or multi-criteria ranking approaches [87, 91] can be directly
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applied to evaluate this kind of preference, offering simpler pref-
erence modeling and more efficient ranking mechanisms. In turn,
more expressive approaches, such as those based on utility func-
tions [34, 58] or fuzzy logics [4, 48], are less suitable because they
present more complex preference modeling facilities, in addition to
a lower ranking performance, in general.

On the other hand, in order to model the preference on the pay-
ment deadline, we need to define what is considered to be a fair time
for the user. For instance, a user may specify that a fair deadline is a
value between 45 and 60 days. In this case, a desired tendency def-
inition (as in the price preference discussed before) cannot be used
because services are preferred if the NFP value is around the de-
sired interval, instead of preferring a minimum or maximum value.
In turn, a fuzzy based ranking mechanism offers means to express
this more complex preference, provided that a fuzzy membership
function is defined such that it determines to which extent a NFP
value can be considered to be fair. Furthermore, mechanisms based
on utility functions can be also applied, as a fuzzy membership func-
tion can be considered as a particular case of a utility function.

Desirably, both preferences should be defined and combined us-
ing a unique preference model, so a single ranking mechanism may
be chosen to help the user to select the best service. However, if a
multi-criteria, tendency based ranking mechanism were chosen, the
second preference on payment deadline could not be properly de-
scribed. In turn, a utility function or fuzzy based ranking approach
could allow to define both preferences, but the first one concern-
ing price would be more difficult to describe by the user using their
provided facilities, and the global performance would be lower, com-
pared to a tendency based approach. From the user’s perspective,
it would be more valuable if they could flexibly choose between ex-
pressiveness and performance for each preference description.

Consequently, in order to perform service ranking with respect
to a combination of both preferences, different ranking approaches
could be used correspondingly for price and payment deadline pref-
erences (e.g. a tendency based and a fuzzy based approach), though
the user should then define each part of their preference using a
different model. However, as preference models cannot be directly
combined at the conceptual level, results from each ranking mech-
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anism have to be manually analyzed so that the user can come up
with a global rank. In consequence, there exist challenges on how
to combine several preference models (C4) so that ranking results
obtained from corresponding ranking mechanisms can be automat-
ically integrated, transparently returning a global rank to the user
(C5).

In this chapter, we present a preference-based ranking integra-
tion framework named Preference-based Universal Ranking Inte-
gration (PURI), which provides a solution to these remaining chal-
lenges, using the SOUP preference model discussed in Chapter 3
as its foundations. Our integrated ranking solution gives the user
control on how the ranking process should be performed, because
user-specified preferences can combine every facility that the inte-
grated ranking mechanisms provide, seamlessly integrating them
and making the most of each ranking approach, according to the
user’s particular needs.

Additionally, a use case application is discussed in Chapter 8 in
order to evaluate PURI applicability. The chosen scenario involves
three different ranking mechanisms, which were developed within
the SOA4All EU FP7 project. These mechanisms are integrated using
PURI framework, adapting our preference model to the particular
needs of this retrieval scenario. Our evaluation shows that PURI
framework allows to fulfill both challenges C4 and C5.

5.2 INTEGRATED DISCOVERY AND RANKING

ARCHITECTURE

As discussed before, there are several interoperability issues be-
tween ranking mechanisms that constrain the usability and flexibil-
ity of semantic service ranking systems, which tend to be designed
eclectically, i.e. allowing the application of a single ranking mecha-
nism that provides a limited set of facilities to define preferences. In
the following we present an integrated solution to semantic service
discovery and ranking that uses our interoperable, highly expres-
sive preference model (see Chapter 3) that allows to integrate several
ranking mechanisms into the service discovery and ranking system.

Applying our interpretation of a user request to the service dis-
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FIGURE 5.1: Integrated SWS discovery and ranking system architec-
ture.

covery and ranking scenario, we can separate terms depending on
their belonging class, so that functionality terms can be forwarded
to the service discovery component, while preference terms will be
solely used by the integrated ranking [31]. Figure 5.1 showcases the
hybrid architecture and workflow of our proposed service discovery
and ranking system.

Firstly, a user sends a request (UR) to the system (1). The ac-
cess interface analyzes the request and differentiates functionality
(FT) and preference terms (PT) depending on their belonging class.
Then, the discovery component searches in a service repository in
order to retrieve matching services (S) with respect to functionality-
related terms (2,3,4). This set of retrieved services are routed by the
access interface component (5) to the preference-based integrated
ranking component (6) that analyzes preference terms previously
identified so that needed ranking mechanisms are executed (7) and
combined (8). Finally, the combined results from integrated ranking
mechanisms are returned as the response to the user (9,10), who ob-
tains a ranking of services (RS) that provide the desired functionality
ordered according to the requested preferences.

Note that in this proposed architecture, EMMA can be also ap-
plied to seamlessly improve the discovery component, filtering the
repository before executing the actual discovery (see Chapter 4). As
the access interface component simply routes relevant terms from
the user request to both discovery (functionality terms) and rank-
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ing (preference terms) components, the following section focuses on
describing how the PURI framework can be applied to develop an
integrated ranking component.

5.3 PURI: A FRAMEWORK TO INTEGRATE RANKING

MECHANISMS

Our integrated preference based ranking solution uses preferences
defined in terms of the SOUP model in order to rank a set of match-
ing services. As discussed in §3.3, each preference term is handled
by a particular ranking mechanism. In order to correctly call each
mechanism, compose the results, and manage in general the inte-
grated ranking process, we propose the use of the PURI framework,
which is described in the following.

PURI framework provides facilities to integrate several ranking
mechanisms by using our common preference model. Essentially,
its integrated ranking solution takes a set of discovered services and
a user preference, which is analyzed in order to obtain the needed
combination of ranking mechanisms that have to be invoked such
that a given set of services is ordered according to the preferences.
The returned service ranking is interpreted as a strict partial order,
because some services may not be able to be compared to each other.

Consequently, PURI is able to manage the whole integrated rank-
ing process, with minimal developing effort, ranking a set of services
with respect to a user preference, based on our proposed model. Its
execution process is as follows:

1. The user preference is analyzed in order to identify the cor-
responding ranking mechanism(s), denoted by its hasRanking
Mechanism relation. In the case that various ranking mecha-
nisms can be used to evaluate the same preference term, PURI
chooses the most suitable according to the user preference
structure, maximizing the execution performance.

2. Appropriate ranking mechanism(s) are dynamically instanti-
ated using an abstract factory. The same mechanism may be
reused if it needs to be instantiated by several terms in a com-
posite preference.
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3. The associated ranking algorithm is executed, which in turn
may need other ranking mechanisms to be instantiated and
executed if the analyzed preference is a composite one. In this
latter case, PURI applies two different workflows depending
on the concrete composite preference being evaluated, in order
to optimize execution times:

a) Balanced and Numerical preference terms fork the rank-
ing execution in order to evaluate their compound pref-
erences in parallel. After all the corresponding ranking
mechanisms finish their execution, results are properly
composed to obtain a strict partial order.

b) Prioritized preference terms sequentially evaluate each
compound term in order, so that the execution is termi-
nated as soon as the evaluation of the corresponding com-
pound term returns an ordering of the retrieved services.

4. The computed ranking is finally returned as a strict partial
order, that can be used to select the best service according to
the original user preference.

There are some key features that the framework offers for de-
velopers to extend and adapt PURI to their particular needs. First
and foremost, ranking mechanisms can be dynamically registered
into an abstract factory that is utilized to transparently instantiate
them when needed to evaluate specific preferences. Secondly, each
ranking implementation can be adapted to handle several preference
terms from the upper model, which in turn can be also extended
to fulfill each scenario particular requirements. Thirdly, compos-
ite preferences default implementation handles atomic preferences
aggregation automatically, whether they are quantitative or quali-
tative ones, because every preference is interpreted as a strict par-
tial order [38]. Finally, the returned ranking can be adapted to any
desired implementation that successfully represents a strict partial
order, though a default implementation, which resembles a directed
acyclic graph, is also provided by PURI.

Consequently, a PURI adaptation that already provides an inte-
grated ranking system can be also extended, integrating additional
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ranking mechanisms to support other preference facilities or provide
higher performance. Although the use case application described in
Chapter 8 focuses on integrating three different mechanisms, an-
other ranking implementation may be added seamlessly, provided
that its preference model is mapped to our common model, and a
corresponding adapter is implemented, so that PURI can properly
access and integrate that mechanism with the existing ones.

5.4 SUMMARY

Current service discovery systems have to perform a subsequent
ranking so that they can return an ordered list of services in terms
of defined preferences, allowing the user to obtain the best service
that fulfills the request. However, ranking mechanisms are coupled
with ad hoc preference models that constrain the expressiveness of
user preferences. Furthermore, these models are not interoperable
in general, so a service retrieval system cannot combine several rank-
ing mechanisms to provide more flexible and expressive facilities to
define preferences.

Our proposal solves those identified issues of SWS discovery and
ranking scenario by applying our highly expressive semantic pref-
erence model that allows the integration of different ranking mech-
anisms adapting the PURI framework, which is presented in this
chapter. Consequently, our contribution offers a series of features
that can be summed up as follows:

• Flexibility. The integration of every available ranking mech-
anisms using a common preference model allows the user to
choose which preference facilities need for each request, with-
out knowing the underlying ranking mechanisms that will be
required to actually rank retrieved services.

• Ease of use. Final users do not need to access each ranking
mechanism separately if they want to combine their results.
A single entry point is provided in our solution for users to
define their preferences and process them to rank the retrieved
services.

80



5.4. SUMMARY

• Efficiency. PURI provides a lightweight integration solution
that does not add any noticeable performance penalty to the
ranking process performed by each mechanism alone.

Furthermore, we performed a validation of our proposal con-
textualized in the SOA4All European R+D project, in addition to
other validation scenarios where PURI have been successfully ap-
plied, such as public administration service infrastructures and pro-
posed scenarios from the SWS Challenge. Particularly, in SOA4All,
we have integrated three different ranking mechanisms, namely ob-
jective multi-valued ranking, NFP-based multi-criteria ranking, and
fuzzy based ranking. Furthermore, our solution to this scenario pro-
vides a single user interface to define requirements and preferences,
simplifying their definition and offering a unique entry point for the
whole service discovery and ranking system, no matter what rank-
ing mechanisms will be needed in the process. Chapter 8 further
describes this application scenario.

Using our preference model and adapting it to a concrete service
retrieval scenario enables interoperability between ranking mecha-
nisms, fulfilling the challenge C4. Moreover, the system integration
features provided by the application of our PURI framework solve
the integrability issues that we identified as challenge C5.

The contributions described in this chapter has been published in
several research conferences and journals. An early approach to the
hybrid architecture discussed in §5.2 was presented in [31]. Then,
several ranking prototypes that integrate logic programming rules
mechanisms with constraint programming techniques were imple-
mented and showcased in [34, 35, 37]. One of these prototypes,
UPSranker, is available at http://www.isa.us.es/upsranker, along
with more information and detailed documentation. Finally, design
and implementation of the PURI framework discussed in §5.3 has
been also presented in [40].
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VALIDATING THE PREFERENCE
MODEL

. . . no matter how many instances of white
swans we may have observed, this does not
justify the conclusion that all swans are
white.

Karl Popper (1902–1994)
Austrian philosopher

W hen evaluating to what extent an ontological model al-
lows the representation of the knowledge from a certain

domain, that model should be validated using widely a-
dopted use scenarios. In this chapter, we present the validation of
SOUP preference model, using a scenario proposed by the research
community in the SWS Challenge, so that we can evaluate if our
proposal meets the requirements identified to describe preferences
in user requests. Thus, §6.1 describes the performed experiments to
evaluate SOUP. Then, §6.2 showcases the validation scenario, prov-
ing that our preference model is suitable to define highly expressive
and complex user preferences. Furthermore, we discuss additional
scenarios that have been used to further validate our model in §6.3.
Finally, §6.4 sums up the chapter discussing the conclusions of our
carried out experiments.
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6.1 INTRODUCTION

Our preference model, described in detail in Chapter 3, has to be
validated in order to determine its applicability and usability in real
use case scenarios. We perform this validation using one of the dis-
covery scenarios from the SWS Challenge1. This Challenge is an
initiative backed by the SWS research community, including mayor
EU funded projects, institutions and enterprises, that provides a se-
ries of use case scenarios to validate and compare SWS mediation,
discovery, ranking and composition mechanisms.

Concerning discovery and ranking use cases, there are three dif-
ferent scenarios on shipment, hardware purchasing, and logistics
domain. Concretely, the chosen one has been the Logistics Manage-
ment scenario, because of its higher complexity and the inclusion
of preference descriptions. It consists on seven logistics service of-
fers, described in natural language in terms of different properties,
such as price, covered geographical areas, operating hours and truck
fleets, among others. Additionally, several service requests (i.e. user
goals) applicable to this scenario are defined, which contain both
hard requirements and user preferences (they are referred as soft
constraints in the scenario) that can be used to choose the most ap-
propriate service (i.e. the best one in terms of preferences) among
those which fulfill hard requirements.

In the chosen scenario, goals B1, C1, D1 and E1 define a vari-
ety of preferences against different service properties, in addition
to describe how preferences should be combined within each goal.
In order to validate SOUP preference model using this scenario, we
provide in the following equivalent instantiations for each of these
goals using the proposed ontology model. Thus, textual descrip-
tions of goals directly extracted from the scenario description are
shown alongside their equivalent representation using the prefer-
ence ontology presented in Chapter 3. For the sake of simplicity,
service properties are included as instances inside the same default
namespace as the goal, though a domain ontology should be exter-
nally defined, covering all the existing properties in the Logistics
Management domain.

1http://sws-challenge.org/
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RQ1 - Pickup date/time: 03/09/2008 18:00
RQ2 - Pickup location: Avinguda Diagonal 338, 08013 , Barcelona (Spain)
RQ3 - Delivery date/time: 04/09/2008 09:30
RQ4 - Delivery location: Calle del General Ricardos 176 , 28025 , Madrid (Spain)
RQ5 - Good: Roman candles (70 mm of inner diameter without flash composition)

Preference - I prefer WSs that provide the following properties:
SC1 - PaymentMethod: carriageForward
SC2 - Insurance : RefundForDamage

goalB1 : UserRequest

rq1 : FunctionalTerm . . . rq5 : FunctionalTerm

preference : BalancedPreference

sc1 : FavoritesPreference sc2 : FavoritesPreference

PaymentMethod : DomainConcept Insurance : DomainConcept

carriageForward : ConceptValue refundForDamage : ConceptValue

hasRequirement hasRequirement
hasPreference

hasOperands hasOperands

refersTo refersTo
refersTo refersTo

favors favors

FIGURE 6.1: Goal B1 description excerpt and its SOUP instantiation.

6.2 VALIDATION WITH THE LOGISTICS SCENARIO

Figure 6.1 presents the instantiation of the goal B1 from the scenario.
The goal as a whole is modeled with an instance of UserRequest,
while each term is instantiated depending on its nature. Thus, re-
quirements about pickup, delivery and transported goods are repre-
sented at the top of the figure. This representation is shown simpli-
fied, because requirements in every goal from the Logistics Manage-
ment scenario are pairs between domain concepts and their required
values. Consequently, in the following instantiated goals, require-
ments are omitted from the representation, though they can be eas-
ily described using functionality terms interpreted as property-value
pairs.

Concerning the preference modeling, goal B1 states that the user
prefers two properties, namely PaymentMethod and Insurance, to
contain certain values, carriageForward and refundForDamage, respec-
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Requirements . . .

Preference - I Prefer WSs that best fit the soft constraint on PaymentMethod. In the case of
equal satisfaction degree, I prefer WSs whose BasePrice are closer to the value expressed
in the soft constraint. Based on the consideration that cheap prices occasionally do imply
lower service quality, I explicitly do not ask for the cheapest base price.

SC1 - PaymentMethod: carriageForward
SC2 - BasePrice: close to 180 Euro

goalC1 : UserRequest

preference : PrioritizedPreference

sc1 : FavoritesPreference sc2 : AroundPreference

PaymentMethod : DomainConcept BasePrice : DomainConcept

carriageForward : ConceptValue oneHundredEighty : NumericalValue

hasPreference
hasOperands hasOperands

refersTo refersTo
refersTo refersTo

favors hasValue

FIGURE 6.2: Goal C1 description excerpt and its SOUP instantiation.

tively2. Both of these soft constraints are considered qualitative pref-
erences that define the favorite values for each property. However,
the preference description do not explicitly express how to compose
those two atomic preferences, so it can be inferred that a balanced
preference can be applied to relate each one, because both atomic
preferences can be considered equally important for the user.

The next goal used to validate our model is shown in Figure 6.2.
In this case, the atomic preferences defined in C1 are instantiated as
a favorites preference and an around preference. Moreover, the prefer-
ence description gives more importance to the favorites preference
on the PaymentMethod property, taking into consideration the pref-
erence about the BasePrice only if services have an equal satisfac-
tion degree when evaluating the first preference. Thus, the most
appropriate composite preference is a prioritized preference, because
its semantics are exactly what the user is looking for in this goal.
Note that, for the sake of clarity, we deliberately omitted the order
of operands for the prioritized preference, though it should be taken

2For each example description, italics text correspond to service property values
or instances used as operands, while typewriter text are used to denote domain
concept classes that represents those properties, as in Chapter 3
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Requirements . . .

Preference - I prefer WSs with a base price lower than 150 Euro. The lower the base price,
the better it is.

BasePrice: less than 150 Euro

goalD1 : UserRequest

preference : LowestPreference

BasePrice : DomainConcept

hasPreference

refersTo

FIGURE 6.3: Goal D1 description excerpt and its SOUP instantiation.

into account using RDF lists, for instance.
Goal D1, which is represented in Figure 6.3, is the most simple

goal of the scenario. There is no composition of atomic preferences,
because it only states that the BasePrice should be as low as pos-
sible. The limit for the price that is included in the scenario is not
necessary in our solution, because the semantics of the lowest prefer-
ence is sufficient in this case to properly rank services with respect
to the stated user preferences. Nevertheless, it is possible to take
that price limit into account by modeling the user preference as a
prioritized preference, where P1 is a between preference on BasePrice
with the interval [0, 150], and P2 is the lowest preference shown in
Figure 6.3.

Finally, the most complex goal of the scenario is shown in Fig-
ure 6.4, where some of the refersTo relations are omitted for the
sake of clarity3. The different atomic preferences are composed us-
ing balanced preferences, because the goal E1 description explicitly
states that the user wants an average satisfaction degree among the
atomic preferences. Notice that SC3 is a balanced preference decom-
posed into two favorites preferences, because it was interpreted that
Insurance property should have both values. If SC3 were modeled
using only one favorites preference with the two values in the favorite
set, then services that supports only one type of insurance would be

3Actually, this relation can be inferred from the type of the operands involved
in each preference.
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Requirements . . .

Preference - I prefer WSs that best fit the three soft constraints. I would like to receive a list
of WSs sorted on the basis of the average satisfaction degree on soft constraints.

SC1 - BasePrice: less than 250 Euro (lower base price preferred)
SC2 - PaymentDeadline: between 45 and 60 days
SC3 - Insurance: refundForLoss and refundForDamage

goalE1 : UserRequest

preference : BalancedPreference

sc1 : LowestPreference

sc2 : BetweenPreference

sc3 : BalancedPreference

sc3a : FavoritesPreference

sc3b : FavoritesPreference

PaymentDeadline : DomainConcept

BasePrice : DomainConcept

Insurance : DomainConcept

fortyFive : NumericalValue

sixty : NumericalValue

refundForLoss : ConceptValue

refundForDamage : ConceptValue

hasPreference
hasOperands

hasOperands

hasOperands

refersTo

hasLowerBound

hasUpperBound

hasOperands

favors

favors

FIGURE 6.4: Goal E1 description excerpt and its SOUP instantiation.

considered equally preferred than those supporting both insurance
values.

6.3 ADDITIONAL VALIDATION SCENARIOS

Ontology model validation may be performed either formally or us-
ing more practical approaches [42]. On the one hand, formal val-
idation is based on model checking techniques and evaluation of
ontology properties. On the other hand, practical approaches ap-
ply use cases, where ontologies are applied to modeling scenarios to
check if they suffice to express all concepts involved in the use case
scenario. These scenarios may be defined synthetically, where the
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research community reach a consensus on a use case definition, or
realistically, using actual use cases from applied projects, mainly.

SOUP validation has chiefly been performed using use cases,
though a formal validation of an analogous preference model is dis-
cussed in [52]. In addition to the complex, synthetical discovery
scenario previously discussed, we have applied our model to differ-
ent real scenarios. Particularly, we successfully adapted our model
to the PLATINA-FAST service trading system that is being imple-
mented for the Regional Administration in Andalusia, Spain. In this
scenario, users should be able to define some preferences concern-
ing dynamic NFP of public services of the Administration. Conse-
quently, our model were successfully applied to allow the definition
of quantitative and composite preferences on those properties.

Moreover, we also apply our SOUP preference model as the
foundations to define both EMMA and PURI proposals. Although
EMMA only applies the upper ontology described in §3.2 to de-
fine the filters, PURI framework allows the adaptation of the whole
preference model to a concrete ranking mechanisms integration sce-
nario. Chapter 8 discusses a particular adaptation of the preference
model to the SOA4All scenario, which also serves the purpose of
further validating our proposal. Concretely, this application scenario
extends some preference facilities to support three different ranking
mechanisms, providing a common preference model to seamlessly
integrate them.

6.4 SUMMARY

In conclusion, the presented validation using a relatively complex
discovery and ranking scenario from the SWS Challenge proves that
SOUP is sufficiently expressive and intuitive, obtaining a high de-
gree of fulfillment of challenge C1. Furthermore, it allows to de-
scribe any kind of user preferences directly, user-friendly, and inde-
pendently of the discovery and ranking technique to apply at a later
stage, resulting in a low coupling degree (C2).

Additionally, the actual evaluation of the described preferences
lead to the expected ranking results that are described in the sce-
nario. This evaluation can be performed applying formal definitions
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of the equivalent preference constructs from [52]. Further valida-
tion may be performed using other scenarios and test cases, such as
the shipment discovery scenario used in [34], or the application to
PLATINA-FAST project. Actually, Chapter 8 discuss another rank-
ing scenario where the system integration is based on the adaptation
of our preference model, serving this application as another real use
case scenario to evaluate the utility of our proposed model.
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7

APPLYING EMMA TO OPTIMIZE
OWL-S MATCHMAKERS

For when one’s proofs are aptly chosen,
Four are as valid as four dozen.

Matthew Prior (1664–1721)
English poet

O ur proposed filters have to be thoroughly analyzed, using ex-
perimental results, in order to corroborate their soundness
and expected benefits of EMMA. Each filter has been tested

in different situations using SME2, measuring several indicators
to determine the actual improvements of our proposed preprocess-
ing stage applied to actual OWL-S matchmakers. In this chapter,
performed experimental evaluation is described in §7.1, while the
obtained results are analyzed in §7.2. Then, §7.3 presents our inter-
pretation and discussion of these results, which validates EMMA.
Finally, in §7.4 we sum up the evaluation of EMMA and its suc-
cess on dealing with our identified challenges. An additional eval-
uation using synthetic WSMO-based scenarios is presented in Ap-
pendix C.
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7.1 INTRODUCTION

In order to experimentally test the suitability and performance of
our filtering proposal, a proper test collection has to be used. There
are some publicly available collections to evaluate service discov-
ery algorithms for OWL-S and SAWSDL services. Particularly, we
evaluate EMMA with respect to the OWL-S Services Retrieval Test
Collection (OWLS-TC v31). This collection contains 1007 OWL-S
service descriptions from different domains, in addition to 29 user
requests (referred as queries) and their corresponding sets of rele-
vant services, so that, for each OWL-S query, the performance and
effectiveness of matchmakers can be evaluated by checking whether
returned services are relevant to the corresponding query or not.

In our experimental prototype of EMMA, SPARQL query execu-
tion was implemented in Java using the Jena Semantic Web Frame-
work. First of all, input OWL-S service files are parsed and pro-
cessed by Jena, which is able to execute SPARQL queries over them.
Then, the results from the query execution are used to filter the list
of services that take part in the subsequent discovery process.

Nevertheless, our proposal cannot be evaluated on its own, be-
cause it does not perform service discovery, but includes a prepro-
cessing stage that filters repositories so that the subsequent service
matchmaking can be improved. Thus, in order to evaluate the actual
impact of proposed filters using OWLS-TC, they have to be tested
on top of an OWL-S service matchmaker, so that the differences be-
tween using filters or directly performing the discovery process can
be analyzed.

The actual evaluation of our prefiltering proposal has been con-
ducted using the SME2 v2.12. SME2 is an open source tool that can
be used to test and compare several SWS matchmakers using the
same test collection (OWLS-TC v3 in our case) as the input for each
matchmaker. The variables measured by SME2 that are used in our
work to compare matchmakers are the following:

• Precision. The proportion of returned services that are actu-
ally relevant for the corresponding query. The more precision

1http://projects.semwebcentral.org/projects/owls-tc/
2http://projects.semwebcentral.org/projects/sme2/
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a query execution presents, the more accurate the answer is.

• Recall. The proportion of the relevance set that is returned by
a query. The more recall a query answer has, the more relevant
services are returned by the corresponding query.

• Fallout. The proportion of non-relevant services retrieved by
a query. In other words, it measures the amount of false posi-
tives returned by the corresponding query with respect to the
complete answer set.

• Query response time. For each query, it measures the time
a concrete matchmaker spends on evaluating that query and
returning the corresponding results, without the initialization
time needed for registering service descriptions.

• Memory usage. Measured samples of the amount of memory
a matchmaker uses during its whole execution time.

Precision, recall and fallout are standard, well-known measures
for evaluating information retrieval techniques [7]. In particular,
SME2 computes precision and fallout using a macro-averaged ap-
proach that sums up the results from all query executions. Thus,
for each query, precision and fallout are measured at equidistant
standard recall values, and then the mean value for these measures
is obtained at each recall level. Nevertheless, the well-known av-
erage precision measure is also computed for each single query, en-
abling performance evaluation regardless of the number of services
returned by the matchmaker. The mean average precision is dis-
cussed, along with the others measures, in §7.2.

Our EMMA prototype implements the IMatchmakerPlugin inter-
face so that it can be plugged into SME2, though it has to be associ-
ated with another matchmaker that is called using the same interface
to actually perform SWS discovery after prefiltering the input. For
evaluation purposes we have chosen some variants of OWLS-MX,
which is a hybrid SWS matchmaker that combines both logic-based
approaches and information retrieval techniques for a high perfor-
mance discovery [54]. Each chosen variant is firstly executed as is,
and then with Qall and Qsome filters on top of it. Thus, the different
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TABLE 7.1: Average query response times and precision.

Matchmaker Avg query response Avg query precision

OWLS-M0 57332 (±1592) ms 49.55 (±6.70) %
+ Qall 1283 (±57) ms 31.62 (±6.20) %
+ Qsome 6333 (±3023) ms 68.13 (±7.49) %

OWLS-MX3 (M3) 58456 (±214) ms 82.96 (±4.50) %
+ Qall 1321 (±61) ms 31.45 (±6.15) %
+ Qsome 5500 (±2810) ms 72.02 (±6.28) %

combinations of a OWLS-MX variant and (possibly) a correspond-
ing filter are compared against each other in order to evaluate the
performance of our proposal in different situations.

For the sake of brevity, in the following we only compare the
performance results of two different OWLS-MX variants, namely
OWLS-M0 and OWLS-MX3 (M3), because the other variants present
similar results to the latter. OWLS-M0 variant is a simple, logic-
based matchmaker that only uses reasoning techniques, while the
OWLS-MX3 (M3) adds text similarity matching to avoid false posi-
tives and improve the precision of the results.

7.2 ANALYZING TESTS RESULTS

Firstly, we analyze the performance improvement obtained by using
our proposed filters before service discovery. Table 7.1 presents a
summary of the evaluation performed where both OWLS-M0 and
OWLS-MX3 (M3) variants are compared in terms of their average
execution time and mean average precision for all OWL-S queries of
the test collection, along with confidence intervals calculated using
a confidence level of 95%. Most query response times are highly im-
proved when using any of the filters, though Qsome filter impact is
lower because it returns more results as shown in Figure 7.1. Note-
worthy, actual filtering time does not affect the overall OWL-S query
response time, because our proposed SPARQL queries can be exe-
cuted in polynomial time by SPARQL implementations [70].

Experimental results show that, on average, response time of
OWLS-M0 is 44.7 times faster if applying Qall filter, and about 9
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FIGURE 7.1: Returned results with respect to the original repository
size.

times faster if Qsome filter is the applied one. OWLS-MX3 (M3)
performance is similarly improved (44.3 times faster with Qall and
10.6 times faster with Qsome). Even though the confidence interval
in Qsome cases is large, in the worst case scenario, the execution is
at least 6.1 times faster when using OWLS-M0 matchmaker, and 7
times faster for OWLS-MX3 (M3).

Despite its high time performance, Qall filtering shows worse
performance in terms of average precision than the rest of the evalu-
ated alternatives, providing an average value of about 31%. In turn,
Qsome shows a better average precision on all the evaluation tests
than Qall . Thus, for logic-based OWLS-M0 variant, Qsome filtering
presents an improvement of about 19% on precision with respect
to the execution of OWLS-M0 with no preprocessing. For OWLS-
MX3 hybrid variant, average precision only drops by 11%, though
response time is considerably faster. Note that average precision
measures have a strong dependency on the concrete query and ser-
vices registered in the repository.

Response time improvements are correlated to the degree of fil-
tering each filter is able to provide. Figure 7.1 presents a logarith-
mically-scaled box plot that analyzes the proportion of services re-

97



CHAPTER 7. APPLYING EMMA TO OPTIMIZE OWL-S MATCHMAKERS

turned for the 29 queries from OWLS-TC with respect to the initial
repository of 1007 services. In general, Qall filter returns a very low
number of services (most queries returning between 0.4 and 1.29%
of the original repository), greatly improving query response time
as discussed before. On the other hand, Qsome filter results vary
between a bigger range, with a median value of 7.05 % of the orig-
inal repository, so the corresponding query response time for each
matchmaker is slightly slower when using Qsome filter than when
using Qall . In particular, some OWLS-TC queries present a lower
filtering degree when using Qsome, causing a noticeable variation on
the response time that explains the larger Qsome confidence interval
shown in Table 7.1. Additionally, the discovery process presents less
initialization time because the number of services to be loaded by
matchmakers is significantly low, especially when Qall filter is ap-
plied.

Furthermore, the performance gain in terms of memory con-
sumption is presented in Figure 7.2, where samples from the exe-
cution of OWLS-MX3 (M3) variant are only showcased, for the sake
of clarity. Results show that filtering the repository leads to a lower
memory usage, because less resources are needed to perform the
actual matchmaking. On average, OWLS-MX3 (M3) needs 1.5 times
less memory if Qsome filter is applied, and 2.8 times less if filtering
with Qall . In conclusion, the use of our proposed filters substan-
tially improves the overall performance of OWLS-MX matchmaker
hybrid variants, both in terms of response time and memory con-
sumption, though the impact on precision, recall and fallout has to
be evaluated.

In order to analyze the penalty on precision and recall, Fig-
ure 7.3 compares the macro-averaged precision of the two discussed
OWLS-MX variants when different filters are applied (i.e. using Qall ,
Qsome, or no filter, respectively). It is observed that when prefiltering
the repository using Qall , both OWLS-MX variants behave similarly.
Precision in this case drops at a high pace as the recall level increases,
performing much worse than the rest of the combinations, though
at the highest recall levels Qall filtering slightly improves precision
over OWLS-M0 (Figure 7.3(a)) without filtering. The low number of
results obtained when filtering repositories using Qall query is the
cause for this low precision.
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FIGURE 7.2: Memory consumption when filtering OWLS-MX3 (M3).
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FIGURE 7.3: Recall-Precision effect when filtering OWLS-MX vari-
ants.
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FIGURE 7.4: Recall-Fallout effect when filtering OWLS-MX variants.

However, Qsome filtering performs reasonably well, with a loss
in precision of at most 29% with respect to the precision obtained
with OWLS-MX3 (M3) variant at high recall levels, as shown in Fig-
ure 7.3(b). Interestingly, the evaluation shows that applying Qsome

filtering to OWLS-M0 variant improves the precision of the answer-
ed set (up to 38% of difference), especially with recall levels over
50%. Thus, the more accurate results obtained by Qsome filtering
help purely logic-based formalisms to find more relevant services,
while avoiding more false positives.

False positives returned by each compared variant, are repre-
sented in Figure 7.4 as fallout. Qsome filtering applied to OWLS-M0
again improves the results when compared to the results of OWLS-
M0 without applying any filter, as shown in Figure 7.4(a). In the case
of OWLS-MX3 (M3) (Figure 7.4(b)) fallout difference when applying
Qsome filtering turns higher as recall level increases, especially from
70% on. As with precision, prefiltering repositories using Qall query
leads to much higher fallout levels, no matter the OWLS-MX variant
used.

Obtained fallout performance results are a consequence of the
prototype implementation of EMMA used to evaluate our proposal
performance using SME2, that requires each query result to be a
ranked list of all the services that were registered in the system.
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Thus, our prototype also includes those services that do not pass
the corresponding filter at the end of the ranked list. Analyzing
filtering results of both queries, if only filtered services are taken
into account when evaluating the fallout for each case, fallout will
drop to less than 7% for Qsome, and 0.02% for Qall filter. Thus, the
amount of false positives in a generic discovery scenario is reduced
by using our prefiltering proposal, in general.

7.3 EVALUATION AND DISCUSSION

As a general conclusion from the performed evaluation, though the
more restrictive Qall filter may be better suited to filter because it re-
duces the size of the service repository to a greater extent, Qsome fil-
ter turns to be more suitable in general because the precision penalty
is negligible while execution time is fairly improved, outperforming
service matchmaking without applying any filter. In turn, Qall filter
scales well in every situation, though the greater loss of precision
have to be considered, so it may only be applied in scenarios with
really large repositories.

Both filters clearly improve the subsequent discovery stage by
reducing the search space for matchmaking algorithms. However,
there is a trade-off between precision, recall, and execution time that
should be evaluated, depending on the concrete scenario, in order to
choose the filter to use. Actually, the current trend in the literature
and real-world applications is to achieve better performance and
usability, by sacrificing precision, recall, or both [28], so our proposal
provides a feasible and efficient solution in this direction.

The main feature of using our proposed filters is that not only
total execution time is very low, but actual filtering is efficiently exe-
cuted, providing a high scalability. Furthermore, the time needed for
registering services for the matchmaking process is also reduced, be-
cause the number of candidate services are minimized after filter ex-
ecution. Consequently, a hybrid architecture can be applied, where
Qall filter is executed in the first place. If after performing service
matchmaking, the obtained results did not present sufficient quality,
Qsome filter could be used in place, executing again the matchmak-
ing process. Note that even in the worst case, i.e. applying both fil-
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ters and the corresponding matchmaking for each filtered repository,
the total query execution time is 7.5 times faster than the OWLS-M0
matchmaking process for the whole service repository, and 8.6 times
faster than OWLS-MX3 (M3). This approach is similar to the Best-
Matches-Only solution proposed in [52], where if the most accurate
results are found (i.e. Qall returns good enough results), they are
used, but in other case fairly appropriate results (i.e. results from
Qsome) may also be useful.

Additionally, another mixed approach may be taken, where both
filters are jointly used before discovery and ranking processes take
part. Thus, Qall may be used to filter services that refers to con-
cepts from the hard requirements of the user request, i.e. terms that
have to be fulfilled in order to consider the corresponding service
as a candidate. Then, Qsome filter can be applied to obtain services
that refers to some of the concepts used in preferences, i.e. terms
that state how candidate services should be ranked after discovery.
Consequently, both filters can be integrated into one that take into
consideration the differences between requirements and preferences
[38].

Concerning the user requests applied in our evaluation, OWLS-
TC v3 only provides information about inputs and outputs. How-
ever, an OWL-S user request may also contain preconditions, results,
functional classification, and non-functional properties, in general.
Our proposal can be seamlessly applied to these different terms of
an OWL-S profile description, or in general to any SWS user re-
quest, because they also refer to concepts from domain ontologies.
For instance, conditional expressions can be simply analyzed in or-
der to obtain which concepts appear inside them. An early proto-
type on filtering WSMO services described in [39] is able to obtain
those referred concepts from conditions and rules described within
a WSMO capability. The evaluation of that approach, which is in-
cluded in Appendix C, presents similar results as the ones presented
in this chapter, with respect to precision and improved performance
of discovery when applying our proposed filters.
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7.4 SUMMARY

In §1.2 we identified a series of challenges that should be taken into
account to improve SWS discovery and ranking. In particular, C3
accounts for optimizing service discovery mechanisms, improving
their performance and scalability, but also independent solutions
from concrete formalisms, user request models, and repositories
C2 (see Appendix C for another evaluation of EMMA applied to
a WSMO-based scenario). The evaluation performed in this chap-
ter shows that EMMA effectively optimizes any available discovery
mechanism, providing a contained penalty on precision and recall
that depends on the chosen filtering approach and the underlying
matchmaking implementation that EMMA is applied to.

Although the evaluation of our proposal has been carried out
using OWLS-MX variants as the underlying service matchmaker,
EMMA can be easily adapted to any matchmaker that implements
SME2 interfaces. An evolution of the prototype implementation that
allows to change the underlying service matchmaker was presented
in the 4th International Semantic Service Selection (S3) Contest in
20103. For this participation, EMMA was re-implemented as a con-
figurable OWL-S matchmaking plug-in compatible with SME2 2.1.1.
Although the contest entry offers a similar precision as the EMMA
prototype evaluated in this chapter, average query response time is
worse than the prototype, because of the way SME2 plug-ins register
the available services. This issue is identified in the S3 Contest 2010
report, so the next version of SME2 application (already available for
this year’s contest) allows the use of prefiltering techniques, such as
our proposed solution.

3http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-2010-summary-report-
v2.pdf
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8

APPLYING PURI TO INTEGRATE
RANKING MECHANISMS

There are two ways of constructing a
software design: one way is to make it so
simple that there are obviously no
deficiencies, and the other way is to make
it so complicated that there are no obvious
deficiencies. The first method is far more
difficult.

Tony Hoare (1934–)
British computer scientist

In order to properly evaluate our solution to integrate ranking
mechanisms, we adapt the PURI framework to a concrete sce-
nario within the SOA4All research project, where three dif-

ferent ranking mechanisms are integrated. We further introduce
our experimental evaluation scenario in §8.1. Then, §8.2 describes
those three ranking mechanisms proposed in SOA4All, motivating
the application of our proposal in this case. We discuss the required
extension of our proposed preference model in §8.3. Implementation
details on how to apply the PURI framework to this use case are
introduced in §8.4, showcasing the prototype implementation of the
SOA4All service discovery and integrated ranking. Finally, in §8.5
we evaluate the success of the application of PURI to the SOA4All
use case, and §8.6 sums up our carried out evaluation and its re-
sults.
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8.1 INTRODUCTION

In the SOA4All FP7 European project1, a fully-fledged, semantically-
enhanced infrastructure to describe, search, compose, and execute
services is proposed to offer effective, scalable, and usable solutions
in an envisioned world of billions of available services [24]. The ser-
vice retrieval and ranking scenario proposed in SOA4All provides
three different ranking approaches, namely objective, multi-criteria
and fuzzy ranking mechanisms [88]. Each approach provides dif-
ferent user interfaces and preference expressiveness depending on
the applied ranking mechanism. As a consequence, a SOA4All user
cannot combine preferences from the three ranking mechanisms of-
fered.

Comparing the three approaches with the challenges identified
in §2.4, we conclude that, though they provide different levels of
expressiveness, there exist interoperability issues between them that
prevent their integration. Furthermore, users cannot choose which
ranking mechanism (or combination of them) should be applied to
different service requests, depending on the expressiveness and per-
formance needed, for instance.

In order to take full advantage of the three developed ranking
mechanisms in SOA4All, our PURI framework was applied to this
scenario, so an integrated ranking was implemented using those
mechanisms, adapting and extending the previously discussed pref-
erence model and developing a single user interface to perform the
service retrieval and ranking scenario as a whole, allowing the def-
inition of preferences based on the common adapted model. In the
following we introduce SOA4All mechanisms and show how we
have applied the PURI framework to integrate them into a single
service discovery and ranking solution.

8.2 SOA4ALL RANKING MECHANISMS

In the subsequent paragraphs we give an overview of the three rank-
ing methods developed in SOA4All. As we show at the end of this

1http://www.soa4all.eu
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section, each approach has benefits and drawbacks in comparison to
the other approaches.

8.2.1 Ontology-based Feature Aggregation for Multi-valued
Ranking

The first approach ranks services based on objective features of Web
services that can be automatically crawled and monitored [82]. For
WSDL services, three independent ranking values are computed.
The values are based on (i) crawl meta-data like the number of re-
lated documents, (ii) verboseness of WSDL documents (especially
documenting parts), and (iii) monitoring data like availability and
response time. These values are then combined with equal weights
to one global rank. For Web APIs, a confidence score of a Web page
describing a Web API is taken into account, only.

The global rank of services is independent of the user prefer-
ences and can be directly derived from the individual scores. Ob-
jective preferences can be applied for typical Web service meta-data,
e.g., the related documents score, since it is mostly valid to pre-
fer services with a high number of documents strongly related to
that service over services with less related documents on the Web.
Further, the WSDL metrics rank favors services with comments and
descriptions in their WSDL service descriptions and the monitoring
rank promotes services with high availability. The confidence score
of a Web API denotes the likelihood of a resource to be a Web API.
Obviously, services with higher values for this score are preferred.
The global rank aggregates the individual values with equal weights.
Then it is normalized to the interval [0, 1], and is finally added as an
additional service property to the service description.

8.2.2 Multi-criteria Ranking based on Non-Functional
Properties

The second approach bases the service ranking on user defined pref-
erences [87]. NFPs in offers and requests are specified by means of
logical rules using terms of given NFP ontologies. The NFP model
of descriptions is showcased in Listing 8.1.
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LISTING 8.1: NFP model for the multi-criteria ranking.
Class nonFunctionalProperty
hasAnnotations type annotation
hasDefinition type axiom

Preferences of a request contain (i) the NFP of interest, (ii) its
importance, (iii) the desired ordering (ascending, descending), and
(iv) instance data of a desired service run. An ontology reasoner
evaluates the rules during query time, e.g., IRIS2 is used to evaluate
WSML rules. The ranking scores for individual properties are nor-
malized and aggregated to a global rank that determines the final
ordering of services.

The novelties of the second ranking approach are the combined
use of ontological representation of NFPs with multiple NFP dimen-
sions and the possibility to justify the computed ranking by the pro-
vision of provenance information [88].

8.2.3 Fuzzy Logic Based Ranking Approach

The third service ranking mechanism advances the expressiveness of
user preferences from the second approach [4]. User preferences and
relationships between NFPs are expressed by a set of fuzzy if-then
rules. The fuzzy logic based ranking mechanism features the fol-
lowing abilities: (i) express vagueness while formulating preferences
using linguistic terms instead of crisp values, (ii) assign crisp prop-
erty values to different categories by specifying overlapping fuzzy
set membership functions that model these categories, and (iii) cre-
ate complex preferences constructed by the combination of simple
terms.

The value range of each property occurring in a preference must
be categorized by a fuzzy set. Either given fuzzy sets are reused or
the user customizes them according to their needs. For instance, in
Figure 8.1 the property PaymentDeadline is modeled by the three
membership functions “short”, “fair”, and “long”, which are speci-
fied by three overlapping trapezoid-shaped fuzzy sets with varying
payment deadline (PD) in horizontal and the degree of membership
(d) between 0 and 1 in the vertical direction.

2http://www.iris-reasoner.org
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FIGURE 8.1: Example of membership functions.

The body of an if-then rule refers to a combination of prop-
erty and fuzzy set pairs. Conjunctions, disjunctions, and negations
are possible. The conclusion specifies the degree of acceptance that
holds for the service if the condition in the rule body holds. For in-
stance, “if PaymentDeadline=fair then acceptance=super” is a valid
rule to favor services offering a fair payment deadline.

Service descriptions can be automatically classified in the fuzzy
sets with a degree of membership information that can be computed
and materialized in advance, independent from a particular request
(fuzzification). Each fuzzy rule of a user preference of a request is
processed in an inferring step and a degree of a rule’s fulfillment
is computed. In the aggregation step, chopped fuzzy sets in the
conclusion of the rules are aggregated. The aggregated fuzzy set
denotes the service rank as a fuzzy set, which is then defuzzified to
a crisp value between 0 and 1 in order to obtain the actual rank [4].

8.2.4 Comparison of Ranking Methods

The first approach (objective) is clearly distinguished by its simplic-
ity. It is similar to Google Web site ranking as the global rank can be
computed off-line and independently from user preferences. There-
fore, the ranking can be further exploited by other components like
other ranking or retrieval mechanisms if top-k algorithms are ap-
plied. That is, the k most promising services (with a high global
rank) are processed exclusively or privileged such that results can
be delivered faster. The downside of the first mechanism is its limi-
tation to a given set of properties that are observable by the crawler
as well as the lacking ability of user customization, i.e. the expres-
siveness of available preferences is constrained.
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The second ranking method (multi-criteria) overcomes the short-
coming of the previous one by providing a preference model and
taking any ontologically defined NFPs into account. This method
provides users simple means to express preferences on ascending
and descending orderings with weighted aggregation into a global
rank. However, this approach relies on the assumption of indepen-
dent property preferences. That is, it cannot be expressed that a
user accepts a higher price if a high quality is offered, for instance.
The limited expressiveness of the preference model is therefore the
motivation for the third method.

Fuzzy if-then preferences have a higher expressiveness. Depen-
dencies between different desired properties as well as desired fuzzy
value ranges can be specified. Further, users can express rather
vague preferences by fuzzy sets. On the downside of this third
approach is the increased computational effort that is required to
compute a ranking, and the complexity of the preference definition.

As a conclusion, each SOA4All ranking mechanism serves a par-
ticular purpose depending on the level of expressiveness and flexi-
bility the user needs when defining preferences for service ranking.
For instance, in order to model the example discussed in §5.1, the
multi-criteria ranking can be used to define and efficiently evaluate
the price preference, whereas the fuzzy approach is useful to express
the preference on the payment deadline. However, the combination
of those two preferences is not possible in this use case, as it has al-
ready been identified in §1.2 as a challenge in SWS ranking. In this
scenario our PURI framework can be applied to overcome the asso-
ciated issues and effectively combine SOA4All ranking mechanisms,
as described in the following.

8.3 PREFERENCE MODEL ADAPTATION

Before instantiating the PURI framework to provide an integrated
ranking solution for the SOA4All use case, the different preference
models offered by each ranking mechanism have to be integrated
into our previously presented common preference model. There-
fore, correspondences between our preference model facilities and
those provided by SOA4All ranking mechanisms have to be identi-
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FIGURE 8.2: SOA4All adaptation of the preference model.

fied. Figure 8.2 shows the extended preference model that supports
SOA4All facilities, where new preference terms with respect to the
basic model described in Chapter 3 are depicted in italics.

In the first case, objective multi-valued ranking is based on met-
rics and derived ranks that can be used to order the retrieved ser-
vices, where the resulting ranking should present at its top services
with higher ranking values for the chosen metric. Consequently, we
simply interpret a preference on a concrete ObjectiveMetric as a
particular case of a HighestPreference that constraints the domain
concept that can be referred to the available monitored metrics. For
instance, a request may contain a preference where the user prefers
services with higher global rank.

Concerning the NFP-based multi-criteria ranking mechanism, its
own preference model allows the user to define the NFP of interest,
which is identified as the DomainConcept that a preference refers to
in our model as depicted in Figure 3.1. Depending on the desired
ordering, the preference can be considered as a Lowest or a Highest
one in the common model, which is extended by including an as-
sociated operand that can be used to define the relative importance
as a float value. This importance value can be used itself to com-
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pose several ascending or descending preferences, because it is used
in the normalization and aggregation stage of this ranking mecha-
nism. Therefore, we added a composite numerical preference called
WeightedPreference that can combine several Lowest or Highest
preferences provided that they define a corresponding importance
value. Note that objective multi-valued ranking metrics can be also
used as the referred NFP so that both ranking mechanisms can be
easily combined using a WeightedPreference.

Finally, fuzzy logic based ranking mechanism provides fuzzy
rules and membership functions as the basic constructs to define
preferences. On the one hand, a fuzzy rule is interpreted as an spe-
cialization of a NumericalPreference whose combining function is
defined by the fuzzy ranking algorithm. A FuzzyRulePreference
contains a premise and a conclusion. Premises may contain fuzzy
logic negations, disjunctions and conjunctions that are also consid-
ered specializations of NumericalPreferences3, as they can com-
bine different fuzzy membership functions. A conclusion also con-
tains a fuzzy membership function that is interpreted as the fuzzy
score of the rule. Furthermore, rules can also be combined in a
FuzzyGoalPreference, that is interpreted as a particular Numerical
Preference, too.

On the other hand, fuzzy membership functions are considered
atomic preferences because they provide means to obtain a fuzzy
score value depending on the value of a referred domain concept,
such as price or payment deadline. In our common model, there ex-
ists a generic preference called ScorePreference that is defined af-
ter a real function that computes the score used to rank services (see
[38]). Therefore, we model fuzzy membership functions as a par-
ticular case of a ScorePreference (denoted as FuzzyMembFunction
Preference in Figure 8.2), whose scoring function is precisely that
membership function.

For instance, the example discussed in §5.1 can be modeled using
the adapted common preference model as follows. In that example
there are two atomic preferences that can be modeled using (1) a
LowestPreference on the base price, as provided by the NFP-based

3In order to simplify Figure 8.2, all fuzzy preference composite construc-
tors (rules, goals, negations, disjunctions and conjunctions) are denoted as
Fuzzy*Preference.
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multi-criteria ranking mechanism; and (2) a fuzzy membership func-
tion (a subtype of ScorePreference), which models the preference
on the fair payment deadline, evaluated by the fuzzy logic based
approach. Furthermore, both atomic preferences can be composed
using a BalancedPreference (directly implemented by PURI), so
that they are considered equally important for the user. A partial
representation of this example described using Turtle [12] is shown
in Listing 8.2.

LISTING 8.2: Excerpt of the adaptation of a user preference.
1 ex:userPreference
2 rdf:type soup:BalancedPreference;
3 soup:hasOperands ex:pricePreference,
4 ex:paymentDeadlinePreference.
5 ex:pricePreference
6 rdf:type soup:LowestPreference;
7 soup:refersTo logistics:BasePrice.
8 ex:paymentDeadlinePreference
9 rdf:type soa4all:FuzzyMembFunctionPreference;

10 soup:refersTo logistics:PaymentDeadline;
11 soup:hasScoringFunction ex:fairMembershipFunction.

8.4 APPLYING PURI TO SOA4ALL INTEGRATED

RANKING IMPLEMENTATION

Starting from the model adaptation discussed in the previous sec-
tion, the actual implementation of the SOA4All integrated ranking
approach involved the application and extension of the PURI frame-
work to develop a holistic solution to service retrieval that allows
the combination of several ranking mechanisms, exploiting syner-
gies and providing a better user experience by offering a single, uni-
fied user interface to the SOA4All service retrieval scenario.

First of all, each ranking mechanism interface was adapted to
PURI ranking API. Essentially, each adapter supports all the corre-
sponding preference terms that are handled by each ranking mecha-
nism. Using a dynamic instantiation, PURI is able to identify which
adapters have to be used to rank a set of retrieved services in terms
of a user provided preference. Furthermore, PURI is also responsi-

113



CHAPTER 8. APPLYING PURI TO INTEGRATE RANKING MECHANISMS

FIGURE 8.3: Screenshot of the preference definition user interface.

ble to orchestrate those adapters in order to combine ranking results
from different ranking mechanisms in the event that composite pref-
erences are specified by the user.

The developed SOA4All integrated ranking was deployed as a
Web service itself, so that it cannot only be easily integrated within
the global SOA4All service retrieval and ranking solution, but also
be used as a standalone component to define preferences based on
the discussed common model for the three ranking mechanisms pro-
posed in SOA4All.

Finally, in order to apply our holistic solution to the SOA4All
use case, it is necessary to put together both service discovery and
integrated ranking implementations, integrating both components
using a common user interface to the global SOA4All service re-
trieval system. A user can first enters criteria in order to filter the
result set. A set of functionality classes from a tree-structured hier-
archy can be selected. Multiple selection are interpreted such that
desired services are member of all selected classes. Furthermore, the
user may refine the desired service functionality with logic expres-
sions describing inputs, outputs, pre-conditions, and effects. The
desired values of NFPs can be constrained, too. Based on these re-
quirements, the SOA4All retrieval component is able to determine
the set of matching service descriptions.

In a second step, the user may specify preferences in order to
rank services. Therefore, as depicted in Figure 8.3, the Web-based
interface guides the user in expressing preferences with minimal
knowledge about the syntax. The preference type (see Figure 8.2) is
chosen from a predefined list and the referred NFP concept as well
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as operands are entered in dedicated text fields. Finally a name is
assigned to the preference that allows to construct composite pref-
erence structures more conveniently. Upon submit, the services are
presented to the user in the ranked order.

8.5 EVALUATION AND DISCUSSION

In order to evaluate if the application of PURI to integrate SOA4All
ranking mechanisms addresses the challenges discussed in §2.4, we
analyze the available ranking mechanisms in terms of those chal-
lenges, as presented in Table 8.1. Furthermore, we also analyzed
the expressiveness of each proposal (C1) in order to evaluate the
model adaptation, which is an additional validation scenario for our
proposed preference model. The integrated ranking approach using
PURI allows the user to define preferences using any of the facili-
ties provided by each ranking mechanism, consequently offering a
higher expressiveness even when compared to the fuzzy based ap-
proach, because of the possibility to combine other mechanisms (see
§8.2 for a comparison of their associated models that justifies their
corresponding expressiveness degrees).

Precisely, this combination leads to a completely interoperable
ranking system based on the common preference model discussed.
Although each ranking mechanism presented semantic models to
define their preferences, the lack of an upper model made difficult
their interoperation at the description level, giving a medium in-
teroperability (C4). Using our common preference model, facilities
from any ranking mechanism can be composed together, exploiting
its synergies and providing the user with more control over the ser-
vice retrieval and ranking process.

At implementation level, both multi-criteria and fuzzy based
ranking mechanisms cannot be easily integrated because of the dif-
ferent underlying formalisms (i.e. they offer a low integrability de-
gree), though the objective ranking can be transparently integrated
with the service retrieval component, retrieving services already or-
dered by the computed global rank, that can be further processed by
any of the other ranking mechanisms. However, the integrated rank-
ing approach implemented using PURI is not only able to integrate
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TABLE 8.1: Comparison between SOA4All ranking approaches.

Ranking Approach C1 C4 C5

Objective Ranking Low Medium Medium
Multi-criteria Ranking Medium Medium Low
Fuzzy based Ranking High Medium Low

Integrated Ranking High High High

the three available ranking mechanisms in a unique service retrieval
and ranking system, but also to orchestrate the ranking execution in
terms of the concrete preferences defined by the user, providing a
high integrability (C5).

Furthermore, as the integrated ranking approach developed us-
ing PURI is based on the three presented SOA4All ranking mecha-
nisms, the integrated ranking performance depends on those mech-
anisms. The orchestration provided by the framework does not add
a significant performance penalty, because it redirects ranking re-
quests to relevant mechanisms, only including a post-processing to
combine results from different ranking mechanisms that simply iter-
ates over those results to obtain the ranking list. As a consequence,
precision and recall of our solution is not affected by the combina-
tion that PURI performs, showing the same results as the obtained
by the execution of single mechanisms separately.

Nevertheless, our proposal presents two particular limitations.
On the one hand, in order to extend the integrated ranking sys-
tem adding other ranking mechanisms, a proper adapter has to be
implemented, possibly extending the preference model so that fa-
cilities provided by new mechanisms are integrated into the com-
mon model. On the other hand, if several ranking mechanisms can
evaluate the same preference term, the user cannot specifically state
which concrete mechanism should be used to rank with respect to
that term. While the former issue can be solved in design time by so-
lution developers, the latter can be considered a particular instance
of a service ranking. Using this interpretation, the different rank-
ing mechanisms should be described as candidate services, so that
they could be ranked according to the user preferences on them. For
instance, a user may prefer to rank services using more expressive
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ranking mechanisms instead of more performing ones.

8.6 SUMMARY

The SOA4All service retrieval scenario serves our proposal as its
main validation, because the adaptation of PURI solved the inter-
operability problem that ranking mechanisms offered by the project
originally presented, fulfilling challenge C4. Initially, the user had
to choose a specific model to define preferences, depending on the
concrete mechanism to be used to rank services. However, the de-
veloped integrated ranking allows the effective combination of the
three available mechanisms expressiveness by means of a common
preference model, which serves as the foundations of a unique user
interface to define user preferences for ranking in the service re-
trieval system. Consequently, the integrability challenge (C5) is also
fulfilled by the presented application of PURI framework.

The prototype implementation of the integrated ranking compo-
nent was developed within the SOA4All project, as an extension
to the originally devised ranking approaches [4]. Moreover, the
evaluation and development of PURI and its SOA4All adaptation
is thoroughly discussed in [40], while source code and a published
demo version can be reached at http://www.isa.us.es/soa4all-
integrated-ranking/.
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CONCLUSIONS AND FUTURE
WORK

We can only see a short distance ahead,
but we can see plenty there that needs to
be done.

Alan Turing (1912–1954)
British mathematician

D iscovery and ranking have been considered key processes
to achieve the vision of SWS, which aims at providing
semantically-aware tools to properly manage the large a-

mount of available knowledge in service repositories. As a conse-
quence, great research effort has been put into SWS discovery and
ranking solutions that effectively retrieve the best services regard-
ing a user request. However, there are several challenges ahead to
improve these processes and allow them to manage large knowl-
edge repositories. Throughout this thesis dissertation we described
three interrelated proposals that improve both discovery and rank-
ing processes, providing a lightweight, integrated solution to fulfill
those identified challenges. In this final chapter, §9.1 sums up main
conclusions, while §9.2 discuss the publications obtained from our
thesis work. Finally, §9.3 identifies remaining research challenges
that are going to be tackled in our future research work.
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9.1 CONCLUSIONS

Current discovery and ranking techniques present a number of is-
sues that render them unusable or difficult to integrate in some sce-
narios where performance, scalability and interoperability are key
points. On the one hand, preference models have to be treated as
first-class citizens in SWS frameworks, and they have to remain in-
dependent from discovery and ranking techniques, in order to allow
them to be interoperable. On the other hand, lightweight approaches
and optimization techniques need to be applied in order to achieve
the Future Internet vision of billions of services that would be able
to be discovered and ranked from distributed service repositories.
The following sentence summarizes our contribution to tackle these
problems:

We provide an independent, lightweight preference model
that serves as the foundation for an optimized and integrated

solution to SWS discovery and ranking.

In this dissertation, we first presented SOUP, a highly expressive
preference ontological model that offers a series of facilities to de-
fine user preferences, independently of the discovery and ranking
mechanisms to be used within a service retrieval scenario. Its intu-
itive semantics, based on strict partial orders, ease the definition of
preferences by users, while providing complex facilities that allows
the combination of atomic preferences. We thoroughly evaluated its
applicability and extensibility, as it is not only validated against sev-
eral use case scenarios, but also conforms the foundations of the rest
of our thesis contributions.

The second contribution discussed consists on an improvement
of discovery processes that filters service repositories before discov-
ery mechanisms are executed, reducing the amount of service de-
scriptions that the matchmaker has to compare with the user re-
quest. We developed a prototype, namely EMMA, that has been
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successfully applied to OWL-S matchmakers using a comprehen-
sive test collection. Our results show that EMMA effectively reduces
discovery execution time, improving performance and scalability of
discovery mechanisms while offering a contained penalty on preci-
sion.

Furthermore, this dissertation showcased another contribution
named PURI, which is an integrated solution to service ranking,
based on our preference model, that enables interoperability and
integration of several ranking mechanisms into a single service re-
trieval system. PURI framework has been applied to a concrete sce-
nario within the SOA4All EU FP7 project in order to evaluate its
benefits. This application allows the seamless combination of three
different ranking mechanisms, providing a single entry point to the
whole service retrieval system.

9.2 PUBLICATIONS

We also want to remark that we have published several technical
papers that cover all the contributions discussed in this dissertation.
Figure 9.1 showcases these publications, that includes 10 technical
papers in both international and national conferences and work-
shops, two research reports including a SOA4All project deliver-
able [4], as well as two contributions to top international journals,
namely Journal of Web Semantics [41], which is in press, and Knowl-
edge-Based Systems [40], which has been conditionally accepted
with minor revisions at the time of writing. These results support
the feasibility and quality of our thesis work. Furthermore, we have
received more than thirty citations to our publications from other
authors, further supporting the relevance of our research. .

9.3 FUTURE WORK

As we have separated our thesis contributions in three major ar-
eas, we have also identified remaining issues and future work for
these three contributions. First, our preference model should be val-
idated using additional scenarios outside the scope of SWS, in order
to generalize the definition of user preferences in other application
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FIGURE 9.1: Publications derived from this thesis.

domain. For instance, Software Product Lines, configuration prob-
lems, and service level agreements are additional scenarios where
there is a need for tools to model user preferences. Furthermore, we
plan to achieve this generalization by adapting and publishing our
preference model following Linked Data principles.

Concerning EMMA, we have also identified its generalization as
future work. In this case we are implementing a generic prototype
that filters large knowledge repositories, such as DBpedia [16], in or-
der to improve query execution over those repositories. Preliminary
results show a considerable improvement after an initial training pe-
riod. Moreover, we plan to continue the development of EMMA as
a SME2 plug-in, so that a new version will be published for the next
S3 Contest.

Finally, PURI can be also applied to integrate ranking mech-
anisms in different scenarios. Specifically, we plan to investigate
how our approach can be applied to the more general ranking prob-
lem in the domain of information retrieval. Additional development
should be done to adapt the available infrastructure after perform-
ing the generalization of the preference model that is also planned
as future work.
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A

CONTRIBUTIONS TO THE
SOA4ALL EU FP7

INTEGRATED PROJECT

Part of this thesis work was developed during our participation
in the Service Oriented Architectures for All (SOA4All) EU FP7
Project, which is a Large-Scale Integrating Project funded by the Eu-
ropean Seventh Framework Programme, under the Service and Soft-
ware Architectures, Infrastructures and Engineering research area1.
SOA4All aims at realizing a world where billions of parties are
exposing and consuming services via advanced Web technology.
Thus, the main objective of the project is to provide a comprehensive
framework that integrates complementary and evolutionary techni-
cal advances (i.e., SOA, context management, Web principles, Web
2.0 and semantic technologies) into a coherent and domain-inde-
pendent service delivery platform [26].

For the last period of this project, our research group entered
the consortium as a partner, in order to adapt our contributions de-
scribed in Part II to the SOA4All scenario. We successfully applied
SOUP preference model and PURI framework to the research per-
formed within the Service Location work package. Chapter 8 de-
scribes that application, whereas SOA4All deliverable D.5.4.3 dis-
cuss more details on our contribution [4]. Moreover, the source
code and implementation of our application has been made available
in http://www.isa.us.es/soa4all-integrated-ranking/. Finally,
we fairly improved our EMMA solution during our participation in
this project, though it could not be applied because of budget limi-
tations.

The validation of a significant part of our thesis under the um-
brella of a major European Integrating Project remarks the sound-
ness and quality of our research work, according to the received

1http://www.soa4all.eu
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feedback of partners and the EU Commission committee that eval-
uated the whole project. Furthermore, our participation has led to
several international contacts and opportunities for further collabo-
rations that put the foundations for our future work after obtaining
the doctorate degree.
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B

SME2 EVALUATION REPORT OF
EMMA

In order to complement the evaluation discussion already presented
in Chapter 7, we reproduce in the following the output of SME2

tests ran using five available variants of OWLS-MX. This evalua-
tion report shows the effects of applying both EMMA filters to each
OWLS-MX variant.

B.1 OWLS-M0
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B.2 OWLS-MX2 (M3)
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B.3. OWLS-MX3 (M3)

B.3 OWLS-MX3 (M3)
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B.4 OWLS-MX3 (STRUCTURE)
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B.5. OWLS-MX TEXTSIM (COS)

B.5 OWLS-MX TEXTSIM (COS)
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C

SPARQL FILTERING FOR
IMPROVING WSMO-BASED

DISCOVERY

An early version of our EMMA filtering solution to improve SWS
discovery were developed using WSMO as the underlying frame-
work. However, our final prototype were implemented as an OWL-S
matchmaker because of the lack of a proper WSMO test collection
and the features provided by SME2 tool.

In this appendix we reproduce our evaluation results that prove
that EMMA can be also applied to different SWS frameworks and
discovery mechanisms than the chosen in Chapter 7. [39] discusses
the WSMO-based solution in detail, including the specific filter def-
initions and mappings from our upper ontology of user requests.

C.1 DEFINING THE EXPERIMENTS

In order to test the suitability and performance of our WSMO-based
proposal, there is a need for a test collection that can be used with
the developed tools. Experiments were conducted within a WSMO
discovery scenario, so services and user requests have to be de-
scribed using WSML. However, a suitable, complex enough test col-
lection of WSML descriptions is not available, so we developed a
method to generate parametrized test collections, which could be
used for performance tests. Thus, several service repositories and
related ontologies were created for the experiments. In order to pop-
ulate these repositories, each service description is generated using
concepts from a Descriptions Logic ontology which contains a sim-
ple hierarchy of disjoint properties. Then, a goal is similarly gener-
ated.

Figure C.1 presents the already discussed discovery scenario that
our experiments are contextualized in. The identified parameters,
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FIGURE C.1: Parameters and output variables of experiments.

shown using boxes, allow to test different situations varying their
values. Each parameter have an influence in one of the input ar-
tifacts for the studied scenario, namely the service repository, the
domain ontology and the user request, represented in Figure C.1
by the dashed arrows. Brief definitions and parameter ranges are
enumerated in the following:

• Repository size (R). The number of services stored in the
repository is a parameter that ranged from 100 to 1,000, with
a step of 100, for a total of 10 different values in the conducted
experiments.

• Domain ontology concepts (O). The number of the domain
ontology concepts, which are doubled as instances of Domain
Concept class from Figure 3.1, can be also parametrized. In
our experiments, this number ranged from 20 to 100 concepts,
incrementing by 20 for each step.

• User request properties (U ). Another parameter that varies in
our tests is the proportion of properties referred by the user
request (i.e. goals), with respect to the previous parameter, i.e.
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the number of available properties defined in the domain on-
tology. Five different values were selected for this parameter,
ranging from 5 percent to 25 percent. Higher values were not
tested because it is unlikely that users define their requests
using a high number of concepts, especially as the domain on-
tology size increases.

• Service properties (S). Similarly, the proportion of properties
referred by service descriptions is also parametrized, ranging
as user request properties from 5% to 25%. As in the previous
case, it is unlikely that services manage a lot of concepts, so it
is not necessary to test higher values for this parameter.

The ontology representing the domain managed by services is
populated with a concrete number of simple concepts (O), depend-
ing on each generated repository (R). These concepts are mutually
disjoint, with the exception of a simple hierarchy that is randomly
created within the ontology: a super-concept is chosen among all
the concepts, and then a random number of concepts are declared
as sub-concepts of the former. A scenario with a larger ontology
represents a repository which could contain more heterogeneous
services, i.e. described services offer many different functionalities.
Moreover, a larger ontology also means a lower discovery perfor-
mance, because its complexity increases.

Goals and services are created after the ontology, by selecting
one concept that is going to be part of a simple post-condition of the
corresponding capability, and, with some additional concepts (up
to U and S , respectively), they are directly included in a refersTo
non-functional property of the element described. Note that con-
cepts from the domain ontology are treated as functional or non-
functional property depending on the case, because our proposal
does not make any distinction between the nature of referred prop-
erties.

Additionally, properties referred by each service and the goal
are selected using two different distributions, each one representing
a different scenario. On the one hand, in the case of an uniform
distribution of service properties, each property defined within the
domain ontology has the same probability to appear in service de-
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scriptions. Thus, this kind of repository reflects a situation where
services may offer many different functionalities. Potentially, each
concept from the domain ontology will be referred by the same num-
ber of services, i.e. the number of different functionalities among ser-
vices in the repository will be approximately the number of concepts
of the ontology.

On the other hand, a power-law distribution is also used to se-
lect which properties are referred by service definitions, so most of
these definitions refers to a few common properties. Concretely, a
Zipf distribution is used because it can be applied to our tested sce-
narios [2]. This distribution is based on the Zipf’s law [94], which
interprets that the frequency of any concept is inversely proportional
to its rank in the frequency table, i.e. the most referred concept will
occur twice as often as the second most referred one, which occurs
twice as often as the following most frequent concept, and so on.
In this case, repositories are fairly homogeneous, i.e. they contain
many services with the same functionality, and there are few differ-
ent functionalities. This scenario may be closer to real-world repos-
itories than uniformly-distributed repositories, because in general
service repositories are focused on a particular domain. However,
larger and more general repositories may fall in between a uniform
and a Zipf distribution of properties referred by their service de-
scriptions, so it is worth to test both extremes.

For each experiment, several output variables have been mea-
sured. In Figure C.1, the following variables are showcased using
dashed boxes, which are connected with dashed arrows to the mea-
sured artifacts and processes:

• Filtering execution times (Tsome and Tall). The SPARQL filter-
ing stage execution time is measured for each corresponding
query, so Tsome contains the execution time in milliseconds of
Qsome, and Tall measures the same for Qall . These times actu-
ally includes both the repository serialization to WSML/RDF
files and the query execution itself.

• Filtered repository size (R′some and R′all). The filtered repos-
itory size is also measured for each query, correspondingly
stored inR′some andR′all variables. These variables can be com-
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pared to R to analyze to what extent the queries have filtered
the original repository.

• Discovery execution time (TDL). After filtering, the discovery
process is performed and its execution time is stored in the
TDL variable. In our experiments, this variable is measured in
three different situations: (1) without filtering, (2) filtering with
Qsome, and (3) filtering withQall , so that time improvement can
be analyzed for each kind of filter.

C.2 ANALYZING TESTS RESULTS

The implemented testing environment is able to generate several test
collections and perform corresponding benchmarking tests at once.
These tests were executed in a machine with Windows XP Profes-
sional SP3, Java 6, 2.4 GHz CPU and 2 GB of RAM. Furthermore, in
order to thoroughly study the benefits of both queries in different
situations, tests were conducted varying the four different parame-
ters as described before.

Each combination of parameter values were used to generate two
test repositories: one using a uniform distribution to pick up service
properties, and the other using a Zipf distribution with 1.0 as its ex-
ponent. The whole generation, filtering and discovery process were
executed 10 times for each parameter combination and distribution,
for a total of 25,000 conducted experiments, measuring each output
variable discussed in §C.1. Experimental results are detailed, ana-
lyzed, and discussed in the following.

C.2.1 Execution Time

Figure C.2 shows Tsome and Tall varying R, O, and S parameters.
1 As R grows, total execution time of queries linearly increases,
while it shows a greater slope as more concepts are present in service
descriptions (higher values for S also confirm that behavior). O
also affects the slope, in addition to a general increase in execution
time as the number of concepts in the ontology rises. The more

1For the sake of clearness, intermediate values for some parameters are omitted
in figures throughout this section.
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FIGURE C.2: Execution time results.

complex relations that can arise by using larger ontologies are the
main reason for that behavior. Furthermore, query execution time
significantly rises with higher values for both parameters.

In every test case, Tsome (represented in Figure C.2 with a contin-
uous line) is longer than Tall (the dash/dot line in the figure). Fur-
thermore, the difference become larger with higher values for all the
three parameters. However, with lower values, both queries tend to
have a similar execution time. Note that for execution time, U does
not affect at all, because they are not directly referred on any query,
so they do not contribute to the complexity of each query execution
(see §C.3 correlations discussion). Moreover, the distribution used
to pick up properties for service descriptions does not affect query
neither Tsome nor Tall .
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FIGURE C.3: Filtering results for Qsome.

C.2.2 Qsome Results

In order to evaluate how Qsome performs, we measured the propor-
tion of services returned by that query execution with respect to the
R value for each experiment. Figure C.3 shows how R′some behaves
depending on S , U , Ø, and the distribution of properties used to
create each repository. As we are showing resulting repository pro-
portions instead of number of services returned, R does not affect
to Qsome performance evaluation, as expected.

In general, Qsome filters at a higher degree when the reposi-
tory follows a uniform distribution of properties. In contrast, Zipf-
distributed repositories are only filtered to some extent when the
proportion of service properties has a low value (5%). As U and S
increases, R′some approaches the number of services in the original
repository (100%). Furthermore, a higher number of U affects more
to the performance decrease of Qsome, because the more properties
are referred by the user, the more services are likely to use one of
them in their descriptions.
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FIGURE C.4: Filtering results for Qall .

Increasing O mainly produces a higher R′some, which means that
very large domain ontologies reduce filter performance. In conclu-
sion, best scenarios for using Qsome are those where U is low, and
there are not many concepts in the domain ontology (a low O) but
they are uniformly distributed among service descriptions.

C.2.3 Qall Results

As in the previous case, R′all with respect to R was measured for
each test collection generated. Results are shown in Figure C.4,
where a completely different behavior fromQsome is depicted. In this
case, as U increases, Qall filters more services (i.e. R′all decreases).
However, a higher S shows a less strict filter. As the nature of Qall
is inclusive, i.e. it looks for services that refer to all the properties of
the user request, more concepts referred by service definitions cause
that it is more likely that a service refers to all the properties of the
user request.

Although Qall filters many more services than Qsome, higher val-
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ues of O or U actually make Qall to return no results. This is
even more noticeable with uniformly-distributed repositories. In
this case, there might be some services in the original repository
that would fulfill user requests to some extent. However, these ser-
vice descriptions are not likely to contain every property of the user
request, so R′all tends to 0. Thus, the best situations for filtering
repositories using Qall query are those where both U and O have
low values.

C.2.4 Discovery Improvement

The actual benefits of using the proposed filters in a discovery sce-
nario is shown in Figure C.5. In this figure, TDL values obtained
when performing discovery after Qsome and Qall filtering are com-
pared with the case where no filtering stage is performed. Due to
the DL discovery implementation used in experiments (Web Service
eXecution Environment (WSMX) lightweight DL discovery), some
parameters (R and O) were fixed in order to get results in a rea-
sonable time: a repository size of 600 service descriptions, and 40
ontology concepts were chosen. Furthermore, TDL without any filter
applied is constant, so the improvement can be measured depend-
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TABLE C.1: Mean and std. deviation, and CI of evaluated variables.

Uniform Zipf

µ σ CI µ σ CI

R′some 63.31% 27.90% ±0.64% 93.99% 12.95% ±0.30%
R′all 0.82% 3.37% ±0.08% 10.85% 21.40% ±0.49%
Tsome 1.27 s 0.77 s ±0.02 s 1.29 s 0.77 s ±0.02 s
Tall 1.06 s 0.57 s ±0.01 s 1.08 s 0.58 s ±0.01 s

ing on the rest of the parameters (namely U and S). Actually, TDL

increases linearly by R, but exponentially by O [44].
When the service retrieval scenario includes Qsome as the choice

for filtering the repository (continuous line), the TDL improvement is
noticeable, especially with lower values for U and S , though in Zipf-
distributed repositories the improve is not so accused. An increase
on both U and S produces a higher TDL in this case.

Finally, a filtering stage that uses Qall before the DL discov-
ery (dash/point line) shows a great improvement with respect to
plain discovery. However, as shown in Figure C.4, with uniformly-
distributed repositories, a low execution time may appear because
Qall returns no results, so the afterwards discovery does. How-
ever, with lower proportion of service and user request properties,
the TDL for this discovery mechanism is only, on average, a 14% of
the plain discovery mechanism applied on a uniformly-distributed
repository, and a 56% on a Zipf-distributed one.

C.3 STATISTICAL ANALYSIS

A complete statistical analysis have been performed on test runs in
order to corroborate our expected results, and to further support the
conclusions obtained from figures shown in this section. A summary
of this analysis is presented in the following.

Main statistical descriptors are shown in Table C.1, for each mea-
sured variable in our experiments, with the exception made for TDL

because it has not been comprehensively tested. The analysis of
these values shows that Qsome returns 63.31% of the services on av-
erage if their properties are distributed uniformly, though its high
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TABLE C.2: Pearson correlations between evaluated parameters.

Uniform Zipf

R O U S R O U S
R′some 0.000 0.524 0.560 0.561 0.000 0.511 0.241 0.415
R′all -0.003 -0.313 -0.321 0.141 0.000 -0.202 -0.618 0.345
Tsome 0.661 0.620 0.019 0.295 0.670 0.616 0.019 0.291
Tall 0.692 0.642 0.002 0.229 0.700 0.630 0.006 0.231

standard deviation is caused because of Qsome performance depends
a lot on the repository parameters. The higher mean value of a Zipf-
distributed repository shows that Qsome does not filter so much in
that case. On the other hand, Qall performs better, meaning that
it filters on average more than Qsome. Additionally, Qall also filters
more when service properties are uniformly distributed (it returns
0.82% of the original repository), in contrast to the case of a Zipf dis-
tribution (10.85%), though it could still be considered a good enough
result.

Concerning execution time, values are very similar among the
cases presented in Table C.1, with Qsome lasting about 0.21 seconds
more than Qall . In this case, we can conclude with a high confidence
that, on average, Qsome execution has a penalty time of at most 2.04
seconds (µ + σ). However, note that this time includes the RDF se-
rialization needed to use SPARQL with our test repository, so if the
repository used allowed to be directly accessed in RDF, that penalty
time could be significantly shorter.

Very narrow confidence intervals (CI), computed using a 99%
confidence level, shows that, for every variable, mean values can be
considered to be robust enough, so they can be used to summarize
our experimental results. Thus, if our proposed filters were applied
to real scenarios modeled like our test collections, the performance
could be predicted by our presented results.

Table C.2 shows the two-tailed Pearson-coefficient values calcu-
lated between the evaluated variables and the parameters of each
test scenario, as described in §C.1. Values written in bold face mark
those p-values that give a correlation with a 99% significance. Thus,
in the first two rows, R′some and R′all are correlated with O, U and
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S . However, U is more important (i.e. has a higher correlation) for
Qsome performance in a uniformly-distributed repository than for
Qall , though it is the other way around in a Zipf-distributed repos-
itory. Execution times for both queries (Tsome and Tall) depends on
R, O and S , according to the p-values shown in Table C.2.

C.4 DISCUSSION

As a general conclusion from the performed tests, the more specific
query (Qall) is better suited to filter and reduce the size of the ser-
vice repository, so it clearly improve the subsequent discovery stage
by reducing the search space for matchmaking algorithms. Further-
more, it scales well in every situation, providing even better pre-
cision in proportion when the service repository contains a higher
number of services.

However, in certain scenarios, where flexibility and soft matching
are a concern, the more generic query (Qsome) may be more suitable.
The higher time penalty must be taken into consideration, both in
the filtering and the discovery stage, because of the less reduced
search space, though it still improves the performance of discovery
and ranking processes. Thus, there is a trade-off between precision
or recall that should be evaluated depending on the concrete sce-
nario. Actually, the current trend in the literature and real-world
applications is to achieve better performance and usability, by sacri-
ficing precision, recall, or both[28], so our proposal provides a feasi-
ble and efficient solution in this direction.

The main feature of using our proposed queries is that the time
penalty is very low, so a hybrid approach may be taken, where
both queries are used successively before discovery and ranking pro-
cesses take part. Firstly, Qall may be executed, and if some results
are returned, they are directly injected into the discovery and rank-
ing process. However, if no results are returned by Qall , the more
generic Qsome query is executed and its results are used in the sub-
sequent discovery and ranking process. This approach is similar to
the Best-Matches-Only solution proposed in [52], where if the most
accurate results are found (i.e. Qall returns results), they are used,
but in other case fairly appropriate results (i.e. results from Qsome)
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can be useful.
Finally, if the execution time of the filtering stage is analyzed,

actual query execution time is significantly lower than the WSM-
L/RDF serialization (approximately 1 millisecond on average), an it
is not so affected by the variation of the parameters defined in the
experiment. Consequently, our proposed filtering stage could be fur-
ther optimized by serializing repositories to RDF before performing
that filtering.
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DAML DARPA Agent Markup Language. 19
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OWL-S OWL Ontology of Services. xix, xxi, 7, 18–20, 25, 27, 28, 36,
52, 57, 58, 65–68, 70, 71, 93, 94, 96, 102, 103, 123, 135, see OWL

PURI Preference-based Universal Ranking Integration. xix, xxi, 16,
42, 73, 76, 78–81, 91, 105, 106, 110, 113, 115–117, 123, 124, 127

QoS Quality of Service. 9, 19–21, 23, 27
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XML eXtensible Markup Language. 5, 20

XSD XML Schema Definition Language. see XML

150



BIBLIOGRAPHY

[1] Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Alle-
mang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Pe-
ter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber,
and Philippe Cudré-Mauroux, editors. The Semantic Web, 6th
International Semantic Web Conference, 2nd Asian Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-
15, 2007, volume 4825 of Lecture Notes in Computer Science, 2007.
Springer. ISBN 978-3-540-76297-3. 157, 161

[2] Lada A. Adamic and Bernardo A. Huberman. Zipf’s law and
the Internet. Glottometrics, 3(1):143–150, 2002. 138

[3] Sudhir Agarwal, Martin Junghans, Olivier Fabre, Ioan Toma,
and Jean-Pierre Lorre. D5.3.1 First Service Discovery Prototype.
Deliverable D5.3.1, SOA4All, 2009. 25, 58, 59

[4] Sudhir Agarwal, Martin Junghans, Barry Norton, and
José María García. D5.4.3 Second Service Ranking Prototype.
Deliverable D5.4.3, SOA4All, 2011. 75, 108, 109, 117, 123, 127

[5] Rakesh Agrawal and Edward L. Wimmers. A framework for
expressing and combining preferences. In Weidong Chen, Jef-
frey F. Naughton, and Philip A. Bernstein, editors, SIGMOD
Conference, pages 297–306. ACM, 2000. ISBN 1-58113-218-2. 9

[6] Grigoris Antoniou and Frank van Harmelen. A semantic web
primer. MIT Press, 2nd edition, 2008. ISBN 978-0-262-01210-2. 4

[7] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999. ISBN
0-201-39829-X. 95

[8] Luciano Baresi, Chi-Hung Chi, and Jun Suzuki, editors. Service-
Oriented Computing, 7th International Joint Conference, ICSOC-
ServiceWave 2009, Stockholm, Sweden, November 24-27, 2009. Pro-

151



BIBLIOGRAPHY

ceedings, volume 5900 of Lecture Notes in Computer Science, 2009.
ISBN 978-3-642-10382-7. 159, 161

[9] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger,
R. Hull, M. Kifer, D. Martin, S. Mcilraith, D. Mcguinness,
J. Su, and S. Tabet. Semantic web services framework (SWSF)
overview. Technical report, World Wide Web Consortium,
September 2005. 7

[10] Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and
Manolis Koubarakis, editors. The Semantic Web: Research and
Applications, 5th European Semantic Web Conference, ESWC 2008,
Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, volume
5021 of Lecture Notes in Computer Science, 2008. Springer. ISBN
978-3-540-68233-2. 157, 161

[11] Christian Becker, Kurt Geihs, and Jan Gramberg. Representa-
tion of Quality of Service Preferences by Contract Hierarchies.
In Elecktronische Dienstleistungswiltchatt und Financial Engineer-
ing, 1999. 9

[12] David Beckett and Tim Berners-Lee. Turtle - terse rdf triple
language. Team submission, W3C, 2011. 113

[13] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey, and
Farouk Toumani. Semantic reasoning for web services discov-
ery. In WWW Workshop on E-Services and the Semantic Web, 2003.
18, 22, 23, 29

[14] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic
Web. Scientific American, 284(5):34–43, 2001. 4

[15] A. Soydan Bilgin and Munindar P. Singh. A daml-based reposi-
tory for qos-aware semantic web service selection. In ICWS IEE
[47], pages 368–375. 19, 22, 23

[16] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer,
Christian Becker, Richard Cyganiak, and Sebastian Hellmann.
Dbpedia - a crystallization point for the web of data. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 7(3):
154–165, 2009. 124

152



BIBLIOGRAPHY

[17] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer,
Michael Champion, Chris Ferris, and David Orchard. Web ser-
vices architecture. Working group note, World Wide Web Con-
sortium, February 2004. 5

[18] Saartje Brockmans, Raphael Volz, Andreas Eberhart, and Pe-
ter Löffler. Visual modeling of owl dl ontologies using uml.
In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen, editors, International Semantic Web Conference, vol-
ume 3298 of Lecture Notes in Computer Science, pages 198–213.
Springer, 2004. ISBN 3-540-23798-4. 37

[19] Christoph Bussler, Dieter Fensel, and Alexander Maedche. A
conceptual architecture for semantic web enabled web services.
SIGMOD Record, 31(4):24–29, 2002. 7

[20] Alessio Carenini, Dario Cerizza, Marco Comerio,
Emanuele Della Valle, Flavio De Paoli, Andrea Maurino,
Matteo Palmonari, and Andrea Turati. Glue2: A web service
discovery engine with non-functional properties. In Claus
Pahl, Siobhán Clarke, and Rik Eshuis, editors, ECOWS, pages
21–30. IEEE Computer Society, 2008. ISBN 978-0-7695-3399-5.
24, 25, 26

[21] Yassin Chabeb, Samir Tata, and Djamel Belaïd. Toward an in-
tegrated ontology for web services. In Mark Perry, Hideyasu
Sasaki, Matthias Ehmann, Guadalupe Ortiz Bellot, and Oana
Dini, editors, ICIW, pages 462–467. IEEE Computer Society,
2009. 27, 28, 30, 65

[22] Jan Chomicki. Preference formulas in relational queries. ACM
Trans. Database Syst., 28(4):427–466, 2003. 10

[23] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices
and Order (2. ed.). Cambridge University Press, 2002. ISBN 978-
0-521-78451-1. 42

[24] John Davies, John Domingue, Carlos Pedrinaci, Dieter Fensel,
Rafael González-Cabero, Morgan Potter, and Marc Richardson.
Towars the open service web. BT Technology Journal, 26(2), feb
2009. 58, 106

153



BIBLIOGRAPHY

[25] Glen Dobson, Russell Lock, and Ian Sommerville. Qosont: a qos
ontology for service-centric systems. In EUROMICRO-SEAA,
pages 80–87. IEEE Computer Society, 2005. ISBN 0-7695-2431-1.
19, 20, 22, 23, 74

[26] John Domingue, Dieter Fensel, and Rafael González-Cabero.
Soa4all, enabling the soa revolution on a world wide scale. In
ICSC, pages 530–537. IEEE Computer Society, 2008. 58, 127

[27] Joel Farrell and Holger Lausen. Semantic annotations for WSDL
and XML Schema. Technical report, World Wide Web Consor-
tium, August 2007. 7, 36

[28] Dieter Fensel. The potential and limitations of semantics ap-
plied to the future internet. In Joaquim Filipe and José Cordeiro,
editors, WEBIST, pages 15–15. INSTICC Press, 2009. ISBN 978-
989-8111-81-4. 58, 101, 146

[29] Peter C. Fishburn. Utility theory for decision making. Wiley, 1970.
9

[30] José María García, David Ruiz, and Antonio Ruiz-Cortés. On
user preferences and utility functions in selection: A semantic
approach. In Elisabetta Di Nitto and Matei Ripeanu, editors,
ICSOC Workshops, volume 4907 of Lecture Notes in Computer Sci-
ence, pages 105–114. Springer, 2007. ISBN 978-3-540-93850-7. 12,
55

[31] José María García, David Ruiz, Antonio Ruiz-Cortés, Octavio
Martín-Díaz, and Manuel Resinas. An hybrid, qos-aware dis-
covery of semantic web services using constraint programming.
In Krämer et al. [56], pages 69–80. ISBN 978-3-540-74973-8. 14,
77, 81

[32] José María García, David Ruiz, Antonio Ruiz-Cortés, and
José Antonio Parejo. Qos-aware semantic service selection: An
optimization problem. In SERVICES I, pages 384–388. IEEE
Computer Society, 2008. ISBN 978-0-7695-3286-8. 9, 12, 55

[33] José María García, David Ruiz, Antonio Ruiz-Cortés, and
Manuel Resinas. Semantic discovery and selection: A qos-
aware, hybrid model. In Hamid R. Arabnia and Andy Marsh,

154



BIBLIOGRAPHY

editors, SWWS, pages 3–9. CSREA Press, 2008. ISBN 1-60132-
089-2. 12, 55

[34] José María García, Ioan Toma, David Ruiz, and Antonio Ruiz-
Cortés. A service ranker based on logic rules evaluation and
constraint programming. In Flavio de Paoli, Ioan Toma, An-
drea Maurino, Marcel Tilly, and Glen Dobson, editors, NFPSLA-
SOC’08, volume 411 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008. 9, 13, 21, 49, 53, 75, 81, 92

[35] José María García, Ioan Toma, David Ruiz, Antonio Ruiz-
Cortés, Ying Ding, and Juan Miguel Gómez. Ranking semantic
web services using rules evaluation and constraint program-
ming. In IV Jornadas Científico-Técnicas en Servicios Web y SOA
(JSWEB), pages 111–119, Sevilla, Spain, October 2008. ISBN
978-84-691-6710-6. 13, 81

[36] José María García, Carlos R. Rivero, David Ruiz, and Antonio
Ruiz-Cortés. On using semantic web query languages for se-
mantic web services provisioning. In Hamid R. Arabnia and
Andy Marsh, editors, SWWS, pages 67–71. CSREA Press, 2009.
ISBN 1-60132-130-9. 13, 71

[37] José María García, David Ruiz, Pablo Fernandez, and Octavio
Martín-Díaz. Upsranker: Integrando programacion con restric-
ciones y evaluacion de reglas para el ranking de servicios web
semanticos. In V Jornadas Cientifico-Tecnicas en Servicios Web y
SOA - JSWEB 09, pages 275–277, 2009. 14, 81

[38] José María García, David Ruiz, and Antonio Ruiz-Cortés. A
model of user preferences for semantic services discovery and
ranking. In Lora Aroyo, Grigoris Antoniou, Eero Hyvönen,
Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and
Tania Tudorache, editors, ESWC (2), volume 6089 of Lecture
Notes in Computer Science, pages 1–14. Springer, 2010. ISBN 978-
3-642-13488-3. 11, 21, 55, 79, 102, 112

[39] José María García, David Ruiz, and Antonio Ruiz-Cortés.
A lightweight prototype implementation of sparql filters for
wsmo-based discovery. Technical report ISA-11-TR-01, Applied

155



BIBLIOGRAPHY

Software Engineering Research Group, University of Seville,
May 2011. 69, 71, 102, 135

[40] José María García, Martin Junghans, David Ruiz, Sudhir Agar-
wal, and Antonio Ruiz-Cortés. Integrating semantic web ser-
vices ranking mechanisms using a common preference model.
Knowledge-Based Systems, 2012. Under Review. 14, 81, 117, 123

[41] José María García, David Ruiz, and Antonio Ruiz-Cortés. Im-
proving semantic web services discovery using sparql-based
repository filtering. Web Semantics: Science, Services and Agents
on the World Wide Web, 2012. In press. 13, 71, 123

[42] Asunción Gómez-Pérez. Ontology evaluation. In Steffen Staab
and Rudi Studer, editors, Handbook on Ontologies, International
Handbooks on Information Systems, pages 251–274. Springer,
2004. ISBN 3-540-40834-7. 90

[43] Volker Haarslev and Ralf Möller. Racer system description. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors,
IJCAR, volume 2083 of Lecture Notes in Computer Science, pages
701–706. Springer, 2001. ISBN 3-540-42254-4. 69

[44] Volker Haarslev and Ralf Möller. On the scalability of descrip-
tion logic instance retrieval. J. Autom. Reasoning, 41(2):99–142,
2008. 9, 12, 144

[45] Tom Heath and Christian Bizer. Linked Data: Evolving the Web
into a Global Data Space. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011. 4, 5

[46] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. W3c member submis-
sion, World Wide Web Consortium, 2004. 21

[47] Proceedings of the IEEE International Conference on Web Services
(ICWS’04), June 6-9, 2004, San Diego, California, USA, 2004. IEEE,
IEEE Computer Society. 152, 162

156



BIBLIOGRAPHY

[48] Hai Jin, Xiaomin Ning, Weijia Jia, Hao Wu, and Guilin Lu.
Combining weights with fuzziness for intelligent semantic web
search. Knowledge-Based Systems, 21(7):655 – 665, 2008. ISSN
0950-7051. 75

[49] Ralph L. Keeney and Howard Raiffa. Decisions with multiple
objectives: Preferences and value tradeoffs. Cambridge Univ Press,
1993. 9

[50] Christoph Kiefer and Abraham Bernstein. The creation and
evaluation of isparql strategies for matchmaking. In Bechhofer
et al. [10], pages 463–477. ISBN 978-3-540-68233-2. 24, 25, 26

[51] Christoph Kiefer, Abraham Bernstein, and Markus Stocker.
The fundamentals of isparql: A virtual triple approach for
similarity-based semantic web tasks. In Aberer et al. [1], pages
295–309. ISBN 978-3-540-76297-3. 24

[52] Werner Kießling. Foundations of preferences in database sys-
tems. In VLDB, pages 311–322. Morgan Kaufmann, 2002. 10,
21, 36, 42, 91, 92, 102, 146

[53] Matthias Klusch and Frank Kaufer. Wsmo-mx: A hybrid se-
mantic web service matchmaker. Web Intelligence and Agent Sys-
tems, 7(1):23–42, 2009. 25

[54] Matthias Klusch, Benedikt Fries, and Katia P. Sycara. Owls-mx:
A hybrid semantic web service matchmaker for owl-s services.
J. Web Sem., 7(2):121–133, 2009. 25, 58, 95

[55] Matthias Klusch, Patrick Kapahnke, and Ingo Zinnikus.
Sawsdl-mx2: A machine-learning approach for integrating se-
mantic web service matchmaking variants. In ICWS, pages 335–
342. IEEE, 2009. 25

[56] Bernd J. Krämer, Kwei-Jay Lin, and Priya Narasimhan, editors.
Service-Oriented Computing - ICSOC 2007, Fifth International Con-
ference, Vienna, Austria, September 17-20, 2007, Proceedings, vol-
ume 4749 of Lecture Notes in Computer Science, 2007. Springer.
ISBN 978-3-540-74973-8. 154, 161

157



BIBLIOGRAPHY

[57] Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos met-
ric matching. In ECOWS, pages 265–274. IEEE Computer Soci-
ety, 2006. ISBN 0-7695-2737-X. 19, 27, 28, 30

[58] Steffen Lamparter, Anupriya Ankolekar, Rudi Studer, and
Stephan Grimm. Preference-based selection of highly config-
urable web services. In Carey L. Williamson, Mary Ellen Zurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, WWW,
pages 1013–1022. ACM, 2007. ISBN 978-1-59593-654-7. 21, 22,
23, 36, 75

[59] Lei Li and Ian Horrocks. A software framework for match-
making based on semantic web technology. In WWW, pages
331–339, 2003. 18, 20, 22, 23, 29

[60] Maria Maleshkova, Jacek Kopecký, and Carlos Pedrinaci.
Adapting sawsdl for semantic annotations of restful services.
In Robert Meersman, Pilar Herrero, and Tharam S. Dillon, edi-
tors, OTM Workshops, volume 5872 of Lecture Notes in Computer
Science, pages 917–926. Springer, 2009. ISBN 978-3-642-05289-7.
7, 28

[61] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila,
Drew McDermott, Sheila McIlraith, Srini Narayanan, Massimo
Paolucci, Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srini-
vasan, and Katia Sycara. OWL-S: Semantic markup for web
services. Technical report, DAML, 2006. 36

[62] David Martin, Mark Burstein, Drew McDermott, Sheila McIl-
raith, Massimo Paolucci, Katia Sycara, Deborah McGuinness,
Evren Sirin, and Naveen Srinivasan. Bringing semantics to web
services with owl-s. World Wide Web, 10:243–277, 2007. ISSN
1386-145X. 10.1007/s11280-007-0033-x. 7

[63] E. Michael Maximilien and Munindar P. Singh. A framework
and ontology for dynamic web services selection. IEEE Internet
Computing, 8(5):84–93, 2004. 19, 20, 22, 23, 27, 36

[64] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic
web services. IEEE Intelligent Systems, 16(2):46–53, 2001. 6, 8

158



BIBLIOGRAPHY

[65] Barry Norton, Mick Kerrigan, and Adrian Marte. On the use of
transformation and linked data principles in a generic reposi-
tory for semantic web services. In Mathieu d’Aquin, Alexan-
der García Castro, Christoph Lange, and Kim Viljanen, editors,
ORES-2010, volume 596 of CEUR Workshop Proceedings, pages
59–70. CEUR-WS.org, 2010. 28, 30

[66] Matteo Palmonari, Marco Comerio, and Flavio De Paoli. Effec-
tive and flexible nfp-based ranking of web services. In Baresi
et al. [8], pages 546–560. ISBN 978-3-642-10382-7. 22, 24, 26

[67] Jyotishman Pathak, Neeraj Koul, Doina Caragea, and Vasant
Honavar. A framework for semantic web services discovery.
In Angela Bonifati and Dongwon Lee, editors, WIDM, pages
45–50. ACM, 2005. ISBN 1-59593-194-5. 19, 20, 22

[68] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Ku-
nal Verma. Meteor-s web service annotation framework. In Stu-
art I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills,
editors, WWW, pages 553–562. ACM, 2004. ISBN 1-58113-844-X.
7

[69] Carlos Pedrinaci and John Domingue. Toward the next wave
of services: Linked services for the web of data. J. UCS, 16(13):
1694–1719, 2010. 7, 28, 30, 65, 74

[70] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics
and complexity of sparql. ACM Trans. Database Syst., 34(3), 2009.
59, 96

[71] Axel Polleres and David Huynh. Special issue: The web of data.
J. Web Sem., 7(3):135, 2009. 4

[72] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query
Language for RDF. Recommendation, W3C, 2008. 59

[73] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn,
Rubén Lara, Michael Stollberg, Axel Polleres, Cristina Feier,
Christoph Bussler, and Dieter Fensel. Web service modeling
ontology. Applied Ontology, 1(1):77–106, 2005. 7, 36

159



BIBLIOGRAPHY

[74] Antonio Ruiz-Cortés, Octavio Martín-Díaz, Amador Durán,
and Miguel Toro. Improving the automatic procurement of web
services using constraint programming. Int. J. Cooperative Inf.
Syst., 14(4):439–468, 2005. 7, 27, 40

[75] Marco Luca Sbodio, David Martin, and Claude Moulin. Discov-
ering semantic web services using sparql and intelligent agents.
Web Semantics: Science, Services and Agents on the World Wide
Web, 8(4):310 – 328, 2010. ISSN 1570-8268. 25

[76] Christian Schröpfer, Marten Schönherr, Philipp Offermann,
and Maximilian Ahrens. A flexible approach to service
management-related service description in soas. In Cesare Pau-
tasso, Christoph Bussler, Marius Walliser, Stefan Brantschen,
Monique Calisti, and Thomas Hempfling, editors, Emerg-
ing Web Services Technology, Whitestein Series in Software
Agent Technologies and Autonomic Computing, pages 47–64.
Birkhäuser Basel, 2007. ISBN 978-3-7643-8448-7. 9, 11

[77] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The seman-
tic web revisited. IEEE Intelligent Systems, 21(3):96–101, 2006.
4

[78] Amit P. Sheth, Karthik Gomadam, and Jon Lathem. Sa-
rest: Semantically interoperable and easier-to-use services and
mashups. IEEE Internet Computing, 11(6):91–94, 2007. 7, 28

[79] Wolf Siberski, Jeff Z. Pan, and Uwe Thaden. Querying the se-
mantic web with preferences. In Isabel F. Cruz, Stefan Decker,
Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika,
Michael Uschold, and Lora Aroyo, editors, International Seman-
tic Web Conference, volume 4273 of Lecture Notes in Computer Sci-
ence, pages 612–624. Springer, 2006. ISBN 3-540-49029-9. 21, 22,
24

[80] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya
Kalyanpur, and Yarden Katz. Pellet: A practical owl-dl rea-
soner. Web Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51–53, 2007. 69

160



BIBLIOGRAPHY

[81] Natalie Steinmetz and Ioan Toma. The Web Service Model-
ing Language WSML. Technical report, WSML, 2008. WSML
Working Draft D16.1v0.3. 53

[82] Nathalie Steinmetz and Holger Lausen. Ontology-based feature
aggregation for multi-valued ranking. In Asit Dan, Frederic
Gittler, and Farouk Toumani, editors, ICSOC/ServiceWave Work-
shops, volume 6275 of Lecture Notes in Computer Science, pages
258–268, 2009. ISBN 978-3-642-16131-5. 107

[83] Nathalie Steinmetz, Holger Lausen, and Manuel Brunner. Web
service search on large scale. In Baresi et al. [8], pages 437–444.
ISBN 978-3-642-10382-7. 74

[84] Michael Stollberg, Martin Hepp, and Jörg Hoffmann. A caching
mechanism for semantic web service discovery. In Aberer et al.
[1], pages 480–493. ISBN 978-3-540-76297-3. 24, 25, 58

[85] Katia P. Sycara, Massimo Paolucci, Anupriya Ankolekar, and
Naveen Srinivasan. Automated discovery, interaction and com-
position of semantic web services. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 1(1):27–46, 2003. 4, 6

[86] Katia P. Sycara, Massimo Paolucci, Julien Soudry, and Naveen
Srinivasan. Dynamic discovery and coordination of agent-
based semantic web services. IEEE Internet Computing, 8(3):
66–73, 2004. 18, 22, 23, 29

[87] Ioan Toma, Dumitru Roman, Dieter Fensel, Brahmananda Sap-
kota, and Juan Miguel Gómez. A multi-criteria service ranking
approach based on non-functional properties rules evaluation.
In Krämer et al. [56], pages 435–441. ISBN 978-3-540-74973-8.
13, 21, 22, 23, 74, 107

[88] Ioan Toma, Natalie Steinmetz, Holger Lausen, Sudhir Agarwal,
and Martin Junghans. D5.4.1 First Service Ranking Prototype.
Deliverable D5.4.1, SOA4All, 2009. 106, 108

[89] Tomas Vitvar, Jacek Kopecký, Jana Viskova, and Dieter Fensel.
Wsmo-lite annotations for web services. In Bechhofer et al. [10],
pages 674–689. ISBN 978-3-540-68233-2. 7

161



BIBLIOGRAPHY

[90] Lee-Hung Vu, Manfred Hauswirth, Fabio Porto, and Karl
Aberer. A search engine for QoS-enabled discovery of semantic
web services. International Journal of Business Process Integration
and Management, 1(4):244–255, 2006. 27, 28, 30

[91] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A
qos-aware selection model for semantic web services. In Asit
Dan and Winfried Lamersdorf, editors, ICSOC, volume 4294 of
Lecture Notes in Computer Science, pages 390–401. Springer, 2006.
ISBN 3-540-68147-7. 20, 21, 22, 23, 36, 74

[92] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Mar-
lon Dumas, Jayant Kalagnanam, and Henry Chang. Qos-aware
middleware for web services composition. IEEE Trans. Software
Eng., 30(5):311–327, 2004. 9

[93] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee. Daml-qos on-
tology for web services. In ICWS IEE [47], pages 472–479. 19,
22, 23, 36

[94] George K. Zipf. Selected studies of the principle of relative frequency
in language. Harvard University Press, 1932. 138

162


	List of Figures
	List of Tables
	List of Listings
	Acknowledgments
	Abstract
	Resumen
	Introduction and Background
	Introduction
	Research Context
	Summary of Contributions
	Thesis Context
	Structure of this Dissertation

	Background
	Introduction
	Preference Modeling
	Service Discovery Optimization
	Interoperable and Integrated Ranking
	Summary


	Improving SWS Discovery and Ranking
	A Preference Model for SWS Discovery and Ranking
	Introduction
	An Abstract Upper Ontology of Services
	SOUP: Defining an Ontology of User Preferences
	Application to a WSMO Scenario
	Summary

	Optimizing Discovery and Ranking Processes
	Introduction
	EMMA: Preprocessing Repositories using SPARQL
	Application to Existing SWS frameworks
	Summary

	Integrating Ranking Mechanisms
	Introduction
	Integrated Discovery and Ranking Architecture
	PURI: A Framework to Integrate Ranking Mechanisms
	Summary


	Evaluation of Results
	Validating the Preference Model
	Introduction
	Validation with the Logistics Scenario
	Additional Validation Scenarios
	Summary

	Applying EMMA to Optimize OWL-S Matchmakers
	Introduction
	Analyzing Tests Results
	Evaluation and Discussion
	Summary

	Applying PURI to Integrate Ranking Mechanisms
	Introduction
	SOA4All Ranking Mechanisms
	Preference Model Adaptation
	Applying PURI to SOA4All Integrated Ranking Implementation
	Evaluation and Discussion
	Summary


	Final Remarks
	Conclusions and Future Work
	Conclusions
	Publications
	Future Work


	Appendices
	Contributions to the SOA4All EU FP7 Integrated Project
	SME2 Evaluation Report of EMMA
	OWLS-M0
	OWLS-MX2 (M3)
	OWLS-MX3 (M3)
	OWLS-MX3 (Structure)
	OWLS-MX TextSim (Cos)

	SPARQL Filtering for Improving WSMO-based Discovery
	Defining the Experiments
	Analyzing Tests Results
	Statistical Analysis
	Discussion


	Acronyms
	Bibliography

