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Abstract

In the last years we have witnessed the introduction in the control loop of
different telecommunication technologies, such as data networks, smart
sensors, modern mobile telephony and internet. The control of systems
over communication networks constitutes a recent branch of automatic
control. The adoption of these new communication capabilities incur
in additional issues that ought to be accounted for. In particular, com-
munications delays, packet-based communication, possible data losses,
quantization effects, bandwidth limitations and energy consumption, to
name a few, are relevant features to be faced in this new paradigm. These

issues become critical in real-time applications.

This thesis proposes new solutions for the control and estimation of sys-
tems over communication networks. Although the thesis is mainly fo-
cused in problems where bandwidth and energy consumption constraints
apply, other effects, such as delays and packet dropouts, will also be con-
sidered where appropriate.

First of all, the thesis studies the stability of time-delay systems (TDS)
and networked control systems (NCS) affected by delays and packet
dropouts. A new stability criterion is proposed, achieving less conser-
vative results than existing methods in the literature.

Secondly, the thesis presents a novel method to design Hy / Hs, controllers
applicable to TDS and NCS. The method is demonstrated to synthesize
controllers that achieve an upper bound of the cost index lower than
other approaches.

Furthermore, the reduction of the traffic over the network is explored by
introducing a model of the plant at the controller end of the communica-
tion. A periodic and a self-triggered sampling policy are proposed.



Concerning decentralized large-scale systems, the sensor scheduling prob-
lem is of great interest when the available bandwidth is severely lim-
ited. The thesis proposes two novel solutions in this line: a scheduling
based on a predefined periodic pattern and a Kalman-based aperiodic
filter. Although the former is a mathematically simpler solution and
more energy-efficient, the latter yields better performance. Then, it is
shown that, under some assumptions, a priori aperiodic solutions even-
tually produce periodic patterns, providing with the benetfits of both ap-
proaches.

Finally, the thesis tackles a problem that, despite its importance, has re-
ceived little attention in the literature: the joint problem of estimation
and control for distributed systems. The objective is to propose a design
method that ensures the system stability, providing a cost-guaranteed
solution with respect to a given quadratic index. The reduction of the
bandwidth usage is attained exploiting an event-based communication
policy between agents.

Most of the contributions of this thesis are of theoretical nature. Notwith-
standing, experimental applications have not been forgotten. Two exper-
imental testbeds have been considered, namely a networked control of a
direct drive robot manipulator and an educational four-tank level control
system.
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Chapter 1

Introduction

1.1 Historical introduction

Automatic control is defined as “the science that aims to substitute the human oper-
ator in such a way that the systems or processes operate autonomously”. Automatic
control arises, then, to facilitate and tackle work in a more comfortable way, to aug-
ment the reliability and precision in the process, and to achieve a higher level of
productivity and quality of product.

Since its inception, automatic control has incorporated ideas and concepts that
have arisen in other scientific areas [242].

Until the mid-nineteenth century, control theory did not constitute a real scien-
tific theory, because it was dedicated to solving problems with a simple trial and
error method. During the Industrial Revolution and in early years, several mech-
anisms were introduced to control some processes. Some mechanisms of note in-
clude the pressure regulator by Papin (1681), the centrifugal governor by James Watt
(1769) (illustrated in Figure 1.1!), and the temperature regulators by Bonnemain
(1777). However, none of those methods were based in any theory that establishes a
common mathematical basis for automatic control.

Beginning in the mid-nineteenth century, mathematics was used for the stability
analysis of dynamical systems, and would later become the language of the theory
of automatic control. The newly presented theory of differential equations, boosted
by the development of infinitesimal calculus by Sir I. Newton (1642-1727) and G.
W. Leibniz (1646-1716), as well as the works carried out by the Bernoulli brothers
(the late 1600s and early 1700s), J. F. Riccati (1676-1754) and others, was successfully
applied to the analysis of dynamical systems by J. L. Lagrange (1736-1813) y W. R.

1http: / /en.wikipedia.org/wiki/File:Boulton_and_Watt_centrifugal governor-MJ.jpg
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Figure 1.1: Boulton and Watt centrifugal governor

Hamilton (1805-1865). The works of E. J. Routh (1877) and A. M. Lyapunov (1892)
in the field of stability were also relevant.

Until the early twentieth century, the analysis of control systems involved differ-
ential equations in the time domain. But between 1920 and 1930 at Bell labs, analysis
in the frequency domain gained interest. Some figures deserving to be mentioned
for their contribution to the control theory are P. S. Laplace (1749-1827), ]. B. Fourier
(1768-1830) and A. L. Cauchy (1789-1857). In 1938, H. W. Bode studied the frequency
response of systems and investigated closed-loop stability using concepts such as
gain and phase margin.

In the mid-1940s, stochastic techniques were introduced in the theory of control
and communication. For instance, in 1942 N. Wiener analyzed a series of informa-
tion processing systems employing models of stochastic processes. In the frequency
domain, he developed a stochastic optimal filter for stationary signals in continuous
time that improved the signal to noise ratio. At the same time, A. N. Kolmogorov
(1941) established a theory for stochastic stationary processes in discrete time.

Beginning in the mid-twentieth century, the control community focused on opti-
mality problems. In 1958, L. S. Pontryagin developed his maximum principle, which
solved those control optimal problems using the calculus of variations studied by L.
Euler (1707-1783). He gave a solution for the minimum time problem and proposed
an on/off control law suitable for optimal control. In the United States during 1950,
the calculus of variations was applied to solve general optimal control problems at
the University of Chicago and other major universities.

In 1960, R. Kalman and his collaborators published three important papers. In
one of them, the importance of the work developed by Lyapunov in the field of
nonlinear control was pointed out. The second argued about the optimal control

Luis Orihuela Espina 2



CHAPTER 1. INTRODUCTION

of systems, providing a set of equations for the optimal quadratic regulator (LQR).
Finally, the third discussed optimal filtering and estimation theory, and provided
equations for the discrete Kalman filter. The continuous time Kalman filter was
developed later by Kalman himself and Bucy (1961). The work done by Kalman
was characterized by the introduction of linear algebra and matrices in such a way
that systems with multiple inputs and outputs could be easily handled. He used the
concept of the internal state of a system, leading to a characterization based not only
on outputs and inputs, but also on the internal dynamics of the systems.

With the arrival of the microprocessor, a new area began. Control systems im-
plemented in computers must previously have been discretized. The studies of C.
E. Shannon in the mid-1950s showed the importance of sampled data techniques in
signal processing. With the introduction of the PC in 1983, the design of modern
control systems was extended to reach every engineers. Hence, the theory of digital
control starts, or what is known today as the theory of modern control.

In the last two decades, due to the ubiquity of telecommunication technologies
such as mobile phones, internet and data networks, the control community has been
challenged by a new and attractive problem: the inclusion of a communication net-
work in the control loop. The control of systems over communication networks
constitutes a recent branch of automatic control.

1.2 Control of systems over communication networks

The name of Networked Control System (NCS) can encompass a relatively large
number of situations and problems. Favoured by the large number of applications
and difficulties involved, in the last few years NCS has become a common issue
for many control research groups all around the world. A number of efforts have
been made towards classifying, organizing and defining what networked systems
are [83, 86, 237, 253, 259].

Needless to mention, the feature that distinguishes a NCS from a classical con-
trol system is the presence of a communication network affecting or inside the loop.
In classical control schemes, like the one presented in Figure 1.2, the controller used
to be physically near the plant in such a way that the control commands could be
directly applied to the system. Similarly, they assumed that the controller has con-
tinuous access to the plant output.

Those assumptions do not hold when a network mediates the connection among
the different elements, at least generally speaking. Even when dedicated, standard

Luis Orihuela Espina 3
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Figure 1.2: Classic control scheme

communication networks are usually designed to preserve data integrity and do
not suit the stringent real-time requirements of closed-loop control. These problems
become particularly apparent when wireless or non-dedicated networks are used.
A large number of systems may be using the communication channel concurrently
in such a way that the channel communication capabilities must be shared between
them.

Despite emergence of new challenges, a number of benefits are gained. Namely,

Low cost: Using a point-to-point communication in large-scale systems or geograph-
ically distributed plants may result in higher cost. Wireless or even wired net-
works, however, reduce the connections and the wire length. Concomitantly,
the deployment and maintenance costs are shortened.

Reliability: Some network protocols provide reliable communication by means of
retransmissions and acknowledgment packets. Additionally, fault detection
algorithms can be easily implemented.

Maintenance: The reduction of wiring complexity facilitates the diagnosis and main-
tenance of the system.

Flexibility: The inclusion of new elements, such as sensors or actuators, in an oper-
ating installation is relatively easy in NCS, whereas in classical systems doing

so may incur significant changes in hardware and software.

Accessibility: In some plants, some of the elements may occupy locations difficult
to reach. The inclusion of the network, especially wireless, could improve
reachability.

In addition to these advantages, in other systems the use of networked schemes
may be recommended due to space and weight limitations, such as in modern
avionics and automotion. In large-scale systems, such as chemical and solar plants,
the use of the network will help to cover huge distances. Furthermore, some ap-
plications impose the use of a network by the very nature of the problem they are

Luis Orihuela Espina 4
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Figure 1.3: Fleets of submarines, planes and teleoperated robot

addressing. Think, for instance, of a fleet of underwater or flying vehicles, or of
teleoperated systems, in which the master and the slave could be separated by hun-
dreds of kilometers (see Figure 1.3).

For these and other reasons, the control community now considers the so-called
co-design between control and communication. Not only must the controller be
aware of the network, but the communication protocols should also be suitably de-
signed to guarantee and improve the control performance. For instance, see the
expert panel report on Future Directions in Control, Dynamics, and Systems [165].

Introducing a communication network in the control loop

Compared to the classical scheme depicted in Figure 1.2, in NCS the various ele-
ments are connected by means of a communication network as depicted in Figure
1.4. Communication through such a medium is imperfect and may be affected by
some of the following problems (see Figure 1.5).

—._

Figure 1.4: Networked control scheme

thtp:/ /raweb.inria.fr/rapportsactivite/RA2010/necs/uid58.html
http:/ /www.armedforces-int.com/news/usaf-researches-uav-anti-collision-systems.html
http:/ /www.space.mech.tohoku.ac.jp/research/parm/parm-e.html
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Sampling: If a certain medium has a maximum bandwidth, then the sampling ap-
pears as a problem of the channel. In some cases it may have to be taken into
account. The information transmitted through the network is included in most
cases wrapped inside packets. These packets are sent at a rate that, obviously,
is not infinite. Therefore, continuous models must be discretized with an ad-
equate sampling time. In some network protocols, such as WiFi or Ethernet,
this sampling time is not constant, as it strongly depends on the network traffic
and congestion.

Delay: The delay is mainly consequence of the congestion of the medium. Packets
travelling through the network are received belatedly and this delay is time-
varying and often unpredictable. It is certainly common to receive one packet
before another released earlier. Some protocols, such as TCP/IP, implement
mechanisms accounting for this, but at the cost of increasing the delay.

Loss of information: Some packets may also be lost, mainly because of the capacity
of the reception buffer. If an element is receiving packets at a higher rate than
it can process them, the buffer could overflow at any instant. The problem is
circumvented by retransmitting the packet, but again, the delay is increased.

Quantization: Quantization arises when information must be coded using a finite
number of bits. Some communication channels, such as underwater mediums,
have very low bit rates, so that the packet length must be short to have an

adequate transmission rate.

Figure 1.5: The various problems affecting information i(¢) transmitted through a
network

Luis Orihuela Espina 6
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These effects may affect the information separately but, more often that not, they
tend to appear together. For instance, in a non-dedicated congested network, there
are two options: either decrease the sampling rate aiming to reduce the congestion
and consequently the delay as well as packet losses; or increase the sampling rate
sending shorter packages aiming to maximize the use of the available bandwidth,
but risking longer delays and dropouts. Both situations are undesirable for a real-
time application, and might lead to instability and lower performance.

From the point of view of a control engineer, three approaches could be imple-
mented to cope with the network problems [259]:

Control of networks: The objective is to provide a certain level of performance to
network data flow, while simultaneously achieving efficient and fair utiliza-
tion of the network resources. The different elements connected to the network
are directed to keep the congestion, delays and dropouts under a prescribed
bound.

Control over networks: The design of feedback strategies is adapted to control sys-
tems in which control data is exchanged through unreliable communication
links. The controllers must take into account the possible delays, losses and
quantization effects in order to preserve stability, while guaranteeing some
performance indexes.

Co-design: The ideal situation is the mixed solution. Both the traffic network and
the system are controlled, leading to the best accomplishment of the objectives.

Finally, it is worth mentioning another issue that is gaining interest: energy effi-
ciency. In all the fields of engineering, energy-saving is becoming not only an added
value, but an imposition in the design of products. In networked control systems,
reducing the consumption is beneficial in two ways. Firstly, energy-saving gives
rise to lower cost and greater environmental care. Secondly, the life of the batteries
is increased, reducing the number of times that they must be replaced and, indi-
rectly, reducing costs. In some networks, the devices could be located in dangerous
or unreachable locations. In these situations, replacing the batteries may be expen-
sive or hazardous. Note that most of the energy is consumed when the radio is on,
so having an adequate policy in regards to reducing transmissions over the network
leads to an energy and cost efficient protocol.

Luis Orihuela Espina 7
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1.3 Motivation and objectives

In recent years, the control of systems over communication networks has attracted
great attention. Previous sections detail on one hand, the benefits that can be ob-
tained with the inclusion of such a network and, on the other hand, the new prob-
lems that arise. Although the literature concerning NCS is huge, there is still much
room for further developments that justify and motivate this thesis.

Ensuring the stability of the proposed solutions is of capital importance in the
field of automatic control, specially when the controllers are to be applied in real
systems. In NCS, the very nature of the systems under consideration advises to ap-
ply stability results that take into account the sampling effects, delays and dropouts.
Several methods are available in the literature to deal with these problems, such as
the Lyapunov-Krasovskii and Lyapunov-Razumikhin approaches. However, both
methods suffer from excessive conservatism [62, 81, 99, 114, 162, 200, 216, 247, 251].
The first objective of this thesis is to develop a new and less conservative stability
criterion, valid for time-delay systems and networked control systems.

The design of state-feedback controllers constitutes a common topic in the re-
lated literature. Several problems have been tackled: network-induced drawbacks
[10, 39, 93, 174, 250, 254, 255], disturbance rejection [60, 63, 98, 101, 144, 174], cost-
guaranteed solutions [34, 53, 64, 120, 121, 246] and others [90, 170, 244, 268]. But,
in most cases, these issues have been studied separately. In this line, Hy/He con-
trollers for systems affected by communication problems seem to be an adequate
solution [33, 65, 113, 258]. However, they have not received sufficient attention.
What is the trade-off between performance and delays? And between disturbance
rejection and reduction of a given cost index? These and others questions have not
yet been answered in NCS.

Additionally, some authors hace proposed an extension which consists of outfit-
ting the controllers with a model of the plant [160, 161, 166]. With this extension,
they pursue a reduction of the communication between plant and controller, as the
model provides an open-loop estimation of the system state between two consec-
utive measurements. The inclusion of the network in both paths of the communi-
cation (sensor to controller and controller to actuator) and asynchronous sampling
policies are two open problems that motivate this research. Both solutions, if possi-
ble, could reduce the bandwidth usage and, indirectly, the energy consumption.

In the field of estimation and control of large-scale systems, the available lit-
erature is minor. One problem that has received considerable attention is sensor
scheduling, in which a set of sensors must share a common medium to transmit their

Luis Orihuela Espina 8
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measurements of the plant [43, 44, 57, 76, 88, 89, 130, 198, 206, 238, 262, 263, 264]. The
objective is twofold: manage the transmissions, and use the information to recon-
struct the state of the plant. Periodic and aperiodic solutions have been proposed.
Notwithstanding, problems such as finding optimal patterns, the co-design of both
the communication protocol and the observer gains, and the periodic phenomenon
appearing in a priori aperiodic schemes, remain unsolved.

The problems of distributed control or distributed estimation have also been pro-
fusely studied [26, 42, 49, 91, 92, 134, 135, 168, 209, 210, 225, 241]. These schemes are
applicable when the plant is estimated or controlled from different, possibly spa-
tially separated, locations. However, in the author’s opinion, the joint problem of
estimation and control in distributed systems has not been suitably studied in the
literature. Stability, sampling policies, network-induced problems and others, are
issues that motivate this thesis.

Therefore, the main goal of this research is to afford innovative solutions to some
of the new problems that arise when controlling a system through a communication
network.

The thesis has been mainly developed in the Automation, Control and Robotic
Research Group at the University of Seville (Spain), within the framework of several
national and international research projects related to NCS:

e COYAR (Spanish acronym corresponding with ‘Control and Analysis of Sys-
tems through Communication Networks’). National project.

e FeedNetBack (‘Feedback Design for Wireless Network Systems’). European
project.

e CONRED (Spanish acronym corresponding with ‘Feedback Control of Sys-
tems Embedded in Wireless Networks’). National project.

Therefore, the thesis finds an adequate framework in the present research paradigm.

1.4 Thesis overview and contributions

The thesis is structured in seven main chapters, the contents of which are summa-
rized below.

Chapter 2. Preliminaries on NCS and observation techniques.
This chapter intends to serve as a background to the rest of the thesis. Regarding
networked control systems, it gives a particular classification of NCS with respect to
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the networking scheme. In this way, it is possible to differentiate between small-size
systems where the controller is located at the other end of the network, large-scale
systems controlled using a network of agents, and multi-agent systems. The second
part of the chapter surveys observation techniques, some of which will be employed
throughout the thesis.

Chapter 3. Stability of time-delay systems.

Doubtlessly, a thesis in the field of control must be characterized by a thorough
analysis of the stability of the proposed solutions. The results presented in this chap-
ter are crucial for the rest of the thesis. They will serve as a mathematical foundation
to prove the stability of the controllers proposed later. The main contribution of this
chapter is a new delay-dependent stability criterion for systems affected by bounded
delays. In order to prove the stability, a Lyapunov-Krasovskii approach is followed
(Appendix A). A reduced conservatism is achieved by dividing the delay range into

a number of intervals.

Chapter 4. Control of delayed and networked systems.

This chapter deals with the design of Hy/He controllers for time delay systems
and networked control systems. It presents a general design method that synthe-
sizes optimal controllers that can be applicable to different sorts of time-delay sys-
tems (TDS) and to different choices of the Lyapunov-Krasovskii functional. The
main contribution here is the demonstration that the presented method produces
controllers that achieve an upper bound of the cost index lower than other ap-
proaches.

Moreover, by using appropriate mathematical transformations, it is shown that
this design method can also be applied to NCS. An experimental application is given
at the end of the chapter. The objective is to control a two degree-of-freedom robot
at the surroundings of its unstable equilibrium point.

Chapter 5. Model-based networked control systems.

This chapter explores the benefits that can be achieved by introducing a model of
the plant at the controller end of the communication. In particular the reduction of
the necessary transmissions between plant and controller is studied. Two sampling
schemes are proposed: periodic and asynchronous. In both cases, the stability of the
system is preserved in spite of reducing the bandwidth usage.
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Chapter 6. Scheduled communication for state estimation and control.

The sensor scheduling problem is applicable in large-scale systems, or when the
available bandwidth is severely limited. The plant’s outputs are sensed by a set of
sensors that share a communication network. With these measurements, a central-
ized unit estimates the plant state and generates the control commands. Therefore,
the problem is twofold. First, the observer and controller gains must be designed.
Second, a suitable communication protocol must be defined.

The chapter proposes two solutions. First, a scheduling based on a predefined
periodic pattern is proposed. Issues such as pole-placement and the optimal choice
of the pattern are studied. Second, a Kalman-based aperiodic filter, in which the sen-
sor with access to the communication channel is the one that minimizes the variance
of the observation error. Although the former is a mathematically simpler solution
and more energy-efficient, the latter yields enhanced performance.

One of the main contributions is that it is shown that, under some mild assump-
tions, a priori aperiodic solutions eventually produce periodic patterns. Therefore,
the benefits of both approaches could be obtained.

Chapter 7. Distributed estimation and control.

When the plant is being controlled from different, spatially separated locations,
distributed schemes are of interest. The thesis contributes a novel method that al-
lows us to design both the controllers and the observers at once. The objective is to
synthesize stabilizing suboptimal controllers, in the sense that the upper bound of a
given cost function is minimized. The reduction of the bandwidth usage is attained
exploiting an event-based communication policy between agents.

The results have been applied to an experimental plant consisting of a four cou-
pled tank system. The efficiency of the proposed method, in terms of reduction of
the traffic and tuning capabilities, is shown.

Chapter 8. Conclusions.

The last chapter summarizes the main achievements, and points out the poten-
cial weakness and limitations of the results as well. Furthermore, the impact of the
research is evaluated. Finally, different lines of future research are listed.

To summarize, the thesis proposes a number of solutions for both small-size and
large-scale plants controlled over communication networks. The persistent goal is to
reduce network traffic, as well as the energy consumption. Together with the thesis
of Pablo Millan [147], they serve as a comprehensive solution package for NCS.

Luis Orihuela Espina 11



CHAPTER 1. INTRODUCTION

1.5 List of publications supporting this thesis

Journal papers

1. L. Orihuela, P. Millén, C. Vivas, E. R. Rubio. Robust stability of nonlinear time-
delay systems with interval time-varying delays. International Journal of Robust
and Nonlinear Control. 21(7):709-724, 2011. [188]

2. P.Millan, L. Orihuela, G. Bejarano, C. Vivas, T. Alamo, F. R. Rubio. Design and
application of suboptimal mixed Hy/Ho, controllers for networked control systems.
IEEE Transactions on Control Systems Technology. 20(4):1057-1065, 2012. [148]

3. P. Millan, L. Orihuela, C. Vivas, E. R. Rubio. Control éptimo L, basado en red
mediante funcionales de Lyapunov-Krasovskii. Revista Iberoamericana de Infor-
matica y Automética Industrial. 09(1):14-23, 2012. [157]

4. P. Millan, L. Orihuela, C. Vivas, F. R. Rubio. Distributed consensus-based estima-
tion considering network induced delays and dropouts. Automatica. 48(10):2726-
2729, 2012. [155]

5. P. Millan, L. Orihuela, I. Jurado, C. Vivas, E. R. Rubio. Distributed estimation in
networked systems under periodic and event-based communication policies. Interna-
tional Journal of Systems Science. Accepted. [149]

6. L. Orihuela, F. Gémez-Estern, F. R. Rubio. Scheduled communication in sensor
networks. 1EEE Transactions on Control Systems Technology. Under review.
[184]

7. L.Orihuela, P. Millan, C. Vivas, F. R. Rubio. Hy/ He control for discrete TDS with
application to networked control systems: periodic and asynchronous communication.
Optimal Control Applications and Methods. Under review. [192]

8. L. Orihuela, P. Millan, C. Vivas, E. R. Rubio. Computationally efficient distributed
Heo observer for sensor networks. International Journal of Control. Under review.
[191]

9. P. Millan, L. Orihuela, I. Jurado, C. Vivas, F. R. Rubio. Control of autonomous
underwater vehicle formations subject to inter-vehicle communication problems. IEEE
Transactions on Control Systems Technology. Under review. [150]

Luis Orihuela Espina 12



CHAPTER 1. INTRODUCTION

10.

11.

12.

P. Millan, L. Orihuela, C. Vivas, E. R. Rubio, D. V. Dimarogonas, K. H. Johans-
son. Sensor-network-based robust distributed control and estimation. Control Engi-
neering Practice. Submitted. [156]

L. Orihuela, P. Millan, C. Vivas, F. R. Rubio. Suboptimal distributed control and
observation: application to a four coupled tanks system. Journal of Process Control.
Submitted. [190]

L. Orihuela, A. Barreiro, F. Gémez-Estern, F. R. Rubio. Periodicity of the opti-
mally scheduled distributed Kalman filter. Automatica. Submitted. [182]

International conferences

1.

L. Orihuela, F. Gémez-Estern, E. R. Rubio. Model-based networked control systems
under parametric uncertainties. 18th IEEE International Conference on Control
Applications. Saint Petersburg, Russia. pp:7-12. 2009. [194]

P. Millan, L. Orihuela, C. Vivas, E. R. Rubio. Improved delay-dependent stability
criterion for uncertain networked control systems with induced time-varying delays.
1st IFAC Workshop on Estimation and Control of Networked Systems. Venice,
Italy. pp:346-351, 2009. [153]

L. Orihuela, P. Milldn, C. Vivas, E. R. Rubio. Delay-dependent robust stability anal-
ysis for systems with interval delays. American Control Conference. Baltimore,
Maryland, USA. pp:4993-4998, 2010. [186]

P. Milldn, L. Orihuela, C. Vivas, F. R. Rubio. An optimal control Ly-gain distur-
bance rejection design for networked control systems. American Control Confer-
ence. Baltimore, MD, USA. pp:1344-1349, 2010. [154]

. L. Orihuela, P. Milldn, G. Bejarano, C. Vivas, F. R. Rubio. Optimal networked

control of a 2 degree-of-freedom direct drive robot manipulator. IEEE Conference on
Emerging Technologies and Factory Automation. Bilbao, Spain. pp:1-8, 2010.
[185]

P. Millan, L. Orihuela, D. Mufioz de la Pefia, C. Vivas, F. R. Rubio. Self-triggered
sampling selection based on quadratic programming. 18th IFAC World Congress.
Milano, Italy. pp:8896-8901, 2011. [151]

L. Orihuela, E. Gémez-Estern, F. R. Rubio. Stability and performance of networked
control systems with time-multiplexed sensors and oversampled observer. 18th IFAC
World Congress. Milano, Italy. pp:9200-9205, 2011. [183]

Luis Orihuela Espina 13



CHAPTER 1. INTRODUCTION

8.

10.

L. Orihuela, X. Yan, S. K. Spurgeon, F. R. Rubio. Variable structure observer
for discrete-time multi-output systems. 12th International Workshop on Variable
Structure Systems. Mumbai, India. pp:34-39, 2012. [196]

. L. Orihuela, S. K. Spurgeon, X. Yan, F. R. Rubio. A variable structure observer for

unknown input estimation in sampled systems. UKACC International Conference
on Control. Cardiff, UK. pp:601-606, 2012. [195]

L. Orihuela, P. Millan, C. Vivas, E. R. Rubio. Improved Performance Hy / Hoo Con-
troller Design for Time Delay Systems. European Control Conference. Ziirich,
Switzerland. Submitted, 2013. [189]

National conferences

1.

L. Orihuela, F. R. Rubio. Control adaptativo basado en la estimacion de los pardme-
tros de calidad de una red inaldmbrica. XXIX Jornadas de Automatica. Tarragona,
Spain. 2008. [193]

L. Orihuela, T. Alamo, D. Mufioz de la Pefa, F. R. Rubio. Algoritmo de mini-
mizacion para control predictivo con restricciones. XXIX Jornadas de Automatica.
Tarragona, Spain. 2008. [180]

P. Millan, L. Orihuela, C. Vivas, E. R. Rubio. Control éptimo de sistemas de control
a través de redes mediante funcionales de Lyapunov-Krasovskii. XXX Jornadas de
Automatica. Valladolid, Spain. 2009. [152]

L. Orihuela, P. Millan, C. Vivas, E. R. Rubio. Control y observacion distribuida
en sistemas de control a través de redes. XXXII Jornadas de Automaética. Sevilla,
Spain. 2011. [187]

. L. Orihuela, A. Barreiro, F. Gémez-Estern, F. R. Rubio. ;La gestion dptima del

canal de comunicaciones para la estimacion implica un patron de muestreo periodico?.
XXXIII Jornadas de Automaética. Vigo, Spain. 2012. [181]

Luis Orihuela Espina 14



Chapter 2

Preliminaries on networked control
systems and observation techniques

2.1 Introduction

This chapter summarizes the background necessary for the rest of the thesis. The
first part of this chapter gives the reader a complete view of networked control sys-
tems and the state of the art in the field. It presents a classification by the type of
plant, that is, small-size systems controlled through a network, large-scale systems
and multi-agent systems. The chapter reviews the state of the art regarding each
one of these.

The second part of the chapter is devoted to observation techniques. Over the
years, several solutions in the context of estimation and prediction have been pre-
sented: from the early works of Luenberger [132], that intended to observe the state
of a linear system, to modern particle filters [70], which deal with nonlinear time-
varying system. Throughout the thesis, some of these solutions will be used and
adapted to networked structure. In order to facilitate the understanding, it has
been considered of interest to include some remarks related to those estimation tech-
niques that are to be used in subsequent chapters.

2.2 Networked schemes

There exist a wide range of possible configurations for a networked control system.
It is possible to use a network to connect some or all the elements in the control
loop -plant, sensors, controller, actuators- so the possibilities are vast. This section
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organizes the schemes under three main approaches. A classification is suggested
based on the characteristics of the plant: small plants where the controller sends
the control commands through a network; large-scale plants, where the sensors and
actuators are connected by means of a shared medium; and multi-agent systems
where a group of agents are coordinately controlled pursuing a global objective.

Previously, other authors have reviewed networked control systems. Different
configurations and models applicable in NCS are presented in [86, 237]. The study
of the degradation of the performance and stability due to the network-induced
problems is surveyed in [83, 102, 253]. The work [122] reviews the different indus-
trial control networks and their applicability to NCS. Finally, it is worth mentioning
the survey [259], in which future trends are presented.

2.2.1 Small plants: systems controlled through a network

The simplest configuration of a NCS is perhaps a plant and controller linked through
a network. Figure 2.1 depicts this configuration.

w
u i l
y y

Figure 2.1: The communication network links the system and the controller

The plant output is wrapped within a packet that is sent the network to the con-
troller side. With this information, the controller builds a control signal that is in
return wrapped in another packet. It is only when this control packet reaches the
other side of the network, that the control input is effectively applied to the plant.
It is fairly standard to assume that the different signals -plant output and control
input- remain constant between two consecutive measurements. The idea is equiv-
alent to that of a Zero Order Holder (ZOH). Under these assumptions, the plant
dynamics can be modelled in continuous,

2(t) = fe(x(t)alt), w(t)), (2.1)
y(t) = ge(x(t),a(t),0(t)), (22)
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or in discrete time,

x(k+1) = fa(x(k),a(k),w(k)), (2.3)
y(k) = ga(x(k),u(k),v(k)), (2.4)

where x € R" is the state of the plant, i € R’ is the control signal applied, y €
R™ is the output and w € R®, v € RY represent external disturbances and noises.
Functions f,, f; : R" x R" x R® — R" and g., g7 : R" x R" x RT — R" model the
dynamics of the state and the output, respectively.

The control signal is given by

u(t) = he (y(t)), (2.5)

or, in discrete time,
u(k) = hq (y(k)), (2.6)

where u € R’ is the generated control signal, and 7 € R™ is the output received.
Functions h¢, h; : R"™ — R" model the dynamics of the controller. It could be from a
simple state feedback linear controller to a more sophisticated predictive controller.

Because of the mediating network, the control signal generated by the controller
u and the one actually applied to the plant i may differ. And the same occurs with
the system output:

i = ny(u), (2.7)
7 = my(y), (2.8)

where maps n,, 1, represent the effect of sampling, delay and other perjudicial ef-
fects.

There exists a vast literature dedicated to this class of NCS. Many authors have
studied the conditions that ought to be verified to ensure the stability of the whole
system using different controllers and under specific conditions of the network. To
mention some of them, it is possible to find find works studying the stability of
NCSs with delays [39, 112, 124, 166, 254, 255, 265]; packet losses [10, 93, 174, 236,
250, 254, 255]; or with limited bandwidth [84, 128, 235].

In this scheme, some remarkable results have been obtained based on both the
Lyapunov-Krasovskii and Lyapunov-Razumikhin approaches [138]. Using an ap-
propriate functional, it is possible to account for delays and packet dropouts affect-
ing the communication. Both techniques have been widely used to study the stabil-
ity of time-delay systems, see for instance [252, 260] and references therein. It is from
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M
\
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Figure 2.2: Incorporation of an observer at the controller end of the network

the work in [146] and the input delay approach to sampled-data system, when the
contributions of time-delay systems were widely applied to this networked control
system scheme [30, 61, 60, 99, 101, 112, 162, 233, 257].

In the design of controllers assuring either deterministic or stochastic stability,
the main issue has been the conservativeness of the Lyapunov-based methods since
its inception. For this reason, given a characterization of the communication chan-
nel, a number of techniques have been proposed that have progressively reduced
this drawback [58, 62, 80, 99, 162, 200, 216, 247, 269].

In addition to stability considerations, some authors have proposed the appli-
cation of optimal and robust controllers to NCS. H, or cost guaranteed controllers
have been studied in [93, 115, 123, 203, 223]. And H, controllers for NCS have been
proposed in [63, 60, 101, 144, 257]. To the best of the author’s knowledge, none
addresses the joint problem of optimality and disturbance rejection. One classical
approach to this is the Hy / Ho, control problem, where a certain performance index
is minimized (H;), concomitantly with a Ly-gain disturbance rejection constraint
(Heo). Chapters 3 and 4 deal with the stability conditions and design of Hp/ He con-
trollers for TDS and NCS.

Alternatively to the scheme depicted in Figure 2.1, it is possible to conceive a
slightly different configuration presented in Figure 2.2. Some authors have pro-
posed the inclusion of state observers and/or model-based controllers at the con-
troller end of the communication network [159, 166, 226, 227]. The objective is
twofold. Firstly, the performance of the closed loop can be enhanced. And, sec-
ondly, the observer/model could reduce the number of transmissions made, overall
in the plant-controller path.

Now, the pair observer & controller is defined by

2(t) = fe(R(1),7(t),u(t), 2.9)
u(t) = he(2(1), (2.10)
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or in discrete time,

k1) = o (200,500, u(k)), @.11)
u(k) = ha(2(K), 2.12)

where £ € R" is the estimated state. Functions f, f; : R” x R x R — R" and
i, ﬁd : R" — R" model the dynamics of the observer and of the controller, respec-
tively.

Under this paradigm, two main approaches have been pursued. On one hand,
some authors have explored model-based solutions for NCS, in which a model of
the plant is running in open loop between two consecutive samplings [40, 124, 125,
126, 160, 161, 164]. The claimed benefits are twofold: (i) reduction of the bandwidth
usage by separating the samples using either a periodic or an aperiodic sampling
scheme; and (ii) increased performance through a continuous estimation of the state
of the plant.

The second approach modifies either the Luenberger or Kalman filter to propose
a state observer robust against the conditions of the network [36, 110, 166, 212, 213,
214, 226, 222].

Model-based controllers are the subject of Chapter 5.

2.2.2 Large-scale systems

Large-scale systems are informally plants whose elements occupy vast areas or are
spatially located in remote positions. Typical examples are buildings, solar plants,
or big industrial processes. In those systems, there are a large number of sensors
and actuators monitoring and acting over the plant. In order to link and manage
them, the use of a network seems perfectly justified.

For these systems it is possible to differentiate two networked schemes, based
on the sort of controller. In the first scheme, there is a single centralized controller,
which gathers all the information measured by sensors and creates the many control
signals to be delivered to the different actuators. In contrast, in the second scheme
the controllers could be distributed or decentralized, in the sense that they generate
control inputs based on partial and often neighboring information.

2.2.2.1 Centralized controller

A general diagram is depicted in Figure 2.3. A set of sensors measure some aspects
of the plant state and send it to the centralized unit located at the other end of the
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Figure 2.3: Centralized schemes for the control (and estimation) of a large-scale

plant.

network. The observer, if exists, in turn estimates the overall plant state. The con-
troller, either using the estimated state or the received outputs, builds the control
signals that are sent to the different actuators.

The plant, the controller and the observer are defined as above in equations (2.1)-
(2.4) and (2.9)-(2.12).

As the network is, in general, shared, the way in which the different elements
divide the available bandwidth must be adequately defined. This is subject of a
very interesting line of research in co-design called sensor scheduling [43, 44, 57, 76,
88, 89, 130, 198, 206, 238, 262, 263, 264]. Chapter 6 proposes several solutions for
controlling and estimating large-scale systems under a centralized scheme.

2.2.2.2 Decentralized controller

In this case a global controller (observer & controller) is lacking, and instead a set
of them are distributed. However, they collaborate pursuing the same goal, namely,
the control of the same plant. This demands that consequently the network now
supports traffic between controllers (observers & controllers). They share some in-
formation with fellow controllers (observers & controllers) through the network.
Figure 2.4 describes this situation.

The agents in the network can play the role of observers, estimating the state of
the plant, the role of controllers, providing a control signal to a subset of the plant’s
control inputs, or both. The interconnected nature of the approach allows agents to
enrich their estimates not only with the information that they collect directly from
the plant, but also with the information exchanged with their neighbors.

The plant is described by equations (2.1)-(2.4). As Figure 2.4 illustrates, in agent-
based control is usually assumed that only the transmissions between agents are
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Figure 2.4: Decentralized scheme for the control of a large-scale plant

sent through the network. Control inputs and plant outputs are directly applied
and measured, respectively, i.e. u = il, y = jj. The complete control signal I/ applied
to the plant is comprised of the partial inputs generated by every controller agent:

N
I

(2.13)

where i1; € R (i = 1,...,p) is the control signal that agent i applies to the system
and p is the number of agents in the network. Assuming that Y/ ,r; > r, overlap-
ping is considered. Also notice that if agent i is not a controller agent, then 77; = 0.

The network in Figure 2.4 is topologically defined by its graph G = (V, £) with
| links between p agents. The graph G is, in general, directed, with agents V =
{1,2,...,p} and links £ C V x V. The set of agents which are connected to agent
i is named the neighborhood of i and is denoted by N; = {j : (i,j) € £}. Link (i, )
implies that agent i receives information from agent ;.

A generic agent i may receive information from the plant 7; € R" and may
deliver some control input u; € R". Additionally, each agent may be running an
observer of the plant. Then, the dynamics of agent i are given by the following

equations:
2 = fu (20, 7:(0),ui(t), % (D) € NY)), (2.14)
ui(t) = he (%:(1)), (2.15)
or in discrete time,
2i(k+1) = far (2i(k), 7;(k), u;(k), £ (k) (j € 7)), (2.16)
ui(k) = hgi (2i(k)), (2.17)
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where £; € R" is the estimated state. Functions fci, fdi R x R™ x R' x R — R™
and f.;, by © R™ — R’ model the dynamics of the observer and of the controller,
respectively. The output measured from the plant is given by

yi(t) = g (x(t),(t),v(t)), (2.18)

or

gi(k) = gai (x(k), u(k),v(k)), (2.19)

where g.;, g4i : R" X R" X R7 — R™ model the dynamics of the output i.

Decentralized and distributed control of large-scale plants have been subject of
intense research in the last years [3, 24, 28, 42, 72, 135, 136, 137, 175, 176, 177, 209,
218, 219, 220, 230, 256, 270]. Chapter 7 studies both the estimation and control of
large-scale systems under a decentralized scheme.

2.2.3 Fleets, groups or multi-agent systems

The last scheme is structurally radically different from previous ones. There is not
necessarily a unique plant to be controlled, but a set of different agents. Although
each agent may have its own inner objective, there exists a common goal for all the
group of agents. In order to adequately accomplish their task, the agents share some
information with their neighbours. Think, for instance, in a group of Unmanned
Aerial Vehicles (UAV) that are flying together. To preserve the formation of the fleet,
the UAVs benefits from the knowledge of positions and velocities of other vehicles.
Therefore, a communication network between agents seems important. Figure 2.5
shows this particular situation.
Each agent is defined by its internal state x;, whose dynamics is given by

() = fei (xi(t), ui(t), wi(t), yi(t) (k € Ny)), (2.20)
ui(t) = hg (xi(t))l (2.21)
vii(t) = &aij (xi(t), ui(t), wi(t)), i € Nj, (2.22)

or in discrete time,

xi(k+1) = fai (xi(k), ui(k), w;(k), g (k) (k € N7)), (2.23)
ui(k) = hgi(xi(k)), (2.24)
yij(k) = Gaij (xi(k), ui(k), wi(k)), i € Nj, (2.25)
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Figure 2.5: Multi-agent system

where x; € R is the state of agent i, u; € R"? is the local control signal, and w; € R*
represents external disturbances. Note that the control signal is locally computed in
each agent, unlike previous schemes.

The output y;; € R™ is the information that agent i shares with agent j. Note
that the state of each agent may be influenced by the information received from
every neighboring agent.

Consensus problems are a very interesting line of research for multi-agent sys-
tems, where all the agents intend to get a common estimation of some dynamic or
static variable [12, 87, 178, 179, 231]. Control of multi-agent systems and, in particu-
lar, fleet of vehicles have received much attention for the control community [20, 22,
32, 35, 48, 68, 118, 119, 204, 207]. This kind of systems is not covered in this thesis,
and the reader is directed to more specialized literature [18, 55, 96, 116, 178, 201, 217].

2.3 Observation techniques

This second part of the chapter is dedicated to review some well-known observation
techniques existing in the literature. Following [52], the principle of an observer
is that by combining a measured feedback signal with knowledge of the control-
system components (primarily the plant and feedback system itself), the behavior
of the plant can be estimated with greater precision than shall the feedback signal
be used in isolation.

In some cases, the observer can be used to enhance system performance. It can
be more accurate than sensors and/or can reduce the phase lag inherent in the sen-
sor. Observers can also provide observed disturbance signals, which can be used
in turn to improve the disturbance response. In other cases, observers can reduce
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the system cost by augmenting the performance of a low-cost sensor so that the two
together can afford a performance equivalent or superior to a higher cost sensor. In
the extreme case, observers can make a sensor redundant altogether, eliminating the
sensor cost and the associated wiring.

Observer technology is not without hinders. Observers add complexity to the
system and require computational resources. They may be less robust than physical
sensors, especially when plant parameters vary substantially during operation. Still,
an observer developed with skill can bring substantial performance benefits and do
so, in many cases, whilst reducing cost and/or increasing reliability.

From the early works of Kalman [107] and Luenberger [131, 132], a multitude
of different adaptive filters and estimators have been proposed. A comprehensive
review of these is beyond the scope of this thesis. Nevertheless, in order to facilitate
the understanding of the following chapters, it is considered of interest to give some
notions about two classical solutions: the Luenberger observer and the Kalman fil-
ter. Both estimators can be used to observe the state of a linear system. There exist
continuous and discrete versions of both approaches, but only the discrete one will
be presented.

2.3.1 Luenberger observer

Consider the following unperturbed discrete linear time-invariant (LTI) system:

x(k+1) = Ax(k)+ Bu(k),
y(k) = Cx(k),

where A, B, C are known matrices of appropriate dimensions. The Luenberger ob-
server! is defined by

2(k +1) = A2(k) + Bu(k) + L(y(k) — C2(k)),

where L is the observer gain. The schematic diagram of the observer is depicted in
Figure 2.6.

The observation error is given by e(k) = x(k) — £(k). The dynamics of the error
depends directly on the observer gain L,

e(k+1) = (A — LC)e(k).

IThis is the simplest state-space representation of the observer. More detailed forms including
uncertainties or disturbances can be found in the literature, see [52] and references therein.

Luis Orihuela Espina 24



CHAPTER 2. PRELIMINARIES ON NETWORKED CONTROL SYSTEMS
AND OBSERVATION TECHNIQUES

*@‘D_*x

________________________________________________________

Figure 2.6: Schematic block-diagram of the Luenberger observer

If the pair (A, C) is observable, the poles of the closed-loop can be freely placed
[52]. A necessary condition for the stability of the observation error is the detectabil-
ity of the pair (A, C). The design of the observer gain L can be made with different
techniques: optimality, pole placement, robustness, etc. [52, 71].

2.3.2 Kalman filter

The Kalman filter [107] is, arguably, the most famous observer proposed. The ‘fil-
ter’ name is related with the fact that it tries to estimate the actual state of a system.
Smoothers or predictors intend, on the other hand, to yield an estimation of past in-
stants of the state, or predict the future evolution of it, respectively [11]. The Kalman
filter is an algorithm which capitalises on a series of measurements observed over
time, containing noise and other inaccuracies, and produces estimates of unknown
variables that tend to be more precise than those that would be based on a single
measurement alone.

The Kalman filter has found application in a vast number of fields, not only
in control. From a theoretical standpoint, the main assumption is that the under-
lying system is a linear dynamical system and that all error terms and measure-
ments follow a Gaussian distribution. Extensions and generalizations to the method
have been developed, such as the Extended Kalman Filter [127] and the Unscented
Kalman filter which work on nonlinear systems [105, 106].

In the following, the simplest form of the Kalman filter is shown. Figure 2.7
illustrates the block diagram.
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Figure 2.7: Schematic block-diagram of the Kalman filter

Consider a discrete-time linear perturbed system, whose dynamics is given by?

x(k+1) = Ax(k) +w(k), (2.26)
y(k) = Cx(k)+v(k), (2.27)

where the processes w(k), v(k) are Gaussian i.i.d., with

Elw(k)] = 0,
Elw(kw(k)'] = Q,
Ejv(k)] = 0,
Ep(kpo(®] = R,

and represents uncertainties of the model, noises and disturbances. The dynamics
of the filter is determined by

2(k+1) = A%(k) + L(k) [y(k) — Cx(k)] .

The error between the state of the system and the state of the observer is again
e(k) = x(k) — (k). The evolution of the error is given by

e(k+1) = (A—L(K)C)e(k) +w(k) — L(k)o(k).

ZNote that the control input has been removed from (2.26), because the measurement under esti-
mation does not necessarily represent the output of a linear control system.
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The Kalman filter aims at minimizing the expected value of the observation error,
as well as its variance. To do that, it tries to minimize the trace of the error covariance

matrix, defined as

P(k) = E [e(k)e(kﬂ .

The adaptation of the covariance matrix can be calculated as

P(k+1) = AP(K)AT +Q— AP(k)CTL(k)T — L(k)CP(k)AT
+L(k)CP(K)CTL(k)T + L(k)RL(K)T. (2.28)

The Kalman gain is the one that minimizes the trace of P(k + 1) and can be ob-
tained as
-1
L(k)* = AP()CT (CP(K)CT +R) .

Using this value for the observer gain in equation (2.28) the matrix covariance at
instant k + 1 is

P(k+1) = AP(K)AT + Q — AP(k)CT <CP(k)CT + R) CP(k)AT,

which is a Riccati recursion with initial condition P(0) = P;. Note that P(k) can be
computed before any observations are made. Thus, the estimation error covariance
can be calculated before getting any observed data.

As in the Linear Quadratic Regulator (LQR), the Ricatti recursion for P(k) con-
verges to steady-state value P provided that (A, C) is detectable and (A, Q) stabiliz-
able. Note that P satisfies the following algebraic Riccati equation:

p=APAT + Q- APCT (cﬁcT + R) CPAT,

which can be directly solved [78].
The steady-state filter is a time-invariant observer, as in the previous section,

2(k+1) = Az(k) + L[y(k) — C2(k)],
where I, = APCT (CPCT +R) .

Therefore, the estimation error propagates according to a linear system, with
closed-loop dynamics (A — LC), driven by the process w(k) — Lv(k), which is i.i.d.
zero mean and covariance Q + LRLT. Provided that (A, Q) is stabilizable and (A, C)
is detectable, the closed-loop dynamics is stable [117].
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24 Chapter summary

This chapter has offered, in its first part, an overview of systems controlled over
a communication network. It has suggested a classification based on the sort of
plant or plants being controlled. The different schemes reviewed will serve as a
background for the rest of the thesis as was hinted through this chapter.

The second part reviews two classical observation schemes used in control the-
ory, namely, the Luenberger observer and the Kalman filter. Throughout the thesis,
a number of modifications of these two will be proposed to adapt them to NCS.
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Chapter 3

Stability of time-delay systems

3.1 Introduction

This chapter is mainly dedicated to the study of stability of time-delay systems,
sometimes called by the initials TDS. As the name suggests, these are systems whose
internal dynamics are affected by non negligible delays. It is well known that time-
delays are a major source of instability in the control loop and naturally arise in a
number of practical control problems such as networked control systems, chemical
processing systems, transportation systems, and power systems [208].

The reader may find surprising the inclusion of such chapter in a thesis about
networked systems. However, there exists a compelling reason. As it will be shown
in the following chapter, a system controlled through a network can be modelled as
a TDS under some assumptions. Therefore, most of the ideas and developments in
this field can be extrapolated to NCS.

During the past two decades, considerable attention has been devoted to the
problem of stability analysis and control design for TDS. Several reasons justify this.
First, time-delay is an applied problem, since many real-world applications include
delays in their inner dynamics. To name a few, examples can be found in biology,
chemistry, economics, mechanics, physics, population dynamics, and engineering
(see [171] for detailed examples). Remarkably, TDS are involved in feedback loops
in challenging areas of communication and information technologies: stability of
networked controlled systems [23] or Internet video transmission [145]. A second
reason is that TDS entail important theoretical challenges from the point of view of
stability analysis and controller design. They belong to the class of functional dif-
ferential equations (FDEs) which are infinite dimensional, as opposed to ordinary
differential equations (ODEs). The first implication of this, is that TDS cannot be ad-
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equately analyzed resorting to classical tools. Approaches to the problem in terms
of finite dimensional approximations often lead to conservative results or even un-
stable behaviors when dealing with time-varying delays [208].

Two main Lyapunov-based approaches are usually invoked to study the stability
of time-delay systems: Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems,
see Appendix A. Both approaches can handle time-varying delays, but results using
Lyapunov-Krasovskii functionals are usually less conservative, since they allow to
incorporate additional information on the derivative of the time-varying delay. A
completely different approach was proposed using the ideas of Integral Quadratic
Constraints (IQC) in [108, 143]. These are standard methods that allow to provide a
way of representing relationships between processes evolving in a complex dynam-
ical system in a convenient form for analysis. With regards to Lyapunov-Krasovskii
methods, there is no theoretical result that suggests that one method outperforms
the other in any way. The rest of the chapter, and some of the stability results on this
thesis, are based in the Lyapunov-Krasovskii theorem.

In this framework, many recent works have addressed the problem of finding
delay-dependent sufficient conditions to ensure the stability of linear TDS. Delay-
dependent conditions introduce information about the characteristics of the delay
(lower and upper bounds, time derivative, etc), thus obtaining better results, in gen-
eral, than delay-independent approaches. As delay-independent conditions do not
use information on the characteristics of the delay, they can only be applied to sys-
tems containing instantaneous negative stabilizing feedback terms: for instance, lin-
ear systems in the state-space realization which contain Ax(t), where A is a Hurwitz
matrix, see [114] and the references therein.

First works on delay-dependent stability analysis assumed constant but unknown
delays [114, 162, 200, 251]. However, there are a number of practical applications in
which the delay is inherently time-varying. For instance, in networked control sys-
tems applications. In such cases, some authors have derived delay-dependent con-
ditions that assume a known upper bound for the delay [62, 81]. Moreover, in many
practical situations, a lower delay bound (not necessarily zero) can be assumed. This
fact has been recently exploited by a number of works [99, 216], showing that it is
possible to improve results if the information about both lower and upper delay
bounds are taken into account.

Nonetheless, the criteria to guarantee asymptotic stability of time-delay systems
suffered from important conservatism since its inception. The standard methodol-
ogy in this context typically consists in proposing a Lyapunov-Krasovskii functional
whose derivative along the trajectories of the system is proven negative definite. In

Luis Orihuela Espina 30



CHAPTER 3. STABILITY OF TIME-DELAY SYSTEMS

this process, specific terms are usually required to be bounded in order to cast con-
ditions as Linear Matrix Inequalities (LMI), and this is usually the major source of
conservatism.

Over the recent years, the control community has witnessed a continuous race
aiming at reducing the conservatism. For instance, in [162, 200] the authors intro-
duced novel bounds for the inner product of two vectors that typically arise in the
derivative of proposed Lyapunov-Krasovskii functionals. In [62], a descriptor repre-
sentation for time-delay systems was introduced bringing a reduction in the conser-
vatism. Nowadays, a fairly standard technique, that was introduced in [247, 251], is
the use of free weighting matrices (also called slack matrices). The mathematical ar-
gument consists in adding null terms to the derivative of the Lyapunov-Krasovskii
functional, by using the Leibniz-Newton formula. These null terms include free
matrices to provide additional degrees of freedom. Recently, some authors have
worked to improve the bounds of some integral terms appearing frequently in this
context, see [80]. The use of polytopes to describe the delay was introduced in [216]
with interesting results.

After giving some remarks about the different formulations of time-delay sys-
tems, the purpose of this chapter is to derive an improved stability criterion for a
particular type of time-delay systems based on the Lyapunov-Krasovskii approach.
The system is affected by norm-bounded time-varying nonlinear uncertainties. The
lower and upper bounds of the delay interval are assumed to be known. With re-
spect to its variation, a finite upper bound on the time derivative of the delay is
given. Additionally, the proposed results incorporate the analysis of the L,-gain of
the system.

In order to reduce conservatism in the derivation of the stability conditions, this
work resorts to the idea of splitting the known bounds of the delay interval in mul-
tiple regions or subintervals. This allows to reduce the conservatism due to the fact
that less restrictive bounds for specific terms in the Lyapunov-Krasovskii functional
are derived separately in each subinterval. The idea has points of similarity with
discretized Lyapunov functionals (DLF) (see [59, 73, 74]), but there are some relevant
differences: to the best of our knowledge, available publications on DLF deal only
with systems with constant delay. Moreover, DLFs use piecewise linear matrices in
the functional which depend on each subinterval and impose constraints to guaran-
tee that the Lyapunov functional is, indeed, positive definite. On the contrary, the
approach proposed in this chapter deals with time-varying delays. Furthermore, an
unique Lyapunov-Krasovskii functional is defined for all subintervals. Each subin-
terval covers a delay range which imposes an LMI constraint on the functional. Re-
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duced conservatism is achieved by introducing appropriate slack matrices in each
region, providing additional degrees of freedom.

Related publications

1. L. Orihuela, P. Millan, C. Vivas, F. R. Rubio. Delay-dependent robust stability anal-
ysis for systems with interval delays. American Control Conference. Baltimore,
Maryland, USA. pp:4993-4998, 2010. [186]

2. L. Orihuela, P. Milldn, C. Vivas, E. R. Rubio. Robust stability of nonlinear time-
delay systems with interval time-varying delays. International Journal of Robust
and Nonlinear Control. 21(7):709-724, 2011. [188]

3.2 The family of time-delay systems

Time-delay systems can be described in several ways: transfer functions, state-space
realizations, functional differential equations or more complex models. See [208] for
a complete list of models. In this thesis, a state-space description is used. This
section reviews the different kinds of linear TDS considered in the literature, and
proposes a common notation to encompass all these descriptions under an unified
approach.

Let us first recall the structure and characteristics of the different TDS considered:

1. Standard time-delay systems

The first TDS model considered, (3.1), represents a functional differential equa-
tion (FDE) that accounts for time-varying delayed state:
t

X(t) = Ax(t) + Agx(t —d(t)) + Ay /t_”(t) x(s)ds. (3.1)

2. Descriptor systems with delay

The descriptor system represents a generalization of the previous one in which
a singular matrix E is introduced in the dynamics as follows
t

Ex(t) = Ax(t) + Agx(t —d(t)) + Ah/ ( )x(s)ds. (3.2)
t—n(t
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Remark 3.1. The descriptor form introduced in [58] corresponds to a 2-D mod-
el that resorts to the Leibniz-Newton formula by posing the system into the
singular system structure given by (3.2). It is then a particular case of this
descriptor linear system with delay.

3. Neutral systems with delays

Neutral systems are also delayed systems, but involve the same highest deriva-
tion order for some components of x(t) at both time t and past time ¢ < f,
which implies an increased mathematical complexity. The general model can
be expressed as

t
$(E) = Ax(t) + Agx(t — d(1)) + A, / o X6+ At — o). 63)
t—n(t
All these sorts of TDS can be nonetheless expressed under a unified description
as it is shown next. Let us introduce the following linear state-space equation:

Ex(t) = Ax(t) + Agx(t —d(t)) + Ay /tt " x(s)ds + Apx(t — ho(t)). (34)
-1

It is fairly straightforward to verify that model (3.4) can describe the dynamics
of the three forms of TDS considered.

Unlike non delayed system, the initial condition must be given for the whole
time interval in which the delays are defined. Concretely, for all these descrip-
tions the initial condition is defined as x4,(8) = ¢(t + 0), for all 6 € [—r,0], being
r = max{maxd(t), max#(t), maxv(t)}, that is, the maximum delay of all delayed

components.

3.3 Problem statement

In this chapter, a simplified sort of the general TDS given in (3.4) is considered, but
including nonlinear uncertainties and external disturbances:

x(t) = Ax(t)+ Agx(t —d(t)) +h(t,x(t)) + Bypw(t), (3.5)
z(t) = Cx(t) + Cyx(t—d(t)), (3.6)

where I (t,x(t)) : RT x R" — R" represents nonlinear uncertainties of the plant. A
diagram of the system is depicted in Figure 3.1.
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Figure 3.1: Schematic diagram of the perturbed nonlinear time-delay system

It is assumed that h(t, x(f)) is a piecewise-continuous nonlinear function in t and
x, that satisfies the following quadratic constraint condition:

WE(t,x()h(t, x(t)) < a®’xT(t)HTHx(t), Vt >0, (3.7)

where « is the bounding parameter and H is a constant matrix.
Observe that, for any given H, inequality (3.7) defines a class of piecewise-conti-
nuous functions such that

H, = {h(t,x(t)) HT (8 x(0)(t, x(1)) < a®xT(H)HTHx(t) for all (t,x) € R x IR”} .

The set H, is comprised of functions satisfying /(t,0) = 0 in their domains of
continuity. It is assumed that x(f) = 0 is an equilibrium point of system (3.5).
The time delay d(t) is a time-varying continuous function that satisfies:

dm < d(t) <dp, (3.8)
d(t) < p. (3.9)
Note that no hard constraint on the derivative of the time delay is imposed, as y
can take any positive finite value.
The initial condition for the system is x;,(6) = ¢(t + 6), where ¢(t +6) is a
continuous vector-valued function of 6 € [—dy;, 0].
The objective of the chapter is to present a stability criterion for system (3.5)-(3.6)
in such a way that:
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e System (3.5) is robustly asymptotically stable with degree «, that is, the equi-
librium point x(t) = 0 is globally asymptotically stable for w = 0 and for all
h(t,x(t)) € Hy [224].

e Under the assumption of zero initial condition, output z(t) satisfies ||z(t)|1, <
v||lw(t)||r, for any nonzero disturbance w(t) € L;[0, ).

In order to derive a less restrictive stability criterion, the complete delay range is
divided into multiple disjoint subintervals of the same size,

[dm,dM) = [dl, dz) U [dz,dg)... U [d,‘,di+1)... U [dN, dN+1) (3.10)

where d £ d,,, dni1 £ dy and di1—d; 2 Ad.

The parameter N provides the method with an additional degree of freedom.
As it will be shown, less conservative results can be obtained when substituting the
delay bounds in (3.8)-(3.9) in each subinterval. This idea will be used in the next
section to derive the stability criterion proposed in the chapter.

3.4 Robust stability and L,-gain analysis

This section presents the main result of this chapter. The aim is to develop a novel
stability criterion for the nonlinear system (3.5)-(3.6) under L,-bounded disturbances.
Recall from equation (3.8) that d,,, < d(t) < dps, and from (3.10) that constants d; are
defined in such a way thatd,, = d; < dy < ... <dny1 =dpm.

The following theorem presents a delay-dependent criterion in terms of LMIs.

Theorem 3.1. Given scalars 0 < dy, < dp, p, « and 7y, system (3.5)-(3.6) is robustly
asymptotically stable with degree w for all admisible uncertainties h(t,x(t)) € H, and
presents an Ly-gain lower than vy, if there exist any matrices P, Z1,Z5, Q1, ..., Qn+2,> 0,
any matrices Nj;, Rj;, (j=1,2i=1,...,N),and a scalar € > 0 such that the following
N LMIs fori =1,...,N, are satisfied:

x —el 0 0 0 u 0 0
e | 0 0 BIu 0 0
% x  —Ad(Z1+ Zp) 0 0 0 0 <0, (11)
x ok * * —ANd(Z1+Z;) O 0 0
* * * * * -u 0 0
* % * * * * —a—ezI 0
|k * * * * * * —1I |
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where

I

I'n =

and fori=2,...,N —1,

(611 6;12
* 02

* ok —Qp—
* *
* *
* *
Ii= ¥ %
* *
* *
* *
* *
_* *

b =

012 =

0 =

u =

P =

P, =

l‘ pu—

R —

6112 Ru+ 7 —Nyq 0 0 0
61,22 Ry —Nn 0 0 0
x  —Qi-F 0 0 0 0
L+Z Z1+7,
* * ~Q-g=E 0 0 Tuds
* * * —Q3 0 0 ’
* * * * * —0OnN 0
* * * * * * —QNi1— dzj\l,ltlzii
N 12 [% 0 0 Rin —Nin
N2 0 0 0 Ron —Noy
Z Z1+Z 247
* —Ql—d—"l, — dl\l;—d:, 0 0 dl\lj—df, 0
* * —Q2 0 0 0
* * * * —0QN_1 0 0
* * * * * —QN — Lizhl,idz,i 0
* * * * * * —Ony1
7 0 0 Ry; —Ny; 0 0 0 ]
0 0 0 Ry, Ny 0 0 0
ik = N 0 0 0 0
x —Q-- 0 0 0 0 0 0
* * : : : : :
* * * 7Q,‘_1 0 0 0 0 0
* x ok x —Q;— g}jdzmz 0 0 0 0
: o ¥ * —Qiv1— dMldezil 0 0 df/{ljd%il
* EE S * * —Qin 0 0
* * % * * * * * —Qn 0
* * % * * * * % ok —QNi1— dMlj—dZil_
N+2 7
1
PA+A"P+ Y Q-
i=1 m
PA;+ Ny —Ry, i=1,...,N
Ny + NJ — Ry — RL — (1 — )Q i=1,...,N
21 2i 21 2i ]’l N+2/ — Ly ey
dmZy + (dy — dm) 22
P 0 0)7
BIP 0 07,
T
T T _
N[ NG o of , i=1...,
T
T T _
Rl RE 0 o , i=1...,
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A=1A A 0 ... 0
H=Ho0 .. 0
C=10c ¢ o ... 0

Proof. In order to prove Theorem 3.1, the delay range is divided in N subin-
tervals [d;, d;11) (i = 1,...,N) by taking into account: [dy,, dpy) = [d1,d2) U ... U
ldN, dN+1).-

The following Lyapunov-Krasovskii functional candidate is chosen:

N+1

Vi) = xT()Px(t) + Z/ 5)Qix( ds+/ (5)Qns2x(5)ds

+ / / §)Z4%(s)dsd6 + / / ()Zok(s)dsd6,  (3.12)
dm +9 dm +9

where P > 0,Q; >0,(i=1,...,N+2)and Z; > 0, (i = 1,2). From the Leibniz-
Newton formula, the derivative of (3.12) takes the form

V(t) = 22T (OPx(t) +27(1) [Niz Qi] x(t) — (1 - d(B)x" (¢ — (1) Qu2x(t — (1))
i=1

N+1
- Z, x(t—di)Qix(t — d) + 2" (t) (dmZ1 + (dyt — di) Z2)%(t)

t t—dm
- / i1 (5)Z, % (s)ds — / #7(s)Zy % (s)ds. (3.13)
t—dp t

_dM

To prove the theorem, it is sufficient to prove that if condition (3.11) holds, the
derivative of the functional (3.13) is negative along the solutions of (3.5)-(3.6).

Consequently, the derivative of the functional will be proved to be negative for
each subinterval. The first and last subintervals are special cases, but they can be
carefully subsumed in the generic case, if we consider that in the first subinterval,
the states x(t — d,,), and x(t — d;) are the same. In the last subinterval, both states
x(t —dp) and x(t — d; 1) are identical.

In the following, the derivative for a generic subinterval is analyzed. The re-
quired particularizations for the first and last subintervals will be made when ap-
plicable.

Thus, consider interval i, d; < d(t) < d;; 1. Integral terms on the right-hand side
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in (3.13) can be rewritten as follows:

t t—dyy
/ 7 (s)Zy(s)ds + T (s) Zo(s)ds =
t—dym t—dp
t—d;q t—d(t)
= [ 6@+ 22 ds+/ $)(Z1 + Z2)3(s)ds
—UM
t—d; t—dyy t
+ e xT(s)(Z1 + Z2)x(s)ds + » XT(s)(Z1 + Z2)%(s)ds + » %1 (s)Z1%(s)ds.

It is worth mentioning that in the first (respectively, last) subinterval the fourth
(first) integral is removed due to the fact that d,, = d; (dp = dn+1).
Consider now the addition of the following null terms to V/(¢):

0 = 2Ny + Tt~ ()N [ - d(0) s~ ) [ s8]

t—diq

t—d;
0 = 2[xT(HRy; + 2T (t — d(t))Ry] [ (t—d;) — x(t —d(1)) —/t x(s)ds] ,

—d(t)
0 = [Cx(f) + Cax(t — d(t)]T[Cx() + Cax(t — d(1))] — 2T (£)z(),

0 = Yl (Hw(t) -y (Hw(t),
0 = ehT(t,x(t)h(t,x(t)) — el (t,x(t))h(t, x(t)),
where € is a positive scalar. Defining the augmented state

&T() = ["(1) KTt —d(t) ¥(t—dr) .. 2T (E—dnia) KT (L x(E) @ ()],

and adding the previous null terms, equation (3.13) can be rewritten as:

V(t) < CT(t) *x —el 0 +a?eHAT + CCT é(t)
e |

+ 2T (1) ([dmZy + (dv — dm)Z2)%(t)

/tt;d(t) T(S)(Z1 + Zp)x(s)ds — 2§T(t)Ni/ ] x(s)ds
—diy1 t—ditq
- /t:;(i; X1 (s)(Z1 + Zo)x(s)ds — 2&T (£)R; /t_;(t) x(s)ds
/t_di-H -T( ) t—d,y,

t—dy

§)(Zy + Za)i(s)ds — /t () (21 + Z2)(s)ds

- /tid %1 (5)Z1%(s)ds — zT (H)z(t) + Y*w! (Hw(t), (3.14)
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where
[ 611 + f-jl 6 0 -+ Ry —Npy - 0 ]
* 0io 0 -+ Ry —Npy - 0
- * * * ) : : ) :
I =
* * * x  —Q; 0 0
* * * * *  —Qjyq - 0
* * * * * *
i * * * * * * *  —0ONt1 |

Please note that in the first and last subintervals, the terms in the columns cor-
responding to Q; and Q; 1 appear in the columns corresponding to Q; and Qn1,
respectively. Notice also the similarities between the first addend of (3.14) and the
corresponding block of the LMI (3.11).

Up to this point, no conservatism has been introduced (except for the choice of
a particular structure for the functional V(t) and for the substitution of d(t) by its
upper bound ), as no bounding terms have been required for V(t). Nevertheless,
in order to treat the integrals of (3.14), it is necessary to bound these terms appro-
priately. This is the main source of conservatism of almost all approaches available
in the literature. The key idea in this work is to divide the delay range in N disjoint
subintervals, in such a ways that if one bounds the contribution of each individual
term, the overall conservatism can be reduced.

Let us recall now the well-known upper bound for the inner product of two
vectors

—2bTa—a"'Xa <b'X7'h, X >0.

Choosing vectors a and b appropriately, the resulting inequalities can be inte-

grated in s, yielding
o rtd() t—d(t)
—2§T(t)Nl-/ (s)ds — / #1(s) (Zy + Zo) (s) ds
~—~—"Ji=di1 ~~ t—dip1 S~ N~~~
pT a al X a
A0 o 19T
< [ E Nzt 22) TNTE() s
t—diyq H;_/h,l_xgbf_/
b X-

A
T
S
R
H
—~
—~
N—
FI
—
N
—_
+
N
N
N—
—_
=
=
R
—
—~
SN—
2
w
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Observe that the terms that finally bound the integral terms do not depend on
s, and their integrations result in the presence of d(t) in the final bounds. The time-
varying delay must be substituted for the worst cases, which are d; and 4,1 instead
of d;; and dj;. Therefore, less restrictive bounds are being used with respect to the
case where no partition of the delay interval is considered. This is the main ad-
vantage of our approach compared to previous works as [98, 257], where partitions
of the delay interval are introduced for operational convenience, but no reduction
of conservatism is obtained for this reason, since no specific information of every
subinterval is exploited.

The final bound of the integral terms is given by

2w [T ks — [ 62+ zas(s)as

t—diq —di1
< (dig1 —di)ET(ONH(Zy + Zo) T INT & (),
TR [ x(s)d (2t Z0)E()d
=287 (t) i/t_d(t)x(s) s — /t_d(t)x (s)(Z1 + Zp)x(s)ds
< (dip1 —di)E (R{(Z1 + Z) 'RTE(1).  (3.15)

The rest of the integral terms in (3.14) are bounded using the Jensen’s inequality;,
which can be stated as:

_ /asz(s)Xz(s)dS < — Uabz(s)dsr b)—(a [/ﬂbz(s)ds} , X>0.

Therefore, it yields

_/tt—dmﬁ@(zl —I—Zﬂfc\(/s_)/ds < |:/tt—di+1x(s)d8:| TM [/tt_di+1X(S)dS}

s —du dy — digr [Ji—dy
z1(s) X z(s) T
t—dm, [ pt—dn T t—dm,
[ e+ e < — | [ x(s)ds} 21+ 22 { / x(s)ds}
t—d; | Ji—d, di —dm |Jt-d;

[ ez <[] x@)%f%[/f o] 6o

_dm t_dWZ _dWZ

Then, combining (3.14) with (3.15)-(3.16), it can be shown that for the generic
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interval d; < d(t) < d;11, it holds

V(t) < gT(t) ( x  —el 0 +AdNi(Zl +Zz)_1NiT+AdRi(Zl +Zz)_1RiT+
2
* x*  —7l

+ AUAT + a?cHAT + CCT> E(t) — 2T (H)z(t) + Y*w! (Hw(t), (3.17)

where the term xT(t)(dyZ1 + (dpt — di)Z2)%(t) in (3.14) has been written in the
form &7 (t) AUATE(t).

Let B be defined by
== x  —€l 0 + AdNi(Zl + Zz)_lNl-T + AdRi(Zl + Zz)_lRiT+
e e |

+ AUAT + w?cHHAT + CCT.

By Schur complement (see Property B.4), it can be seen that if (3.11) holds, then
matrix Z is negative definite Vd(t) € [d;,d;;1). Then, since the term &7 (¢)E&(t) is
negative (see Property B.2), it yields

V(t) < =21 (H)z(t) + 2w (Hw(t). (3.18)

Obviously, if LMIs (3.11) are satisfied for all subintervals, then condition (3.18)
will hold for the complete delay range.

Suppose that external disturbances are null, w(t) = 0. If (3.11) holds, from (3.18)
one can obtain that V(t) decreases for all t. Then V(t) < —o||&(t)||?, Vt, for a suf-
ficiently small ¢ > 0. Therefore, the asymptotic stability of system (3.5)-(3.6) is
ensured [77].

Next, the fact that the L-gain of the system is bounded by < will be proved. In
this case external perturbations are assumed to be nonzero. Both sides of (3.18) are
integrated from ty to ¢,

V(E) = V(t) < — /t

to

t
zT(s)z(s)ds + | Y*wT(s)w(s)ds.
to
Then, by letting t — oo and under zero initial condition (V (o) = 0) yields,

/Oo zT(s)z(s)ds < N V2w (s)w(s)ds,

to to
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thus [|z(f)||r, < v|lw(t)||r,. Therefore v is an upper bound for the L,-gain of the
mapping w(t) — z(t). O

It is interesting to compare this approach to that in [99]. Notice that in that
work the authors introduce one slightly different functional for each subinterval,
while here a unique functional for all the subintervals is proposed. Moreover, this
method allows to choose the number of subintervals as an additional degree of free-
dom. The intuition and the numerical examples say that the more intervals, the less
conservatism is introduced. However, as N grows, the computational burden in-
creases. Therefore, conservatism and computational effort can be traded off, as will

be shown in the numerical examples.

Remark 3.2. Without loss of generality, an evenly spaced partition of the delay in-
terval has been considered. Nonetheless, it is straightforward to apply the results in
Theorem 3.1 to general, and possibly variable, partitions of the delay interval.

By definition, it has been supposed that d,,, > 0. In the case that the lower bound
on the time delay was unknown or exactly zero, it would be necessary to consider
the case d,;, = 0. In such circumstances, LMIs in Theorem 3.1 cannot be solved,
because some infinity terms arise in the diagonal of the matrices. In this particular
case, the following corollary is stated to establish the stability of system (3.5)-(3.6).

Corollary 3.1. Given scalars 0 = d,, < dp, p, a and 7y, system (3.5)-(3.6) is robustly
asymptotically stable with degree w for all admisible uncertainties h(t,x(t)) € H, and
presents an Ly-gain lower than vy, if there exist any matrices P, Qp, Qs, ..., QN+2, Z1, Zp >
0, any matrices Nj;, Rjj, (j=1,2,i=1,...,N),and ascalar € > 0 such that the following
N LMIs fori =1,...,N,are satisfied:

*x —el 0 0 0 u 0 0
% =92 0 0 BITu 0 0
% x  —Ad(Z1+ Zp) 0 0 0 0 <0, (319
*x ok * * —ANd(Z1+2Zp) 0O 0 0
* * * * * -u 0 0
* * * * * * —%I 0
| * * * * * * * —1I |
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where )
AMar Moz —Nny 0 0 0
* )\1/22 7N21 0 O 0
Z1+2Z Z1+7Z.
*  ox ~Q-gg 0 0 Tu-ds
AL = * * * - 0 0 ,
* * * * : :
* * * * * —0OnN 0
* * * * * * —Qni1 — dZAlAt‘Zii |
[ ANt ANz 0 0 Rin + ZTNZZ ~Nin ]
* )\N,ZZ 0 c 0 Ron —Non
* * —Qy - 0 0 0
An = * * * ’
* * * * —0OnNn-1 0 0
* * * * * —0On — Zl%sz 0
| * * * * * * —0OnN+1
and fori=2,...,N—1,
A A 0 -+ 0 Ry+ ZldL,ZZ —Ny; o -0
* /\1‘,22 O A 0 RZ{ _NZi O e O
* x* —Qn 0 0 0 0 0 0
* * * ok —Qiq 0 0 0 0 0
A= * ok ok % x*  —Q;— Zld;lZZ 0 0 0 0
ok £ Qg 0 0 =
* * * * * * * *Qi+2 o 0 0
x ok % % * * * %
x ok ok % * * * * * —0QN 0
* * * % * * * * * % —Qni1— d}\ZAldeil
T N+2
Mu = PA+A'™P+ Y Qi+Ry
i=2
N+2 7 7
T 1+242 .
Ain = PA+A'P+ )] Qi—T, i=2...,N
=2 z

)\1,12 = PA;+ Ni1 —Ry1 + Rgl
Ai,12 = PA;+ Ny —Ry, 1=2,...,N
Aimg = Ny+NE—Ry—RL—(1-1)Qnia, i=1,...,N

u = dM(Zl-i-Zz)

Proof. The proof follows the same steps than that of Theorem 3.1. Taking the
time derivative of the LKF and adding the same null terms, equation (3.14) is ob-
tained.
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Substituting d,, = 0 the integral — ftt_ i %7 (s)Z1%(s)ds disappears from (3.14).
Therefore, if the terms

- /t idm 1T (s)Z14(s)ds < — { /t idm x(s)ds} ' % [ /Ld x(s)ds]

are suppressed in each interval, the proof can be made in a similar way to that of
Theorem 3.1. Obviously, the state x(t — d,,) has to be suppressed from the aug-
mented state vector, as in the first subinterval x(t — d1) = x(t — 0) = x(¢#). O

Corollary 3.1 can be used in order to establish the stability of the system (3.5)-
(3.6) when the minimum time delay d,, is equal to zero. However, Theorem 3.1 can
solve the same problem by choosing d,, — 07, as well. With an appropriate com-
putational software, it can be checked that the results of Theorem 3.1 (for instance,
in terms of the maximum allowed time delay d;) converge to those of Corollary 3.1
as the minimum delay approaches zero.

Remark 3.3. In case that d,, = 0, matrices Z; and Z; appears together in the func-
tional (3.12) and in the LMIs of Corollary 3.1 inside the term Z; + Z;. Therefore, it
would be possible to define Z = Z; + Z, and solve the LMIs in the corollary using Z
without loss of generality. However, in order to use a consistent notation throughout
the section, these two matrices have been retained.

Remark 3.4. Assuming that the bound on the derivative of the delay is unknown,
all results still hold if the integral ftt_ a() xT(s)Qn12x(s)ds is suppressed from the
Lyapunov-Krasovskii functional and all the terms with the variable Qp > are re-
moved from the LMIs.

Scalars v and « are given constants in the LMIs. In some situations, it could be
interesting to minimize any of them. In this case, there are two possibilities:

e Let § £ 92 Choosing J as a new decision variable, the LMIs can be solved
aiming to minimize § with a given constant «:

min o

subject to: (3.11)

To do so, appropriate computational software (as mincx in MATLAB is avail-
able.
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e Let 6 = 7% Choose a and § as decision variables. The problem becomes:

min «

subject to: (3.11)

Note that conditions (3.11) are not LMIs if a is chosen as a decision variable.
Therefore, to solve this optimization problem a bisection algorithm could be
used.

Example 3.3 discusses the correlation of y and a.

3.5 Numerical examples

In this section the presented methods are tested over a number of examples which
have become a standard to compare stability criteria from different authors.

Example 3.1. Consider the following system:

0 1 0 0
0 —01 ] x(5) + [ 0375 —1.15 ] x(t—d(t) +

2(H) = [0 1}x(t)+[—o.375 —1.15]x(t—d(t)).

Table 3.1 provides the maximum delay dj; for which the stability of system is
ensured using the most remarkable (to the best of the author knowledge) methods
described in the literature. To obtain comparable results with our method, the max-
imum delay is computed by using a bisection search with d,, = 0 seconds.

It can be observed that the proposed method slightly outperforms all previous
results in terms of dj;, even for the case of taking just two subintervals. If the number
of subintervals is increased, the maximum delay can be further improved reaching
a maximum around N = 15.

Figure 3.2 shows the influence of the number of subintervals N in the delay d;
and in the relative computation time (RCT). The relative computation time is de-
fined here as the ratio between the computation time required for N subintervals
and that required for N = 2. This variable is useful to obtain results independently
of the characteristics of the computer platform. As a reference, for N = 2 the com-
puter used! requires 0.20 s of computation time.

Pentium IV microprocessor, 2GHz with 1 GB RAM memory.
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Method dp(s)
Zhang et al. [266] 45x107%
Park et al. [199] 0.0538
Kim et al. [112] 0.7805
Naghshtabrizi et al. [167] | < 0.8871
Yue et al. [257] 0.8871
Peng et al. [202] 0.9410
Jiang et al. [100] 1.0081
Corollary 3.1 (N = 2) 1.0240
Corollary 3.1 (N =15) 1.0402

Table 3.1: Maximum delay with different methods

1.044 ‘ ‘ ‘ 200
1.042} 1 180}
1.04} 1 160|-
1.038} 1 140}
1.036} 1 120}
—
) =
S 1034f 1 O 100+
Nay ~
1.032f 1 80t
1.03} 1 601
1.028} 1 400
1.026} 1 20t
1.024 5 10 15 5 10 15
N N

Figure 3.2: Maximum delay and relative computation time vs. Number of subinter-

vals

Next, we proceed with the analysis of the L,-gain of the system. For the case
with d,, = 0 and dy; = 0.8695 seconds, Table 3.2 provides the value of ymin for a
number of different methods. It can be observed that the proposed methodology
also outperforms the results in previous works in terms of the L,-gain estimated for

the system.

Example 3.2. Consider the following system in which the lower bound of the delay
is greater than zero,

0 1
-1 =2

0 0
-1 1

x(t) = [ ] x(t) + ] x(t—d(t)).

Different bounds for the maximum delay can be obtained in this case depending
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Method Ymin
Yue et al. [257] 6.82
Jiang et al. [100] 1.0005
Corollary 3.1 (N =2) | 0.9035

Table 3.2: L,-gain estimation obtained based on different methods

Method dm(s 0.3 0.5 0.8 1 2
Jiang et al. [99] dm(s) | 091 | 1.07 | 1.33 | 1.50 | 2.39
He et al. [80] dm

Shao et al. [216]
Theorem 3.1 (N =25) | d

[

1.072 | 1.219 | 1.454 | 1.617 | 2.480

)
)
s) | 0.943 | 1.099 | 1.348 | 1.519 | 2.400
)
) | 1.223 | 1.360 | 1.582 | 1.738 | 2.572

(

(
m(s

(

S

=

Table 3.3: Maximum delay for various d,;, and unknown

on whether the upper bound of time-delay derivative y is known or not (see equa-
tion (3.9) and Remark 3.4). Thus Table 3.3 shows the obtained d, for a variety of
methods with different lower bounds d,,, and for unknown p. Similar results are
shown in Table 3.4 for the case of known u = 0.3.

From both Tables 3.3 and 3.4, it can be observed the goodness of the presented
method, which achieves in some cases a reduction of the conservatism up to 15% in
terms of the maximum delay.

To conclude the example, Figure 3.3 shows the influence of the number of subin-
tervals N in d)y and also in the relative computation time. The lower bound of the
delay is d;, = 1 and u is unknown. As expected, the maximum dy; is improved
as the number of subintervals increases, approaching an asymptotic value. Though
this plot has been obtained for this particular case, similar results have been ob-
served in other cases.

Method A (s) 1 2 3 4 5

He et al. [80] dyi(s) | 2.213 | 2.409 | 3.334 | 4.280 | 5.239
Shao et al. [216] dp(s) | 2.247 | 2.480 | 3.389 | 4.330 | 5.277
Theorem 3.1 (N =25) | dp(s) | 2.400 | 2.700 | 3.462 | 4.384 | 5.327

Table 3.4: Maximum delay for various d,, and y = 0.3.
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1.74 ‘ ‘ ‘ ‘ 180
1.73¢ 4 160
1.72¢ 4 140
171+ 1 120t
@ 1.7F 1f— 100F
= @]
&~
= 1.69- 4= 80t
1.68f 60
1.67F 40
1.66 20
1.65 5 10 15 20 5 10 15 20
N N

Figure 3.3: Maximum delay and relative computation time vs. Number of subinter-

vals
Method N | ®max
Pengetal. [202] | 1 | 0.1636
Theorem 3.1 2 1 0.2760
4 10.2760
6 | 0.2760

Table 3.5: Maximum stability degree a vs. Number of subintervals

Example 3.3. Consider the following system with nonlinear uncertainties,

() =

1 1 0 0
0 099 ] B+ [ ~3715 —3514 ] Xt = (D) + bl x(),
with h(t, x(t)) defined according to equation (3.7) with H = [1 0].

Assume d;;, = 0 and dp; = 0.2509 seconds. Table 3.5 lists the maximum stability
degree « achieved for different methods.

Once again, the previous table provides the improvement of the proposed meth-
od with respect to previous results. Note that the number of subintervals is not
an influential parameter when trying to estimate the stability degree &, so in the
following we will restrict our analysis to N = 2.

When the effects of the external perturbation are considered, the previous system
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0 0.05 0.1 0.15 0.2 0.25
0

Figure 3.4: Tradeoff between « and vy

can be described by

. 11 0 0
£t = [o 0.99]x(t)+[—3.715 —3.514]x(t_d(t))

+ [ 81 ] w(t) + h(t, x(1)),
2(H) = [0 1]x(t)+[—o.o3715 —0.03514}x(t—d(t)).

Here, variables a and <y can be optimized. Suppose that we want to get the best
L,-gain disturbance rejection estimation. In such case, and following the discus-
sion after Remark 3.4, a variable § = 4?2 is defined and with appropriate software
(function mincx in Matlab for example), values of v = 0.7832 and a« = 0.001 can
be obtained. On the other hand, if the objective is to achieve the best stability de-
gree «, by using Theorem 3.1 with free v, it can be obtained 7y = 191.5 and « = 0.275.

In Figure 3.4, the tradeoff between the minimum L;-gain estimation vy, given
the uncertainty bound g, is illustrated for N = 2. As expected, the ability to reject
disturbances (L-gain -y) decreases as the uncertainty in the knowledge of the plant
increases («). This plot has been obtained for this particular case, though similar
results have been consistently observed for a number of other test systems of higher

dimension and with uncertainties.
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3.6 Chapter summary

The importance of this chapter is crucial for the rest of the thesis and, overall, for
the following chapter. Most of the stability results for delayed and networked sys-
tems are based in the Lyapunov-Krasovskii theory, so this chapter establishes the
mathematical foundations that will be employed hereinafter.

Concretely, this chapter investigates the robust stability and the L,-gain analysis
of a class of nonlinear uncertain time-delay system. Sufficient conditions are given
in Theorem 3.1 in terms of delay-dependent LMIs which can be efficiently solved
with available computational software.

Most results using a Lyapunov-Krasovskii functional to ensure the stability of
the system suffer from excessive conservatism. In this respect, it has been shown
that by dividing the time-varying delay range into multiple subintervals, the uncer-
tainty in each subinterval decreases and a less conservative stability criterion can be
obtained.

Section 3.5 has presented some examples to illustrate the reduced conservatism
of this approach compared to previous results in the literature. With the proposed
method, the stability of the systems can be ensured for higher bounds on the delay.
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Chapter 4

Control of delayed and networked
systems

41 Introduction

Chapters 3 and 4 are completely connected. Whereas the stability of time-delay
systems was profusely studied previously, this chapter is focused on the control of
those systems.

As it has been argued before, the study of TDS has great interest in the con-
trol community, as many real applications include delays in their inner dynamics.
Furthermore, it involves a theoretical challenge from the point of view of stability
analysis, as previous chapter clearly illustrates. Lyapunov-Krasovskii theory has
demonstrated to be a suitable tool when studying the stability of delayed systems,
and hence, it is also employed in this chapter to prove the stability of the closed-loop
system.

Optimal control techniques have been widely studied in many areas, yielding
controllers that guarantee good performance when the real system does not devi-
ate too much from the nominal system. In particular, the application to TDS and
NCS has been prolific yielding cost-guaranteed controllers for a variety of time-
delay conditions [34, 53, 64, 120, 121, 246]. In addition, when the system is affected
by disturbances or uncertainties it becomes necessary a robustification of the con-
trol method. In this line, Ho, control has been successfully applied to this framework
[60, 63,98, 101, 144, 174].

Notwithstanding, in some problems it is of interest the obtain both benefits with
the same controller, that is, disturbance rejection and optimality. One possibility
to deal with those drawbacks is the so called mixed Hy/Hu control [14, 111]. The
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problem consists in finding an internally stabilizing controller that minimizes an
H; performance measure subject to a constraint on the Ho, norm in any output.
The H; / He control has demonstrated its properties in different control frameworks,
achieving good performance as well as disturbance rejection capabilities [228].

The design of Hy/He controllers for TDSs has been solved specifically for each
kind of TDS studied in Section 3.2. Thus, for standard time-delay systems, the syn-
thesis of Hy/ He, controllers is addressed in [113]. Yue et al. [258] applied this control
technique for descriptor systems with delays. Lastly, a reference paper when deal-
ing with neutral systems with delays using this approach is [33].

This chapter proposes a new method for the design of suboptimal H,/He con-
trollers for TDS. The proposed framework is characterized by its generality, as it can
be applied to different sorts of TDSs and a variety of different constraints on the de-
lay. Moreover, unlike other works, the contribution does not lie in the use of novel
Lyapunov-Krasovskii functionals nor in the mathematical manipulations, but in the
optimization method that is general in the sense that it can be used for different
functionals. Once the design method is introduced, the chapter focuses on demon-
strating the benefits of using this method with respect to other classical approaches,
namely:

e The existence of a controller satisfying the constraints involved in the classi-
cal designs guarantees the existence of a controller satisfying the constraints
imposed in the new design proposed in this chapter.

e The converse implication does not hold.

e For the same constraint in the disturbance attenuation, a controller designed
according to the method proposed in this chapter always outperforms con-
trollers designed by means of the classical method in terms of the upper bound
of the cost index.

An additional remarkable feature of the proposed methodology is that control
design does not need information concerning the initial state of the system.

The second part of the chapter presents an extended model for networked con-
trol systems in continuous time in which bounded delays and packet dropouts affect
the communication between sensor, controller and actuator. Using the input delay
approach introduced in [61, 146], it is shown that the NCS can be modeled as a par-
ticular TDS with some limitations. Therefore, the general aforementioned method
can be applied to these networked systems, leading to an Hy/Hs controller syn-
thesis for NCS. This method has been tested in an experimental platform, in which
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a robotic arm is controlled at the surroundings of its upright unstable equilibrium
point.
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4.2 Problem statement

Consider the general formulation of a time-delay system given in (3.4). Now, it is
assumed that this system is being controlled, so it can be written as

Ex(t) = Ax(t)+ Agx(t—d(t)) + Ay /tt_”(t) x(s)ds + Axx(t — v(t))

+ Bu(t) + Bau(t — t(t)) + Byw(t), (4.1)

where the initial condition is defined as x,(0) = ¢(t + ), for all 6 € [—r, 0], being
r = max{maxd(t), max#(t), max v(t), maxt(t)}.

The control action applied to the system is divided in two parts: one part cor-
responds to the signal directly applied to the plant; and another signal which is a
delayed plant input. The controller to be designed is a linear state-feedback with
the structure:

u(t) = Kx(t). (4.2)

Let z; and z, denote two outputs of the system defined as:

z(t) = Cox(t) + Dou(t), (4.3)
zeo(t) = Coox(t) + Duii(t), (4.4)

where matrices Cy, Dy, Coo, Doo are known. These outputs will serve to test the op-
timality and the disturbance rejection of the system, respectively. It is possible to
use the same output for both performance measurements, as in SISO systems, i.e.
Z72 = Zoo-

Based on the first output, a cost functional is defined to evaluate the control
system performance:

Ji 2L (s)za(s)ds
J2= or (4.5)
tzo xT(s)Qx(s) + u(s)Ru(s)ds

where Q, R > 0.
In the following, the mixed H,/ He control problem is formally stated. A general
solution for this problem is given in the next section.

Definition 4.1. The suboptimal mixed H,/H control problem. Consider the sys-
tem described by (4.1). Given:

e A desired level of disturbance attenuation -y, and

Luis Orihuela Espina 54



CHAPTER 4. CONTROL OF DELAYED AND NETWORKED SYSTEMS

e A quadratic cost function J; in the form (4.5),

the suboptimal mixed Hj/ He control problem consists in finding a linear controller
K such that:

1. The closed-loop system is asymptotically stable for w(t) =0,
2. The controller minimizes the upper bound of the cost function J, for w(t) =0,

3. Under the assumption of zero initial conditions, the output z(t) satisfies
|Zeo () |1, < ¥||w(t)]|L, for any nonzero disturbance w(t) € L0, c0).

4.3 General solution for the suboptimal mixed H,/H,

control problem

The solution proposed in this chapter for the mixed Hj / He, control problem is based
on the Lyapunov-Krasovskii theory, because the system involves delayed loops. The
design method is intended to be general, applicable to different kinds of systems and
different sorts of functionals. However, some assumptions need to be imposed in
order to get a proper solution.

Assumption 4.1. Let V(¢) be a a continuous quadratic Lyapunov-Krasovskii func-
tional. The time derivative V (t) can be bounded by

cH(HE(K)E(H), w

e ] 2L (2o () + P07 (Bw(t), w

0

T

50 1 ok, 1)

w(t) 0

h

(t

(4.6)
where {(t) € R™ is an augmented state vector which depends, among others, on
the state of the system, and

1

(K) + C(K) By (K)

K,v) = -
oK 7) * —v2I + Dy(K)

(4.7)

The symmetric matrices Z(K), C;(K) € R":*"™, Dy (K) € R¥*® and the matrix
By (K) € R"¢** might depend, among others, on the controller matrix K.

Remark 4.1. When dealing with TDS through the Lyapunov-Krasovskii approach, it
is usual that the time derivative of the functional can be posed as (4.6) [101, 144, 257].
Therefore, Assumption 4.1 makes a mild hypothesis on the problem structure.
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Assumption 4.2. The cost functional ], can be written in the following way:
l= [ 60K, @8)
0

where ®(K) is a positive semidefinite matrix that might depend on the controller K.

Remark 4.2. Assumption 4.2 imposes also a mild restriction. For instance, if the aug-
mented state vector is defined as () = x(t) and ] is chosen as the second option
in (4.5), it is easy to check that ®(K) = Q + KT RK. Similar compositions can be ob-
tained for augmented states including a variety of delayed states and disturbances
of the system.

Once the assumptions have been stated, the general design method is presented
in the following lemma.

Lemma 4.1. Suppose that Assumptions 4.1 and 4.2 are satisfied. Then, the suboptimal
mixed Hy/Heo control problem stated in Definition 4.1 can be solved by finding a controller
K such that:

n}<in «, (4.9)
subjectto « > 0, (4.10)
aE(K) < —d(K), (4.11)
O(K,v) < 0. (4.12)

Proof. To prove Lemma 4.1 it will be shown that a controller that solves the
optimization problem (4.9) with conditions (4.10)-(4.12) also satisfies the statements
in Definition 4.1. Thus, let us proceed with each statement individually.

1. For w(t) = 0, considering (4.6), V() < ¢T(t)E(K)&(t) holds. From (4.10)-
(4.11) and according to Assumption 4.2, one can easily see that E is negative
definite, and therefore V(t) decreases, which ensures the asymptotic stability
of system [77].

2. For w(t) = 0, taking into account equation (4.11) and Assumption 4.2:
: 1
V(1) < GTE(K)(E) < =& (HP(K)S(H). (413)

Integrating both sides of (4.13) from £ to t, it yields
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When t — oo, the asymptotic stability of the system implies that V(t) — 0,
therefore,

Vi) < — [ TR
= h < aV(t).

The value of V (ty) depends on the initial condition x;,. Nevertheless, by mini-
mizing « the upper bound of the cost function J; is minimized regardless of the
initial conditions. This is a relevant difference between this and other works,
such as [33, 109, 113, 258].

3. From condition (4.12), the term

&) () |OK,y)

&(t) ]

w(t)
is negative definite. Thus, for w # 0 and under zero initial conditions, it holds

V(t) < —25(8)zeo(t) + 70" (Bw(8). (4.14)
The computation of the integral of both sides of (4.14) yields

V(E) = V(t) < — / 2T ()20 (5)d5 + tt’ysz(s)w(s)dS.

fo

Then, by letting t — oo, taking into account that under zero initial condition
V(tp) = 0 and the positive definitiveness of the functional, it can be shown
that

0< —/ 2L (5)2e0 (5)ds +/ V2w (s)w(s)ds.
to to
Thus ||zeo(£) [, < ¥l[w(t)]|L,-

The three statements have been proved. O

Lemma 4.1 proposes a general solution to the suboptimal mixed H;/H control
problem. It can be used for different LKFs and for different kinds of time-delay
systems, as it will be shown next.
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4.3.1 Application to the family of time-delay systems

This section shows that the design tools provided in Lemma 4.1 can be particular-
ized to encompass all three kinds of time-delay descriptions introduced in Section
3.2 of the previous chapter.

The objective does not consist in providing less conservative results by an ade-
quate choice of the functional or by means of advanced mathematical manipulation,
but to show the applicability and optimality of the method.

To this purpose, previous works are analyzed in order to compare the results
with the method proposed in this research. Thus, the work [113] is selected as a well
referenced work for Hy/He design for standard time-delay systems; [258] is chosen
for results resorting to the form of descriptor systems with delays; and [33] is selected
as a reference paper for neutral systems with delays.

All these works have been carefully picked according to their relevance in the
field and proximity to ours in terms of problem description and assumptions im-
posed to the problem.

4.3.1.1 Standard time-delay systems

The dynamics of the system presented in [113] is given by

X(t) = Ax(t)+ Agx(t —d(t))
+ Bu(t) + Bau(t — t(t)) + Byw(t), (4.15)

with initial condition x¢,(0) = ¢(t + 6) forall @ € [—r,0], being r = max{d(t), T()}.
Upper bounds on the derivative of the delay are imposed so the following inequal-
ities are satisfied

d(t) <dp, t(t) <1p.

The author in [113] proposes the following Lyapunov-Krasovskii functional:

t t
V(t) = xT(t)Px(t) + " xT(s)Z1x(s)ds + ( )xT(S)KTZZKX(S)dS. (4.16)
t—d(t =
The cost function is [, = ftzo z1(s)za(s)ds. This problem can be studied as a
particular case of the results provided in this work in Lemma 4.1, as the following
theorem states.

Luis Orihuela Espina 58



CHAPTER 4. CONTROL OF DELAYED AND NETWORKED SYSTEMS

Theorem 4.1. Given hp,tp,y > 0, if matrices X,Y1,Y> > 0 and matrix W solve the
following optimization problem:

min o (4.17)
X, Y1,Y,,W
subject to
o X WT XCI+wTDI T
-y, 0 0
oo <0, (4.18)
* x =Y 0
* * * —ul i
[ @, + LBuB, X W' XCL+WTD] |
¥ N0 0 <0, (4.19)
* x =Y 0
* * * —1

where

®; = AX + XAT + BW+ WTBT +

1
A YA+~ B.Y,BT
1—dpdh d+1_TD aX2bg,

then the mixed Hy/ Heo controller for the system (4.15) is given by K = WXL,

Proof. To prove Theorem 4.1 it suffices to show that the time derivative of the
LKF (4.16) can be written as Assumption 4.1 requires in (4.6), and also that the opti-
mization problem (4.17) is equivalent to the one in Lemma 4.1.

First suppose w(t) = 0. Taking the time derivative of V() one can obtain that

V(t) = xT(t)Px(t) +xT(£)Px(t) + xT(£)Zyx(t) + xT () KT ZpKx(t)

= (A—d(8)x" (t —d(t)) Zax(t — d(1))

— (1 —1(t)xT (t — T(t))KT ZoKx(t — T(1)).

The time derivative of the functional can be bounded as follows:
V(t) < xT(t)Px(t) +xT(£)Px(t) + xT(£)Zyx(t) + xT () KT ZpKx(t)

— (1—dp)x"(t —d(t) Zyx(t - d(t))

— (1 —)xT(t —1()) KT ZKx(t — (1)), (4.20)
obtaining the same result given in equation (11) in [113]. The augmented state vector
is defined as: ¢'(t) = [xT(t) xT(t—d(t)) xT(t —7(t))KT]. Thus, the time deriva-
tive (4.20) can be written as V (t) < &T(+)Z(K)¢(t), where

ALP + PAx + Z1 + KT Z,K PA, PB,
E(K) = * —(1 — dD)Zl 0 ’
* * —(1—1p)2Z>
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with Ax = A + BK. Therefore equation (4.6) for w = 0 holds.
Consider now the presence of disturbances. Then, the following null terms are
added to the functional:

V(t) = V() — Yo (Hw(t) + 7w’ (Hw(t)
— 2L (D)zeo (£) 4+ 25 (£) 2o ().

It is easy to show that zL (#)ze (t) = xT(t)CL  Cooxx(t), where Coox = Coo + DooK.
Thus, it yields

[1]

vy < [ & () |

— zo(B)zeo(t) + 770" (Hw(t),

(K) +C=(K) By ”at)]
* —921

where C,(K) = diag{CoToKCooK, 0,0} and B, = [BZ,P 0 O]T. Therefore, the derivative
of the LKF (4.16) can be written as in equation (4.6). That way, Assumption 4.1 holds.
The cost function (4.5) can be rewritten in the following way:

Jo = /too &L (s)CI Gy (s)ds,

with C; = [Cy + DK 0 0 0], satisfying also Assumption 4.2 (4.8) if ®(K) is defined
as ®(K) = CIC,. Note that ®(K) is positive semidefinite.

It remains to prove that the optimization problems in Lemma 4.1 and Theo-
rem 4.1 are equivalent. Consider now equation (4.11) in Lemma 4.1.

E(K) CF
* —ul

<0, (421)

aE(K) < —®(K) < E(K) — (_QZ@) <0

Note that this condition also appears in [113] if « = 1. From equation (4.21),
after some mathematical manipulations and applying Schur complements, a matrix
inequality with the same structure of (4.18) is obtained.

In a similar manner, from equation (4.12), which is identical to that in [113], it
can be obtained an inequality with the structure of (4.19). To obtain (4.18)-(4.19) the
following definitions are introduced: X = Pl W=KpP LY = Z 1i=1,2. Then,
pre- and post- multiplying the matrix inequality by diag{X, I, I, I} and its transpose,
(4.18)-(4.19) are finally obtained. 0
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4.3.1.2 Descriptor systems with delays

In this case, the problem in [258] is taken. In that work the authors propose a TDS

with the structure

Ex(t) = Ax(t)+ Agx(t —d)+ Ay /t x(s)ds
t—1
+ Bu(t) + Byw(t), (4.22)

with x4, (0) = ¢(t+0) for all 6 € [—r,0], where r = max{h,n}. The delays are
assumed to be constant.

The solution proposed in [258] is based on the selection of a Lyapunov-Krasovskii
functional as

V() = xT(t)PEx(t) +a /t y

t

xT(s)Zx(s)ds + 1% /tiﬂ /Sth(u)Zx(u)duds, (4.23)

with the scalar a verifying 0 < a < 1. The cost function takes the form J, =
Jio xT(s)Qux(s) +u” (s)Ru(s)ds.

The following theorem gives a solution for the suboptimal mixed Hj/ He, control
problem for system (4.22) through Lemma 4.1.

Theorem 4.2. Given scalars y,a,y > 0, if matrix Y > 0 and matrices W, X, solve the
following optimization problem,

min «
Y ,W,X
subject to
d; X X wT
Y
i 0 B 0 <0, (4.24)
*  ox —uaQ 0
* * 0 —aR!
@1+ ;BuB, X XCL+W'DL
% —Y 0 <0, (4.25)
* * —1

constrained by
EXT = XET >0,
where

1 2
1 = AXT + XAT + BW + WTBT + —AYA] + L a,vA],

then the Hy/ Heo controller for system (4.22) is given by K = WX T,
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The proof of this theorem follows the same steps that the one for Theorem 4.1 so
it is omitted.

4.3.1.3 Neutral systems with delays

Lastly, the results in [33] are taken as comparison for the case of neutral systems
with delays. In this work the author analyzes a system with the structure

#(t) = Ax(t) + Agx(t—d(t)) + Ay /t i,,m x(s)ds + Ay (t — d(t))

+ Bu(t) + Byu(t — t(t)) + Byw(t), (4.26)
with x;,(6) = ¢(t +0) for all 6 € [—r,0], where r = max{d(t), 7(t),n(t)}, and
time-varying delays satisfying

0<d(t)<dpy, 0<t(t)<tym, 0<n(t) <nm,

d(t) <dp <1, tt)<tm<1, #{t)<yp<l. (4.27)

The Lyapunov-Krasovskii functional is chosen as
t t

V() = xT(t)Px(t) + . d()xT(s)le(s)ds-i— t_d(t)xT(S)sz(s)ds
[ )T () Zax ()
+ /:T (s)KT Z4Kx(s)ds
b B =T Zst )
+ /t—w)[ (t — 7(1)]57 (5)KT ZgKzt(s)ds, 4.28)
and the cost function is given by J, = ft ) + u' (s)Ru(s)ds.

The following theorem gives a solution to the subopt1ma1 mixed Hj/He, control
problem by using Lemma 4.1.

Theorem 4.3. Given scalars dp,dy, Tp, Tvm, 1D, Yy and v > 0, if matrices X, T,Y1,Ys, Y3,
Yy, Y5, Ye > 0 and matrix W, solve the following optimization problem:
min g
X,T)Y1..Ye,W
subject to  (4.29) — (4.30),
then the Hy/ Heo controller for system (4.26) is given by K = WX 1.

The result is not difficult to prove following the procedure in the proof of Theo-
rem 4.1, so that it has been omitted.
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[ @ Dy XAT+WTBT XAT + WTBT XAT + WTBT @y X wT ]
* CDZZ CI)23 @23 CI)23 0 (_) (_)
* * Y, 0 0 0 0 0
* * * Ly, 0 0 0
du 2 1 _ <0,
* * * * —=T 0 0 0
™
* * * * * Dgq 0 0
* * * * * * —sz‘l 0
| * * * * * * * —aR1
(4.29)
[ &, @1, By, XAT4+WTBT XAT 4+ WTBT XAT +WTBT @y XCL+WTDL T
* szz 0 @23 szg, @23 0 0
x ok =92 BL Bl BL 0 0
* * * Y, 0 0 0 0 0
* * * * —ﬁl@ 0 0 0 <o
1 _
* * * * * _WQ 0 0
* * * * * * Dgg 0
| x * * * * * * —1 i
(4.30)
constrained by
—2X+T WT
<0,
* —Y6
where
Dy = (A+A)NX+X(A+ANT+ (B4 By)W+WT(B+ By)T
Dy = [ 0 AYs AyYs 0 —AyYs —ByYe }
. 1-— 1—1 1—7
Dy = dmg{_(l_dD)er_(l_dD)Yzz_wY&_(l_TD)Yzh_( D)Ys,—< D)Ye}
M ™
T
Dy — [ AY, AsY, AYs By, 0 0 }
D = [ X X WT }
Oge = diag{—Y1, —nmY3, —Ya}
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4.3.2 Optimality of the method

In this section the main result of this chapter is introduced. It will be shown that the
unified method proposed in Section 4.3 is less conservative than the design method
classically employed in the literature.

To demonstrate this assertion, it is necessary to describe the basis of the design
methods used in the literature for the different TDSs. Although there is a wide va-
riety of designs which solve the control problem through different functionals and
bounding techniques, the main guidelines of the design methods can be summa-
rized as follows.

First of all, the authors propose a certain Lyapunov-Krasovskii functional. Then,
after some mathematical manipulation, they obtain an optimization problem with a
pair of matrix inequalities to carry out the controller design:

e One inequality accounting for the Hy, disturbance attenuation constraint .

e One inequality to guarantee an upper bound of cost J,.

Therefore, given the restriction on the He, norm, the different methods design a
cost guaranteed controller, that is, a controller with a bound on the H; norm.

The main difference between the standard design methods in the literature and
the one proposed here is the minimization of the Hy cost function, as the Hy, con-
straint is directly embedded in the optimization problem in the same way. The
standard procedure bounds each of the quadratic terms of the initial condition of
the functional V (o) by the trace of certain matrices M; and then, the controller is
chosen to minimize the sum of the traces of these matrices M;. This implies the min-
imization of the upper bound of V (), which is an upper bound of the cost J,. Then
V(ty) =Y, Vi(to), where

Vi(ty) < tr(M;), Vi. (4.31)

Therefore, the standard design methods are based on solving the following opti-
mization problem [33, 113, 258].

Definition 4.2. Optimization Problem 1 (OP1). The suboptimal mixed Hj/He con-
troller K can be obtained by solving the following optimization problem:

min ) _tr(M;), (4.32)
subjectto E(K) < —®(K) (4.33)
O(K,v) < 0 (4.34)
Vi(te) < tr(M;), Vi, (4.35)
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where matrices Z(K), ®(K) and ©(K, ) were defined in Section 4.3.

The comparison between Optimization Problem 1 and Lemma 4.1 leads to three
important differences:

1. The function to be minimized.
2. The upper bound of |, directly related to conditions (4.11) and (4.33).
3. OP1 requires additional constraints, (4.35), which are no needed in Lemma 4.1.

Next, the following theorem demonstrates the main result of this chapter, show-
ing that the proposed design method can always achieve better controllers in terms
of optimality, guaranteeing lower bounds for the cost function.

Theorem 4.4. For any system of the TDS family described in Section 3.2, and given an
Heo norm bound vy, if there exists a controller K, obtained through OP1, there also exists
a controller Ky that can be obtained by solving the optimization problem in Lemma 4.1.
Furthermore, the controller Ky obtained through Lemma 4.1 outperforms (reduces) the upper
bound of the ] cost with respect to the upper bound that can be obtained with Kj.

Proof. Let [k, denote the upper bound of the cost obtained through controller Kj.
Similarly, Jx, will denote the upper bound of the cost obtained through controller
K.

Observe that, if a feasible controller K; solves the optimization problem OP1, all
the constraints of that problem are satisfied and, specifically the constraints

1

(K) < _CI)(K)/
O(K,v) < 0.

Thus, there will exist a controller K; that satisfies Lemma 4.1 given that, by choos-
ing the same LKF V/(¢), one obtains the same constraints for « = 1. Therefore, it has
been proved that the existence of K, implies the existence of Kj.

To complete the proof, it remains to prove that Jx, < Jk,. This is straightfor-
ward to see. For « = 1 and the same LKEF, it holds that Jx, = V(ty), whereas J, =
Y. tr(M;). From constraint (4.35), V(to) = ¥; Vi(to) < ¥ tr(M;), thus Jx, < Jx,. O

Theorem 4.4 ensures that, given a controller Kj, the existence of a controller Kj
is guaranteed for « = 1 and the same LKF. Additionally, it might exist another
controller that solves the optimization problem in Lemma 4.1 for « < 1. In this case,
the upper bound of the cost ], is further reduced.
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Corollary 4.1. Given a controller for a time-delay system obtained through Lemma 4.1, the
existence of a controller designed through OP1 is not guaranteed.

Proof. The proof is straightforward, for the extra constraint (4.35) makes it im-
possible to ensure that the existence of a controller K (that verifies all the constraints
in Lemma 4.1) implies the existence of a solution for OP1. 0

Corollary 4.2. Given a system of the TDS family and an He bound <y, if the controller
Ki found through Lemma 4.1 is obtained with « > 1, then it is not possible to find any
controller K, that verifies the constraints in OP1.

The proof follows immediate by Theorem 4.2. A direct implication of the results
given in this section is that, for all the systems of the TDS family verifying Assump-
tions 4.1-4.2, it is always more convenient to use Lemma 4.1 to carry out the con-

troller design than any of the theorems based in the classical procedure generalized
under OP1.

4.3.3 Numerical examples

Previous section mathematically demonstrates that the proposed design method
outperforms the classical approaches. In this section a number of different examples
are studied in order to quantify this improvement numerically. The unified design
method is particularized and applied to two types of TDSs. After that, the obtained
results are compared with well-referenced designs. Please note that the application
of the proposed design method is performed by using the LKFs employed in the ref-
erenced works in order to show that the improvements come from the new design
method rather than from the use of more sophisticated functionals or bounds.

Example 4.1. Consider the standard TDS borrowed from [113]:

W = | O 1]x(t)+[_0‘3 0'1]x(t—d(t))

-1 1 —-0.1 0.1
B EORS B IO Obllua—r(t)),
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The bounds for the time delay derivatives are dp = 0.2, Tp = 0.4, and the initial

69+1

condition x;,(0) = for all 0 € [—0.4,0].

For an He norm v = 1, an Hy/ He controller is obtained in [113] with a bound
of the H, cost Jx, = 5.1897. With the proposed result, the upper bound of the H
cost is given by Jx, = aV(ty), where

to

V(to) = ¢ (to)P(to) + to_d(t)sf)T(S)Zl(l)(S)dS

+ ¢ (s)KT ZyKep(s)ds.
to—(t)

Assuming with lost of generality that ¢y = 0, then V (tp) can be easily obtained
for the worst case, i.e. maxd(t) = maxt(f) = oco. If Theorem 4.1 is used with
v = 0.5, it can be obtained Jg, = 1.1119, improving the previous results. Therefore,
the proposed design method reduces the guaranteed cost in more than a 75%, while
reducing at the same time the disturbance attenuation level to 50%. The designed
controller is K1 = [—-1.7824 — 1.4632].

Example 4.2. Consider the following uncertain descriptor system with delays intro-
duced in [258]:

1 0], —2 02
oo = ([0

+ AA(t)) x(t)

([0 ] romn) s
i ti0.6 ([ _0023 —%.125 Ad (S)> x(s)ds
+ (1) u(t) + 1 w(t),

Zeolt) = [z 1}x(t)+u(t),

where ||[AA(t)||2 < 0.05, [[AA;(t)|]2 < 0.05, ||AAy(f)]|2 < 0.05. The uncertainties are
assumed to verify

[ AA(t) AAy(t) DAL | =DF() | En Eag Ear |,
where F(t) is an time-varying unknown matrix such that || F(#)|2» < 1 and

D =1; Eq= Eay = Eap = diag{0.05,0.05}.
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0.2 0.4 0.6 0.8 1 12 1.4 16 18

d(s)
Figure 4.1: a vs. Delay d

The cost function J; is chosen with Q = I y R = 1. The initial condition for the
system is x4, () = 69;-1 forall 6 € [—1,0].

Choosing a = 0.5 and an He, norm 7y = 1, the authors obtain in [258] an Hy / Heo
controller with an upper bound of the cost [k, = 10.8512.

With the method of this chapter, the upper bound of the cost is Jx, = aV(tp). The
value of V (tp) can be easily obtained numerically. If Theorem 4.2 and the extension
to uncertain systems given in Appendix D.2 are used with oy = 1, the obtained upper
bound is Jk, = 8.0943, improving the previous results. The designed controller for
this system is K1 = [—-1.6609 — 3.4059].

With respect to the upper bound for the time delay, the authors in [258] solve
the aforementioned problem with a maximum constant delay of d = 0.6074 sec-
onds. With the method proposed in this chapter, the maximum constant delay can
be extended to d = 2.1704 seconds.

In Figure 4.1, the dependence between a and the maximum constant delay 4 is
illustrated for this example. It is worth mentioning that, for the particular case of
« = 1, the proposed method also achieves better results than the obtained in [258].
This clearly indicates that the constraints V;(tg) < tr(M;), Vi, which are necessary
in the previous papers, introduce extra conservatism.

4.4 Control of systems over networks

The previous section has presented a general method to design robust and optimal
controllers for time-delay system through the Lyapunov-Krasovskii theory. Now,
the chapter moves on to the framework of networked systems, which is indeed the
main focus of the thesis. The inclusion of both areas in the same chapter is well
justified, as the explained theory for TDS can be applied to networked systems.
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4_ :

Figure 4.2: System controlled through a network

The results presented in this section are motivated by the following key idea:
under some assumptions, a system controlled over a network can be seen as a time-
delay system. Then, the ideas and techniques proposed to study the stability and
to control a time-delay system can be directly inherited and used for networked
systems.

Therefore, after presenting the mathematical formulation, the design method
will be applied to an experimental plant consisting of a two-degree-of-freedom ro-
botic arm.

4.4.1 Formulation of a networked system as a particular time-delay
system

Consider the scheme depicted in Figure 4.2, where the controller is physically lo-
cated at the other end of a communication network. The plant is described by the
following LTI model:

x(t) = Ax(t) + Bu(t) + Byw(t). (4.36)

The communication between system and controller needs to be performed by
transmitting packets at discrete time instants. The sampling period is / seconds,
that is, the system sends its state periodically. When the information is received at
the other end of the network, the controller computes the control signal and sends it
immediately to the system. The control action is applied straight away as it reaches
the plant.

These packets, when crossing the imperfect channel, may be affected by delays
and/or dropouts in both paths, system to controller and controller to system. Let
t& & kh (k € IN) denote the sampling instant in which packet k is sent. However,
only a subset of packets arrive to the plant, as some of them may be lost. Let {k;}
denote the sequence of the packets received, as Figure 4.3 illustrates. There exists a
relation between the discrete time instants k and each element ky, that is, k = j(kq).
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1 2 3 4 5  packetssent{k}
1 3 4=+ packets received
T T T T I/l\,' ](kl) >

1 2 37 {k1}

Figure 4.3: Packets sent, packets received and sequence {k; }

Then, define ! £ j(k1)h (j(k1) € IN) as the sampling times when received pack-
ets were sent. It is worth recalling the following ideas:

e Sequence {k} represents the set of packets sent.
e Sequence {kj } represents the sequence of packets received.

e Sequence {j(k;)} represents a subset of {k}. Missing numbers represent drop-
outs. Obviously, j(k1) < j(k; +1).

Finally, let d(k;) be the complete delay introduced by the channel in both links
to the packet transmitted at t’s(l.

When taking into account the packet-based communication, continuous control
inputs in the form of u(t) = Kx(t) cannot be applied, as the system states are not
available for the controller at every time. Instead, a typical solution consists in us-
ing a piecewise constant signal that is updated whenever a new measurement is re-
ceived from the controller!. In the following, the input delay approach introduced
in [146] is used.

The idea consists in unifying the effects of sampling, delays, and dropouts under
an unique artificial delay. Define t € [t ,tr,+1) as the time interval between two
consecutive measurements received from the controller, where ¢, is the time instant
when the control action, calculated with the information of the system at iflsc1 , reaches
the plant (see Figure 4.4). Note that

tkl = tlsq—l—d(kl),
= jlki)h+d(ky).

The artificial delay 7(¢) represents the time difference between the current time
instant t and the instant when the last packet received by the plant was sent. The

This typical solution uses a zero-order holder to build the continuous signal from discrete sam-
ples. Other first-order holders (or higher) can also be used.
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Figure 4.4: Schematic diagram of the packets send through the network
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Figure 4.5: Qualitative evolution of 7(t)

artificial delay is then defined as

T(t) = t—14,
= t—ty, +d(k1), t€ [ty tr1)

Note that sampling and both undesired effects, delays and packet dropouts, have
been merged into a common delay 7(t). Figure 4.5 illustrates a possible evolution
of T(t).

The state feedback control law can now be written as

u(k) = Kx(ty, —d(k1)), t€ [tr, ti41)- (4.37)
Thus, the system (4.36) under the control law (4.37) can be rewritten as
X(t) = Ax(t) + BKx(t — 7(t)) + Bpw(t), t € [ty ti+1)-

Comparing with the dynamics of the generic time-delay system (4.1), it is easy to
see the similarities, as previous equation is just a particular case. The main difference
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is the domain of definition, since this one is only defined inside an interval, due to
the switching nature of the artificial delay.

The following assumption characterizes the network conditions with respect to
induced delays and packet dropouts. It imposes fairly standard and realistic con-
straints in the NCS framework.

Assumption 4.3. Three constants d,d, 1, > 0 exist such that:

e The network-induced delay from sensor to actuator d(k; ) satisfies d < d(kj) <
d, k.

e The maximum number of consecutive packet dropouts from sensor to actuator
is bounded by n,. Thatis, j(k; +1) — j(k1) < np.

Given the network conditions detailed in Assumption 4.3, it turns out that (t)
verifies the bounding assumptions typically required for TDS, although the nature
of them is different. The following proposition, whose proof is not needed, gives
the numerical bounds of the artificial delay 7(¢) in function of the network-induced
delays and the packet dropouts.

Proposition 4.1. Suppose that Assumption 4.3 holds. Then, two constants Tpy > Ty > 0
exist such that

¢~]
=
v
I
I
g

(4.38)
(4.39)

(~]
=
IN
=
+
S
NS
=
+
U
I
(~]

=

4.4.2 Controller design for networked control systems

In this section the problem of designing a mixed Hj/He controller to stabilize the
network controlled system (4.36) is addressed. The result is a direct application of
Lemma 4.1. Controlled outputs z; and z, are defined in (4.3)-(4.4), and the cost
function is given by

I, = /t " 2T (s)Qx(s) + ul (s)Ru(s)ds

Consider the following Lyapunov-Krasovskii functional:

t t

V() = xT(t)Px(t) + xT(s)Z1x(s)ds + xT(s)Zox(s)ds
t—Tm t—Tym
—Tm
+ / / §)Z5%(s)dsd6 + / §)Zy%(s)dsd6, (4.40)
—TMm -|—9 —TM +9
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where T, Tps are the known bounds of the artificial delay (4.38)-(4.39), and matrices
P,Zy,...,7Z4 are positive definite. Note the this LKF is inspired on those proposed
for TDS in equations (3.12)-(4.16)-(4.23)-(4.28).

The following theorem provides a solution for the mixed H,/H problem in the
NCS framework.

Theorem 4.5. Given scalars Ty, Ty, 7y, € > 0 and the weighting matrices Q,R > 0, if
matrices X,Z1,...,724 > 0 and any matrices Y, N;, M;, S; (i = 1,2) solve the following
optimization problem for the two vertices of the polytope T(t) € [Ty, Ta:
min  « (4.41)
X,Y,Z;,N;,M;,S;
subject to (4.42) — (4.43)

then, the Hy / Heo controller for the NCS (4.36) is given by K = YX 1.

Proof. The proof follows the same steps that the one of Theorem 4.1. It will be
shown that the time derivative of the LKF (4.40) can be written as is required by
Assumption 4.1. Furthermore, the optimization problem (4.41) will be proved to be
equivalent to that in Lemma 4.1.

First, suppose w(t) = 0. The time derivative of V(t) is given by

V() = 2xT(O)Px(t) +xT())(Z1 + Zo)x(t) — xT(t — T) Z1x(t — Tt

— xT(t =) Zox(t — Tag) + 2T (1) (T Z3 + ATZy) %(t)
=T

_ /tt xT(s)ng(s)dS—/ T (s)Z4%(s)ds, (4.44)

—TM t—Tm
with AT = T — Tws.
Similar to Theorem 3.1, the integral terms in the previous equation can be split

as follows:

/tt x1(s)Z3%(s)ds = /tt_T(t)xT(s)Zﬂ(s)ds—k t %1 (s)Z3x(s)ds,

—TMm —TMm t—7(t)

t—Tn t—1(t) t—Tn
/ #T(s)Zyi(s)ds = / 7 (s)Zy(s)ds + T (s)Zy(s)ds.

=Ty =Ty t—7(t)

Moreover, the following null terms are added to the right-hand side of (4.44):

0 = 2[xT(H)Ny +xT(t — 7(£))Ny] [x(t) —x(t—1(t)) — /ti " x(s)ds} ,
0 = 2lT (1) +2T(t— 7(£))S)] [x(t (1) — x(t—Ty) — /:T(t) x(s)ds} ,
0 = Z[xT(t)Ml -+ xT(t — T(t))Mz] {x(t — Tm) — x(t — T(t)) — /ti;::; X(S)dS} .
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where

oy, X 2z
A
I |

Ell 212 TMA ATA Q R
* Ezz 0 0 0 0
—TmXZ71X
* * TMXZ, O~_1 0 0 <0, (4.42)
* * * —ATXZ, X 0 0
* * * * —aQ~! 0
* * * * % _aR1 |
[ Ell EIZ ElB TMA ATA C 1
* Ezz 0 0 0 0
2 T T
—v°1 —T\mB —ATB
o ™M Bo 0o @)
* * * —mXZy X 0 0
* * * * —ATXZ4_1X 0
| x * * * * —1I |

3 - - 1 =AX+XAT+Z1+Z,+ Np + N{

r M, -S - - ~ - -
. f zz 02 ) Tp=BY -Ny+8 — M +NJ
it i N JT o & Sy T
- ITry = — — _ _
. . . 7, 22 N> NZ + S5 —|—52 M> MZ

(t(t) +N (t(t) =T+ )M (v —T(H) +6)S |,

—(t(t) +¢e)Z3 0 0
ey 2 0 :
* * —(tm — T(t) +€)(Z3 + Z4)
(Bl ool

KT K[ oo,
v Mo o],
EREEP
AX BY 0 0],
cx DY 0 0],
:X 00 0},

:0 YT 0 o].
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Let ¢T(t) = [xT(t) xT(t—7(t)) x"(t— 1) xT(t —7am)]. Therefore, equation
(4.44) can be rewritten as:

V(t) = ¢H(HTE(t) + 2T (1) (tmZs + ATZy)3(t)

- [ ez -2 0N [ x(o)ds
t—1(t) t=(t)

t—Tm t—Tm
- / " 5T (s)Zax(s)ds — 2ET(OM [ x(s)ds
t—(t) t=(t)

=) ' Toone [FTO
- /t 5T (5)(Zs + Za)%(s)ds — 227 ()9 i(s)ds,  (4.45)

—TM t—Tpm
where:
I'n T'p My =5

* 1"22 M2 —52

*x x —/Z1 0

* % x  —2Zp
i1 = PA+ATP+2Z,+Z,+ Ny + N{,
T, = PBK—Nj;+S; —M;+N{,
Ty = —No— N +8,+S) —My— M].

Please notice the equivalence between this equation and equation (3.14) in the
proof of Theorem 3.1. Similar integral terms appears. Therefore, the same bounding
technique is used, that is, the upper bound for the inner product of two vectors:

—2b"a—a"Xa <bTX7'h, X >0.
Hence, the integral terms in (4.45) can be bounded by
t t
—2¢T(HN ( )x(s)ds — / ( )xT(s)ng(s)ds < (t(t) + )& (HNZF'NTE(H),
t—T(t t—7(t

2T OM [ s [Tz < ()~ Ol (OMZ; M),

et 05 [ es)ds / T () (2 + Z4)2(5)ds <

t—Tpm t—Tpm

(m — (1) + )& (1)S(Zs + Z4)71STE(H),

where ¢ > 0 is introduced in order to avoid null elements in the diagonal terms of
the resulting matrix inequalities.
Combining these bounds with (4.45), it can be shown that for t € [ty tx,11),

V(t) < eT(HE(K)E(H), (4.46)

Luis Orihuela Espina 75



CHAPTER 4. CONTROL OF DELAYED AND NETWORKED SYSTEMS

where

E(K) = (r + (T(6) + ©NZ5NT + (T() — T + &) MZ; ' MT

+ (TM — T(i’) + 8).5_(23 + Z4)_1S_T + ATMZ:;AT + AATZ4AT> .

Therefore, equation (4.6) holds for w = 0. Matrices N, M, S, A are given by

N, M; S AT
_ _ _ _ KTBT

0 0 0 0

0 0 0 0

Consider now the presence of disturbances. Then, the following null terms are
added to the functional:

Thus, it yields

vy < [ &7 @) ]
— 2o ()zeo(t) + YW (Hw(t),
where C,(K) = CL;Cwk, D = BLPB;, and

ATZ5By + PBy
_ KTBTz.B
0

Therefore, the derivative of the LKF (4.16) can be written as in equation (4.6)
Z(K) + C;(K) B, (K)

by defining ©(K, y) = . 2T 1D
- w

. This way, Assumption 4.1

holds.
The cost function J, can be rewritten in the following way:

h= [ ez,
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with

®(K) =

o O o O

satisfying also Assumption 4.2 (4.8).
It remains to prove that the optimization problems in Lemma 4.1 and Theo-
rem 4.5 are equivalent. Consider now equation (4.11) in Lemma 4.1.

aE(K) < —®(K). (4.47)

From equation (4.47), after some mathematical manipulations and by applying
Schur complements, a matrix inequality with the same structure of (4.42) is obtained.
To finally obtain (4.42), it is sufficient to introduce the definitions X = P!, 7; =
XZ;X,N; = XN;X,M; = XM;X,S; = XS;X, and then pre- and post-multiply the
matrix inequality by diag{X, X, X, X, X, X, X, X, X, I, I} and its transpose.

In a similar way, consider condition (4.12):

0(K, y) < 0. (4.48)

From this equation, it can be obtained an inequality with the structure of (4.19)
by using the same definitions and pre- and post- multiplying the matrix inequality
by diag{X, X, X, X, X, X, X,I,X, X, I} and its transpose. O

Remark 4.3. The scalar parameter ¢ > 0 needs to be introduced in order to make the
problem feasible. It is worth mentioning that this modification does not introduce
any conservatism, since ¢ can be chosen as small as necessary, i.e., ¢ — 0.

Notice that (4.42)-(4.43) are not linear matrix inequalities due to the presence of
the terms XZ X, XZ4_1X, so the optimization problem cannot be solved as it is
posed. However, two standard solutions can be employed in order to deal with
those nonlinearities. The first one introduces an additional constraint which lets us
address the problem by means of a set of linear matrix inequalities. The second solu-
tion uses the cone complementary algorithm to transform the nonlinear inequality
into an iterative optimization problem with linear constraints. Comparing both so-
lutions, the former could be more conservative, but it is computationally more effi-
cient, as the number of constraints and variables is lower. Appendix C gives details
of both methods.

In the following section, that describes some experiments on a robotic manipu-
lator, all controllers are designed using the cone complementary algorithm.
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4.4.3 Experimental application

This section describes the platform in which the experiments are performed, then
presents the plant and finally, shows the results of the experiments.

4.4.3.1 Platform description

This part describes the test bed built to prove different networked control systems.
Figure 4.6 shows a diagram of the connections. The selected control software is the
xPC Target environment [141, 163] with MATLAB/Simulink.

There are two Target PCs and a Host PC. The local Target PC, which is connected
to the system to be controlled, employs a shared Ethernet network to connect with
the remote Target PC which implements the control tasks. Both Target PCs are con-
nected to the Host PC through the previously mentioned network. For communi-
cation tasks, the unreliable UDP/IP protocol has been selected as, compared with
reliable TCP/IP, it is commonly recommended for real-time application [172, 197].
The reason is clear, as the transmission speed is slower for TCP due to the error-
checking algorithms. Furthermore, there are not retransmissions in UDP.

SYSTEM CONTROLLER

I
§ | | 5
& I
S | |
Local Target | o ! Remote Target

Plant PC UDP/IP Ethernet 5 |UDP/IP PC
OS: xPC Target | Network 0S: xPC Target
I
' |

Kernel Kernel

UDP/IP

Host PC
OS: Windows XP
MATLAB R2007b
xPC Target

Figure 4.6: Diagram of equipment connections

The Host PC is dedicated to the creation of the Simulink models which are run
in real time in the Target PCs. Also, it supervises all the test bed: starts and stops
both Target PCs; controls the communication between the PCs; and receives all the
data when experiments end.

The local Target PC has the following functions:
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e Read output signals from the plant.
e Send data packets to the remote Target PC.
e Receive control data packets from the remote Target PC.

e Apply control signals to the plant.

On the other hand, the remote Target PC functions are the following;:
e Receive position data packets from the local Target PC.

e Calculate control signals from the received information.

e Send control data packets to the local Target PC.

The communication network has been identified by means of performing several
experiments. In these experiments, from a certain time reference, the maximum and
minimum delay of a control cycle through the network have been identified, that
is, the total time passed since a position data packet is sent from the local Target PC
until the control data packet calculated using that information is received in the local
Target PC. Those values are the following;:

e Minimum round-trip delay: d = 9 ms.
e Maximum round-trip delay: d = 15 ms.

However, it would be interesting to manipulate the Quality of Service (QoS)
for this kind of experiments, in such a way that the controllers can be tested for
worse network conditions. This way, the remote Target PC includes the possibility
of degrading the QoS. More precisely, extra delays (upper and lower bounded) and
extra packet dropouts (percentage of losses and maximum number of consecutive
dropouts) can be introduced.

4.4.3.2 Plant description. Modeling and control.

The experimental platform described above has been used to control a two-degree-
of-freedom direct drive robot, designed and developed by the Department of Sys-
tems Engineering and Automation at University of Seville. Figure 4.7 shows a pho-
tography of the robot.

The objective of the experiments will be to maintain the robot at its upright equi-

librium point, similarly as an inverted pendulum. Maybe, this is an uncommon
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Figure 4.7: Photography of the two-degree-of-freedom robot

application of a networked control, but the choice of this plant lets us face interest-
ing control problems, such as uncertainties, nonlinearities (friction), saturation, etc.
Furthermore, note that this is a system with fast dynamics, so the presence of delays
and dropouts may deeply affect the performance.

The robot configuration is schematically shown in Figure 4.8. The robot has two
aluminum joints in an open-chain arrangement in the vertical plane. The first link
(which is between both motors) will be termed as shoulder whereas the second link
(which is between the smaller motor and the edge of the robot) is the elbow. Both
links are actuated and driven by Kollmorgen motors.

This robotic manipulator can be modelled by the following dynamic equation:

M(q)d +C(q,4)d + G(q) + Fr(d) = T, (4.49)

where T(t) € R? is the vector of control torque, M(q) € R?*? is the inertia matrix,
C(g,4)d € R? is the vector of Coriolis and centripetal torques, G(q) € R? is the
gravitational term and Ff(§) € R? is the friction term. In addition, g = (g1 g2)" € R?
is the vector of joint variables. The control torque is applied by means of a voltage
signal between -10 and 10 V.

It is well known that the dynamics of a robotic manipulator is extremely non-
linear. In order to apply the results of this chapter, the robot will be operated around
the unstable upright equilibrium defined by g, = [ 0],4. = [0 0]. To linearize
the system and obtain matrices A and B of equation (4.36), a mean square iterative
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Figure 4.8: Two-degree-of-freedom robot diagram

identification procedure has been followed.

An He, controller is synthesized by means of Theorem 4.5. Using a robust con-
troller, the robot will be stabilized despite the nonlinearities and uncertainties. More-
over, the state has been augmented to include the integral of the position errors.
Therefore, the complete state of the system is

Jo(@" () = q2)ds
x(t) = q'(t) —q;
§r(t) = de

The interested reader may find the application of an H,/H controller for this
manipulator in [147].

In order to perform the tests an initial control based on feedback linearization
is applied, which steers the robot from its stable downward position (both links
stopped in their lower positions) to the surroundings of its unstable upright equi-
librium. This controller is applied on the local Target PC, in other words, without
using the network. Once that position is reached, the linear networked controller is
switched on.

4.4.3.3 Experiments

The first set of experiments is performed without extra delays or dropouts. Only the
natural delays of the Ethernet network affect the communication.
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Figure 4.10: Reaching the upright equilibrium from a further position

Figure 4.9(a) depicts the evolution of the position when the robot tries to reach
the upright equilibrium from an initial state close to that point. Both links attain the
final position in spite of the friction and delays. The control signal applied is plotted
in Figure 4.9(b). It is worth mentioning that, when the equilibrium state is reached,
the control signal is different than zero. This effect is due to the static friction. A
small torque is needed to cancel it.

The linearization of the robot dynamics is less reliable when the robot is moving
far from the equilibrium point. In the next experiment, the robot is requested to
reach the upright position starting from a further position. However, Figure 4.10(a)
shows that the same controller still stabilizes the system, at a cost of a more aggres-
sive torque (see Figure 4.10(b)). Again, the effect of static friction appears when the
robot is close to the steady state.

The following experiments are quite different form previous ones. Once we
know that the robust controller stabilizes the system, we want to explore its charac-
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Figure 4.11: Disturbance rejection capabilities

teristics and performance. More precisely, the effect of the disturbance attenuation
level is studied. The controlled output is chosen as

() =0 0 110 0|x(),

in such a way that only the positions of the two links are considered. Three different
controllers have been designed for three different values of 7, keeping the same
conditions of the network. In order to test the controllers, the following experiment
is executed. Once the robot reaches the upright equilibrium point, a disturbance is
added to the torque. The disturbance remains constant for two seconds, and then
disappears.

Figure 4.11(a) depicts the evolution of the positions for the three configurations.
Great differences can be seen between them. The disturbance is rejected faster, and
with a softer response, as the value of v decreases. The experiments for v > 0.6
show that the controller fails to stabilize the perturbed system.

Notice the presence of the steady-state error, which is more important in the
elbow, as this joint is more affected by the static friction. Although it has not yet
been cancelled, the integral effect is growing as the increasing torque shows at the
end of Figure 4.11(b). At some time instant in the future, the torque will eventually
grow to overcome the friction. This effect is negligible for the shoulder.

Finally, the controller is tested for worse conditions of the network. The Ethernet
network introduces a round-trip delay between 9 and 15 milliseconds. Hence, the
previous controller has been synthesized for 7, = 0.009 and 1)y = 0.015 seconds.
However, as it has been shown throughout the thesis, Lyapunov-Krasovskii con-
trollers suffer from excessive conservatism and, probably, they are able to stabilize

the system with bigger delays.

Luis Orihuela Espina 83



CHAPTER 4. CONTROL OF DELAYED AND NETWORKED SYSTEMS

w
[N
ol

Position shoulder (rad)

@
N}
T

w

o

a
T

w
T

-=--T

M
M
M
- =T,

=20ms

=30ms

b !
gR:HH

it

N

©

a
T

0 5 0 15 20 2
Time (s)

Figure 4.12: Effects of the delay in the position of the shoulder

= 27 ms||

"’6 - =Ty 30 ms
[
N
-
Q
E e -
5 2 —= -
s s ;
'S ] z
) i )
g / '
B A
= -
%) ]
]
[a W

0 5 10 15 20 25 30

Time (s)

Figure 4.13: Position of the shoulder when additional delay is introduced

The experiment planning is similar to previous ones. First, the robot reaches a
position close to the equilibrium (by means of a nonlinear local controller). After
that, the linear controller is switched on. Finally, when the arm is at the equilibrium,
a small step disturbance is applied to the torque. Figure 4.12 depicts the results of
the whole experiment. It turns out that the controller stabilizes the system for poorer
QoS than the ones for which it has been designed for. For 1)y > 0.03 seconds the
controller is unable to control the perturbed system.

Another controller has been designed for 7, = 0.009 and 7); = 0.030 seconds.
The response for the same experiment is depicted in Figure 4.13. Although the tran-
sient seems worse (slower and with more oscillations), it achieves the stabilization
of the system around the unstable equilibrium point for higher bounds of the delay.
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4.5 Chapter summary

This chapter can be seen as the natural extension of the previous one. After study-
ing its stability, the next step consists in controlling a time-delay system. Using the
Lyapunov-Krasovsii theory presented before, this chapter proposes a solution for
the so called Mixed Hy/He control problem in Lemma 4.1. The objective is to synthe-
size a controller that reduces the upper bound of the H, cost index, given a fixed
bound on the Hy, part.

The importance of this lemma is twofold. First, it proposes a general solution,
applicable to different time-delay systems and different choices of the funcional, that
does not require any information about the initial condition, as happens in other
works in the literature. And, what is more important and impressive, its solution is
always closer to the optimum with respect to those obtained by other methods. This
fact has been theoretically proved in Theorem 4.4.

The second part of the chapter is dedicated to networked control systems. The
connexion between TDS and NCS is clear, as Section 4.4.1 shows. Using the input
delays approach, a NCS can be described as a particular TDS, where the effects of
delays, packet dropouts and sampling are merged into a common artificial delay.
The assumptions and conditions that must be imposed for this delay are similar to
the ones for TDS.

Therefore, the general result of Lemma 4.1 can be inherited for NCS, as it has
been done in Section 4.4.2. Finally, the performance and tuning capabilities of the
controller has been tested in an experimental platform consisting of a two-degree-
of-freedom robotic arm.
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Chapter 5

Model-based networked control
systems

5.1 Introduction

State-feedback control for NCS has been studied in the previous section. This chap-
ter takes a step forward and proposes the use of the so-called model-based con-
trollers in networked control systems. In general, model-based controllers obtain
better performance compared to classical designs, as they introduce information
about the plant to compute a new control action (see Figure 5.1).

Model-based techniques have been widely used in classical control. For instance,
the use of models makes possible the design of auto-tuning PID controllers [9].
Smith predictors [229] or model predictive control [25] are other classical examples.
When the model of the plant is accurate enough, all these approaches achieve re-

markable results.

feedback model-based

controller controller
Y
plant

~———o

()

controller

controller

Figure 5.1: Feedback controller vs. Model-based controller
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In the context of networked systems, this idea has not been overlooked. Authors
have leveraged the model with two different objectives. First, they looked for the
foreseeable increase in the control system performance. Second, a reduction of the
traffic through the network could be obtained, given that the model allows to make
predictions on the actual evolution of the plant. This chapter is mainly focused on
the second point, that is, to attain a better exploitation of the available bandwidth.

It is possible to classify the different solutions in the literature according to the
way that the samples are sent through the network. Thus, aperiodic approaches
emerge in contrast to periodic ones, in which the different elements (plant and con-
troller) deliver information at a given fixed rate.

The theoretical background is obviously vaster for the periodic solutions. For
instance, Montestruque et al. [160, 161] have studied the reduction of the network
traffic by incorporating a model at the controller end. Nevertheless, their scenario
assumes the controller to have direct access to the plant actuators, that is, com-
munication problems are not present in the controller-actuator path. Moreover,
Naghshtabrizi et al. [166] consider a more realistic scenario taking into account
the effects of delays and dropouts occurring within the communication network.
However, they assume an error-free plant model.

In this line, this chapter proposes a novel method for reducing the data being
sent through the network, but still ensuring the stability of the closed-loop system.
Compared with the aforementioned papers, this work considers the presence of a
network in both paths of the communication, sensor to controller and controller to
actuator. One of the major issues of most of these approaches is that they do not
deal with parametric uncertainties in the model of the plant. In this chapter, tech-
niques based on the stability of the interval matrices [215] are employed aiming at
increasing the practical applicability of the method. Moreover, as the identification
error grows, the model-based predictions at the controller side could be counter-
productive for the system stability. Therefore, this proposal explores the limits of
uncertainties that the proposed model-based controller can support before becom-
ing counterproductive.

On the other hand, the aperiodic solution consists in controlling the plant while
minimizing the access to the network by using a variable sampling rate in which
measurements are only sent when they are indeed necessary. Minimizing the net-
work load is critical in large-scale systems in which the amount of data transmitted
may be very large. Instead of using a constant sampling period, network access is
scheduled and used only when necessary.

Two different approaches to the problem of scheduling the transmissions can be
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found in the literature: event-based and self-triggered control. Under the former,
the controller execution is triggered according to the state or output of the plant,
which requires a continuous monitoring of it [8, 40, 85, 133, 234]. This drawback
does not appear in the latter. Self-triggered systems try to emulate the event-based
ideas avoiding a continuous sampling of the state and, hence, the implementation
problems it carries [5, 6, 40, 142]. Model-based predictions are essential to achieve a
notable reduction of the traffic in self-triggered solutions.

It is worth mentioning the difference existing between these approaches and
other control schemes in the context of robust stability of NCS subject to time-
varying sampling instants in which, although the intervals between sampling times
are also time-varying, there is no freedom of choice for these [66, 67, 232].

In this chapter, the problem of reducing the use of a bandwidth-limited chan-
nel is tackled in a different way. A scenario with a communication network in the
sensor-to-controller path is considered. The system is a linear time-invariant plant,
subject to bounded additive disturbances. Starting from the knowledge of a sta-
bilizing feedback controller and an associated Lyapunov function, a model-based
controller predicts the system state in open loop between two consecutive samples.
The sampling times are chosen by the controller, in such a way that practical stabil-
ity is guaranteed while reducing the access by maximizing the time between suc-
cessive samples. In order to decide the sampling times, the controller solves on-line
quadratic optimization problems (QP). It will be shown that this self-triggered strat-
egy allows to stabilize the system with low data rates.

Related publications

1. L. Orihuela, E. Gémez-Estern, F. R. Rubio. Model-based networked control systems
under parametric uncertainties. 18th IEEE International Conference on Control
Applications. Saint Petersburg, Russia. pp:7-12. 2009. [194]

2. P.Millan, L. Orihuela, D. Mufioz de la Pefia, C. Vivas, E. R. Rubio. Self-triggered
sampling selection based on quadratic programming. 18th IFAC World Congress.
Milano, Italy. pp:8896-8901, 2011. [151]

5.2 Problem statement

Chapter 4 dealt with the problem of designing stabilizing controllers for systems
controlled over communication networks. The presence of such networks introduce
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Figure 5.2: The model-based controller decides, in general, both sampling times

undesired effects, as delays and packet dropouts, that were taken into account in
the controller synthesis. That problem can be catalogued in the field of control over
networks, as it was defined in Chapter 2. This chapter, however, tackles a different
problem. Given a pre-designed controller, the question to answer is: is it possible
to reduce the network traffic preserving system stability? It is of undeniable interest
to reduce the load in a shared medium, since the congestion is a source of problems
such as delays and dropouts.

Consider the scheme depicted in Figure 5.2, where the plant is assumed to be a
LTI system possibly affected by external disturbances:

X(t) = Ax(t) + Bu(t) + w(t). (5.1)

The sensor sends samples of the plant state to the controller at discrete time in-
stants t;,. When this information is received at the model-based controller, the state
of the model is updated. The controller is defined by:

Xc(t) = Acxc(t) +Beu(t), Vte [ty t+1) (5.2)
Xe(ty) = x(t,), ki €N, (5.3)

where the control signal is a piecewise continuous signal depending on the state of
the model that is updated at discrete instants t,:

u(t) = Kxc(tkz), Vt € [tkz, tkz+1)' (5.4)

The objective is to choose adequate sampling times t;, and t;, such that the sta-
bility of the system is preserved while reducing the traffic over the network. Two
solutions are proposed: periodic and aperiodic sampling policies. The next sections
study the details of both approaches.
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5.3 Periodic solutions

Compared with asynchronous sampling policies, periodic implementations are sim-
pler, since continuous systems can be easily described as discrete ones. Since the the-
ory of discrete systems is mature enough, many properties can be directly inherited.
Nevertheless, some problems must be carefully tackled, because network-induced
problems complicate the theory.

In this section, the following pair plant-model is considered:

x(t) = Ax(t)+ Bu(t), (5.5)
Xc(t) = Acxc(t) + Beu(t), (5.6)

where the model and the control signal are updated following (5.3) and (5.4) respec-
tively. It is assumed that the system is not affected by disturbances, i.e. w(t) = 0.
However, uncertainties are present since the pairs (A, B) and (A, B;) are different.

The sensor sends the state every /1 seconds, i.e., the update times verify t; 1 —
ty, = h1, Vki. Let 6(t)! denote the error between the state of the plant and the
state of the model, that is, 6() = x(t) — xc(t). At update times #;, it turns out that
5(tk1) =0,Vk; € N.

Because of the network connecting the controller and the actuator, the samples
of the control signal shall arrive to the plant every hy seconds. That is, the update
times satisfy ty, 1 — tx, = ha, Vko € IN. Both sampling periods are related, as the
following assumption states.

Assumption 5.1. Sampling period /; is a multiple of hy, i.e., h1 /h, = N € IN.

The actuator function is to apply the control signal arriving at instant f;, during
the whole interval t € [ty,, tx,+1)-

Let &(t) = [xT(t) 67(t)] " denote the augmented state vector . Without loss of
generality, the equilibrium point is defined by &, 2 [0 0]".

Under this paradigm, the following section studies the dynamics of the over-
all system and provides sufficient conditions to ensure global exponential stability
around the equilibrium point. The evaluation of the eigenvalues of a test matrix will

allow the selection of the update times /11, h; to maintain the stability of the system.

!Note that a different notation has been used in this chapter for the model state x, and the error
J, in contrast with £ and e used in Chapter 2. The reason is that the objective of the model-based
controller is to make predictions about the plant state, instead of computing a estimation of it.

Luis Orihuela Espina 91



CHAPTER 5. MODEL-BASED NETWORKED CONTROL SYSTEMS

5.3.1 System dynamics and stability conditions

From the starting point detailed above, it can be seen that the dynamics of the overall
system for t € [ty, i, tk,+i+1) can be described by

g(t) = Ag(t) + Yg(tkz)/ vt € [tk2+ir tk2+i+1)l (5-7)

where A is of the form

)
A A
y o [ aeK]
BK —BK

with A £ A — Acand B £ B — B.. At update times t; , the augmented state verifies

() = _x(f)k?)_,
(h) = 522’:)) — i),

where the notation ¢~ indicates the time instant just before ¢.
The following proposition states the evolution of (t) for a generic interval.

Proposition 5.1. Assuming a nonsingular A, the system described by (5.7) with initial
condition &y = &(tg) = [xT(ty) 0] " has the following response for t € [ty i, tk,+it1):

E(t) = (eA(t_tkz+i) Al [1 _ eA<f—sz+f>] Y) o I (N I )R &, (5.8)
for0 <i < N—1, with ty, < tg,4; < ty,41, where
I 0
Ii = ,
. [ 0 0 ]
v = M Y,
p = AYI- 2],

Proof. The proof is divided in two parts. First, starting from an update instant ¢
the evolution of the system is found. Giving some steps back in time, the evolution
is written with respect to the initial state. Second, the evolution for a generic interval
between two consecutive update times fy,; and f, ;41 is given.
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Figure 5.3: Sampling times in both links

Consider an update time t;,. As Figure 5.3 shows and considering Assumption
5.1, it holds t, = t;,. In the interval t € [t;, tx,+1) = [tk,, tk,+1) the system response
is

() = Mg (1) — AT = M IIYG (1), (59)

The state error becomes zero at the instant ¢;, . This can be represented by (t,) =
Is1§(ty, ). Furthermore, it is verified that £(t,) = ¢(ty,) = Iag(t; ). Substituting in
(5.9) it yields

&) = <eA(t—l‘k1) _A—I[I_eA(t—tkl)]Y) Iag(t)
= F‘:(tk_l ), t€ [tkz/ tkz+1)'

The evolution given in (5.9) still holds for a generic interval t € [ty,j, tk,+i+1)-
Therefore, if one uses (5.9) it is possible to find ¢ (tk_1 )

E(t) = M2 (t, 1) — AT —eM2]YE (k)
= eM2g(t, 1) — PYE(ty—1).

Atinstant t, 1 the augmented vector does not experiment any change. This can
be represented by ¢(t,—1) = &(#, ;). Hence,

G(ty,) = [N — @YIG(t, ) = ad(ty, o).
Repeating this procedure N times it is obtained

g(t) = Falelg(tk_l_l)/ te [tkzl tk2+1)/

since ty,_ N = tx,—1. Give now k; steps back to ty, so that

é(t) = F((Xlel)klgo, t e [tkzltk2+1)-

Now, the evolution of the system depends on the initial state. Finally, by moving
i steps forward to the generic interval t € [ty 1, tk,1it1),

g(t) = (eA(t_tk2+i) — A_l[I — eA(t_tk2+i)]Y> Déilsl ((XNISl)klg(), t e [tkz—i—i/ tkz—i—i—l—l)/
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for 0 <i < N — 1. This proves the proposition. U

It is worth noting that, without the terms in brackets, equation (5.8) is equivalent
to the evolution of a discrete system with sampling time /h, that jumps each N in-
stants. This fact inspires the following theorem, which gives sufficient conditions to
ensure the global exponential stability of the equilibrium point ¢, = [0 0] T

Theorem 5.1. The equilibrium point ¢, of the system described by (5.7) is globally expo-
nentially stable if the eigenvalues of aN Iy lie inside the unit circle, where a and I where
defined in Proposition 5.1.

Proof. The proof is similar to that in [160], but with differences to adapt it to the
case in which the network also mediates the connection of controller and actuator.
Take the norm of the response given in Proposition 5.1, that is

18] = [[{eA ) — ATV — A Y Yol I (aN 1 )M o, (5.10)
which can be bounded as
()] < {0t — AT — ATy Yl I ||| (aN T )5 |Gl (B.11)

The triangle inequality is used to analyze the first term on the right-hand side of
(5.11):

IN

|| . || H( (t—tyti) _A—l[I_ (t— tk2+1 >

< || (M) = AT = A ey )HKa

slH

where K; 2 ||a/||||Is1]|. Now,

-] < (Hel\(f—sz+i)

(

(e || A7 (14 &) Y] ) K, 2 K,

+ At - eA(*—*kz+f>]YH> K,

AU ) - eA(t_tk2+i)] H ||Y||> K

+ (A

IN

IN

being 7(A) the largest singular value of A.

On the other hand, the second term on the right-hand side of (5.11) || (aNIs )|
is bounded if the eigenvalues of aV I lie inside the unit circle. Then, ||(aN I )% || <
K.e~9k1 with K., a7 > 0. Observe that tk,+1 = (k1 +1)hq > t, hence

~1)

—aq (L My
Kee k1 < Kee % (7 = KeeMe T = Kze ™,

with Kz, > 0. Therefore ||¢(t)|| < K,Kze " ||, so &(t) approaches &, exponen-
tially. O
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5.3.2 Extension to uncertain systems

In the previous section, it is shown that the system is exponentially stable whether
the eigenvalues of a test matrix aN I are inside the unit circle. If the test matrix is
completely known, the eigenvalues can be easily found. However, a perfect knowl-
edge of the test matrix requires a perfect system identification. This reasoning leads
to a question: if the dynamics of the plant is perfectly known, why to choose a wrong
model? That is, why are the pairs (A, B) and (A, B.) different? Obviously, it would
make no sense to choose a wrong model if the actual dynamics of the plant were
known.

In most circumstances, some dynamics of the system cannot be perfectly mod-
elled, appearing undesired uncertainties. In these cases, it is not possible to find
the eigenvalues of a matrix whose parameters are unknown. Aiming at solving this
drawback, this section presents a method to deal with uncertainties in the model.

The elements of the test matrix aVI;; are a nonlinear function of the uncertainties,
that is,

NIy & My = {[my] : mij; = f(a, byj)}, (5.12)

with A = {la;]}, B = {[bij] }-

The relation between the parameters of matrices A, B with the elements of Mr
depends on the structure of the matrix test. In general, it is a complex relation. This
problem has not been yet tackled in the literature. To solve it, this section resorts to
the theory of interval systems or integral matrices [31, 139, 140, 215, 249].

Consider a discrete-time system described by

x(k+1) = ®x(k), (5.13)
where ® = {[¢;] : (j)?]?i” < ¢ij < ¢ji*™ }. If the stability of system (5.13) is ensured,
the eigenvalues of ® will be inside the unit circle. Therefore, the aim of this section
is to study the stability of systems as (5.13) for the whole range of uncertainties.

The results based on the Kharitonov theorem cannot be used as the stability
of interval matrices is more complex than that of interval polynomials [215]. The
first approximations to this problem provide sufficient conditions that needed large
computation times [31]. Recently, necessary and sufficient conditions have been
proposed in [139, 140]. The stability tests are based on the solution of linear matrix
inequalities, so efficient interior point algorithms can be used.

The following proposition states that the application to uncertain systems can be
casted as a problem of stability of interval systems.

Luis Orihuela Espina 95



CHAPTER 5. MODEL-BASED NETWORKED CONTROL SYSTEMS

Proposition 5.2. Let A = {[a;] : a?]?i” <a; < a?]?“x}, B = {[bij] : b;?]?i” < bjj < b
be a pair of interval matrices including the uncertainties of the model. Then, if the interval
matrix Mr is stable, system (5.5) is stable using the model-based controller (5.6) for all the

range of parametric uncertainties.

The proof is immediate. Assuming that upper and lower bounds of the different
elements [m;j] of M are known for the variation range of uncertainties, the results
of interval matrices in [140] can be applied to check the stability (and hence the
eigenvalues) of matrix Mr.

This method produces conservative results, because some unfeasible combina-
tions of uncertainties of some of the parameters may be being considered in the

criterion.

5.3.3 Limitations of parametric uncertainties

The scheme proposed here exploits a model at the controller end in order to reduce
the data rate. As the model better approximates the actual plant, better dynamical
performance and larger reduction in the network traffic may be achieved.

In case the model significantly differs from the actual plant, the effect of using it
at the controller end can become counterproductive. When this difference is large,
the control signal obtained could even destabilize the system.

In what follows, an algorithm is proposed for finding the maximum parametric
uncertainty that a model can withstand without becoming an option worse than a
simple state-feedback controller. Given range of uncertainties, if a larger packet rate
is needed to stabilize the system with the model-based than with the state-feedback
controller, then the model is said not to tolerate the uncertainties.

Consider a continuous plant described by (5.5), where A € [A, A] and B € [B, B].
Consider both control schemes:

State-feedback controller: The input is given by u = Kx(t;), with ;1 —tp = h,
being /1 the sampling time. Let Rgr denote the minimum rate required to sta-
bilize the system. That is, for any rate R > Rgr the system with state-feedback
control is stable. The relation between the rate R and the sampling period &
depends on the networking scheme:

e Network in both paths: Two packets are needed each / seconds, so R = 2

packets/s.

o Network in sensor to controller path: One packets is needed each h seconds,
sOR = % packets/s.
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Model-based controller: The estimated state evolves according to (5.6), where A, =
# and B, = #. That is, the model is chosen in the middle of the uncer-
tainty range. Let Rp;p denote the minimum rate required to stabilize the sys-
tem, so that for every rate R > Rjyp the system with a model-based controller

is stable. The relation between the rate and the sampling period is:

e Network in both paths: N + 1 packets are needed each Nh; seconds, so

R = 1]\\]]—;:21 packets/s.

e Network in sensor to controller path: One packets is needed each 1, seconds,
SOR = % packets/s.

Let U, denote the uncertainty range defined as U, = [AA,AB| = [#, #].
The objective of this section is to find the maximum uncertainty range tolerated by
the model-based controller. To do so, the following optimization problem must be
solved:
max : {Rmp(Ur) < Rsr}, (5.14)

where the notation Ry (U, ) refers to the fact that the minimum rate for the model-
based scheme Rjp strongly depends on he uncertainty range. The rate Rgr also
depends on the uncertainties. However, it is assumed to be constant for the opti-
mization problem, hence avoiding the notation Rgp(U;).

In order to solve problem (5.14), the relation of Rysp with the uncertainties must
be known. However, it is not straightforward to find an analytical expression for
any of the networking schemes under consideration. Nonetheless, the results of the
previous section can be exploited to solve this optimization problem at least in a
relatively conservative way. Using the techniques based on interval matrices, it will
be possible to find the maximum uncertainty range defined above.

Algorithm 5.1.
1. Choose the sampling periods /1, hp, and a minimum uncertainty range.
2. Find the interval matrix (5.12).
3. Check the stability of the closed loop system by using the results in [140].

4. If the system is stable, enlarge the uncertainty range and return to step 2. If
not, the maximum uncertainty range has been found.
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Remark 5.1. Finding the interval matrix (5.12) is not a trivial task. In scalar systems,
the limits of the interval matrix are in one of the extreme points of the uncertainty
range. But this is not inherently true for higher order systems. An approximated
method consists in using techniques based on numerical sweeping that, at the cost
of greater computational complexity, are easily programmable and are carried out
offline.

An application of this algorithm will be shown in the following.

5.3.4 Numerical examples

Two examples are given in this section to explore the influence of the uncertainties
on the traffic reduction and stability.

Example 5.1. NCS with parametric uncertainties
Consider a linear unperturbed plant described by equation (5.5). The pair of

[

where a1, ay, a3, a4 are unknown parameters which belong to the interval [—0.1,0.1].

matrices is given by

0.05+a; 095+ap
—02+a3 0.1-+ay

A=

The plant and the model-based controller are connected by means of a network, as
Figure 5.2 shows. The model has the structure of (5.2) with

a [ 0.05 0.95]’ B _ [0].
—-0.2 0.1 1

The controller is chosen according to K = [-1 —2].

If one follows the aforementioned procedure, the first step consists of finding the
upper and lower bounds for the elements of the test matrix. To do this, a multi-
dimensional discretization of the considered region is made. For each point of the
discretization mesh, the maximum and the minimum value of the test matrix must
be found. The computation complexity is high (exponential), but the calculations

are made only once offline.
Two update times has been chosen, h, = 0.6 or i = 0.65 seconds and N = 2,
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yielding

(0.1196 0.6315) (—0.0664 0.0456) 0 O ]

Mr(06) = (—=1.1046 —0.7291) (—0.7342 —0.6760) 0 O

L N (—0.5344 —0.0225) (—04253 —0.3132) 0 O ’

| (—0.6513 —0.2758) (—0.6516 —0.5933) 0 O |
[ (—0.0157 0.5566) (—0.1720 —0.0483) 0 O i

M(0.65) — (—1.1664 —0.7558) (—0.8455 —0.7694) 0 O

L N (—0.6301 —0.0578) (—0.5236 —0.3998) 0 0
| (—0.7224 —0.3117) (-0.7384 —0.6622) 0 O |

This way, it is possible to build two matrices M and MT with the minimum
and maximum values, respectively, of the matrix Mr. Let M, = 0.5(M% 4+ MIin)
and AM = 0.5(MP® — MTM) denote the average and the increment matrices, re-
spectively. From [140], for the system to be stable, the following LMI must be feasi-
ble:

-X XMT u
x  —X+ szzl ﬂijAmiZ]-e,-eiT 0 <0
* * -V

where ¢; (i = 1,...,n) are the coordinate vectors and U, V are matrices defined by
U=[Xey ... Xey ... Xey ... Xey|and V =diag {m1,---, M, Mnts - Nun}-

The decision variables of the LMI are the positive-definite matrix X and the real
scalars17;; > 0, i,j =1,2,...,n.

With h; = 0.6 seconds the problem is feasible. However, for h; = 0.65 seconds
the LMI is unfeasible, so the stability cannot be assessed.

Assume now that the actual system is described by

01 09

01 0 u(t)-

x(t) = [ ] x(t) +

As Figure 5.4 illustrates, the system is stabilized with a sampling time i, = 0.7
seconds. The conclusion is that the proposed algorithm may be conservative as it
ensures the stability for the whole family of systems belonging to the uncertainty

range.
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hz = 0.6s

Time(s)

Time(s)
h2 =0.71s

0 5 10 15 20 25 30
Time(s)

Figure 5.4: Evolution of the states for different values of the sampling rate

Example 5.2. Limitations of parametric uncertainties

This example explores the uncertainties that the model tolerates. In order to
stabilize the previous nominal plant with a state-feedback controller, the maximum
sampling period is 1 = 0.991 seconds.

If the network only mediates the sensor-controller path, the minimum packet
rate required is R = 1/h =~ 1.01 packets/s. Assume that a model is introduced in
the controller-side of the communication. Now, let us express the uncertainties as
a percentage of each element of matrix A. Table 5.1 lists the maximum uncertainty
tolerated for different values of the sampling period.

For the case in which the network is present in both paths, sensor-controller
and controller-actuator, the sampling period i1 = 0.991 requires a packet rate of
R = 2/h =~ 2.018 packets/s. Table 5.2 lists the maximum uncertainty tolerated for
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h (s) | R (packets/s) | Uncertainty (%)
0.991 1.01 65
1 1 65
3 0.33 45
5 0.2 35
8 0.125 30
10 0.1 25

Table 5.1: Sampling period, rate and admissible uncertainty

N | hy (s) | R (packets/s) | Uncertainty (%)
2 0.743 2.018 70
2| 08 1.875 65
2| 09 1.667 65
2 1 1.5 0
3 | 0.66 2.018 60
3 07 1.905 60
3| 08 1.667 60
31 09 1.480 55
4 | 0.62 2.018 55
4|1 07 1.786 55
41 08 1.562 50
41 09 1.389 50

Table 5.2: N, sampling period hy, rate R and admissible uncertainty

different values of h, and N.
For instance, with a 55% of uncertainties the traffic over the network could be re-
duced by 25% with a model-based controller, choosing N = 3 and h; = 0.9 seconds.

5.4 Aperiodic solutions

Section 5.3 has shown that the traffic over the network is reduced if a model-based
controller is used. It has been possible to enlarge the sampling periods in both links
while preserving the system stability. However, in some situations it might not be
necessary to send periodic updates of the state of the system, as the model performs
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an effective estimation of the actual state of the plant. Then, it could be more in-
teresting to use the network only when it is really required, despite the fact that a
lower control performance in terms of rate of convergence or optimality is attained.

In these situations, self-triggered or event-triggered sampling strategies are of
interest. These sampling policies are somehow more efficient from the point of view
of bandwidth use, as communications are invoked only when significant informa-
tion requires to be transmitted [47, 133, 142, 234]. The main difference between both
approaches is given by the device that triggers the communication events, namely,
the transmitter in the event-based case; and the receiver in the self-triggered case
(see Figure 5.5).

event-triggered policy

/
transmitter ; > receiver

1
/
transmitter ; receiver

Figure 5.5: Event and self-triggered sampling policies

In the former, the decision of the transmitter is based on the information mea-
sured directly from the plant, so event-triggered solutions require a continuous
monitoring of the system. Furthermore, the receiver must be ‘listening” the chan-
nel all time as it does not know the exact transmission time. On the other hand,
in self-triggered policies the receiver chooses the next sampling time based on the
received information and on a model of the plant dynamics. It informs the transmit-
ter when the following sample is needed. Therefore, both elements could remain
asleep between two consecutive transmission. Roughly speaking, self-triggered so-
lutions are able to reduce the energy consumption and the traffic, with an adequate
triggering of the sampling instants based on model-based predictions.

In this section, a simplification of the general scheme presented in Figure 5.2 is
made, as it is assumed that there exists a direct connection between the controller
and the actuator. Additionally, an uncertain perturbed system is considered. The
model-based controller chooses the time-instant in which the sensor must send the
state of the plant following a self-triggered sampling policy (see Figure 5.6).
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—[ plant ]7
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Figure 5.6: Model-based controller with self-triggered sampling policy

The plant and the model are given by (5.1) and (5.2) with A £ Aand B, £ B:

x(t) = Ax(t)+ Bu(t) +w(t), (5.15)
Xc(t) = Axc(t) +Bu(t), Vte [t ti11), (5.16)
u(t) = Kx(t), (5.17)
xc(te) = x(tg,), ki €N (5.18)

Vector w(t) is a disturbance process belonging to the set JV, which is defined by
W =A{w: [[w(t)lle <, 7> 0} (5.19)

It is assumed that a feedback local controller K, associated with a continuous
Lyapunov function V(t) = xT(t)Px(t) has been designed for system (5.15) so that
the control law ugp(t) = Kx(f) ensures the practical stability of the closed-loop
system.

Based on all these considerations, the following section proposes a Lyapunov-
based method to manage the sampling policy.

5.4.1 Lyapunov-based sampling policy

This section describes the proposed procedure to minimize the access to the network
while preserving the closed-loop practical stability.

As in the periodic case, the model error is defined by &(t) £ x(t) — x.(t), where
3(tk,) = 0, Vki. The dynamics of 5(t) between two consecutive sampling times is
given by

6(t) = AS(t) +w(t), VtE [t ti1)- (5.20)
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tkl tkl +1tk1 +2 tkl +3
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~

Figure 5.7: Possible evolution of the state and the model error

A possible evolution of the state of the system and the error is depicted in Figure
5.7. Given equations (5.16) and (5.20), it is possible to compute the values of x.(t)
and 4(t) for a given instant t € [ty , tx, 1)

xe(t) = APy (), V€ [y, by ), (5.21)
t

5(t) = et ) + /t A Dw(n)dT, VEE [ by ). (5.22)
Ky

The following proposition establishes a bound on the model error.

Proposition 5.3. The model error, whose dynamics is given by (5.20) with w € W, is
bounded by

||5(t)H0° < ’)/(P(t, tkl)/ vt € [tkytkﬁ-l)l (5-23)

where ¢(t, ty,) = I\Al\loo (eHAH“(t_tkl) - 1) and || Al|« is the infinite norm of A.

16l = Ao

e

Proof. From equation (5.22), the norm of the error can be bounded as follows:
t
/ Ay (1)dr 1e0(7)||eodT

t
S /
by -~ by

t 1
< [Alleo(t=7) 3o — [Alleo(F=te) _ 1)
< ’)’/tkle art ’)/H M (e 1 1)

g

In what follows, the Lyapunov-based sampling procedure is developed. The
controller goal is to maximize the next sampling instant f, 1, while preserving the
practical stability of the system. To do so, the sampling instants are chosen guaran-
teeing that the Lyapunov function decrease (V < 0), except when the system is close
to the equilibrium point.
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Taking the time derivative of the Lyapunov function for t € [ty , ty, 1), it yields

d
V)

Now, substitute x(f) b

xT(H)Px(t) + 2T (t)Px(t) = 2xT(t)Px(t). (5.24)

(t) 4+ x¢(t) and use their dynamics in (5.21) and (5.22):

y o
V() = 2(8"(t) +x (1) P(S(F) + (1))
= 2(6"(t) + x/ (1)) P(AS(t) + w(t) + Axc(t) + Bu(t)), Vt € [tg,, by 41)-

Therefore,
V(t) = 8T(t)(PA+ ATP)o(t) + 20T (t)Pw(t) + 2x[ (t) Pw(t)
+ 26T(t)(PA + ATP + PBK)x.(t) +
+ «T (t)(P(A +BK) + (A+ BK)TP) xe(t), Vt € [t tya1).  (5.25)

The objective of the controller is to maximize f;, ;1 while guaranteeing that the
upper bound on the time derivative of the Lyapunov function is negative for all
possible disturbance trajectories, that is,

max t 41 (5.26)

subject to: %V(t) <0, Vte [t tr)

This optimization problem is difficult to solve. The parameter to be optimized,
ty,+1, is involved in a nonlinear equation and there are an infinite number of con-
straints, because they must be satisfied for all € [ty , tx, 1)

In order to obtain the next sampling time, a mesh of discrete values of f;, 1 is
studied. Let t; ;1 = Tyin + 1A, where Tpyi, and A are two positive known constants.
The objective changes to find the maximum # such that the time derivative of the
Lyapunov function is negative for all possible disturbances at those time instants of
the mesh.

The next iterative algorithm provides an approximate solution to (5.26).

Algorithm 5.2.
1. Set teyr1 =t + Tin-

2. Solve the problem
d
min ——V(tr, 41 (5.27)
Oty 1)w (b 41) dt ( o )
subject to:
[w(te 1)l <y

10(t,+1) [0 < YP(try 41, try)
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3. If V(tg,+1) < 0, increase ty, 11 = tx, 11 + A and go to Step 2. Otherwise, choose

tk1+1'

The value of A must be chosen small enough in such a way that the dynamics of
the controller state, and hence of the Lyapunov function, are smooth between two
consecutive sampling instants. This avoids multiple sign changes of the derivative
of the Lyapunov function from f, to t;, 1. In general Ty, is chosen according
with the minimum sampling time of the sensors. However, aiming at reducing the
computational time, it may be selected to be larger.

It is worth noting that, as the system approaches to the equilibrium point, the
effects of the disturbances become more apparent and tend to increase the Lyapunov
function. In this case the sampling instant is that of the corresponding periodic
controller that guarantees practical stability.

5.4.2 On-line computation based on quadratic programming

In order to find the sampling instants the controller has to follow Algorithm 5.2,
which implies the resolution of several optimization problems. All those steps must
be solved on-line, which may require high computational time. Therefore, it is of
crucial importance to pose the optimization problem in a way such that the algo-
rithm can be solved in an efficient and fast manner.

This section proposes the use of quadratic programming to find the optimal so-
lution to (5.27). Before, it is worth giving some remarks about QP problems [173].

Definition 5.1. Quadratic programming problem. Assume the vectors { € R”,
f € RP, and the symmetric matrix H € RP*?. The QP problem is stated as

1

min g(¢) = 38 HE+ ¢+, (5.28)
subject to:
Dg<b (5.29)

Next proposition shows that problem (5.27) can be stated as a QP.

Proposition 5.4. Problem (5.27) can be formulated as a QP if the elements of equations
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(5.28)-(5.29) are chosen as

O(t
- [ ON
w(t)
T
H — o PA+A'P P ,
P 0
fT = =2xI(ty1) | PA+ ATP+KTBTP P |,
¢ = —x!(ty1) (P(A+BK) + (A+BK)'P) xc(ty, 1),
and for the constraint
I 0 ’Y‘P(tk1+1/tk)in
D = _In 0 , b= ’)/(P(tkl_;'__l, tk)]'?’l ,
0 I 1,
0 —I, 71,

where 1, € R" is a column vector whose components are ones and I, € R"*" is the identity
matrix.

Proof. From equation (5.25), and after some mathematical manipulation, it can
be seen that the minimization of —V/(t) is equivalent to the minimization of G(t),
defined as

G(t) = =0T (t)(PA + ATP)é(t) — 26T (t) Pw(t)—
—2xI(t)Pw(t) — 26T (t)(PA + ATP 4 PBK)x.(t). (5.30)

Constant terms in (5.25) have been suppressed as they do not affect the mini-
mization problem. Therefore, by using the previously defined augmented variable
ZT(t) = [6T(t) w'(t)], the same matrices of (5.28) are obtained for the QP problem.
Finally, constraints of (5.29) can be easily described with given matrices D, b. O

It is well known that QP problems can be easily solved as there exist appropriate
software packages, as quadprog in Matlab, that tackle these optimization problems
in a computationally effective way. Furthermore, the resulting QP problem is, in-
deed, a multi-parametric QP (mpQP), for which the explicit solution can be obtained
[13]. In particular, the parameter § € R"*! of the mpQP problem is:

Xc(tg, +jA)

O(tr,,7) =
(. J) P(tr, + A, ty,)
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Figure 5.8: Data exchange between sensor and controller under unreliable commu-

nication

Assuming that the sign of the time derivative of the Lyapunov function does not
experiment multiple changes between t, ; and t;, 1, Algorithm 5.2 provides a
suboptimal solution to problem (5.26). Note that this assumption will be satisfied
for a sufficiently small A.

5.4.2.1 Extension to unreliable channels

Up to this point perfect channels have been assumed, since no delays, packet drop-
outs or quantization effects have been introduced. However, in the NCS framework
is quite common the use of non-reliable protocols, such as User Datagram Protocol
(UDP), because of the real-time requirements.

To extend the previous results for a scenario in which packet dropouts are present,

the controller follows again Algorithm 5.2 to obtain the next sampling time without

wl
ky+1°

Figure 5.8. However, to ensure the stability of the system, it will demand the sensor

losses t A possible data exchange between sensor and controller is depicted in

to send the state at sampling instant:
Ho1 =ty — npd, (5.31)

where 7, is the maximum contemplated consecutive number of package dropouts.
It is assumed that the sensor can track the correct packet delivery at the controller
by using standard acknowledgment strategies.

5.4.3 Numerical example

In this section, the previous algorithm is applied to an unstable plant in order to
show how the controller manages to reduce the traffic load while maintaining the
practical stability of the system.
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Example 5.3. Consider the following LTI system:

#(t) = [ 1099 ] () + [ 0 ] u(t) +w(t),

0 1 1

where the disturbances w(t) are supposed to verify ||w(t)||cc < 0.01. The initial
condition for the system and the controller is x/ = [10 — 5].
With a sampling period of Tinin = 1s and the following state-feedback controller:

K=[ 4563 -44110 |,

the asymptotic stability of the system without disturbances is ensured.
The associated Lyapunov function is

V(t) = xT(¢
(f) =x ()[0.1156 0.1083

0.2161 0.1156 ]
x(t).

Assume now that this system is controlled over a shared network as Figure 5.6
shows. The objective is to reduce the traffic through the shared medium. No packet
dropouts are considered.

If the disturbances are assumed to be zero, the evolution of the system and the
error between the state of the system and of the controller are shown in Figure 5.9,
together with the asynchronous sampling instants.

It is worth noting that only the first three sampling times are bigger than 1 sec-
ond. As explained before, when the system is evolving near the equilibrium point,
the optimization problem is not able to find any sampling time larger than Tpn.
In other works, as [142], the sampling instants are only enlarged when the system
is close to the equilibrium. If one combines both approaches, it will be possible to
enlarge the inter-sampling times for both situations, transient and steady state.

O  Sampling time

Time(s) Time(s)

Figure 5.9: Evolution of the state (left) and the model error (right) without distur-
bances
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Figure 5.10: Evolution of the state (left) and the model error (right) with distur-

bances
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Figure 5.11: Evolution of the state (left) and the model error (right) when the system
evolves far from the equilibrium

Consider now the perturbed case. The evolution of the state and the error is
depicted in Figure 5.10. Again, the sampling times are bigger than Ty,i, only when
the system is far from the equilibrium.

Finally, the method is tested with Gaussian disturbances with different vari-
ances: from 7 to 8 seconds, the variance is 0.5; and for the rest of the experiment
the variance is 0.01. The asynchronous sampling periods for this case are shown in
Figure 5.11.

5.5 Chapter summary

This chapter presents two solutions regarding the use of model-based controllers in
networked systems. In both cases, the objective has been the reduction of the com-
munication through the network, looking for a better use of the available bandwidth
in shared channels. The problem is tackled from two different points of views, de-
pending on the sampling policy between plant and controller, periodic or aperiodic.

For the periodic case, a natural extension of the work of Montestruque and
Antsaklis [160, 161] is presented, in which the network is introduced for the first
time between controller and actuator. The dynamics of the closed-loop system is
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studied and the conditions to ensure the stability are derived.

Additionally, the method is extended to deal with uncertain systems. Using the
available theory of interval matrices, it is possible to consider parametric uncertain-
ties, although the method suffers from excessive conservatism. In future works,
the structure of matrix M may be exploited to obtain less conservative results. It is
also necessary to pay attention to the limits of uncertainties that the model tolerates,
since in some situations the inclusion of the model could become counterproductive.

The second part of the chapter presents an aperiodic sampling policy, in which
the asynchronous sampling times between sensor and controller are decided on-line
using a self-triggered approach. The proposed method is based on the Lyapunov
stability theory. It is shown that, by using open-loop predictions, adequate asyn-
chronous sampling times can be found by solving several optimization problems.

Finally, the section proves that those optimization problems can be written as
standard QP problems (indeed multi-parametric QP) which can be easily and quickly
solved on-line with the available software. Future works may include the consider-
ation of uncertainties in the plant model and of transmission delays in the commu-
nications. Moreover, the problem of designing a suitable value for A is a stimulating
future work. It is worth commenting that this drawback disappears in discrete-time
systems [151].
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Chapter 6

Scheduled communication for state

estimation and control

6.1 Introduction

In recent years, the advances in wireless communication, micro-electro-mechanical
systems and digital electronics have boosted the emergence of a newborn branch in
control systems. Now, the elements of the control loop are connected by means of a
network, so problems as limited bandwidth, congestion, delays and dropouts need
to be considered.

Although some researchers have proposed solutions robust against unreliable
network conditions, see Chapter 4 and references therein, the control community
has shifted towards the paradigm of co-design, in which both control and commu-
nications are taken into account at the same level of importance.

Sensor scheduling for state estimation is one of the co-design problems that has
received more attention in the literature in the last years. The objective is to achieve
an adequate estimation of the state of the system, when it is being observed by
means of a set of sensors. Those sensors share the same communication network, so
an appropriate medium access control becomes necessary.

Other issues that arise in this kind of problems are those related to the band-
width usage and energy consumption. On the one hand, the available transmis-
sion rate must be divided and, if the sensors transmit much information, contention
problems arise producing undesirable delays and packet dropouts. Furthermore,
wireless devices are urged to optimize the energy usage to increase their lifetime
without battery replacements.

Wireless sensor networks (WSNs) are now technically and economically afford-

113



CHAPTER 6. SCHEDULED COMMUNICATION FOR STATE ESTIMATION
AND CONTROL

-5 ]

[ s
4|_>© l ykl
I ()

S2 2
Distributed Facility | ,Iik&/ 1 §tate Observer o
(> hr = Az + Bug + Buwy 4>| @ I Zpp1 = AZy + Bup + Lj [!jA, - y,;‘
| ) Access A
Uy ' Point
Sm |~y
k A
| | J Xk U
L W
TDMA
| Array of INetwork
Sensors |
. A,
Wired L__a Local
Actuator
Controller

Figure 6.1: Networked control scheme.

able with the advent of protocols 802.11x, 802.15.4 and technologies such as Zig-
Bee. Although most of wireless networks protocols implement contention-based
protocols, many control applications require regular delivery of data samples at
fixed rate, with minimum or at least predictable delay. With these constraints in
mind, medium access protocols that reserve transmission slots for each node, such
as TDMA methods, have regained interest, specially in WSNs [245, 267]. Note that
the energy-aware WSN-specific 802.15.4 protocol (the basis for ZigBee) also offers
contentionless access through reserved slots for fixed-bandwidth traffic.

With regard to the scheduling, there are mainly two ways of transmitting infor-
mation: following a periodic or an aperiodic scheme. In the former, signals are sent
through the network following a concrete pattern, which is defined statically or dy-
namically. This strategy has been applied in the controller-plant loop [206], and in
the observation framework [97, 238, 263, 264]. In these works, the study of periodic
systems [15] provides a strong and widely used basis. Ideas of Kalman filtering
have also been modified to design periodic observers [89, 221, 262]. Related to the
co-design, the communication sequences are chosen so that the observability of the
system is preserved [71, 75, 89, 261, 262, 263]. However, none of these works solve
the problem of finding an optimal pattern.

For aperiodic scheduling, some authors have proposed the co-design of the bus
scheduling and the controller/observer gains. A model predictive framework has
been employed in [7, 198]. Some authors propose to solve finite-horizon optimiza-
tion problems to get a suboptimal sensor scheduling [104, 158]. The work of Gupta
et al. [76] proposes a stochastic scheduling which is close to the optimal solution.
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However, extra traffic over the network is needed to coordinate all sensors.

A quite different approach is given in [43, 44]. The objective is the co-design of
the observer and a special communication protocol, named TOD, to asymptotically
reconstruct the plant states. Although this protocol seems to outperform the clas-
sical Round Robin protocol implemented in periodic schemes [82], it requires two
conditions that make it unappropriated in our scheme: on the one hand, all sensors
must have a local observer, which implies more energy consumption and complex-
ity; while a more important fact is that each sensor receives signals from the rest, ex-
ponentially increasing the traffic over the network as the number of sensors grows.
Moreover, this architecture becomes more vulnerable to the risk of hidden-node ef-
fects.

The main advantage of the aperiodic approaches is that they use information of
the measured output and past estimates to optimally select the output to be sent and
the gain, purveying more degrees of freedom to perform the optimization. How-
ever, it incurs in more complicated and heavy mathematical operations. Moreover,
an extra traffic must be added to the network to select the corresponding sensor. On
the other hand, periodic approaches can be initially configured, in such a way that
each sensor knows when it must send its measurement. This implies better energy
usage, as the devices may remain asleep between two consecutive transmission in-
stants.

Recently, some authors have noticed that the periodic phenomenon appears in
optimal aperiodic schedules [88, 184]. If this fact is proved to be true, this would
imply that the positive features of both approaches could be inherited, providing an
optimal solution for sensor scheduling which is, at the same time, mathematically
and energy efficient.

This chapter is interested in the effect of the TDMA scheduling on the stability
of feedback loops, and how it should be devised to minimize steady state errors. It
contributes to the field of sensor scheduling in different aspects:

Periodic scheduling: An H. periodic observer is proposed. It may increase its
inner rate, which could further reduce the communication through the net-
work. Additionally, new insights are given in the optimality of patterns, at
least from a numerical point of view. Finally, the co-design of the observer and
the scheduling is carried out aiming for pole placement in the dynamics of the
observation error.

Aperiodic scheduling: An aperiodic Kalman-based filter is proposed. It has several
points of similarity with the one of [76], as the sensor selection is made by
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solving an one-step-ahead optimization problem. Both the observation matrices
and the transmitted output are chosen to minimize the expected value of the

error.

These co-designs can be directly implemented under 802.15.4, ZigBee and other
TDMA protocols, so their interest in real-world applications is undeniable. Later,
by making use of a powerful result for switching systems given by Ramadge in
[205], we will give the conditions that must be verified for a system in order that the
optimal scheduling eventually converges to a periodic pattern. Those conditions,
namely, nonsingular system matrix, trajectory of the covariance matrix bounded
and some restrictions on the limit points, are not strict, as it will be shown.

With respect to the boundedness on the covariance matrix, some interesting cases
are studied, i.e., the diagonal and block-diagonal situation. Furthermore, a geomet-
rical study is given to give insights into the general situation. Finally, some addi-
tional remarks about the optimal period are given.

It is worth mentioning that the periodic phenomenon in a priori aperiodic sys-
tems has been observed in other areas, as the periodicity in the inter-execution times
in self-trigger control [142].
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6.2 Problem statement

Consider a discrete-time large-scale plant, as the one presented in Section 2.2.2,
whose dynamics is given by!

Xkr1 = Axg + Bug + Bywy. (6.1)

As Figure 6.1 suggests, the plant outputs are being measured by a set of m sen-
sors, possibly spatially distributed. At each sampling period k, only one sensor can
access the network to send its packet to the remote observer. At instant k the sensor
j sends the output ’ ’

y, = Cixg + 0, 6.2)

where C]-, j =1,...,m, are matrices of appropriate dimensions. Processes v;{ repre-
sent noises in the measurement. A necessary assumption for the rest of the chapter
is that the pair (A, C) is detectable, where C = [C] CI ... C[] L

Assume that the dynamics of the observer located at the other end of the network
is given by

fei1 = AR+ Bug+ Liy, — ), (6.3)
7, = Cif (6.4)

Element L; represents the observer gain for each different received output. With
this estimation, the controller computes a control signal defined by

Up = ka, (65)

where K is the controller matrix of appropriate dimensions.
The estimation error is defined as

 — Xf — fk. (6.6)

Finally, let {; denote an augmented vector stacking the system state and the es-

&= [ K ] . 6.7)

€k

timation error, that is,

An observer is completely determined if the sequences {C;} and {L;} are de-
fined. Given the plant (6.1)-(6.2) and the observer (6.3)-(6.4), a scheduling law is
any mechanism that implements some choice of the active sensor j (the one that

I This chapter uses the notation x; instead x(k) to facilitate the reading of some sections.

Luis Orihuela Espina 117



CHAPTER 6. SCHEDULED COMMUNICATION FOR STATE ESTIMATION
AND CONTROL

uses the network) and the gain L; to be applied to the filter. The scheduling law can
be time-based or state-based. A time-based scheduling law is of the form j = j(k)
and L; = L;(k), and includes as particular cases the periodic scheduling of the sen-
sors [89, 262].

A state-based scheduling law decides the sensor j and the gain L; as functions
of the state variables, yielding an aperiodic solution.

The main advantage of the state-based approach is that it uses information of
the observer to optimally select the output and the gain. However, it incurs in more
complicated and heavy mathematical operations. Moreover, there must exist an
extra traffic over the network to select the corresponding sensor.

The purpose of this chapter is twofold. First, an appropriate scheduling law must
be defined. Second, the observer gains in (6.3) must be suitably designed according
to that law. A time-based and a state-based scheduling law are provided:

Time-based (periodic scheduling): Given a periodic pattern, an He, observer is pro-
posed. Some considerations related to pattern design are given.

State-based (aperiodic scheduling): A Kalman-based filter is proposed in which
both the sensor and the gain are chosen to minimize the variance of the ob-

servation error.

Then it will be shown that, under some mild conditions, this aperiodic observer
results in a periodic scheduling of the outputs. That is, a state-based scheduling law
produces an equivalent time-based law, providing the observer with the benefits of
both approaches.

6.3 Periodic scheduling

In this situation, the sensors are activated following a previously predefined peri-
odic pattern. This solution is computational efficient, as the selection of the sensors
requires no extra calculation. Furthermore, regarding energy consumption the de-
vices may be turned off between two consecutive measurements.

An H,, periodic observer is proposed to estimate the state of the plant. How-
ever, before formally introducing the problem statement, some preliminar defini-
tions must be introduced. First, consider the concept of measurement pattern, the
time-based law that rules the scheduling in a periodic scheme.
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Figure 6.2: Time slots and frames in TDMA communication

Definition 6.1. A measurement pattern ¢ € R is a vector whose components
indicate which sensor is active. That is,

on()={j:j=1,...,m}, i=1,...,N. (6.8)

Hence, ¢n(i) = j implies that sensor j uses the network in the i-th position of
the pattern. In a TDMA context, ¢n/(i) = j indicates that sensor j must send its data
in the i-th time slot of the frame (see Figure 6.2). Note that it is possible to grant
priority to some outputs over the rest. For instance, ¢y = [1 2 1] is a pattern in
which sensor 1 uses the network twice in a pattern.

After a certain number of sampling instants (the length of the periodic pattern)

the same sensor is activated again.

Example 6.1. Motivating example. Consider the discrete-time system from [95]:

1 0 0 10
xk+1 = O _1 —3 xk + 0 1 uk/
(0 0 -2 01
oo i
e = 100"

The rank of the observability matrix is lower than three for each one of the out-
puts y; = [1 0]yk, y2 = [0 1] yi separately. None of them can be used to observe
the system. In fact, neither output can stabilize the observation error, as the unob-
servable subspace is unstable for both cases. Nevertheless, a simple pattern such as
@2 = [1 2] can be used to stabilize the observation error [95]. \

Previous example shows that some systems cannot be observed by measuring
only certain outputs, but a pattern of them may be enough. With this motivation in
mind, the problem considered in this section is formally defined.
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Definition 6.2. H., periodic observation problem. Let z; = D¢y be the controlled
output. The Hy, periodic observation problem consists in finding a measurement
pattern o)y € RN and a set of observer gains Lj,j=1,...,N,insuch a way that:

e The dynamics of the system and the estimation error are asymptotically stable
for wy = v = 0.

e Under the assumption of zero initial conditions for the state of the system and
the estimation error, the effects of the disturbances and the sensor noises in the

Wy ]
k
U

In order to present a solution for this problem it is necessary to study the dy-

controlled output are attenuated below v, such that ||z ||;, <

Ly

namics of the system and of the observation error during a complete measurement
pattern. In the following the evolution of the augmented state vector is going to be
described for a situation in which the observer updates the estimate at a rate faster
than the outputs transmission rate. By letting the controller and the observer run at
a higher frequency than the transmission of partial outputs, the proposed scheme
involves open-loop estimation intervals. This oversampled observer allows to reduce
the network traffic and also the energy consumption. Ensuring the stability of the
oversampled observer is harder with respect to a typical observer.

Therefore, two different periods can be defined: during a observation period (OP)
all the sensors are turned off; in a measurement period (MP) a sensor sends a plant
output. Therefore, given a certain measurement pattern ¢y, all the sensors remain
asleep for P, observation periods between two consecutive measurement periods.
Thus the dynamics of the observer differs between both types of periods:

(MP): Sy = Ayt Bug+ L [y~ 9l
(OP): %41 = AR+ Buy.

The structure of the observer is similar to a Luenberger-like observer with gain
L; for each measurement period. On the other hand, the observer evolves in open
loop during an OP. Figure 6.3 illustrates the complete scheduling pattern for a case
with two observation periods.

In the following, the dynamics of the disturbances are assumed to be slower
than that of the oversampled observer, that is, they remain constant between two

consecutive measurement periods:
Wy = Wk41 = -+ = Wi4p,-
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Figure 6.3: Time scheduling for the oversampled observer with P, = 2

The following proposition states the complete evolution of the system along a
measurement period.

Proposition 6.1. Given a measurement pattern o)y € RN and a constant P, € N, the
evolution of the augmented state &y from k to k + (P, + 1) N is given by

Ckr(Pe)N = E(Po, N)k (6.9)
N | Buw
+ ) E(Po,i = 1)Q(Py, (N +1—1)) B | WkHP1)(N-i)
i=1 w
N
_ : 0 (N+1—i)
— E(Py,i—1) ofN iy
l_; 0 L (N+1-1) k+(Py+1)(N—i)
where
P, i—1
. | A+ BK  —BK (A+BK)™1 ¥,
OP,,i) = 1 =1, (6.10
(For) - ; 0 (A-LG) 0 a1 | 619
)
o (A+ BK)(PotD)i =.5(P,, 1)
=N (i) LT
being 9 = (A — LiCj))AP, ¥; = Y (A + BK)?IBKAI™! and Z5(Py, i) a matrix

whose structure is given in the proof.

Proof. The measurement pattern ¢y indicates the activation of the sensors. The
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one-step evolution for an observation period is

A+ BK —BK By
Ckt1 0 A Ck B,, ] k
B
= Al + v ] Wk
By

From instant k to k + P, — 1, no output is received from the system. After P,
observation periods, the following relation holds

P

0 . B

Grep, = ARG+ Y AT LY g, (6.12)
i=1 By

where it has been assumed that dynamics of the oversampled observer are faster

than that of the disturbances. It is easy to check that

(A+ BK)' ¥,

Al = ;
0 Al

7

where ¥; has been defined previously.
After P, observation periods the observer receives a new measurement (see Fig-
ure 6.3). The one-step evolution of the augmented state within a measurement pe-

By 0 i
Wy — s

ol (6.13)

riod is given by

A+BK  —BK
+
0 (A-rc) |

-2 ]

Hence the complete evolution after P, observation periods plus one measure-

Ck+v1 =

By

= A:Cr+
]gk B,

ment period can be obtained by combining (6.13) and (6.12):

P
o B B 0 -
Chrpt = AATG+ A Y ATHL CE Twet | F fwe— V4
i=1 Bu By L;
or in a more compact way,
P, o | Bw 0 |
Ckipyr1 = DA G + QD ) P I (6.14)
w j

where Q)(P,, j) was defined in (6.10) and

(A+BK)*! (A+ BK)Y; — BKA!

AN = 1.
0 (A—LiC)A

]
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Recall that index j refers to the output which is being sent according to the mea-
surement pattern, that is ¢ (i) = j. This structure is repeated every P, observation
periods and one measurement period. Hence, the following dynamic equation can
be obtained:

en(1) ,
San = ] (AA™)E
j=¢n(N)

N on(1) Bw
+ ) (A]-AP") Q(Py, (N +1—1)) 5
=1

] Wi+ N—i
j=en(i—1 w

N
- X (AjA")
i=1 | j=gn(i-1

(i-1)
it [ 0 ] UZ)N(NH—i)
N—i -

(i-1) Loy (N+1-i) "

After some mathematical manipulations, it is not difficult to see that

on(1) b .
[T (AjA™) =E(R,i),
j=on(i)

where Z(P,,7) has been defined previously in the hypotheses of the proposition
(6.11). Block (1,2) of Z(P,, 1), that is, E15(P,, i) can be obtained from the above mul-
tiplications. O

Proposition 6.1 encompasses the classical Luenberger observer given in Section
2.3.1. Assume wy = vy = 0,Vk. When N = 1 and P, = 0, and there is only one
output, the dynamics (6.9) matches that of the Luenberger observer.

6.3.1 Asymptotic stability of the unperturbed system

This section is intended to clarify the concepts introduced so far. The dynamics of
the unperturbed system is given in the following corollary.

Corollary 6.1. Given a measurement pattern gy € RN and assuming that v, = wy = 0,
Vk, the evolution of the augmented state . from k to k 4+ (P, + 1)N is given by

: (A4 BK)(PetUN  =.(P, i) :
k+(Po+1)N — on(1) _ ks
0 =g (o) %

where 19] = (A — L]'C]')AP“.

Luis Orihuela Espina 123



CHAPTER 6. SCHEDULED COMMUNICATION FOR STATE ESTIMATION
AND CONTROL

The stability of the unperturbed system with this feedback strategy can be stud-
ied using fairly standard results of discrete-time systems. Notice that the dynamics
given in Corollary 6.1 is equivalent to that of an autonomous discrete-time system.

Lemma 6.1. The discrete-time system with the evolution given by Corollary 6.1 is asymp-
totically stable if and only if the eigenvalues of the following matrices are inside the unit
circle:

e (A+ BK)(FAIN

(1)
¢ H]?J:I\]‘PN(N) 6]

The proof is immediate if extended eigenvalue properties of triangular matrices
are used. It is worth mentioning the implication of this lemma. As in the classical
Linear Quadratic Gaussian control (LQG), the separation principle also holds in the
problem under study, so the controller matrix and the observation gains could be
designed in separated steps. Since the chapter is mainly interested in the observa-
tion problem, it will assumed that the controller is known.

Example 6.2. Consider the system of Example 6.1 and the pattern ¢, = [1 2]|. As-
sume that the observer gains are LT = [0 —2.2 —0.8]and LI =[0.5 0 0].
Through Lemma 6.1, the stability of the observation error without observation

periods is ensured. Let
on(1)

Hpp = H [19]]

j=on ()
The eigenvalues of Zp; are A(Ex) = {0,0.4,0.5}. However, with P, = 1, the
eigenvalues of Zyy are A(Eq) = {0, —2,0.5}, so the observation error is unstable.
Nevertheless, if LT = [0 —2 —0.67] and LT = [1 0 0] are chosen with P, =
1, the eigenvalues are A(Ep;) = {0,0.83,0.09}. Hence, the oversampled observer
maintains the stability and achieves a reduction of traffic through the network. ¥

6.3.2 Observer Design

In previous sections, the dynamics of the augmented state and stability conditions
for the unperturbed system have been given. However, a method to design the ob-
servers remains unspecified, which is the goal of this section. From the dynamics of
the augmented vector (6.9), it is straightforward to see that the nonlinear relations
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between the different elements hinder the design of the observers. It seems imprac-
ticable to tackle the synthesis problem by using standard techniques. Instead, an
LMI-based design method is proposed. It resorts to periodic systems theory. Some
preliminaries on periodic systems are presented next.

A p-periodic discrete-time system is described by xy;1 = Agxx + Biuy, where
Ay, By are p-periodic matrices, that is, Ay, = Ay, Bxyp = By, Vk. This type of
system has been widely studied from the eighties. There are numerous results in
the literature about stability, control, optimality, etc. See [240] and the references
therein.

An important result concerning periodic systems is the so-called Periodic Lya-
punov Lemma, an extension of the Lyapunov lemma for this sort of systems [15].

Lemma 6.2. Periodic Lyapunov Lemma [15]. The p-periodic system X1 = AyXy is
asymptotically stable if and only if there exists a p-periodic matrix P > 0 such that

AlP 1Ay — P <0, Vke{l,...,p}. (6.15)

The key idea of this section is that the evolution of the system given previously
can be written as the evolution of a periodic system. Then the vast theory existing
in this field will be of invaluable help in the design procedure.

Proposition 6.2. Given a measurement pattern o)y € RN and a constant P, € N, the
dynamics of the augmented state given in Proposition 6.1 is equivalent to the following
N-periodic system:

Ck1 = Axlk + Bugwr — Bosof, Yk € {1,..., N},
with periodic matrices

(A+ BK)?**1 (A + BK)Yp, — BKA

A, =
¢ 0 (A — LyE,C) AP

7

os]]

wk = Q(PO/ k)

- 0
B = .
U’k [ Lk ]

Proof. The proof follows immediately from that of Proposition 6.1. First, it was

obtained in equation (6.14) that

. B 0 i
Cerppr1 = ApA G+ QP 1) | ° | Wi — !,
By Lh
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where j; is used instead of the general notation j to denote that the output received
is the first element in the measurement pattern, that is, ¢ (1) = ji.
Obviously, for the following P, + 1 periods, it holds

, B 0 i
Cra(pyr1) = NpA8ip, 1+ Q(Po, o) [ BZ ] Wk Pyt1 — [ L ] UF i p i1
2

For the last P, + 1 periods in the pattern:

) By
Cenpor1) = AjA 8 (v-1) 1) + Q(PosiN) [ B ]wk+(N—1)(Po+1)

w

L k+(N—1)(Py+1)"

iN
In the following measurement period (MP) the observer receives again the same
output that was received in the first MP. Therefore,

By

e (N4 (Por1) = NAGrin(pr1) + B ]wk+N(Po+1)
w

0 | i
— v .

It is easy to see that there exists an N-periodic relation in the evolution of the
error, hence the proof is concluded. O]

The following lemma presents a method to solve the H, periodic observation
problem stated in Definition 6.2.

Lemma 6.3. Let the controlled output be z = DGy, with D a matrix of appropriate di-
mensions, and let -y > 0 be a positive scalar. Then, the dynamics of the augmented state
given by Proposition 6.2 is asymptotically stable in the absence of disturbances if there ex-
ists an N-periodic positive definite matrix Py such that the following matrix inequalities are
satisfied:

[ P, +D'™D 0 0  ATP |
—?1 0  BI P
) i o wEE <0, Vke{l,...,N}, (6.16)
* * -yl —B, P
* * * —Py

where Py = Py. Moreover, under zero initial condition the He norm is bounded below vy,
H
k
U
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Proof. The proof is based on the periodic Lyapunov lemma. Choose the follow-
ing N-periodic Lyapunov function:

Vi = & P&, Poyn = Pi, VK.

From Proposition 6.2, the forward difference of the Lyapunov function AV} =

Vi1 — Vi is given by

AV = F(AlPo Ay — P& + 28T AL P4 (By ko — Bopof)
+  (Bugwi — Byxvf) T Pei1 (Bupwr — Boxf).

Now, some null terms are added:

AV, = AV + 42 + 2] 2.

T
wy ] [ wy

k k
U O

The controlled output is zy = D¢y. The forward difference can be written in the
following quadratic manner:

- T

& [ —P.+D'D 0 0 &
AV = | wy % I 0 wy
o | < x =92 ok

[ & ] ! Al Sk

+ | wx Bl | Pen [ Ar Byx —Byk wy

Lo ] L _Bg,k v

The first two terms on the right-hand side can be grouped, yielding

T

Ck Ck 0 T 0
2 T
AVi = | wy My | wp | + K e | 2Kk
ok ok U Uk
k k

Note that matrix My is N-periodic provided that Py is N-periodic. Assume now
that My is negative definite for all k, i.e. My < 0, Vk. For wy = v’i = 0, one can easily
see that V (k) decreases in each step k. As the Lyapunov function is periodic, it will
always decrease, which ensures the asymptotic stability of the system.
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Consider now the case wy # v’,ﬁ # 0 and zero initial conditions. Since M} <
0, Vk, it holds

T
AV, < 42 [ Uk ] [ Uk ] — Iz 6.17)
U U

The summation of both sides of (6.17) from k to k is

k
w.
A - T,
]] E z; zj.

T

2 | W)
Vk—Vk0<’)’ Z [ ]] o
' j j=ko

j=ko L Yj

Observe that Z;'(:ko AV = Z}‘:ko(V]’H — Vi) = Vig1 — Vi,- Under zero initial
condition, it holds Vi, = 0. Recall that the Lyapunov function is positive definite.
Let k — oo, that is,

T
2w | Wi Wi — T
0<’Y.Z[vf:] [Uf:]—zzfzw
]

j=ko j j=ko
[ o ]
k
% 1L,

Finally, it will be shown that conditions (6.16) imply that M < 0, Vk. Applying

thus ||z ||, < >

Schur complements to My, it can be obtained that M < 0 is equivalent to

[ —p+D'™D 0 0 Al |
* —’I 0 Bgz,k 0
* * —21 —BT =
Y v,k
* * * —ijrl1

Conditions (6.16) are obtained if the above inequality is pre- and post- multiplied
by diag{I, 1,1, Pc,1} and its transpose. O

Note that previous inequalities are nonlinear. Given a controller matrix K, to
obtain LMI conditions, choose diagonal matrices P, = diag{P}, P?} and define Y} =
P?L; in the nonlinear terms A] P, BZ,,kPk and Bg{ Pr. With variables P!, P? and Y
the inequalities above become LMIs. The observation matrices are synthesized as
Ly = (P2)Y;.

Remark 6.1. In some situations it is of interest to proportionate different observation
gains to the same sensor when it appears repeatedly in the pattern. To do so, Lemma
6.3 can be used by introducing different matrices Y} for each element in the pattern.
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Besides designing the observation matrices, Lemma 6.3 may also be used to find
the maximum number of observation periods (OP) that can be introduced between
two consecutive samplings.

As a final remark, it is possible to solve the LMIs derived from Lemma 6.3 in
order to the matrices that minimize the He gain 7. Define 6 = 42 and solve the
problem

min
6
s.t. (6.16).

This optimization problem can be efficiently solved with available software, as
mincx in Matlab.

6.3.3 Pattern design

After presenting the design procedure for the Ho, periodic observation problem,
the next step is the following: among all possible patterns, which ones stabilize the
system? Which one is optimal? Obviously, a first idea would be to test different
patterns by using the results of previous section. However, as the dimension of the
system and the length of the pattern grow, this problem becomes computationally
impractical.

In a first approach to the problem, it is obvious that those patterns which do
not observe the dynamics of the observation error can be discarded. The research
on controllability and observability of generic periodic system do not apply to the
case under study, as only the output matrix C; is periodic [71, 75, 263]. Next, an
appropriate observability criterion is introduced.

Lemma 6.4. System (6.1) is observable at instant k if and only if matrix

C/
C'A’
O = _ (6.18)
C/A/ n—1
has rank equal to n, where A’ = AN and
Cr
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Proof. From an initial state xp, the future outputs of the system will be calcu-
lated. The property of observability does not depend on the inputs, so that the
autonomous system is considered. The first N outputs are:

e = CGixo,
Yer1 = CeAxo,
Yisn—1 = Creno1AV x.
Let define Y1 £ [y v, - y,erN_l}T. It is immediate that Y| = C'x(. After

that, the pattern is repeated, so that the following N outputs are

ven = GAVxo,
Virn1 = CrnAANx,
Viron—1 = Crpno1ANTANX.

In a similar way, let define Y, = [y,&N ?/13+N+1 e yla-ZN—l] T, so Y, = C'A’x.
This procedure is repeated for the next N steps, obtaining Y3 = C’'A’2x. There-
fore, the set of all the future outputs ¥ = [y y[., ---] T = ! v -] " can be
described by

C/
C'A
= C'A’ 2 X0-

Using the Cayley-Hamilton theorem, A’/ can be expressed as a linear combina-
tion of A’, A’?,...,A’" 1, for all | > n. Hence, rank(O) = nis a necessary and
sufficient condition to uniquely reconstruct x( from the future outputs. O]

The definition of complete observability complements the previous lemma.

Definition 6.3. System (6.1) is completely observable if and only if is observable for
allk=1,...,N.

Therefore, those patterns that do not achieve the complete observability of sys-
tem (6.1) can be discarded. The observability test is easier, computationally speak-
ing, than the LMI-based stability tests.
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Nevertheless, this section seeks the optimal pattern that minimizes a given cost
index. The index can be defined as

J=1Y e Qe (6.19)
=0

where Q is a positive definite matrix. A similar idea was firstly introduced in [79],
but for optimal feedback stabilization of a system with only one unstable pole. The
dependence of the index (6.19) with the chosen pattern is very complex, but it is pos-
sible to compare them, at least, in a numerical way. In the following, it is assumed
that no disturbances affect the system and P, = 0.

Proposition 6.3. Given a pattern of length N and a positive definite matrix Q, the cost
index | can be calculated as

[Z al Dy (ay J] eo, (6.20)
j=0
where

&N = 9N9N—1 e 9291,

N
Oy = Y af Qu,
i=1
6, = (P =0) = A— LG

The proof is immediate by substituting the evolution of the system (6.9) with
wy = v = 0, Vk, in the cost index (6.19).

In order to use Proposition 6.3, the initial state of the system must be known,
which seems unrealistic in some situations. A more natural situation considers
a known bound on the observation error ||eg||?>. For such cases, an upper bound
of the cost index is searched. To do so, the following relation is used: xTAx <
Amax{A}||x]|?>. Hence, the cost index (6.20) can be bounded by | < Amax{Bn}|leoll?,
with By £ Y2 (e On(an).

For a periodic pattern, there are two features to be designed: the length and the
pattern itself. The length is critical, in such a way that, if it is not fixed a priori, the
number of combinations grows to infinity. Among all possible patterns, this section
looks for the one that minimizes the maximum eigenvalue of matrix By.

Despite the fact that the cost index has points of similarity with a geometric se-
ries, to the best of our knowledge, it is not possible to obtain an analytical expression
for Bn. However, if the pattern verifies the condition in Lemma 6.3, matrix ay has
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all its eigenvalues inside the unit circle. Then the infinite sum (6.20) can be replaced
by a finite one without incurring in practical errors, as it is shown in the following
example. Finally, this finite sum can be calculated numerically.

Once the optimal pattern has been found, the design of the observation matrices
is carried out by using the techniques described in the previous section.

Example 6.3. Consider the discrete-time system in [262]:

"1 01 0 0 00
oo fors 0 0 f 1o
L7l 1 01 16 05 | FT oo F
0 0 0 125 0 1
(1100
— . 6.21
Yk 0011 Xk (6.21)

There exist two possible outputs to send through the network y} = [1 0]y, and
yz = [0 1]y,. The weighting matrix is chosen as Q = diag{1,1}. It is assumed that
eo = Xo, that is, the initial condition for the observer is exactly zero. In that paper
the choice of the pattern was made based only on the observability criterion.

The objective here is to choose and to design the optimal pattern among all pos-
sible ones. To calculate the cost index, a finite horizon is needed. Here, this horizon
is chosen larger enough to neglect the errors in the approximation of By.

Figure 6.4 depicts the minimum cost index reached for each pattern length and
for two different initial conditions:

=2 -1 05 —03]; xf=[1111]

As it can be seen, the cost depends on the initial condition. Good patterns for
some conditions could not be adequate for others.

The analysis can be carried out to minimize the maximum eigenvalue of By.
Recall that the cost is bounded by | < Amax{p N}eg ep.

As Figure 6.5 shows, the larger values of the pattern length does not always
imply the lower costs. For this example, a length of 7 is appropriate. The optimal
patternisg; =[1 121 2 2 2]. v

6.3.4 Mixed design with pole placement

In this section, a co-design method for both the observer matrices and the pattern at
the same time is proposed. The idea is similar to that presented in [56]. The method
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Figure 6.4: Cost index for various pattern lengths and two different initial conditions
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Figure 6.5: Maximum eigenvalue of By for various pattern lengths

is given for the unperturbed system with P, = 0, but it can be easily extended
for P, > 0. The dynamics of the observation error given in Proposition 6.1 can be
viewed as a switched system ey 1 = Oey, where ®; = (A — LiCy). The following
algorithm describes the idea.

Algorithm 6.1.

1. Find a nonsingular matrix T such that A = T~'AT, where A is an upper (or
lower) triangular matrix.

2. Define a new set of coordinates as o, = Tey. Then, 011 = TOT 1o = @ka-
The switched matrix Oy is defined by O =A—-TLCT

3. Choose Ly so that matrix TL,C;T !, and hence Oy, are upper (or lower) trian-
gular.

4. Using properties of the product of upper (lower) triangular matrices, design
the measurement pattern ¢y in order to place the poles of the dynamics of the
observation error after N instants.
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Steps 1 and 2 are trivial. The key step is 3, as not only do we lose degrees of
freedom in the choice of Ly, but the triangularization of ®; may also be impossible.
This is the main disadvantage of the algorithm, which can only be applied to certain
systems. If it is possible to triangularize Oy, there are certain freedom to place the
eigenvalues of the observation error.

Example 6.4. Consider the discrete-time system from [95], but with a variable ele-
ment in position (3, 3):

1 0 O 10
Xk+r1 = 0 -1 -3 Xk + 01 U,
0 0 a 01

yp = [0 1 O]Xk,
Vi = [1 0 O]Xk,

where 2 € R. Matrix A is upper triangular, so no change of coordinates must be
done. The observer gains are L1 = [l11 12 llg]T; Ly =l I lzg]T. Hence, matri-
ces ®; and O, are given by

1 —Iy 0 1—I1, 0 0
O=|0 -1-Ip -3|,0,=| -l -1 -3
0 —113 a —123 0 a

To make them upper triangular, some degrees of freedom are lost, as I3 = I»» =
I3 = 0. If one chooses, for instance, the pattern g3 = [1 1 2], the eigenvalues of the

complete observation error are:

Moo= 1—1Iy,
A = —(1+1p)?
)t3 = ﬂ3.

Eigenvalue A3 cannot be placed, as it does not depend on any of the observation
gains. To preserve the stability a necessary condition is that |a| < 1. On the other
hand, eigenvalues A1 and A, can be freely placed by choosing adequately I5; and I,
respectively. \

Note that this method is not restricted to periodic patterns. Some eigenvalues
can be prioritized online with respect to others. For instance, in the previous exam-
ple, output 1 (output 2) could be sent when the dynamics related to eigenvalue A4
(eigenvalue Ay) needs to be modified.
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6.4 Aperiodic scheduling

In contrast to the previous section, in which the scheduling followed an strict pat-
tern, here an aperiodic use of the shared medium is proposed. This solution is able
to obtain better results, as the choice of the output is made following some kind of
optimal decision. The cost is an increasing necessity of calculus and the existence of
an external agent that manages the activation of the different sensors.

As explained before, the proposed observer is a Kalman-based filter, that is, it
tries to minimize the variance of the error E [e{ek} . It is assumed that w; and v;{ are
both i.i.d. Gaussian processes with

Elwy] = 0, Elwwf] =Q, (6.22)
. . '
E[v;] = 0, E[t}v} | =R;, Vj. (6.23)
An observer is completely determined if the sequences {C;} and {L;} are de-
fined. Similar approaches have studied the optimal design of the observation gains
L; for a given pattern [89, 262]. However, in this section both families C; and L;
will be designed to obtain an optimal observer that minimizes the variance of the
observation error. Let P, = E [ekelﬂ denote the covariance matrix at time k. Making
an analysis similar to that of optimal Kalman filtering, the evolution of P can be
calculated as

Pen = APAT +B,QBL — APCIL] — CLE(PAT
+ LGP L] + LRy L. (6.24)

Using known properties of the trace of a matrix, the derivative of equation (6.24)
with respect to Ly is

B T T T
o 20, P AT +2 (ckpkck + Rk) LT,

The optimal observer gain L; can be found by imposing % =0:

L*:APCT[CPCT+R]_1 (6.25)
k k'“~k k) k . .

Using this value for the observer gain in equation (6.24), the matrix covariance
atinstant k + 1 is

1
Pei1 = APAT + BuQBT — APRCT [CkPkaT + Rk} CPAT.  (6.26)
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Other authors assume that a pattern of outputs is given and they solve a periodic
Riccati equation to obtain a steady-state periodic covariance matrix [89, 262]. On the
contrary, in this thesis the activation of the sensor is also made in an optimal way.
That is, the activated sensor at instant k is determined by

Cy = argmin tr{Peq}, (6.27)
T T -1 T
— argmax tr{APka [ckpkck +Rk] C.P A )}.

The previous optimization problem can be easily solved since only m different
matrices Cj are defined, so that it is straightforward to find the optimal one.

Assuming that Py is bounded Vk, the state of the plant will be estimated with a
estimation error with zero mean and bounded variance.

It can be seen that the choice of the output j and the gain L are based on the
covariance matrix, thatis, j = j(Px) and L = L(Py, j(Px)). Itis obviously state based.
Furthermore, it is also an one-step-ahead scheduling law because it optimizes tr Py, 1.
Other N-steps-ahead laws, based on the traces of Py 4, ..., P, n, might be subject of
future research.

Example 6.5. Consider the system proposed in [89] with the following parameters:

11 0 0 O 0 0
15 0 —075 —15 075 —075
11 1
. 0 0 110 0 |
O 0 0 11 0 0
11 075 0 11 0 —075
075 0 —075 —075 0 —075
1 0 1 |
1 0 c1:[101000]
11 0
B — ) c2:[01001—1]
0 0 -1
1 0 1 C3=[000—100]
1

The disturbances and noises in (6.1) and (6.2) are described by Q = 0.35Ix¢
and R; = 1,7 = 1,2,3. The initial conditions for the system and the observer are
x(0)=1[150 7 6 1 2]7,£0)=1[0 00 0 0 0]”. Finally, the initial covariance
matrix is Py = 0.2g«6. The same periodic controller as in [89] is employed.

Figures 6.6 shows the evolution of the observation error and which sensor is
activated in each instant.
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Figure 6.6: Evolution of the observation error (up) and sensors activated (bottom)
with the proposed observer design.

All states entered a small ‘band” around the origin in about 8 steps, whilst 20
steps were needed in [89]. The key of the improvement is the optimal choice of the
sensors. At the beginning, different outputs are chosen to achieve a better transient.
However, it is worth noting the periodic phenomenon that appears when the system
evolves near the practical steady-state. Pattern 1, 2 and 2 was proposed in [89].

Figure 6.7 depicts the cost measured as the trace of the covariance matrix. This
cost is plotted for three situations. The steady-state value of the trace of the covari-
ance matrix is smaller for the proposed method.
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o [e) (o) o o o o o o
60r B
= - - ; + g + + % I - +
50 *D ¥ * *  + ii- E g + ii- ib
5*6**8 *& BT ExTE #5 &7 L6 %
A dor e
X 30 Q“ o pattern[12 3]
o steady state [1 2 3]
20r 4 +  pattern [12 2]
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steady state proposed strategy
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k

Figure 6.7: Traces of the covariance matrix for different strategies.
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The previous example shows that, for some particular systems, the activated
sensors under the proposed optimal policy follows a concrete periodic pattern. If
this was true, the sensors could be properly initialized and to obtain some benefits:
reduced computational burden and minimum energy consumption, as the sensors
could remain asleep between two consecutive measurements.

The following sections study this problem and proves that, under some condi-
tions in particular cases, the intuition is true and the optimal scheduling is eventu-
ally periodic.

6.5 Periodicity of the optimal scheduling

Some preliminaries are needed before proceeding with the section.

6.5.1 Preliminaries

Recall the dynamics of the covariance matrix when the optimal Kalman gain is cho-

sen:
1
Pei1 = APAT + B,QBT — APRCT [ckpkc,{ + R CPAT

Using well-known matrix inversion lemmas, this equation can be rewritten as
-1
Poi=A (Pk‘l +cf Rk—lck) AT + B,QBL. (6.28)

This formulation will be used in the developments that follow. Now, the Rie-
mannian distance for positive definite matrices is introduced.

Definition 6.4. For any pair of matrices P,Q > 0, the Riemannian distance ¢ is
defined by

1
d 2
§(P1 Q) = (2102032 Al) ’
i=1
where Ay, ..., A; are the eigenvalues of the matrix PQ_l.
This distance has some interesting properties.
Proposition 6.4. [17] Let P,Q > O and R > 0. For any nonsingular matrix A,
S(APA*,AQA*) = 6(P,Q),
5(P7LQ7Y) = 4(P,Q)
«
d(P+R, R) < o(P,Q),
(PHRQ+R) = 750PQ)

where « = max(||P||, ||Q]|) and B = inf{(Rx, x), ||x|| = 1}.

4
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To proceed, the notation given in [205] is borrowed. Let h; : R"*" — R"*",
i=1,...,mands : R"*" — NN be fixed maps. Consider the discrete-time system

Xp1 = hy(x) (Xe),  Xo € R (6.29)

The system can be thought of as a switched system. The state-based scheduling
law s partitions the state space R"*" into disjoint sets {U', i=1,..., m} with u; =
s~ 1(j). When the state belongs to U; for some instant k, the system evolves according
to the transition map #;.

Since the system (6.29) is deterministic, each initial state Xy produces a different
trajectory { Xy} and a unique sequence {s(Xy)}. The observation sequence {s(Xy)}
is eventually periodic if there exist integers N, M > 0 such that

S(Xk+N) = S(Xk), vk > M.

Then, N would be the eventual period of {s(Xj)}.

Let int(U;) denote the interior of the set U;. If Z € U; but Z ¢ int(U;), then
Z is a boundary point. The interior of the partition induced by s is the open set
G = U; int(U;), and the boundary of the partition is the closed set H = R"*" — G.
In the remaining, we refer to H as the switching boundary.

The following theorem is a modification of Theorem 2.1 proposed by Ramadge
in [205]. It employs the distance ¢ instead of the norm |[|.||, as in [205]. Moreover, it
trivially extends the results of the theorem to sequences of n x n matrices instead of
vectors.

Theorem 6.1. Let ¢ be distance in the metric space (R"*",6), and let Xy € R"*" be a fixed
initial state for (6.29). Assume that:

i) Foreachi = 1,...,m, the map h; is C' on int(U;), with 5(h;(X),h;(Y)) < 6(X,Y),
VX,Y € int(ui).

ii) The trajectory { Xy} is bounded and all its limit points are contained in G, i.e., there are
no limit points on the switching boundary.

Then the observation sequence {s(Xy)} is eventually periodic.

6.5.1.1 Proof of Theorem 6.1

The proof follows the same steps than that of Theorem 2.1 in [205], so only the parts
that have been modified will be detailed.
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Let F : R"*" — R"*" be the map
F(X) = hyx) (X).

A subset X C R"*" is F-invariant if X € X implies F(X) € X.

For the remainder of the proof, consider a distance J in the metric space (R"*", ),
and assume that the h; satisfy the assumptions of the theorem. Note that for all
i=1,...,mif X, Y € U;,withY € B(X,e) C U;, some € > 0, then §(h;(X), h;(Y)) <
(X, Y).

The proof of the theorem makes use of the following results.

Lemma 6.5. Let {Xy} be a bounded state trajectory of (6.29) with a infinite number of
distinct terms. If the set of limit points Q) of { Xy } has no element on the switching boundary,
then () is a nonempty compact F-invariant subset of G.

Proof. The proof is similar to that of Lemma 2.1 in [205], but using the distance
instead of the norm.

As Ramadge showed, the set of limit points () is nonempty and compact. The
F-invariant part must be adapted. Let X € (), with X € U;. As no limit points lies
on the switching boundary, then X € int(U;). Let € > 0. Since h; is continuous on
int(U;), there exists a ¢ > 0 such that (X, Y) < o implies that 6(h;(X),h;(Y)) < e.
Select k > 0 so that 6(X, Xj) < . Then

S(F(X), F(Xk)) = 6(hj(X), hj(Xp)) < e.
Since € can be chosen arbitrarily small, if follows that F(X) is a limit point of

(X}, ie, F(X) € Q. O

The following lemma focuses on the nonempty compact F-invariant subsets of
G. The proof is not included as it can be trivially extended to elements in the space
Ri’l xXn .

Lemma 6.6. [205]. Let X be a nonempty compact subset of G. Then:
i) There exists y > 0 such that for each X € X, B(X, p) C Uy(x)-
i) If X, X' € X,0<e<y,and B(X,e) NB(X',€) # @, then s(X) = s(X’).

The following proposition is the core of the proof. It shows that any nonempty
compact F-invariant subset contained in G, i.e. in the interior of the cosets of s, is
the “preimage’ of a finite state automaton.
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Proposition 6.5. Let X' be a nonempty compact F-invariant subset of G. Then, there exits
an open F-invariant set G,, with X C G, C G, a finite set Q, functions « : Q — Q, and
B: Q — N,and a surjection 7w : G, — Q, such that

G, &5 G, =5 N
L il BN
Q & Q

i.e., such that for each X € G, m(F(X)) = a(7(X)), and s(X) = B(r(X)).

Proof. The proof is again a modification of that of Proposition 2.1 in [205] to use
distances.
Let 0 < € < p and set
Go= |J B(X,e).
XeX
Clearly, G, is an open setand X C G, C G. If W € G,, then there exists X € X
with W € B(X, it). By Lemma A.2, we have s(X) = s(W), and hence,

S(F(W), F(X)) = 6(hy(x) (W), hs(x) (X)) < 6(X, W) <,

i.e., F(W) € B(F(X),e€). Since X is F-invariant, F(X) € X, and hence F(W) € G,.
Thus, G, is F-invariant.

The rest of the proof, that is, the existence of the functions «, §, the surjection r,
and the finite set Q, follows the same steps that the work of Ramadge. l

Now, all the preliminaries needed to prove Theorem 6.1 have been given.

Proof of Theorem 6.1. [205] If the state trajectory contains only a finite number
of distinct terms, then the theorem is trivially true.

If { X; } contains an infinite number of distinct terms, then it follows from Lemma
6.5 that the set of limit points () is a nonempty compact F-invariant subset of G.
Then an application of Proposition 6.5 shows that there exists an open set G, con-
taining () and a finite automaton (Q, ) with observation map f that is a quotient of
the dynamic system (6.29) restricted to G,. Since Q) is the set of limit points of { Xy},
the state trajectory eventually enters and thereafter remains in G,. From this point
on, the evolution of the index sequence is governed by a finite state deterministic
system, and thus it is eventually periodic. g
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6.5.2 Periodicity of the Kalman-based filter

Using the notation introduced above, the evolution of the covariance matrix P given
in (6.28) corresponds to that of the switched system given in (6.29). The transmitted
outputs j are determined by the scheduling law s(P). It is initially considered that
s is any scheduling law producing a bounded sequence of {Py}.

The following theorem states the periodicity of the proposed filter.

Theorem 6.2. Let the evolution of the covariance matrix be given by (6.28) or by any other
finite combination of inversion, conjugacy and sum, and let Py € R™*" be a fixed initial
state for (6.28). Assume that

i) The system matrix A is nonsingular.
ii) The trajectory { Py} is bounded and there are no limit points on the switching boundary.
Then the sequence of outputs {j} is eventually periodic.

Proof. It will be proved that the assumptions i) and ii) imply that the conditions
of Theorem 6.1 are verified.
First of all, consider the evolution of the covariance matrix (6.28), which can be

rewritten as
Pey1 = hyip) (Pr),

where the maps h;, i = 1,...,m, and s are defined by

—1
n(P) = A (P,;l n CiTRi_lci) AT + B,QBT,

s(P,) = argmiintr Pry1.

Maps h;, i = 1,...,m are C! on int(U;). Furthermore, using Proposition 6.4
and the fact that A is nonsingular, it can be verified that §(h;(X), h;(Y)) < §(X,Y),
VX, Y € int(U;), where ¢ is the Riemannian distance described in Definition 6.4.

As the trajectory { P} is bounded and there are no limit points of {P;} on the
switching boundary, then all the points in Theorem 6.1 are verified and the sequence
{j} is eventually periodic. O

The assumptions of the theorem deserve some comments. Assumption i) is not
severe. If the discrete system is obtained by sampling a continuous system, matrix
A is nonsingular.

As explained in the previous section, assumption ii) is necessary. First of all, if
the trajectory { Py} is not bounded, the observer will not be able to estimate the state
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of the system, as the variance of the estimation error is unbounded. Therefore, it is
uninteresting that the scheduling eventually results in a periodic selection. How-
ever, it does have interest to know whether the scheduling law produces a bounded
trajectory. This is subject of study in the following section.

With respect to the presence of limit points in the switching boundary, Ramadge
shows in [205] that chaotic behaviours (on both the state and the observation se-
quence) are observed in systems whose limit points belong to the switching bound-
ary. Therefore, this assumption seems to be indispensable. The problem is that the
location of the limit points of { P} is unknown a priori.

The reference [29] suggests that the sets of limit points of intermittent Kalman
Filters (KFs) have a fractal nature, similar to a Cantor set, inherited from the inter-
pretation of intermittent sequences as binary codes of numbers in [0, 1]. Notice that
a Cantor Set has zero measure since it is obtained by recursively removing ‘mid-
dle thirds’ of the interval [0,1]. Very likely, this fractal nature might be shared by
switched KFs in networked operation, and thus condition ii) on limit points outside
the boundary could be assured by moving the boundary off the fractal, by adequate
modifications of the KF parameters (matrices Q,R).

6.6 Bounded trajectories

Theorem 6.2 assumes that the scheduling law yields a bounded trajectory { Py }. The
optimal policy presented in Section 6.4 can be described by the following state-based
scheduling law s(P):

s(Py) = arg mjin tr Pyq |C], . (6.30)

In the following subsections it will be proved that the optimal scheduling pro-
posed in (6.30) yields a bounded trajectory of { Py} for some particular and interest-
ing cases.

The proof that the proposed Kalman observer is bounded if (A, C) is detectable,
cannot be presented here in its general form. It seems that it would require a very in-
volved and lengthy discussion of many combination cases regarding (a) the stable-
antistable subspaces of A; (b) the unobservable subspaces for (A, Cj) ; and (c) the
way in which the C; share (or distribute) the output information, that is, the sub-
spaces spanned by C;.

Instead, a deep analysis will be presented at the end of this section about the
implications of choosing the scheduling law (6.30) in a general case.
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Figure 6.8: Diagonal case: a set of scalar systems sharing a communication network

6.6.1 The diagonal case

Suppose that matrices A, By, are diagonal,

A = diag{ay,ay,...,a,},
By, = diag{1,1,...,1},

and the disturbances and noises are described by

Q - diag{qlquI'--/qn}/
R] = i’]', V],

with positives g;,7;,j = 1,...,n. Further suppose that the set of output matrices
{C]'} is {e]-}, the canonical basis, with ¢;, (j = 1,...,n) the row vector containing
a one ‘1" in the jth position and 0’s elsewhere. This situation represents the case
of n independent first-order subsystems, coupled by the restriction that only one
measurement y;{ can be transmitted at a time (see Figure 6.8).

The following two propositions study the scheduling law and the evolution of
the covariance matrix for this particular case.

Proposition 6.6. Suppose that the covariance matrix is Py = diag{p1, p2,..., pn} at in-
stant k. Then, using the proposed optimal policy (6.30) the activated sensor j is

a’p?
J = arg max [T
i pitri
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Proposition 6.7. Suppose that the covariance matrix is Py = diag{p1,p2,..., pn} at in-
stant k. Then, given that output j (j = 1,...,n) is transmitted at instant k, the covariance

matrix at k + 1 is given by

g(p1) 0 0
Pei1 = 0 f(pj) 0 row j
0 0 g(pn) i
where scalar functions f(p;), g(p;) are defined by
A S .
f(pl) - az rlpi +ri +%/
glpi) = aipi+a:

The proofs are straightforward by substituting matrices A, By, C,Q and R;, (j =
1,...,n) in equation (6.26).

The main conclusion of these propositions is that the covariance matrix remains
diagonal for all k. It is worth noting the importance of the functions f(p;) and g(p;).
While function g makes the covariance increase with |a;| > 1 or decrease with |a;| <
1, function f is always a map that makes that the covariance tends to a stable value.
Figure 6.9 illustrates both functions. It is also important to remark that function

f(p;) is upper bounded by

f(p) < aZri +qi, Vp;.

o

I

w

N
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Figure 6.9: Functions f(p;), g(p;) for |a| > 1 (red line) and |a| < 1 (blue line). Bisec-

tor of the first quadrant (black line).
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These features are the key of the following lemma, which states that the proposed
optimal policy yields a bounded sequence of {P;}. The name ‘stabilizing’ map or
function is used to denote a function whose application results in a stable trajectory.

Lemma 6.7. In the diagonal case, the sequence of { Py} is bounded if the scheduling law
(6.30) is used.

Proof. Assume first that n = 2, i.e., the dimension of the system is 2, and con-
sider three situations: (a) |a1| < 1, |az| < 1; (b) |a1| > 1, |az| < 1;(¢) |a1| > 1, |az| > 1.

(@) |a1] < 1,|az2| < 1: This case is trivial. Both families of functions f(p1),g(p1)
and f(p2), g(p2) are stabilizing, so p; is bounded fori = 1,2.

(b) |a1| > 1, |az| < 1: In this case, functions f(p2),g(p2) and f(p1) are stabilizing,
but g(p;) is not. Let p denote the maximum p(k), Vk. Assume that for some k,

Bpak? _ dp (k)
RN SR

thatis, sensor 2 is to be activated at k + 1, as Proposition 6.6 states. The left-hand side
a3p3
patra
k+1itholds p1(k+1) = g(p1(k)). As ¢ makes p; increase, there must exist some

k* > k such that

for all k. Furthermore, at instant

of the equation above is upper bounded by

252 2 2
a3p3 ajp1(k*)
patra  pr(k*)+r1’
2 2
as function % is increasing in pj(k) due to |a;| > 1. It turns out that sensor

1 will transmit at instant k* + 1. Then, it has been proved that there exists a max-
imum number of consecutive instants in which sensor 2 remains activated before
one sample of sensor 1 is sent. Let n; denote that maximum number. As function f
is stabilizing, p1 (k* + 1) is upper bounded by

pl(k* + 1) < 0%1’1 + q1-

Therefore, the maximum value of p;(k) is given by

A

p1 = max py (k) = g" (air1 + q1),

where ¢ denotes that function g is applied 77 consecutive times. Then, both py, p2,
and hence matrix P, are bounded.
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(©) |a1] > 1,|az] > 1: In this case, functions f(p1) and f(p2) are stabilizing,
and g(p1) and g(p2) are not. The same idea than before can be used: after a finite
consecutive number of instants the activated sensor switches. Assume that for some
instant k sensor 1 is transmitting. Then, it turns out that p1(k+ 1) < a%rl +4g1. On
the other hand, p, (k) will increase. There must exist some k, in which the following
holds:

aspa(k2)? _ ai(afri+q1)°
palka) +12 = (a3 +q1) +11

Then, sensor 2 will be activated at instant k, + 1. Taking into account that func-
tion f is upper bounded, it is verified that pa(ky + 1) < a3r2 + q2. Now, py(k) is

increasing every k while p; (k) remains bounded. There must exist some k; in which

ay(a3ra +q2)* _ aipi(ka)®

(@32 +q2) +12  pilkr) +7r1

Again, sensor 1 will be transmitting at instant k; + 1. It has been proved that
the activated sensor shifts after a finite number of instants. Let n;, i = 1,2, denote
the maximum number of consecutive instants that sensor i remains active before the
other sensor occupies the shared medium. Then, both covariance diagonal elements
will be bounded by

pr&maxpi(k) = g"(ain +q),

pa = max pa(k) = g"(asrr+ ).

So far it has been demonstrated that the covariance is bounded for systems with
dimension 2.

The extension for higher dimensional system is trivial. The key idea is again
the same: the maximum number of consecutive instant that any sensor (measuring
an unstable dynamics) remains without being activated is bounded. Consider the
general case that |a;] < 1for1 <i < dand |a;] > 1ford < i < n. The components
1 <i < d of the covariance matrix are bounded for the same reasons argued before.

The components py, ..., p, Will increase if they are not transmitted. But after
some instants, condition given in Proposition 6.6 will be verified for every sensor
d <i < n. Then, as f(p;) < a%ri +¢qi, 1 < i < d), these components will also be
bounded. Hence the proof is ended. O

Lemma 6.7 shows that the proposed optimal scheduling produces a bounded
trajectory of the covariance matrix and, hence, a periodic scheduling of the outputs
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observer

Figure 6.10: Block diagonal case: a set of systems sharing a communication network

through Theorem 6.2. It could seem that no extra assumptions are needed, but this is
not really true. Since the complete matrix C is the identity matrix, the observability
of the pair (A, C) is achieved. That assumption can not be relaxed.

6.6.2 The block diagonal case

Suppose that matrices A, By, are block diagonal,

A = diag{Al,AZ,...,An},
By = diag{L,I,...,1},

and disturbances and noises are described by

Q - diag{le QZ/ sy Qn}/

with positive definite Q;, i = 1,...,n. The output matrix is also a block diagonal
matrix defined by C = diag{Cy,C, ..., Cy}. This situation is the natural extension
of the previous one, but the systems that are sharing the communication network
are of higher dimension.

As before, two propositions are presented to study the scheduling law and the

evolution of the covariance matrix for this case.

Proposition 6.8. Suppose that the covariance matrix is Py = diag{Py, P», ..., P,} at in-
stant k. Then, using the proposed optimal policy (6.30) the activated sensor j is

j= argmaxir AjP,C/M;CiP;A],

with Mj = (CiP,C] + R;) ™.
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Proposition 6.9. Suppose that the covariance matrix is Py = diag{Py, P», ..., P,} at in-
stant k. Then, given that output j (1 < j < n) is transmitted at instant k, the covariance
matrix at k + 1 is given by

g(P) - 0o .- 0
Pey1 = 0 - f(P) -+ 0 block |
0 0 g(Py) |

where matrix functions f(P;),g(P;) are defined by

f(P) = APA] +Q; — AP.CIM;C,PA],
g(P) = APA! + Q.

The proofs are immediate and hence omitted. Note that the covariance matrix
remains block diagonal for all k. As before, the importance of functions f(P;), g(P;)
is crucial. If all the eigenvalues of A; lie inside the unit circle both functions are sta-
bilizing maps. However, if matrix A; is unstable different behaviours are observed,
as the following lemma states.

Lemma 6.8. Assume that matrix A; is unstable and the pairs (A;, C;) are detectable Vi.
Then,

i) ¢(P;) > P;, forall P; > 0;
i) limy o f5(P) = P,

where D; is the unique solution of the Riccati equation P; = f(P;). Furthermore, if C; is a
full-rank matrix then,

i) f(P) < Aj(GR;'C) AT + Q.
Proof.
i) Condition g(P;) > P; is equivalent to g(P;) — P; > 0, that is,
APLAT +Q;— P, > 0. (6.31)

Since matrix A; is unstable, there is no positive definite P; that verifies the Lya-
punov equation Al-PiAiT — P; = —Q;. Hence, for every P;, condition (6.31) holds and

Luis Orihuela Espina 149



CHAPTER 6. SCHEDULED COMMUNICATION FOR STATE ESTIMATION
AND CONTROL

then g(P;) > P;.
ii) The proof is trivial, because P;(k + 1) = f(P;(k)) represents a Riccati recur-
sion. As the pair (A4;, C;) is detectable, the recursion tends to the unique solution of

the Riccati equation P; = f(P).

iii) Consider the following positive definite matrix Y-

Y = lim Y )
Y—00 : . :

It is trivially true that X < Y holds for any X positive definite. Furthermore, if
X <Y, then f;(X) < f;(Y) [226]. Hence, f(Y) is an upper bound of f(X), VX > 0.

Using the well known matrix inversion lemma, it yields
fOY) = A+ IR TTAT + Qi
As C; is full-rank, it turns out
fOY) ={Y™" = 0} = A{(CTR'C) AT + Qs
O
At this point all the preliminaries have been introduced, so the corresponding
result to that of Lemma 6.7 for block diagonal matrices can be given.

Lemma 6.9. Assume that matrices A, By, C, Q are block diagonal. If the pairs (A;, C;) are
detectable with full-rank C;, then the scheduling law (6.30) produces a bounded sequence of

{ P}

Proof. The proof follows the same idea as before. Firstly, it will be proved that
the optimal scheduling law produces alternation in the activated sensor. And then,
this alternation will be the key to ensure the boundedness of the sequence { P }.

It will only be considered the situation with two blocks in which every A;, i =
1,2, is unstable. The extension for general A;, i = 1,...n, can be trivially settled.

From Proposition 6.8, note that the scheduling law (6.30) can be rewritten as

s(P) = argmjintr {f](P]) — gj(P]')}.
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Assume that sensor 1 is active at instant k. While this sensor uses the network,
it will be verified

Pi(k+1) = fi(Pi(k)), Yk > ki,
P(k+1) = g(Pa(k)),Vk = ki.

Since the pair (Aj, Cq) is detectable, function fi(-) makes the covariance P; to
tend to the unique solution of the Riccati equation, i.e., Py(k) — P;, where P} =
f1(Py). Therefore, it yields

tr {fi(P1(k)) —g1(P1(k)} — tr {f1(P1) — g1(P1)},

which is obviously a bounded value. At instant k; the sensor 1 is active, hence

tr {fi(P1(k1)) — g1(P1(k1))} < tr {fa(Pa(k1)) — g2(Pa(k1))} (6.32)

Let us move the attention to the terms on the right-hand side of the equation.
The first one f>(P2(k)) is bounded Vk by Lemma 6.8. The second one g»(P,(k)) is
increasing at each instant.

Using well known properties of positive definite matrices, if X > Y, then tr{X} >
tr{Y}. Therefore, tr{gx(X)} > tr{X}, for all X > 0. Since all the terms in (6.32) are
bounded except g»(P>(k)) that increases each instant, there must exist a finite k;
such that

tr {fi(P1(k1 +k2)) — g1(P1(k1 +k2))} > tr {fa(Pa(k1 +k2)) — g2(Pa(ky +k2)) },

and, hence, sensor 2 is activated at the following instant. This proves the alternation
of the activated sensor in finite time.

Denote by 7; the maximum number of consecutive instants that sensor i remains
active before the other sensor is activated. Both n;, i = 1,2, are finite. As Proposition
6.9 claims, the covariance matrix remains block diagonal. Then, both elements of
the covariance matrix will be bounded by

Pi(k) < gP2(A1(C{R'C) TAT + Q1) VK,
Py(k) < gh(Aa(CIR,Cy) TAT + Qy), V.

Hence, the sequence of { P} remains bounded. O

The hypothesis of C; being a full-rank matrix is hard. If this condition is removed,
the term f;(P;(k)) in (6.32) could grow when the evolution of P;(k) is driven by func-
tion g;(-). Neither the alternation of sensors nor the boundedness of the trajectory
could be proved with this method. An analysis of the general case is presented in
the next section.
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Figure 6.11: Uncertainty ellipsoid & (x, P)

6.6.3 Analysis of the general case

This section tries to introduce the reader in the general case. It does not provide
conclusive proofs, but attempts to give a different point of view for this problem.
More precisely, a geometric analysis of the evolution of the covariance matrix is
presented in this section.
Let P be a covariance matrix. The uncertainty ellipsoid (see Figure 6.11) is de-
fined as
E(x,P) ={x e R": x"P " 1x < 1}. (6.33)

Assume that sensor i is sending its measurements. Then, there exists a linear

change of coordinates T; such that the tuple (A, B,QBL, C;) can be written as?

Ano A12
0 A

Qno Q12

A=
Q1T2 Qo

,ciz[o CO], (6.34)

, B4QBL = [

where the subindexes ‘no” and ‘0’ stand for the unobservable and observable modes,
respectively. From each output, it is possible to observe only a subspace of the com-
plete state of the system.

The covariance matrix can also be partitioned equivalently as

pP= P’;E’ P\ (6.35)
PL P,

Introducing these definitions in the evolution of the covariance matrix given in

Matrices Ano, Ao, A1 . .. depend on the sensor i. However, with some abuse of notation the
subindex i has been removed when there is no ambiguity.
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(6.26) it turns out that

Pyo(k+1) Pp(k+1)

Ple+1) = PL(k+1) Py(k+1) |’

where

Po(k+1) = AoPo(k)Al + Qo — AoPys(k)Cq M, (k)Co Py (k) AL,
Puo(k+1) = AuPuw(K)AL + Auo(A,Q, P, (k), Pia(K)),
Plz(k + 1) = Alz(A, Q, Po(k), P12 (k)),

with M, (k) = (CoP,(k)CI + R;)~! and A, A2 two matrix functions that do not
depend on Py, (k).

The pair (A,, C,) is observable, so the evolution of P,(k) tends to the unique
solution of the Riccati equation denoted by P,. On the other hand, and assuming an
unstable A, the evolution of Py, (k) diverges.

Geometrically, the ellipsoid evolves in such a way that some of its semi-axes are
aligned with the unobservable space. Furthermore, these semi-axes grow and the
other semi-axes (perpendicular to the former) remain bounded.

Example 6.6. Consider a system described by

1(‘)2 _1.1],@:[1 0],C2:[0 1],

A=

with Q = [ and Ry = Ry, = 1. The initial condition for the covariance matrix is
30 10

10 10
6.12 for two situations. From sensor 1 the complete state is observable, so the el-

P(0) = . The evolution of the uncertainty ellipsoid is shown in Figure

lipsoid tends to the solution of the Riccati equation, which is obviously bounded.
Using sensor 2, the unobservable space is defined by

No={xcR*:x=A ,A€RL

Note that in Figure 6.12 the ellipsoids tend to align with \. One of its semi-axes
remains bounded and the other one grows with time. \

When one sensor is active for some time, the ellipsoid evolves in such a way that
it grows in the direction of the unobservable space from that sensor and remains
bounded in the perpendicular direction.
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Figure 6.12: Evolution of the uncertainty ellipsoid £(x, P) using different sensors

Consider now the scheduling law:
s(Py) = argmin tr Py,
)
~1

— argmax tr APCT [ckpkckT +Rk} C,PAT,

]
T T -1

= argmax tr PC; [CkPka +Rk] CrPy.

]

Recall that system matrix A is nonsingular. Then the last equality is verified due
to the property

X >Y — tr{AXAT} > tr{AYAT}, for X,Y > 0.

Let define gc g : R"*" > 0 — R™*" > 0 as the map

T T -1
ccr(P) = PC [CPC +R] CP. (6.36)

Please observe the similarities between the map ¢¢ r(-) and the scheduling law
s(-). The application of the map ¢¢ r to an ellipsoid given by P results in a degener-
ated ellipsoid whose dimension is equal to the rank of C. Element R introduces an
scaling factor. Next example illustrates this idea.

Example 6.7. Consider the same system as in Example 6.6. Assume that sensor 2
has remained active for some time, yielding the ellipsoid £(x, P) that is depicted on
the right-hand side of Figure 6.12. Now, the maps ¢, r, and ¢c, r, are applied to
E(x, P). The obtained degenerated ellipsoids are drawn in Figure 6.13.

In this case, both ellipsoids are transformed to intervals. Note that the applica-
tion of the map g ¢ r is similar to a projection of the ellipsoid. The size of the interval
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Figure 6.13: Application of the maps ¢¢, r, to get degenerated ellipsoids

is bounded in one case and grows in the other case (as the uncertainty ellipsoid
E(x, P) grows).
v

In this 2-dimensional example, the trace of matrix Py is directly related to
the length of the interval generated by the application of ¢c . In the general n-
dimensional case, the trace depends on the size of the non degenerated semi-axes.
The reason is clear, as the trace is equal to the sum of the eigenvalues, and the semi-
axes of the ellipsoid are directly related with the eigenvalues of P.

Furthermore, when the covariance matrix is evolving driven by a sensor i, it
seems that its associated degenerated ellipsoid is bounded as Figure 6.13 shows.
On the other hand, the ellipsoids associated with the other sensors (the ones that
observe unstable poles) are growing with time, so in finite time the channel will be
occupied by a different sensor.

Therefore, the intuition says that the application of the scheduling law (6.30)
makes that in finite time all the sensors measuring unstable poles must be activated.

The next question is: does the alternation of sensors imply a bounded trajectory
of the covariance matrix? Answering this question is difficult. The intuition and
simulation results motivate that thought. However, it has only been proved in the
diagonal and block diagonal cases.

This problem has been studied from a stochastic point of view in [76], where each
sensor is given a probability of being active at instant k. It was shown that, if these
steady-state probability were different than zero, then the covariance matrix result-
ing from applying a stochastic scheduling law was indeed bounded. The forced
alternation of sensors in finite time implies somehow that the probability of choos-
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ing each sensor is different than zero. Hence, this might be a sufficient condition to
ensure a bounded trajectory of { P} in the general case.

6.7 Characterization of the optimal pattern

Section 6.5 presented the conditions that must be verified to ensure that the optimal
scheduling law presented gives rise to a periodic scheduling.

But a question arises: is the optimal pattern unique? Does it depend on the initial
condition? As Ramadge showed [205], the eventual period of {s(x;)} will depend
on the initial condition in the general case. When dealing with covariances, the
evolution of Py is deterministic, so each initial condition Py gives rise to a unique
trajectory {Py}. However, despite producing different trajectories, the uniqueness
of the optimal pattern can be ensured, as is proved next.

The next step within this development is: is it possible to know some features
of the optimal pattern? Or the optimal pattern itself? As Example 6.5 showed, the
system and covariance equations can be simulated to eventually get the optimal
pattern. Choosing a large enough simulation time, the pattern could be discovered.

However, in this section two results are given to characterize the pattern a priori.
Firstly, the conditions are given to have a pattern consisting of only one element.
Secondly, the maximum length of it is studied. In the following it is assumed that
an optimal pattern exists, that is, all the conditions in Theorem 2 are satisfied.

The next lemma establishes the uniqueness.

Lemma 6.10. Assume that all the conditions in Theorem 6.2 are verified. Then, the steady-
state trajectory {P} and the sequence of sensors {j} obtained by the application of the
scheduling law (6.30) is unique for enough large k regardless of the initial condition P,.

Proof. The proof is based on that of Lemma 3 in [16]. From Theorem 6.2, it can
be assured that for each initial condition Py a periodic sequence of sensors j is ob-
tained. Denote by {P!} and {P?} two different trajectories of the covariance matrix
for different initial conditions. By Theorem 6.2, both trajectories are bounded. Con-
sider the optimal Kalman gain given in (6.25) for the two trajectories, namely {L,* }
and {LZ*}. As the covariance is bounded, the corresponding closed-loop matrix
Al £ A — LiCy is exponentially stable.

The difference P!? = P! — P? satisfies the equation P,}erl = AlP2(A2)T. There-
fore, limy_, P]} — P,% = 0. U
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Based on the uniqueness, the following proposition studies the case of one-
element patterns.

Proposition 6.10. If any of the solutions of the Riccati equations
-1

5. — Ap. AT T 5.cT [c.p.cT 5. AT

By = APAT + B,QB;, — APCT |GiPCT +R;|  CiBjA (6.37)
forje{1,...,m}, satisfies

arg mintrP 1 = j, for P = P;, (6.38)
1

then the optimal pattern consists of only one element, and this element is exactly j.

Proof. Let 15] be a solution of (6.37) such that verifies (6.38). Further consider that
the initial value of the covariance matrix for the optimal Kalman filter is Py = 13]'.
Hence, the sensor j will be active for all k > 0. g

Corollary 6.2. Consider the set of all the solutions of the equations (6.37). Then, only one
solution of the set verify (6.38).

Proof. Assume that two solutions of (6.37), that is P; and 13]-, i # j, satisfy con-
dition (6.38). Then, by choosing as initial condition P; and P;, two different optimal
periods will be obtained, which is impossible due to Lemma 6.10. O]

In some situations, it is beneficial to know the length of the pattern. The fol-
lowing result establishes a relation between the length and the limit points of the
trajectory.

Proposition 6.11. Let N be the length of the optimal pattern. Then, it holds
N < nlp/
where ny, denotes the number of limit points of the trajectory { Py }.

Proof. The proof is based on Proposition 6.5. The finite set Q has a number of
elements lower than the number of limit points. From the definition of function g,
the length of the pattern is bounded by the number of elements in set Q. g

The usefulness of Proposition 6.11 is based on the knowledge of the number of
limit points, which in most cases is difficult for a given system.
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6.8 Practical implementation

This section presents a small guide for the control engineer that faces the problem
of sensor scheduling.

If the system belongs to one of the categories studied in Section 6.6, the bounded-
ness of the matrix covariance can be ensured using the proposed scheduling. Then,
by Theorem 6.2, one concludes that the optimal selection of the sensor gives rise to
a periodic pattern of activated sensors.

In case that the system cannot be described as one of the cases given in Section
6.6, the engineer can simulate the system with the proposed scheduling, as in Exam-
ple 6.5. If it is observed that the scheduling eventually shifts to a periodic pattern,
some results of periodic patterns may be used, as the ones presented Section 6.3. In
that case, the periodic scheduling would produce a bounded covariance matrix, but
maybe not the optimal solution attained with the proposed Kalman-based filter.

The control engineer decides whether to implement the non optimal periodic
scheduling or the optimal aperiodic scheduling.

6.9 Chapter summary

The problem of designing partial observers and scheduling the communication over
a shared network is tackled in this chapter. A contentionless TDMA scheduling al-
gorithm is designed to satisfy closed-loop stability conditions and to minimize the
steady state error, while reducing the data rate. Two new approaches are proposed:
the periodic observer, with the new features of including pure of observation peri-
ods, He disturbance attenuation, pattern optimality, and co-design of the pattern
and observer for pole placement. On the other hand, in the aperiodic Kalman-based
filter, both the observation matrices and the activated sensor are chosen to minimize
the variance of the observation error.

Furthermore, the chapter investigates the periodic phenomenon that emerges in
an a priori aperiodic scheduling, as it has been observed in [88, 184]. Concretely,
Theorem 6.2 gives the conditions that must be verified by the system to obtain a
periodic scheduling when the optimal Kalman-based filter is used. It is shown that
those conditions (A nonsingular, boundedness of the trajectory, and absence of limit
point on the switching boundary) do not impose hard restrictions.

A deep study on whether the proposed filter gives rise to a bounded trajectory of
the covariance matrix is made. Although some interesting cases are studied, there
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is only an analysis for the general case. The intuition says that the trajectory is
bounded in all cases, but this must be proved in the future.

Further improvements should be aimed at including delays and dropouts in the
communication channel, as well as studying the case when the optimization prob-
lem is N-steps-ahead.
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Chapter 7

Distributed control and estimation

7.1 Introduction

Wireless sensor networks (WSNs) are an emerging technology that has received a
great deal of attention in the past decade due mainly to its current and future envi-
sioned applications in both military and civilian fields [1, 21, 41, 54, 129, 248].

A sensor network is composed of a large number of geographically distributed
sensor nodes (agents in a broader sense) with communication capabilities among
them. Sensor networks present a number of advantages over centralized archi-
tectures: physical distribution over large regions providing diverse perspectives
orviewing angles of the observed phenomenon; increased robustness to failures;
lower deployment and maintenance costs, etc. Due to various design considera-
tions, such as small battery size, bandwidth and cost, WSNs typically exhibit low-
power constraints and limited computation and communication capabilities. De-
spite these limitations, the high connectivity and sensor cooperation capabilities of
WSNs provide the potential to build powerful networks that accomplish complex
high-level tasks that are difficult or even impossible to attain with classical central-
ized or hierarchical approaches.

Distributed estimation and control, which is the topic of this chapter, naturally
arises in the context of systems with multiple distributed components intended to
jointly meet a system-wide objective. Broadly speaking, the objective is to induce
collective behaviors through the actions taken by individual agents in a distributed
way. The primary salient feature of this approach is the distribution of information.
As opposed to centralized solutions (such as the ones presented in Chapter 6), no
single unit has access to the whole data set gathered by all the agents. A secondary
distinguishing feature is complexity. As the number of agents grow, conventional
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decentralized estimation schemes are also unattractive in many situations, provided
that point-to-point communications are involved and scalability for a high number
of nodes can be compromised [175].

The state of the art concerning distributed control strategies comprises a vast
number of techniques, taking different approaches depending on the problem na-
ture.

First attempts to formulate the problem date back to the late 70’s, with the works
of Davison [45, 46] and Anderson [4]. Predictive control has shown itself very pro-
lific in this field [26, 49, 135, 168, 209, 210, 241]. Some other remarkable break-
throughs to the problem can be found in [134], based on semi-active control with
applications to large-scale civil structures, and the completely innovative idea pro-
posed in [42], where the plant and the controllers are modeled using modular blocks
that communicate with their neighbors. The modules can be stacked building large-
scale distributed systems. Most of the above mentioned works decompose the plant
in decoupled or weakly coupled subsystems controlled by independent nodes. A
closely related line of research is the so-called decentralized overlapping control,
where different controllers are allowed to share control inputs of the plant [91, 92,
225].

In this chapter, a new distributed control and estimation framework is discussed.
It is a continuation of the works in [155] and [149] of the same author, tackling this
time the broader problem of joint distributed estimation and control.

The proposed problem considers a discrete LTI process, being controlled by a
network of agents that may both collect information about the evolution of the plant
and apply control actions to achieve a given goal. The problem makes full sense for
geographically distributed processes where the agents have access only to partial
information and actuate, possibly, only on specific control channels. In other words,
no agent has the information, neither the control capabilities, to estimate and drive
the overall process on its own. In this context, the networked structure of the agents
plays an essential role as neighboring agents are allowed to share information and
cooperate to achieve the system-wide goal.

The aim of the approach is to provide a fully distributed scheme so that the joint
cooperative action of all agents drives the system to asymptotic stability, provid-
ing a cost-guaranteed solution with respect to a given quadratic index. Each node
implements an observer & controller structure based on local Luenberger-like ob-
servers in combination with consensus strategies, the first part being responsible for
updating the node estimation based on local sensed information, while the former
takes into account the data transmitted from neighboring nodes.
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Two different control & estimation schemes are presented. First, a periodic time-
driven approach, where the nodes are assumed to communicate at every sampling
time; then a more efficient event-driven scheme that triggers the agent communi-
cations only when significant information must be transmitted. Event-driven ap-
proaches, see Chapter 5, are specially beneficial in the context of WSNs as a reduc-
tion in the transmission frequency implies bandwidth savings but also an improve-
ment in average transmission delays and packet collisions, for back-off retransmis-
sion are reduced. Moreover, in WSNs the battery life span is of great importance,
and it is mainly related to the number of transmissions of the device.

As it will be shown, the separation principle does not hold, this forcing to a joint
design of control and estimation. As a first extension of previous works in [155] and
[149] to tackle both, distributed control and estimation, this chapter neglects the
effects of transmission delays and dropouts in the network. Although both are ad-
mittedly relevant phenomena in real-world applications, these have been dropped
for the present work in favor of obtaining a tractable mathematical design method.

The stability of the solution is guaranteed through discrete-time Lyapunov func-
tions, from which the design problem is cast into the solution of a set of matrix
inequalities. Asymptotic stability and Global Ultimately Uniformly Boundedness
(GUUB) of solutions are proved for, respectively, the time-driven and the event-
driven approaches. To the best of the author’s knowledge, this is the first approach
that considers distributed estimation and control in a cost-guaranteed scheme using
an event-based sampling policy.
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7.2 System description. Initial considerations

Consider the distributed control and estimation scheme depicted in Figure 7.1. The
large-scale process is monitored and controlled through a network of agents, each
one exhibiting all or part of the following capabilities: sensing plant outputs, esti-
mating the state of the plant, applying control actions, and communicating to neigh-
boring agents.

|O e gay I (= I
‘rlw : '\QJ' observer i
=2l L= !
1OF <l \ br=n i
B (] controller i
J':k | \ = :

| L= i

_ \DJ' ~ e 1 observer & controller
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e ‘/ f J \,‘_ \QJ Lo network connection i
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Figure 7.1: Distributed scheme for the control of a large-scale plant

In the following, the different elements composing the distributed system are
described in detail.

7.2.1 Plant

Consider a discrete LTI system described in the state-space representation. As Fig-
ure 7.1 illustrates, the plant is being controlled and/or sensed by a set of p agents,
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each one possibly managing different control signals. The dynamics of the system

can be described as
P

x(k+1) = Ax(k) + Y Bu;(k), (7.1)
i=1

where u; € R"i is the control signal that agent i applies to the system.
Let us define an augmented control matrix

Bé[Bl B, ... BP},
and an augmented control vector
& | T T T !
Uty 2 | uf () uf() ... ub(e) | . (7.2)
Then, equation (7.1) can be compactly rewritten as
x(k+1) = Ax(k) + BU(k), (7.3)

where U (k) € R", withr = Y/, r;. It is assumed that the pair (A, B) is stabilizable.

7.2.2 Network

Using the notation introduced in Section 2.2.2.2, the network in Figure 7.1 is topo-
logically defined by its graph G = (V, £) with [ links between p agents. The graph G
is directed, withnodes V = {1,2,...,p} and links £ C V x V. The set of agents con-
nected to node i is named the neighborhood of i and is denoted by N; = {j : (i,)) €
E}. Link (i, j) implies that agent i receives information from agent ;.

7.2.3 Agents

The agents are assumed to behave as any or both, observers and controllers. The
approach adopted in this work is an observer-based scheme in which every agent is
assumed to build its own estimate of the plant state based on the information locally
collected by the agent (plant input) and on that shared with neighboring agents.

If acting as a sensor, agent i measures a specific plant output, y;, such that

yi(k) = Cix(k) € R™, (7.4)

where matrices C; € R™*" are known. Let C denote an augmented output matrix

defined as
T

ce|cl cf ..ct
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The pair (A, C) is assumed to be detectable.
If agent i has control capabilities, the control counterpart generates an estimation-
based control input to the plant, u;(k), in the form

Ml'(k) = Ki:fl'(k) e R, (7.5)

where £; € R" denotes the estimation of agent i, and K; € R"*" (i € V) are the local
controllers to be designed.

The estimation of the plant state are obtained at every agent i from a local ob-
server structure that takes the form

2i(k +1) = A%;(k) + BUi (k) + Mi(yi(k) — Cizi(k)) + ZN Nij(2;(k) — %i(k)), (7.6)
JEN

where U; (k) € R’ is the augmented control locally estimated by agent i defined as

1

k) 2 [l (k) ﬁT.(k)]T,

where ﬁ]l(k) = K]J?Z(k),V] 75 i

Looking at equation (7.6), each node has two different sources of information to
correct its estimations. The first one consists of the output measured from the plant
y;(k), which is used similarly to a classical Luenberger observer, M;(y;(k) — C%;(k)),
being M; an observer gain to be designed.

The second source of information comes from the estimates received from neigh-
boring nodes, which is also used to correct estimations with the terms Nj;(£;(k) —
%;(k)), where Njj, (i,j) € &, are consensus matrices to be designed.

Observe that the individual nodes have no information about the exact control
signal being applied to the plant, as each actuator node applies a different control
signal based on its particular state estimation (7.5), that is, U (k) # U;(k). Ideally,
equation (7.6) should be implemented using the augmented control vector U (k) that
the network, as a whole, applies to the plant. However, this information is not avail-
able at the nodes. To circumvent this difficulty and make equation (7.6) realizable,
the proposed solution consists, roughly speaking, of letting each node to run its ob-
server with the augmented control vector obtained from its particular estimate. That

is,
p
BU;(k) = Y BjK;%;(k) = BK%;(k),
j=1
where the augmented control matrix satisfies KT = [KlT KT ... K; } .
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The actual control vector applied to the plant is however built on the estimates
of each node

P
k) =) _ BiK;%;(k)
j=1

In general, estimated and actual augmented control vectors differ, but if the ob-
servers are properly designed and the node estimations converge to the plant states,
these discrepancies progressively vanish.

The observation error of agent i is defined as

ei(k) = x(k) — %i(k). (7.7)

Finally, let M, N, K denote the sets of the observer and controller gains to be
designed:

M = {Ml',i € V},
N = Ny (i,j) € €},
K = {Ki,i S V}

Remark 7.1. Matrices C; or B; may be equal to zero for some agents. In those cases,
the agents will become pure controllers or pure observers, respectively.

The following sections present design methods to obtain these sets in order to
stabilize the plant and the observation errors.

7.3 Problem formulation

This section formally states the problem to be solved.

Definition 7.1. Suboptimal distributed control and observation problem. Con-
sider a discrete LTI plant with dynamics given by (7.1). The plant is sensed and
controlled by a set of p agents in a network whose topology can be represented by
the directed graph G = (V, £). The dynamics of the agents are given by (7.6), each
of them receiving a measurement from the plant defined by (7.4), and applying a
control signal defined by (7.5). Then, given the cost function

= Y () + Y X [T (et +w Rus()], 78)
i=ko j=ko i€V

the suboptimal distributed control and observation problem consists of finding ob-
servers M;, i € V and Nj;, (i,j) € € and controllers K;, i € V, such that:
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e The system is asymptotically stable.
e The dynamics of the observation errors are asymptotically stable Vi € V.

e A cost guaranteed solution is obtained by minimizing the upper bound of the
cost function (7.8).

7.4 Periodic sampling case

Let us consider first the case of periodic communication between agents. That is,
each node receives information from neighboring agents each instant k.

7.4.1 Dynamics of the state and observation error

This section study the dynamics of the system state and the observation error. De-
fine the error vector el (k) = [el (k) el(k) ... eg(k)] € R" and the augmented
vector &7 (k) = [xT(k) e (k)].

Proposition 7.1. The dynamics of the state of the plant x(k) is given by
x(k+1) = (A+ BK)x(k) + Y(K)e(k), (7.9)

where
Y(K) = [ _BiK; —ByK, ... —B,K, }

The proof is immediate from equations (7.3)-(7.7) and the definition of the error
vector.

Proposition 7.2. The dynamics of the error vector e(k) is given by
e(k+1) = (P(M) +¥(K) + AN)) e(k), (7.10)
where

(M) = diag{(A—MGC),...,(A-MCp)},
Y(K)

Y(K) = diag{BK,...,BK} + : ,
Y(K)
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with
col. l J
0 - o --- 0 0
ON;) = | | | ' '
(1]) 0 -+ —Nj -+ Nj - 0 row i
0 .- o -+ 0 -+ 0

Proof. The observation error of agent i at instant k + 1 can be obtained using
equation (7.7) and Proposition 7.1:

e,-(k-i— 1) = x(k+ 1) - J?l'(k-F 1)
= (A4 BK)x(k) +Y(K)e(k) — (A + BK)z%;(k)

—M;(yi(k) — Cx;(k)) — Z/\:/ Nij(£;(k) — £i(k)). (7.11)
JEN

We can write e;(k + 1) = (tr1) — (¢r2), where (tr1) are the terms of (7.11) which
do not depend on the neighbors and (¢r2) are the rest. Consider first the terms (fr1).

(tr1) = (A + BK)e; (k) — M;Cie; (k) + Y(K)e(k)

= (A — M;C;+ BK)e;(k) +Y(K)e(k). (7.12)
Consider now (tr2):
(tr2) = ) Nij(#;(k) — 2i(k))
JEN;
= Z Nlj(el(k) - e](k)) (7.13)
jEN;

Using equations (7.12)-(7.13) the observation error at instant k + 1 can be written
as

ei(k+1) = (A= M;C;) e;(k) + BKei(k) + Y (K)e(k) — ) Nij(e;(k) — ej(k)).

JEN;
Finally, since the error vector was defined as e’ (k) = [elT (k) el(k) ... eg(k) ,
it is immediate that the dynamics of e(k) is (7.10).
Proposition 7.3. The evolution of the augmented vector & (k) is given by
Ek+1)=Q(M,N,K)&(k), (7.14)

where

QAMN, K) = A+ BK | Y(K) ]

0 |®M)+¥(K)+AWN)
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The structure of (7.14) reveals that the separation principle does not hold in this
case, because matrix ¥(K) depends on the controllers to be designed. This can
be easily justified if we recall that the nodes ignore the actual control signal being
applied to the plant, and resort to estimations based on the knowledge of the dis-
tributed controllers. However, despite this drawback, it will be shown that it is
possible to propose an unified design in which all the elements, namely controllers
and observers, can be designed to guarantee the overall system stability.

Before proceeding with the main results, a last proposition is introduced.

Proposition 7.4. The cost function (7.8) can be written as

(0]

J= Y &"()(Q+K'RK)Z()), (7.15)

j=ko

where

= diag{Qx, Q1,Q2,...,Qp},
R = diag{Ry,Ry,...,R,},

Kl -K; 0 ... 0
o Ry e
Kp O O o .. _Kp

This result can be easily proved by substituting the matrices Q, R, K and the aug-
mented vector ¢(k) in (7.15).

7.4.2 Controller and observer design

The design method resorts to a Lyapunov-based approach to prove asymptotic sta-
bility of the system and of the dynamics of all observation errors. It is a centralized
design in which both, controllers and observers are designed together.

Consider the following Lyapunov function:

V(k) =" (k)PE(k), (7.16)

where
P, 0

0 P

7
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being P, € R"*" a positive definite matrix and P,R"P*"? a block diagonal matrix
defined by

P 0 ... O

o b ... 0
P, = . .2 . . ’

0o 0 ... Pp

with P; € R"*" (i € V) positive definite matrices.
The following theorem proposes a centralized design method through a nonlin-

ear matrix inequality.

Theorem 7.1. Given matrices Q, R of the cost function (7.15), the suboptimal distributed
controller and observer given by the sets M, N, KC can be obtained by solving the following
optimization problem:

min «, (7.17)
PMN K
subject to

P QOf I KT

—p! 0 0
i B <0. (7.18)

* * —aQ 0

* * * —aR™1

Proof. The proof is similar to that of Theorem 4.5, but it uses the Lyapunov
function (7.16) instead of a Lyapunov-Krasovskii functional. The forward difference
of the Lyapunov function is given by

AV(k) = V(k+1)—-V(k)
= ¢'(k+1)PE(k+1) = ¢ (k)PE (k).
Using Proposition 7.3, the forward difference can be expressed in the following
way:
AV(k) = ¢ (QTPQZ(k) — &' (k)PE(k)
= T (k) <QTPQ - P) é(k).
If matrix QTPQ) — P is negative definite, then the state of the system and the

observation errors will asymptotically approach to zero. Using Schur complements
(see Property B.4), the following inequalities are equivalent:

-P QOf
QOTPO-P <0+ .| <o
x* —p1
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Previous inequality is ensured through condition (7.18).

Up to this point, the stability properties of the distributed scheme have been
proved. Let us move to the optimality of the method. Note that condition (7.18)
implies that

QPO -P+ %Q + %KTRIZ <0.
Using Property (B.2), it is verified that
() (QTPO - P) (k) < T () (Q+KTRR)Z(K).
Taking into account the previous considerations, it holds
AV (k) = ET (k) (QTPQ - p) (k) < —%gT(k)(Q + RTRR)Z(K). (7.19)

Calculating the summation of both sides of (7.19) from kj to k, it yields

k k
L) <~ L &0)Q + KRRIZ()
J=Fo j=ko

Observe that Y, AV(j) = Y (V(j+1) = V(j)) = V(k+1) = V(ko). When
k — oo, the asymptotic stability of the system implies that V (k + 1) — 0, hence
1 & , ST o
—Vk) < —— ) &(G)Q+KRK)S(),
j=ko
=] < aV(ko),

where Proposition 7.4 has been used. The value of V(ky) depends on the initial con-
dition. Therefore, minimizing « an upper bound of the cost function ] is minimized
regardless of the initial conditions. g

Note that inequality (7.18) is nonlinear in the decision variables because of the
presence of the term P~!. As in Chapter 4, two standard solutions can be used in
order to deal with it. Appendix C gives details of both methods.

Remark 7.2. The design method that stems from Theorem 7.1 can be performed
off-line prior to the implementation, and requires some sort of centralized informa-
tion: the network topology, the information that every node collects from the plant,
what control channels they have access to, etc. Nonetheless, once the observers and
controllers have been designed, their implementation is fully distributed, and only
requires information locally available for the nodes.
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Remark 7.3. Casting the problem as an LMI condition provides a numerically effi-
cient design method and allows to exploit all degrees of freedom in the design. This
flexibility comes however at the cost of increasing the computational burden, that
scales with the number of nodes and the dimension of the system. Finding decen-
tralized design methods constitutes still a challenging open problem in large-scale
distributed frameworks.

7.5 Event-based sampling case

As briefly discussed in the introduction, event-based control is a means to reduce
network use by invoking a transmission among the nodes only if significant infor-
mation deserves to be communicated [47]. Furthermore, event-based schemes are
usually more efficient in terms of energy consumption, as most of the energy ex-
pended in distributed tasks is associated with transmissions, specially in the case of
wireless communications.

For these reasons, the event-based sampling is an interesting approach with rel-
evant practical implications. The idea is simple, instead of sampling at equidistant
time instants, sampling is triggered by an event. The different definitions of event
yields a plethora of published results. One of the most used, yet most intuitively
appealing, is the one that triggers an event whenever some variable of interest has
exceeded a tolerance bound. This concept has been adapted to the problem at hand
as it is discussed in the following section.

7.5.1 Triggering rule

In the proposed control architecture, most of the energy consumption is due to the
transmissions between agents, that periodically exchange the estimated state. In
this section, the energy expenditure is reduced by triggering the transmissions only
at specific time instants, when an event occurs. Let /;(k) denote the last time instant
when node j sent its estimated state to its neighbors. Next, a norm-based rule to

trigger the communication events is defined.

Definition 7.2. Triggering rule. Given a threshold Jy,, at instant k agent j broadcasts
its estimates to every neighbor i if

550 — %0l = 6 fork > LK), (7.20)
A possible evolution of [;(k) is depicted in Figure 7.2.
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Figure 7.2: Possible evolution of [;(k)

7.5.2 Remodeling the system dynamics

From a modeling point of view, the main difference between the time-driven and the
event-driven paradigm described here is the non-uniform pattern of transmission of
information. This modifies the behavior of the agents, whose dynamics can be now
described as follows:

2i(k+1) = Azxi(k) + BU;(k) + M;(y;

), Ni(2(1(0) = £i(K))-
JEN

~— =

(7.21)

Equation (7.21) takes into consideration the aperiodic communication through
the variable /;(k), which can be different for each agent j € ;. Equation (7.21) can
be rewritten as

2i(k+1) = Azx;(k) + BU;(k) + M;(y; (k) — C;%;(k))

+ ZNZ](Q](k) — fl(k)) + 2 Nljw](k), (7.22)
JEN jEN
where

Based on (7.22), the evolution of the agents with event-based communication is
equivalent to the evolution with periodic communication, difference being in the
terms w;(k), given by equation (7.23). The term w;(k) can be interpreted as an exter-
nal perturbation due to the discontinuous flow of information between neighbors
that is reset to zero at every transmission time. This way, whenever agent j broad-
casts its state, it holds that w;(k) = 0. It is worth pointing out that the disturbance
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that each agent j induces on its neighbors is unknown to them, but can be tracked
by agent j, which has access to its own local estimations.

The following result is the counterpart of Propositions 7.1-7.2 for event-based
communication. Due to their similarities, its proof is omitted.

Proposition 7.5. Let w! (k) = [wlT (k) wl(k) ... wg(k)] Then, for the event-based

sampling case, the evolution of the state x (k) is given by Proposition 7.1, and the dynamics
of the estimation error e(k) is given by

e(k+1) = (PM) +¥(K) + AN)) e(k) + T(N)w(k), (7.24)
where the functions ®(M), ¥ (K), A(N') are defined as in Proposition 7.2, and
T(N) = Y. ANy),

(i,j)e€
with
col. L ]
A N'. . . . * .
( 1]) 0 ««+ 0« Nj =+ 0 row i
I 0 o --- 0 0 i

7.5.3 Stability and trade-off between network traffic reduction and
ultimate boundedness

The event-based sampling approach makes more difficult to analyze the system sta-
bility. In fact, it will be shown that the presented approach will only allow to prove
the system to be globally uniformly ultimately bounded (GUUB), that is, the sys-
tem is attracted and restricted to lie within an arbitrarily small region around the
equilibrium point.

Theorem 7.1 allows the design of suboptimal distributed controllers and ob-
servers for periodically sampled systems. A question that naturally arises is: is it
possible to use the designs obtained from Theorem 7.1 in an event-sampling context
preserving the stability? And in this case, how much does the performance deterio-
rate with respect to periodic sampling?

In the event-based sampling policy considered here, the nodes communicate
only in case that the difference between their current estimates and the last trans-
mitted estimates exceed a given threshold. The price to be paid in this case is that
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asymptotic stability of the estimation errors and system are no longer guaranteed.
However, GUUB stability of both dynamics can be proved.

Furthermore, it will be shown that performance degradation can be traded off
with respect to transmission reductions.

Note that this section does not develop a new design method, but applies the
results of Theorem 7.1 with a different sampling policy. Henceforth, the notation
Y,®,¥, A, T instead of Y(K), (M), ¥ (K), A(N),T(N) will be used to remark that
sets M, K, N are assumed to be designed.

Theorem 7.2. Consider the sets M, C, N obtained through Theorem 7.1, and assume a
communication policy where each node j broadcasts its estimate %; to its neighbors following

the triggering rule given in Definition 7.2. Then, the estimation error e(k) and the state of
the system x(k) are GUUB with bounds

npA P
ekl < by "B (10 49 + Al + ),
min
A P
¥l < a4 + BRans + [Y]),
min

being ay, w, positive scalars defined by

ke + \/ke + )\min(Xe) ||ererHoo

N — ) 7.25

¢ Amin(Xe) ( )
ky + \/kx + /\min(Xx)“YTPxYHZ

P , 7.26

* Amin(Xx) ( )

withky = |[YTPy(A+ BK)||2, ke = [|[TTP.(®+ ¥ + A)||co and Xe, X the unique positive
definite matrices such that

(P+Y¥+A)TP(@®+Y+A)—P = —X,, (7.27)
(A+BK)TP,(A+BK) - P, = —X,. (7.28)

Proof. Consider the following Lyapunov function for the observation error:
Ve(k) = €' (k) Pee(k),

with P, obtained from Theorem 7.1. The forward increment of the Lyapunov func-
tion is given by

AVe(k) = Ve(k+1)—Ve(k)
= el (k+1)Pe(k+1) — el (k)P.e(k).
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Using the dynamics of the observation error given in Proposition 7.5, it turns out
that!

AVy(k) = [(@+¥+Ae+Tw] P [(®+ ¥+ Ae+Tw] —e P
= I (D+Y+A)TP(P+Y+A)e—ePe
+w TTP,Tw 4+ 2w TTP,(® + ¥ + Ae.

From Theorem 7.1, the dynamics of the error e(k) is asymptotically stable with
periodic sampling, so there exists the positive definite matrix X, defined in (7.27).
Then, it holds

AV, (k) = —e" Xee + w TTP,Tw + 2w TTP,(® + ¥ + A)e.
Using the infinity norm, the previous equation can be bounded as
AV (k) < —Amin(Xe) lell% + [T Peleo |03 + 2[IT" Po(® + ¥ + A) oo [[0]]eo €]l -

The right hand side of the equation above is an algebraic second order equation
in ||e||eo- The roots of AV, (k) = 0 can be obtained by imposing alle||% + blle||e + ¢ =

0, where
a = _/\min(Xe)/
b = 2T"P(@+YF + A)eo|wlleo,
¢ = [ITTPIeow]l-

Note that a < 0 and b, c > 0. The unique positive root is exactly

b+ Vb? — 4ac
Jello = ~2EE 22 o

where «, is given in equation (7.25). Because of the sign of 4, it is easy to see that
the Lyapunov function V,(k) decreases whenever ||e(k)|lc > ac||w(k)|l. Please
note that the triggering rule implies that ||w(k)||e < Ju. Therefore, it yields that
AV,(k) < 0in the region ||e(k)||co > ¥edw.

Now consider k* as the time instant when the estimation errors enters in the
region |le(k)|lc < aedy. Then, taking into account the error dynamics given by
(7.24), one can easily obtain that

max [le(k” + 1))l = ([|P + ¥ + Allootte + [|T|c0 ) 0u,

ITime indexes have been removed to alleviate the notation.
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so the error might leave the region ||e(k)||c < aedy. After that, the Lyapunov func-
tion decreases again. Using the inequality ||e||> < \/71p]e]|«, Ve € R"P the maximum
of the 2-norm in k* + 1 can be obtained as

le(k™ +1))[l2 = vrp([® + ¥ + Allcotte + [[Tl]eo) -

Although the Lyapunov function decreases, it is not possible to ensure the de-
creasing of the 2-norm nor the infinity norm of the error vector. It is the P,-norm the
one that decreases. The maximum of the P,-norm for all instant k > k* is given by

le(R)[[p. = Ve Pee </ Amax(Pe) [le(k" +1)]l2,

where inequality Amin(Pe)|le]|3 < eTPee < Amax(Pe)]|e]|5 has been used. From this
P,-norm the final 2-norm can be bounded as

le(k) ]2 <

Amax(Pe) e 4 1) 1, Wk > K.
P,)

)\min (

This way, the boundedness of the estimation error has been proved.
Consider now the following Lyapunov function for the state of the plant

Vi(k) = xT(k)Pex(k),

with Py obtained from Theorem 7.1. The forward increment of the Lyapunov func-
tion is given by

AVyi(k) = Vi(k+1)— Vi(k)
= xT(k+1)Pex(k+1) — xT (k) Pyx(k).

Using the system dynamics given in Proposition 7.1, it turns out that

AVy(k) = [(A+ BK)x+Ye]TP,[(A + BK)x + Ye] — xT Px
= x"(A+ BK)TP,(A+ BK)x — xTPyx
+eTYTP,Ye 4 2eTYT P, (A + BK)x.

From Theorem 7.1, the system is asymptotically stable under periodic sampling,
so there exists the positive definite matrix X, defined in (7.28). Then, it holds

AVy (k) = —xTXpx 4+ eTYT P Ye +2eTYT P (A + BK)x.
Taking norms, the forward difference can be bounded as follows:
AVie(k) < =Amin(Xo) 1[5 + YT PeYl2[le]l3 + 2[[ YT Pe(A + BK)||2lel2 [ x 2.
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The right hand side of the equation above is again an algebraic second order
equation in ||x||;. Operating as before, it is easy to see that the Lyapunov function
Vy(k) decreases whenever |x(k)|2 > ax|le(k)||2. Using the derivations above, it
yields that Vi (k) decreases if ||x(k)||2 > axde, where J; is given in equation (7.25).

Now consider k* as the time instant when the state enters in the region ||x(k)||2 <
ayde. Then, taking into account the system dynamics given in Proposition 7.5, one
can easily obtain that

(k" +1))[l2 < (| A + BK[]2ax + [[Y[[2) b

If the state leaves the region ||x (k) || < axd, the Lyapunov function will decrease
again. Hence, the Py-norm of the state decreases. The maximum of the Py-norm for
all instant k > k* is given by

() [[p, < 4/ Amax (Pe)[| (K™ + 1) 2.

Then, the final Euclidean norm can be bounded as

Amax(Px) * *
x(k)|l2 < (| ——F=5=||x(K* + 1) ]2, Vk > k™.
(k)2 < /5  lx(k + 1)
This way, the boundedness of the state is proved. O]

Remark 7.4. It is worth pointing out that the choice of the infinity norm of w(k)
as triggering condition in Theorem 7.2 is not arbitrary. Given that each observer
has access only to local information, the infinity norm can be practically imple-
mented using just local information: since each node sends its information when-
ever ||w;(k)|l > Ju, it turns out that at inter-sampling times ||w (k)| < Jy, thus
it is possible to upper bound ||w(k)||« resorting only to local information at each
node.

The parameter J, is related to the size of the ultimate bound region of the esti-
mation error e(k) and, indirectly, with the boundedness of the final region of x(k).
By enlarging the value of dy, it is possible to reduce the amount of transmissions be-
tween the nodes, while by reducing it, a better control and estimation performance
is achieved, since the plant state and the observation error are finally confined in a
smaller region. This trade-off, typical in event-based frameworks, will be shown up
in the following section.
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7.6 Application example

The performance of the distributed control scheme is experimentally tested in the
following. The experimental setup and the model are described providing all the
considerations related to the distributed scheme.

7.6.1 Plant description

The experiments have been performed on the 33-041 Coupled Tanks System of Feed-
back Instruments [94] (see Figure 7.3). This plant, a variant of the quadruple-tank
process originally proposed in [103], is a model of a fragment of a chemical plant.
It is composed of four tanks, each one equiped with a pressure sensor to measure
the water level. The couplings between the tanks can be changed using seven man-
ual valves to modify the dynamics of the system. Water is delivered to the tanks by
two independently controlled, submerged pumps. Drain flow rates can be modified
using suitable orifice caps. Notation related with the plant is given in Table 7.1.

Figure 7.3: Plant of four coupled tanks.
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Description
h; | Water level of tank i
1Y | Reference level of tank i

Ah; | Increment of h; with respect to h?
Ah, | Reference level with respect to h°
v; | Voltage of pump i
Reference voltage of pump i
Av; | Increment of v; with respect to v?
Av, | Reference voltage with respect to o°
z | Controlled output

r | Reference to be tracked

Table 7.1: Notation related to the plant

The coupled tanks are controlled using Simulink and an Advanced PCI1711 In-
terface Card. For the experiments, the following configuration has been chosen:

e Input water is delivered to the upper tanks. Pump 1 feeds tank 1 and pump 2
feeds tank 3.

e Tanks 1 and 3 are coupled by opening the corresponding valve.

Although the plant is a compact educational platform, it can realistically repre-
sent all the relevant elements of a real-world distributed plant. For instance, large-
scale chemical plants, where coupled processes can be located hundreds of meters
away from each other.

The distributed control scheme proposed in this work can be applied to the four-
tank plant considering a network with four agents, two of them being observers and
the other two observers & controllers (see Figure 7.4). Each agent has been tagged
from 1 to 4 according to the number of the tank whose level it is measuring. Agent 1
(respectively 3) measures the water level in tank 1 (3) and applies the control signal
to pump 1 (2). Agents 2 and 4 measure the level in the tanks 2 and 4 respectively.
The communication topology is: 2 & 1 & 3 < 4.

The objective of the experiments is twofold. First, all four states of the plant
must be estimated from every agent. Secondly, the water level of the two lower
tanks is to be controlled. Notice that with this configuration, the agents applying
the control signals (agents 1 and 3) do not have direct measurement of the variables
being controlled (levels in tanks 2 and 4).
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Figure 7.4: Distributed control scheme with 4 agents. Agents 1 and 3 are observers
& controllers; agents 2 and 4 are observers. The dotted lines represent the commu-
nication links.

7.6.2 Plant modeling

The coupled tanks system admits the following nonlinear model:

dhcllt(t) — —%M‘f‘ noi(t) — asﬁ\/Zg(hl(t) — h3(t)),
dh;t(t) — _%3\/%—1- noa(t) + %\/Zg(hl(t) — hs(t)),

slt) 05 o % fagi),

where h;(t) (i = 1,...,4) denote the water level in the corresponding tank and v;
(i = 1,2) are voltage applied to the pumps. 4; (i = 1,...,4) are the outlet area of
the tanks, a13 is the outlet area between tanks 1 and 3; 7 is a constant relating the

control voltage with the water flow from the pump, S is the cross-sectional area of
the tanks, and g is the gravitational constant.

This system is linearized around the equilibrium point given by 1Y and 1, yield-
ing

Ah(t) = AAK(t) + BAu(t),
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where Ah(t) = [hy(t) —h) ... ha(t) — hfﬂT and Av(t) = [o1(t) — oY va(t) — vg}T.
Matrices A and B are obtained by using a Taylor expansion of the nonlinear equa-

tions of the model around the equilibrium point:

. mg 2138 0 2138 0
Sv/2gh)  S+/2g(h]—hS) Sv/2g(H) )
a18 _ ™8 0 0
A — Sv/2ghY S+/2gh3
o 138 0 M8 138 0
Sv/2g(h)—h3) S\/2gh3  S\/2g(h9—H3)
0 0 a38 _ M8
i Sv/2gh) Sv/2gh] |
- 0
00
B =
0 7
0 0

Discretizing this continuous model with sampling time T, it yields

Ah(k+1) = ApAh(k) + BpAo(k),

where A(k) = [l (k) —hQ ... hy(k) —h0]" and Av(k) = [vg (k) — 09 oa(k) — ]
Matrices Ap and Bp are the discrete counterpart of A and B.

The objective is not only the stabilization of the plant around the linearization
point, but also to track references. To do so, the controlled output is set as z £ C,Ah,
where C, is a matrix that selects the water level of tanks 2 and 4. The references are
given by vector r. At the equilibrium points, it should be verified z ~ r and Ah(k +
1) ~ Ah(k) ~ Ah,(k). To perform the tracking task, the incremental equilibrium

points (Ah,, Av,) associated with reference r are found as follows.

M (k)

/s =

ApAh, + BpAv,,
C,Ah;.

Rewriting the equation above in blocks, it yields

)

so that the incremental equilibrium point associated with r can be obtained as

RE

Ap —1 Bp
C, 0

Av,

/4

Av,

Ap—1 Bp
C, 0
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Value | Unit | Description

h; 0-25 cm | Water level of tank i

v 0-5 V | Voltage level of pump i
S | 0.01389 m? | Cross-sectional area

a; | 50.265e-6 | m? | Outlet area of tank i

a3 | 50.265e-6 | m?

Outlet area between tanks 1 and 3

n 2.2e-3 v5 | Constant relating voltage and flow
h(l) 9.8 cm | Reference level of tank 1

hg 17.4 cm | Reference level of tank 2

hg 7.5 cm | Reference level of tank 3

hg 13.6 cm | Reference level of tank 4

! 3.3 V | Voltage level of pump 1

0 2.6 V | Voltage level of pump 2

T 1 S Sampling time

Table 7.2: Parameters of the plant.

It is assumed that the references are reachable by the system, that is, the inverse
above does exist. Finally, to track references, we must stabilize the following system.
x(k+1) = Apx(k) + Bpu(k), (7.29)

where x(k) £ Ah(k) — Ah, and u(k) £ Av(k) — Av,. Observe that this system has
the same structure that the one described in (7.3).

7.6.3 Experimental results

The performance of the proposed distributed method is experimentally tested on
the four-tank level control system, with model parameters as shown in Table 7.2.

A study and comparison of both periodic and event-based sampling possibili-
ties is performed. First, a periodic sampling controller for the distributed four-tank
system is designed taking weighting matrices in (7.8) as

Qx = diag{0.1,100,0.1,100},

Q1 = diag{1,10,1,0.1},

Q = 107%-diag{1,1,1,1},

Q3 = diag{1,0.1,1,10},

Qs = 107%-diag{1,1,1,1},
R = 107°- L.
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Water level (cm)

400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Figure 7.5: Tracking with periodic sampling. The references are shown in dashed
lines

Figure 7.5 depicts the evolution of the system with the distributed periodic con-
trol scheme. A satisfactory tracking of references in tanks 2 and 4 can be observed.
The effects of the chosen weighting matrices become apparent in the overshooting
in tanks 1 and 3, since the objective is to perform a fast tracking of the references in
the lower tanks. The average rise time of the response is around 100 seconds, about
one third of the natural time constant of the open loop system.

The water level and the estimations by agent 1 are shown in Figure 7.6. Itis worth
pointing out that agent 1 has no direct access to level measurements in tanks 2 and
4, but it estimates these states from the information received from its neighbors.

Water level (cm)

400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Figure 7.6: Observation in agent 1 with periodic sampling. The estimates are de-
picted in dashed lines
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Figure 7.7: Tracking performance and control signals with periodic sampling and
different weighting matrices

Next, the effect of the weighting factors in (7.8) are tested. Two experiments are
conducted, both with the same weighting for matrices Qy and Q; (i = 1,...,4) as
in the previous experiment, and different values for R: Ry = 107° - I, to obtain a
fast reference tracking, and R, = 10%- I, to ponderate control effort in the cost func-
tional. Figure 7.7 shows the evolution of the water levels and the control actions. As
expected, a tighter tracking performance is observed for the experiment with Ry, at
the cost of more aggressive control signals. This result shows how control perfor-
mance can be traded off with respect to control actions by appropriately tuning the
weighting gains.

The experiment depicted in Figure 7.8 is designed to show the decoupling capa-
bilities of the proposed control strategy. Tank 2 is set to track references whereas the
reference for tank 4 is kept constant. Coupling arises from the valve communicating
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Water level (cm)

400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Figure 7.8: Control decoupling: a change of reference is set for tank 2 while reference
of tank 4 remains constant

tanks 1 and 3. Thus, to modify the level of tank 2, tank 1 must be filled or emptied,
and due to the coupling valve, tank 3 varies its level also affecting the level in tank
4. The distributed controllers achieve a remarkable decoupling of the closed-loop
dynamics as can be observed from these experiments.

Lastly, the event-driven control scheme is tested. The same weighting matrices of
the first experiment are considered, while different thresholds to trigger the events
are used: 0, = 0.1, 6, = 0.3 and J,, = 0.6. The results for these tests are shown in
Figure 7.9, where the tracking performance in tank 2 is shown.

23

22

21r

201

19F
18

2 R ——

Water level (cm)

17
16}
15¢

14

400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Figure 7.9: Tracking of references in tank 2 for different values of

It is observed that, as expected, the larger the event threshold (larger Jy,), the
poorer the tracking performance becomes.
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Figure 7.10: Estimation performance of agent 1 with 6, = 0.6. The estimates are
shown in dashed lines

Figure 7.10 shows the observed states for node 1 with é,, = 0.6. The performance
degradation due to the event-based communication scheme is now apparent when
compared to the results with the periodic results. On the other hand, the event-
based scheme significantly reduces the number of required transmissions, as it is
depicted in Figure 7.11, that shows the evolution of the ratio of transmitted packets
using an event-based policy with respect to the periodic case.
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Figure 7.11: Ratio of packets sent wrt. periodic communication
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7.7 Chapter summary

This chapter proposes a cost-guaranteed distributed estimation and control scheme
for networked control systems, where the sensing and control capabilities are shared
by a number of agents. The agents are assumed to collect partial information of the
evolution of the plant states and have access, in general, to a subset of the control
channels of the plant. The work proposes a fully distributed control and estimation
scheme so that the collective behavior of all agents drive the system to stability. The
result is of application for large-scale systems where both centralized or classical
point-to point distributed schemes are discouraged.

Both, a periodic-sampling and an event-based scheme have been discussed. Us-
ing a four-tank level control system, experiments were conducted to show that in
practice, little performance degradation is in general observed for the event-based
compared to the periodic-based scheme, while the number of packets transmitted is
drastically reduced. The cost-guaranteed approach adopted has been also proved to
be very convenient in practical applications as allows the trade-off between control
effort, performance degradation and average packet transmission rates.
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Chapter 8
Conclusions

This final chapter of the thesis summarizes the main contributions of the work. The
achievements are highlighted and a criticism on potential weaknesses of the results
is included. Finally, some possible future research lines and ideas are presented.

8.1 Main achievements

Throughout the document, the research conducted during this thesis has been re-
viewed. In the following, the author would like to bring up the most important
attainments from his particular point of view.

e In Chapter 3, a new stability criterion has been proposed. This criterion is ap-
plicable to time-delay systems and, indirectly, to networked control systems
using the input-delay approach. It is characterized by its reduced conser-
vatism compared with similar works in the literature, and consequently the
stability of the systems can be ensured for higher bounds on the delay.

e In Chapter 4, a method to design H,/H controllers has been developed. The
solution exhibits wide applicability: TDS and NCS, and different choices of the
Lyapunov-Krasovskii functional. But perhaps more importantly, the impact
of the solution lays in its optimality. It has been theoretically proved that this
method achieves a lower bound of the optimal H; cost than comparable works
in the literature, for the same H,, index.

e Chapter 5 shows that, as hypothesized, introducing a model of the plant at the
controller end of the communication alleviates the traffic over the network.
Both periodic and self-triggered sampling policies have been demonstrated to
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maintain the stability of the closed-loop system in spite of the reduction of
bandwidth usage.

e In Chapter 6, two sampling schemes regarding scheduled communication have
been studied: periodic and aperiodic. Under some mild conditions, the opti-
mal aperiodic solutions eventually converge to a periodic policy. This fact has
been demonstrated for certain particular systems, although simulation results
suggest that this shall be the case for any systems. The main implication is that
the benefits of both schemes can be attained: reduced mathematical burden,
energy efficiency, traffic reduction and optimality.

e Finally, Chapter 7 proposes a novel design approach for joint distributed esti-
mation and control based upon Luenberger-like agents improved with consen-
sus strategies. A remarkable feature of the approach is the significant reduc-
tion in bandwidth usage, capitalizing on event-based communication. Fur-
thermore, as most of the energy expended in distributed tasks is associated
with transmissions, the solution is more efficient in terms of energy consump-

tion.

In summary, this thesis contains relevant elements of merit, that surpasses the
current state of the art regarding the problem of control and estimation over com-

munication networks.

8.2 Potential weakness and limitations
This research has formally met the stated objectives, namely it has

(...) afford innovative solutions to some of the new problems that arise when controlling a
system through a communication network. (...)

In spite of this, it has fall short at some specific levels. Some possible issues are
explained below:

e The delay-dependent stability criterion presented in Chapter 3 is without doubt
of great application for time-delays systems. Furthermore, by properly using
the input delay approach, it is also useful for networked control systems, as
Chapter 4 demonstrated. However, it must be said that this extension to NCS

is contrived.
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There are a few particularities that affect NCS which have not been properly
taken into account. For instance, from the stability point of view, the following
two situations are regarded as equivalent with the presented formulation:

1. A system with sampling period equal to 1s and maximum communica-
tion delay of 0.5s,i.e. Tpy = 14 0.5 = 1.5s,

2. A system with sampling period equal to 1.4s and maximum communica-
tion delay of 0.1s, i.e. Tpy = 1.4 4 0.1 = 1.5s.

Intuitively, those differences must affect, not only to the control performance,
but also to the stability margins. In the future, stability criteria for NCS should
separate sampling periods and delays in order to get improved results.

e It has been proved that the introduction of a plant model at the controller’s
end reduces the traffic over the network, but still preserving the stability of
the system. Therefore, it offers the possibility to improve the synthesized con-
trollers by means of the methods in Chapter 4. However, the performance of
those new model-based controllers has not been thoroughly investigated, with
respect to the optimization of the cost index and disturbance rejection capabil-
ities. There must exist a trade-off between the performance and the reduction
of traffic that has not been tackled in this thesis.

e Analogously, the results presented in distributed control and estimation de-
serve more profound attention. The controllers and observers are designed
assuming periodic communication and minimizing a cost index. Then, an
event-based policy is implemented. The question is: are the pre-synthesized
controllers still the optimal ones for an event-triggered scheme? Although, the
simulations carried out in Chapter 7 suggest that this is indeed the case, it has
not been fully demonstrated.

e The main results of this thesis are theoretical in nature. Two experimental
examples have been analyzed in Chapters 4 and 7. These testbeds are adequate
to test the proposed controllers and other networked solutions. Yet, one of
them, the two dof robot, is an uncommon application in NCS; and in the four-
coupled tank systems the communication protocol has been simulated. In this
sense, a control engineer might demand more applications to experimental

plants.
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8.3 Impact of the thesis

This section aims at anticipating the impact of the thesis. This is only the opinion of
the author, since the real impact will only be realised in due time.

The thesis affords three main results that shall benefit the control community.
They can be organized based upon the terms:

Short term: Chapter 4 has presented a general method to design H,/ H, controllers
for TDS and NCS. Theorem 4.4 demonstrates that this method outperforms
existing ones with respect to minimization of the cost index. The method is
applicable to different sorts of systems and functionals. As such, this result
should impact the proposition of new controllers for related kinds of systems
as well as more complicated choices of the functional.

Medium term: In the framework of sensor scheduling, Chapter 6 has shown that
an optimal selection of the sensor (aiming for the minimization of the observa-
tion error variance) yields a periodic scheduling. Although this effect has been
observed before in different experiments [88, 184], Theorem 6.2 is the first the-
oretical result concerning this issue. The impact is twofold. First, this idea can
now be extended for other optimal choices of the sensors, such as other N-
step-ahead laws. Second, the periodic response in a priori aperiodic systems has
been observed in other areas, such as the inter-sampling time in event-based
control. Therefore, an adequate modification of Theorem 6.2 may be used in
different areas to explain this phenomenon.

Long term: The last chapter of the thesis studies the distributed estimation and
control of large-scale systems. The agent structure consists of a Luenberger-
like observer plus additional consensus terms. As pointed out before, this
is the first time that the event-based communication has been considered in
the distributed scheme. The relevance of these results is considerable. New
open problems arise that shall challenge the scientific community, as will be
explained in the next section.

In addition to the above, it is possible to foresee the influence of the thesis in two
other aspects: bandwidth reduction and energy efficiency.

The former issue, bandwidth reduction, is pervasive to all scenarios in telecom-
munications. The available bandwidth in real-world applications is unavoidably
limited, but new services consistently demand ever higher bit rates. Therefore,
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when different devices share a common medium, solutions that make an adequate
use of the bandwidth, such as those in Chapters 5 and 6, are of undeniable interest.

An efficient consumption of the energy is mandatory nowadays. From smart
houses to innovative vehicles, energy efficiency is becoming a necessary feature in
all products. To this end, Chapters 5, 6 and 7 propose different solutions to reduce
the consumption, with special emphasis in wireless sensor networks.

8.4 Further work

The control of systems over a communication network is a relatively mature field.
Notwithstanding, there is still much room for future contributions. In light of this
work, a number of stimulating challenging research lines can be suggested. In the
following, some of these ideas are briefly outlined.

Modeling of a small-size system controller over a network. In this thesis, specifi-
cally in Chapter 4, the input delay approach has been adopted to model the
unreliable communication in a NCS. As pointed out in that chapter, a number
of works have employed this same model, for it incorporates delays, sampling
and packet dropouts, under a unified framework. However, although the the-
ory behind is solid and resorts to well-known time-delay systems, it suffers
an unavoidable drawback from its inception: it has not been created to model
NCS, but TDS. That simple, but at the same time huge disadvantage is to a
great extent responsible, for instance, for the conservatism of the stability cri-

teria.

Therefore, an interesting research line could involve exploring different mod-
els available for NCS, as the ones in [39, 239], or proposing new ones.

Control techniques. The thesis has presented an H,/H, controller for NCS whose
performance can be further boosted by means of a model. But of course, many
other controllers can be implemented. For instance, output feedback control
[211], model predictive control [25], or nonlinear control [243] have found ap-

plication with competitive performance.

Observer techniques. Similarly, additional observation techniques can be adapted
to the NCS framework. Sliding mode observers [50], particle filters and swarm
estimation [38] appear to be adequate tools for observing these systems.
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Sensor scheduling. Presenting a close result about the periodicity of the optimal
scheduling is perhaps one of the most interesting avenues to pursue. Fur-
thermore, other N-steps-ahead optimization problems can be considered. Ad-
ditionally, a real implementation of those schedules under the 802.15.4 proto-
col would be of interest to test the effective reduction of the traffic and energy

consumption.

Distributed estimation and control. Several elements can be subject of improve-
ment:

o Although the presented results are applicable for distributed systems, the

design step is made in a centralized way. This entails high computational
costs that, for large number of agents, would become intractable. More-
over, the graph of the network must be known a priori, an unrealistic pre-
condition in this context, since sensor networks are typically intended for
high re-configurability, robustness to link/node failures, etc.
For these reasons, the design method should preferably be decentralized
or distributed. That is, an agent must only know what it is able to achieve
on its own, and what it is able to improve with the information of its
neighbours. It should be the agent the one that calculates its own con-
troller and observer.

e The thesis does not pay particular attention on the network topology.
Given a graph, different design methods are presented. But the topology
of the graph has not been exploited. For instance, what is its influence
on the feasibility of the problem? How does it affect to the optimality
and performance? These and other questions could be subject of future
research.

e Closely related to the above, there is the issue of time-varying or switch-
ing topology. In the future, the design methods must be robust or adap-
tive to switching topology, giving rise to more flexible and fault-tolerant
sensor networks.

e Extensions to consider delays, dropouts, congestion and other drawbacks
can be considered in the future.

Multi-agent systems. Chapter 2 presented a third kind of NCS that has not been
tackled in this thesis, namely, fleets or multi-agent systems. The extensive lit-
erature dedicated to this topic suggests that it is an undeniably interesting re-
search line (see Chapter 2 and references therein). Network-induced problems,
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distributed optimization, control formation and others, may also be matter of
further investigation.
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Appendix A

Stability Theorems

Two Lyapunov-based theorems are introduced in this appendix. Both results have
been profusely used to study the stability of systems affected by delays. The reader
may find more information about these stability theorems in [138].

In the following, C, = C(]—1,0],R") denotes the banach space of continuous
vector functions mapping the interval [—7,0] into R" with the topology of uniform
convergence and designate the norm of an element ¢ in C,, - by

¢l = sup [[(@)]-

0e[—1,0]

A.1 Lyapunov-Razumikhin Theorem

Consider the functional differential equation

() = fltx), t >t
xt,(0) = ¢(t+86), Vo e [—1,0] (A1)
where x;(t), t > t, denotes the restriction of x(.) to the interval [t — T {] translated
to [—7,0], thatis x;(0) = ¢(t +0), V0 € [—7,0] with ¢ € C,, 1.
Let the function f(¢,0) : R™ x C,r — R" be continuous and Lipschitzian in

6 with f(t,0) = 0. Leta,B,7,6 : Rt — RT be continuous and nondecreasing

functions with

a(r),B(r),y(r) >0; r#0
«(0) =0, p(0) =0
5(ry>r, r>0

If there exists a continuous function V : R x R"” — R such that
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@ «(l0)]) < V(tx) <B(lx]), tER, xR,
(b) V(t,9) < —7(lIx]) i V(E+1,x(t +1)) < 5(V(Ex(¢))), ¥ € [~,0],

then the trivial solution of (A.1) is uniformly stable.

A.2 Lyapunov-Krasovskii Theorem
Consider the functional differential equation

x(F) = f(t,xe), t >t
xt,(0) = ¢(t+86), Vo e [—1,0] (A.2)

where x;(t), t > t, denotes the restriction of x(.) to the interval [t — T f] translated
to [—7,0], thatis x4(0) = ¢(t +6), VO € [—7,0] with¢p € C,, +.

Let the function f : R™ x €, — R”" take bounded sets of C;, r in bounded sets
of R" and «, B, v : RT — R be continuous and nondecreasing functions with

a(r),p(r) >0; r#0
a(0) =0, B(0) =0

If there exists a continuous function V : R x €, — R such that
@ a([[¢p0)])) < V(t,x) <B(lolls), teR, xeR",

b) V(t,¢) < —y(ll9(0)]]),

then the trivial solution of (A.2) is uniformly stable.
If a(r) — co as r — oo, then the solutions are uniformly bounded.
If y(r) > 0 for r > 0, then the solution x = 0 is uniformly asymptotically stable.
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Appendix B

Linear Matrix Inequalities

This appendix contains an briefly report about Linear Matrix Inequalities (LMIs),
extensively used throughout this thesis. Most contents of this appendix are based
on the educational paper [2].

B.1 Introduction

Linear matrix inequalities are no more than linear inequalities (with some particu-
larities) in which the involved terms are matrices. The importance lies in the fact
that a great variety of control problems can be formulated in a natural way using
Linear Matrix Inequalities (LMIs).

In the beginning, the use of LMIs in the control context was seriously compro-
mised due to the lack of efficient algorithms during most of the twentieth century.
This situation changed dramatically with the appearance of a new generation of in-
terior points algorithms that allowed to solve problems formulated in LMI form in
a very efficient way [169]. As a result of this major breakthrough, the control com-
munity started to reinterpret previous analysis and synthesis results from the LMI
point of view.

Nowadays the use of LMIs is ubiquitous in many control fields and there exists
many efficient polynomial-time solvers like SeDuMi, SDPT3, etc. Moreover, there
exists some parsers, like the free-distribution YALMIP, that serve as interface be-
tween the LMI formulation and the different solvers.

The interested reader may find more information in the well-referenced publica-
tions [19, 69].
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B.2 Definitions

Next, the notion of linear matrix inequality is precisely given in the following defi-

nition:

Definition B.1. Given the matrix variables X7, X5, ..., X;;, and the matrix function
H(X1,Xy,...,Xm) we say that the matrix inequality H(X1, X, ..., X;u) > 0 (or anal-
ogously H(Xy,Xp,...,Xm) < 0) is a linear matrix inequality on the decision vari-
ables X1, Xa, ..., Xp if H(X1, Xo, ..., Xi) is a symmetric matrix for every Xy, Xo, ...,
Xy and the dependence of H(X1, X, ..., Xy ) with respect to X, X, ..., X, is affine,
where “> 0” and “< 0” stand for positive definite and negative definite, respec-
tively.

The concept of definiteness is given next. Note that the fact that the eigenval-
ues are compared with zero makes that this concept is only defined over the set of

symmetric matrices, which have real eigenvalues.

Definition B.2. A symmetric real matrix H is said to be positive definite if all its
eigenvalues are strictly greater than zero. Analogously, a symmetric real matrix H
is said to be negative definite if all its eigenvalues are strictly smaller than zero.

B.3 Properties

The following statements, whose proof can be found in any text book on linear al-
gebra, states important properties of a symmetric matrix.

Property B.1.

1. The inverse of a nonsingular symmetric matrix is symmetric.

2. The eigenvalues of a symmetric real matrix are real.

Property B.2. Given a symmetric matrix H, x'Hx > 0 for every x # 0, if and only if
H > 0. Analogously, xT Hx < 0 for every x # 0, ifand only if H < 0,

The following two properties are very useful when manipulating matrix inequal-
ities in the context of control theory and they are repeatedly used throughout this
thesis.

Property B.3. Given a non singular matrix T: H > 0 if and only if T"HT > 0. Analo-
gously, H < 0 ifand only if TTHT < 0.
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Property B.4. Schur complement. The following matrix inequalities:

H > 0,
T—STH s > o,

are satisfied if and only if
T ST
S H

The most important feature of linear matrix inequalities is that they impose con-
vex constraints on the decision variables. That is, suppose the following set of p
linear matrix inequalities on the decision variables X1, X, ..., Xj;:

Hi(Xl,Xz,...,Xm) <0, i= 1,...,p

Then the set of matrices Xj, Xp,..., X, that simultaneously satisfy all the lin-
ear matrix inequalities is a convex set. This stems from the fact that the inequalities
Hij(X1,X2,...,Xm) <0,i=1,...,p, canbe rewritten as Amax (H; (X1, X2, ..., Xm)) <
0,i=1,...,p, where Amax(-) stands for greatest eigenvalue. As Amax(-) is a convex
function in the space of symmetric matrices and H;(Xy, Xy, . .., Xy ) is an affine func-
tion of Xy, Xy, ..., Xy, it is inferred that each LMI imposes a convex constraint on
the decision variables.

The recently appeared efficient interior points algorithms [169] take advantage
of the aforementioned convexity to obtain (if possible) a feasible solution for a given
sets of LMIs. That is, if there exists Xj, X», ..., X, satisfying simultaneously all the
LMIs, the interior points algorithm finds a solution within an affordable computa-
tional time.

B.4 Introductory example. Writing and solving linear

matrix inequalities

This section presents a very simple example to introduce the reader in the following
problem: how to solve an LMI? Getting started in the resolution of LMIs is hard and
sometimes obscure.

In this thesis, all LMIs have been solved using Matlab. The set of Matlab func-
tions dealing with LMIs are part of the well-known Robust Control Toolbox [37].
The following example makes use of the functions and syntax rules described in the
documentation of that toolbox.
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Example B.1. Consider a continuous system under a state-feedback control law

x(t) = Ax(t) + Bu(t),
u(t) = Kx(t),

where A € R"*", B € R"™, and K € R"*" is the controller matrix to be designed.
The objective is to minimize the upper bound of the following cost function:

= /t°° *T(s)Qx(s) + uT (s)Ru(s)ds,

being Q, R two positive definite matrices.
Let V(t) denote the Lyapunov function, defined by

V(t) = xTPx(t),

with P € R"*".
Following Lemma 4.1 or any other similar design method, the controller can be
synthesized by solving the following optimization problem:

min «, (B.1)
K,P,x
subjectto  a >0,
P >0,

« [P(A+ BK) + (A+BK)'P| < ~Q— K'RK.

Note that the last constraint is not an LMI. However, using the Schur comple-
ment introduced above, it is easy to see that

@ P(A—f—BK)—f—(A—i—BK)TP} < -Q-K'RK &

P(A + BK) + (A + BK)TP I KT
& 5 —aQ7 ! 0 <0
* * —aR71

From Property B.2, previous inequality is still verified if we pre- and post- mul-
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tiply it by diag{P~1, I, I'} and its transpose:

P(A+ BK)+ (A+ BK)TP I KT

* —aQ! 0 <0&

* * —aR™!

Pt 0 0 P(A+ BK) + (A+ BK)TP I KT Pt 0 0
* I 0 * —aQ! 0 x I 0| <0«
* x I * * —aR™1 * * 1
(A+BK)P~'+ P 1 (A+BK)T P! p~1KT
& * —aQ~! 0 < 0.

* * —aR!

Finally, defining X; = P~! and X, = KP~}, the inequality can be rewritten as

AX; +X1A+BX, + XIBT X4 X7
%k —DCQ_l 0 < 01
* * —aR1

which is linear in the decision variables X7, X», «.
Hence the optimization problem (B.1) is equivalent to

min o, (B.2)
X1, X0
subjectto  a >0,
X1 >0,
AX;+X1A+BX, + XIBT X4 el
* —aQ7! 0 < 0.
* * —aR™1

The problem is now well posed and it can be solved with Matlab. First of all, the
set of LMIs must be initialized with the function

setlmis([]1)

Next, the decision variables must be defined. To do that, the following functions

are used:
X1 = 1mivar(i,[n 1]1);
X2 = 1mivar(2,[m nl);
alpha = Imivar(2,[1 11);
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The first argument indicates the type of variable, that is, 1 for symmetric and 2
for rectangular. The second defines the dimension.
Now, the LMIs can be defined. Two LMIs are needed for X; and a:

«>0: alpha_LMI = newlmi;
Imiterm([-alpha_LMI 1 1 alphal,1,1);
X1 >0: X1_LMI = newlmi;
lmiterm([-X1_LMI 1 1 X1],1,1);

Each function newlmi declares a new LMI. After that, function 1lmiterm intro-
duces terms in the LMI. Let us explain a generic call to Imiterm:

Imiterm([(-)name_LMI posX posY (-)variable],left_mult,right_mult,’s’);

(-)name_LMI: The name of the LMI (previously defined with newlmi) in which this
term is included. The optional sign — indicates that this term is located at the
left-hand side of the >. If omitted, it means that the term is on the right-hand
side of the inequality >.

posX,posY: The LMIs are constructed as matrices. With the pair posX,posY we
choose the position (X,Y) of this term in the matrix. As the resultant ma-
trix must be symmetric, only the upper- or lower-triangular part of the LMI
needs to be specitied..

(-)variable: The decision variable of the term. Each term can only content one
decision variable. When the sign — is included before the decision variable, it
means that this variable appears transposed in the corresponding term of the
LML

left_mult,right_mult: These are constant elements (scalars or matrices of ade-
quate dimensions) that multiply the decision variable at both sides. That is,
the resulting term is left_mult*variable*right_mult.

’s’: This optional parameter is included if the term appears with its transpose in
the same position of the LML

If the LMI includes a term with constant elements, that is, without decision vari-
ables, the argument variable must be set to 0. The null elements have not to be
included.
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The third LMI in (B.2) is then included with the following calls:

principal_LMI = newlmi,
Imiterm([principal LMI 1 1 X1],A,1,’s8’);
X21,B,1,’s’);
X1],1,1);

lmiterm([principal LMI 1 1
2
3 -X2],1,1);
2
3

Imiterm([principal LMI
Imiterm([principal _LMI
Imiterm([principal LMI alphal,-1,inv(Q));

alphal,-1,inv(R));

w N = =

Imiterm([principal LMI

So far, all the elements of the LMI have been properly included. Now, one must
invoke the following function:

Imisys = getlmis;

which returns the internal description of the inequality.
Finally, two functions can be used to solve the LMIs:

xopt = feasp(lmisys);

[copt,xopt] = mincx(lmisys,opt_vector);

The first one, feasp, gets a possible solution if the problem is feasible. The sec-
ond one, mincx, solves an optimization problem (as the one in (B.2)) where the min-
imization variable is indicated by means of opt_vector. The global minimum is
copt. Output xopt is used to obtain the value of the decision variables by calling to
function dec2mat:

X1 = dec2mat(lmisys,xopt,X1);
Xy = dec2mat(lmisys,xopt,X2);
x = dec2mat(lmisys,xopt,alpha);

v

The toolbox includes additional features to solve, for instance, generalized eigen-
value minimization problems. The interested reader is directed to [37].

Complex LMIs, as the ones presented in Theorem 3.1, can be solved following
these steps. Most of non-diagonal terms are null, so they have not to be included
in the code. Furthermore, by using cells and loops, the elements can be iteratively
included.
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Dealing with nonlinear terms in

matrix inequalities

Sometimes, when the control problems are posed as matrix inequalities, it is in-
evitable that some nonlinear terms appears, so the existing methods for LMIs can-
not directly be applied. This appendix proposes two different solutions for a sort of
nonlinearities that is very common both in this thesis and in other approaches based
in Lyapunov-Krasovskii theorem. By means of appropriate transformations and ad-
ditional constraints, the nonlinear matrix inequality can be replaced by a problem
with linear constraints.
Consider a nonlinear matrix inequality

(X X)X X)) e fp(Xas e X)) ]
X X)) e gw(Xa, e X)X, X)) | <0, (C)
_flj;?(Xl,,Xm) fkji;(XL/Xm) fPP(Xl//Xm)_

where f are affine functions on the decision variables Xj, ..., X;; and g are nonlinear
functions with the following particular structure:

¢(Xi,..., Xm) = —XiX]._lX,-, i

Note that the nonlinear function appears in the diagonal of the inequality. In the
following sections, two solutions are given to deal with the nonlinearity Xin_le-,
i # j. The first one introduces an additional constraint which let us address the
problem by means of a set of linear matrix inequalities. The second solution em-
ploys the cone complementary algorithm to transform the nonlinear inequality into an
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iterative optimization problem with linear constraints. Comparing both solutions,
the former could be more conservative, but it is computationally more efficient, as

the number of constraints and variables is lower.

C.1 Direct constraint

Consider the introduction of the following additional constraint:
o 1
—XiX. Xi < ——Xl',
! "

being y a positive design scalar. Note that previous condition is equivalent to X; <
1X;. Then, the nonlinear constraint in equation (C.1) can be replaced by

{ Y(X1,..., Xm) <0, (C.2)

X] < yXi

where Y is the matrix required to be negative definite in (C.1), but substituting the
terms ¢(X1,..., Xp) = —X,-Xj_lX,- by —%Xi.

It is worth comparing the proposed method with the one introduced in [257] and
used in other papers to handle the same nonlinearity. While in [257] it is directly
imposed X; to be X; times a given scalar, this method just restricts X; < uX;, which
covers a much wider range of possible solutions in the space of positive definite
matrices. Therefore, it leads to less conservative solutions.

C.2 Cone complementary algorithm

Another possibility consists in using the well-known cone complementary algorithm.
The idea is the following: firstly, the nonlinear inequality can be addressed by solv-
ing an optimization problem with linear constraints. Then, a solution for this prob-
lem can be found with an extended algorithm whose convergence is theoretically
ensured.

Following the idea of [162], define a variable T such that,

Xin_lXi >T>0, (C.3)
which is equivalent to

R T P (C.4)

X1 —X].—1 = '
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Now, introducing some new variables,
Xi=x1 T=1" X=X71 (C.5)
equation (C.4) can be rewritten as,

-T X

<o, (C.6)
¢

Now, instead of using the original nonlinear inequality (C.1), consider the fol-
lowing nonlinear minimization problem involving LMI conditions:

Minimize Tr (XiXi + Xij + TT) (C.7)
subject to
Y(X1,...,Xm) <0,
- %) [ % f]z& X 1 ZO,IT{IZO, (C.8)
* =X x X * j x* T

where Y is as before the matrix required to be definite negative in (C.1), but substi-
tuting Xin_lXi by T. From equations (C.3), it is immediate that, if Y < 0, then (C.1)
holds. The minimization problem is introduced to force (C.5). When the LMIs in
the second row of the restrictions (C.8) saturate, the optimum is reached and (C.1)
holds.

In order to solve the aforementioned minimization problem (C.7) the following
algorithm introduced in [51] can be implemented.

Algorithm C.1.
1. Set k = 0. Find a feasible solution under the conditions in (C.8):
(X7, X3, ..., X, T, X0, X7, T°)
If there is no solution, exit.

2. Solve the following optimization problem with LMI constraints with decision
variables (X1, Xo, ..., Xm, T, X;, Xj, T)

min Tr (Xf‘xi + XX+ XX+ XX+ T'T + TkT>
subject to LMIs in (C.8)
Set Xit1 = X;, Xk = X, X;‘“ = X|, Xjf“ =X, Tl = 1, TR = T,
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3. If the condition (C.1) is satisfied, exit. Otherwise, set k = k + 1 and return to
Step 2.

The first and second steps of the algorithm are simple LMI problems, and they
can be solved efficiently by using an appropriate computational software. As it is
stated in Theorem 2.1 in [51], the algorithm converges and then XiX; =1, X]-X]- =1,
TT=1
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Robustifying controllers against

uncertainties

Most results presented in this thesis assume the perfect knowledge of the model of
the system. However, this assumption may be strict in real systems, which are, in
general, affected by uncertainties.

This appendix presents two extended methods to deal with uncertainties that
can be applied to most of the LMI-based results given throughout the thesis.

D.1 Polytopic uncertainties

Assume that the matrices of the system A, B are not exactly known!. Let Q = [A B

and assume that
Qe %O{Qj,j =1,...,N},

where ¢0{-} denotes the convex hull and Q); = [A(f) B(f)] Hence, Q) = Zjlil fiQ;

for some 0 < f] <1, ijil f] = 1, that is, the system matrix belongs to the polytope
whose vertices are defined by ();.

Roughly speaking, the LMI-based stability conditions (and hence, the design
methods proposed in LMIs) studied in this thesis can be posed as follows. Let
Xy, X3,..., X,y denote the decision variables. The set of linear matrix inequalities
are given by:

Hi(X1,X,...,Xm, Q) <0, i=1,...,p. (D.1)

I Although the method is explained for matrices A, B, is has an immediate extension for other
additional system matrices with uncertainties.
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The following proposition states that, if the LMIs have a common solution for
all the vertices (), then the stability of the system can be guaranteed over the entire

polytope.

Proposition D.1. [19] Assume that inequalities (D.1) imply that the nominal system given
by Q) is stable. Therefore, if the set of inequalities

Hi(Xl,Xz,...,Xm,Ql) < 0, iZl,...,p,
Hi(X1,Xa, o Xy Q) < 0, i=1,...,p,

Hi(Xl,Xz,. . .,Xm,QN) < 0, i=1,.. P,
are satisfied for X1, Xo, ..., Xin, then the stability of the system is guaranteed over the entire
polytope.

In case of polytopic uncertainties, this proposition proposes an straightforward
extension for each one of the methods given throughout the book.

D.2 Additive uncertainties

Consider now the presence of additive uncertainties of the following form:

A — A4 AA(),
B — B+ AB(t),

where the uncertainties are assumed to verify
[ AA(t) AB(t) | =DF(t)[ E4 Ep | (D.2)

Matrices D, E 4, Ep are known of appropriate dimensions and F(t) is an time-
varying unknown matrix such that ||[F(t)|| < 1.

With this new description of the system, the matrix inequalities to deal with
nominal systems have to be modified. Specifically, the matrix inequalities take the
form

Ho+ H(t) <0,

where Hj is any of the matrices proposed for the nominal case and H(t) includes
only terms related to system’s uncertainties (terms of equation (D.2)).

The following lemma can be used to extend the result to systems with uncertain-
ties.
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Lemma D.1. [27] Let A, D, E and F(t) be matrices of appropriate dimensions. If ||[F(t)|| <
1, then the following holds:

1. Given a scalar e > 0,

DF(H)E +ETFT(1)DT < e 'DDT + €ETE. (D.3)

2. For any matrix P > 0 and a scalar € > 0 such that e] — EPET > 0,

(A+DF(t)E)P(A +DF(t)E)T < APAT + APET (eI — EPET)'EPAT +eDD”
(D.4)

Due to the quadratic structure of all the proposed conditions, the matrix H(t)
admits one of the following descriptions:

a) RyF(t)RY + RyFT(t)RT,
b) (Rs+ RyF(t)Rs)Re(Rs + R4F(t)Rs)T,

where R; (i = 1,...,5) are constant matrices of appropriate dimensions which can
depend, among others, on the matrices in (D.2), and Rg is a positive definite matrix.

Taking into account relations (D.3)-(D.4), the matrix H(t) can be bounded by
the sum of quadratic constant terms. To obtain a compact condition, this quadratic
terms are written together with Hj as a single matrix, using the Schur complement.
This is a well-known standard procedure. The interested reader can find an appli-
cation of that procedure in [27] or [258].
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Control y estimacion basados en
modelo para sistemas sobre redes de
comunicacion

Autor: Diego Luis Orihuela Espina
Director: Francisco Rodriguez Rubio
Codirector: Fabio Gémez-Estern Aguilar

E.1 Resumen

En los tltimos afios hemos sido testigos de la introduccién en el bucle de control de
diferentes tecnologias de telecomunicacién como las redes de datos, los sensores
inteligentes, la telefonfa moévil o Internet. El control de sistemas sobre redes de
comunicacién surge como una nueva rama dentro del control automdtico. La in-
troduccién de esas nuevas capacidades de comunicacién trae consigo problemas
adicionales que deben tenerse en cuenta. Considérese, por ejemplo, los retrasos, la
comunicacién basada en paquetes, las posibles pérdidas de datos, los efectos de la
cuantizacion, el ancho de banda limitado o el consumo de energia. Muchos de estos

problemas son criticos en aplicaciones de tiempo real como el control automaético.

Esta tesis propone nuevas soluciones en el campo del control y estimacién de sis-
temas sobre redes de comunicacién. Aunque esta principalmente enfocada a situa-
ciones con ancho de banda limitado y restricciones energéticas y de consumo, otros
problemas, como los retrasos y las pérdidas, serdn tenidas en cuenta cuando sea
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apropiado.

En primer lugar, le tesis estudia la estabilidad de los sistemas con retrasos -Time-
Delay System (TDS)- y de los sistemas controlados a través de red -Networked Con-
trol System (NCS)- afectados por retrasos y pérdidas de paquetes. Se propone un
nuevo criterio de estabilidad que consigue resultados menos conservadores que las
soluciones existentes a dia de hoy en la literatura.

Seguidamente, se presenta un nuevo método de disefio de controladores Hy / Heo
que puede aplicarse a TDS y NCS. Se demuestra teéricamente que el método genera
controladores més 6ptimos que otras soluciones similares, en el sentido en que re-

ducen el limite superior de un indice de coste.

Ademas, se estudia la reduccién del trafico en la red mediante el empleo de un
modelo de la planta junto al controlador. Para este esquema, se proponen dos for-
mas de comunicacion: periddica y aperiddica basada en eventos.

Con respecto a los esquemas de control descentralizados para sistemas a gran es-
cala, la gestion de la comunicacién en redes de sensores parece fundamental cuando
el ancho de banda disponible es limitado. La tesis ofrece dos nueva soluciones a
este respecto: una gestion basada en un patrén periddico predefinido y una solu-
cién aperiddica basada en el filtro de Kalman. Aunque la primera es una solucién
matematicamente menos compleja y reduce el consumo de la energia necesaria, la
segunda obtiene un mejor rendimiento. Se muestra que, bajo ciertas hipotesis, una
solucion aperiddica a priori da lugar a un patrén periddico, proveyendo al sistema
con los beneficios de ambas soluciones.

Finalmente, la tesis trata un problema que,a pesar de su importancia, ha recibido
poca atencioén en la literatura: el problema conjunto de estimacién y control para
sistemas distribuidos. El objetivo es proponer un método de disefio que garantice la
estabilidad del sistema a la vez que proporcione una solucion de coste garantizado
con respecto a un indice de coste dado. Ademds, explotando una comunicacién
basada en eventos, es posible reducir el ancho de banda y el consumo de energia de
los dispositivos.

La mayoria de las novedades de la tesis pertenecen al campo de los resultados

tedricos. No obstante, también se tienen en consideracion los resultados experimen-
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tales. Se han empleado dos plantas reales para probar la eficacia de estas contribu-
ciones de la tesis: un robot de dos grados de libertad controlado a través de red y
una planta educacional de cuatro tanques acoplados.

E.2 Organizacién y contribuciones de la tesis

La tesis estd dividida en siete capitulos principales, ademds de un capitulo introduc-
torio. El contenido de los capitulos principales se resume a continuacion.

Capitulo 2. Consideraciones iniciales sobre NCS y técnicas de observacién

En este capitulo se trata de proporcionar al lector unas ideas y un bagaje previo
que serdn necesarios en el resto de la tesis. Estd dividido en dos partes principales.
La primera de ellas desarrolla una clasificacion de los sistemas de control a través
de red basdndose en el tipo de sistemas a controlar. Asi, se diferencian los sistemas
de dimensién pequeiia en los que el controlador se encuentra al otro lado de la red;
los sistemas de gran tamafio controlados bien de forma centralizada o descentra-
lizada; o los llamados sistemas multi agentes. El capitulo revisa el estado del arte
concerniente a estos esquemas.

La segunda parte del capitulo ofrece algunas consideraciones bésicas respecto a
esquemas de observacion y estimacién ampliamente extendidos en la literatura, a
saber, el observador de Luenberger y el filtro de Kalman. A lo largo de la inves-
tigacion se utilizardn diversos estimadores que estardn inspirados en algunos de
ellos, por lo que se ha considerado interesante presentarlos aqui.

Capitulo 3. Estabilidad de sistemas con retrasos

Los resultados que se presentan en este capitulo son cruciales, ya que en la teoria
de sistemas en general, y en el control automatico en particular, la estabilidad de
las soluciones deberia estar siempre garantizada. La principal contribucién de este
capitulo es un nuevo criterio de estabilidad para sistemas con retrasos, menos con-
servador que el resto de soluciones presentes en la literatura. Es un criterio aplicable
a sistemas con retrasos desconocidos, pero acotados.

El capitulo hace uso de una herramienta que serd muy utilizada en el resto de la
tesis: los funcionales de Lyapunov-Krasovskii. Los criterios de estabilidad presenta-
dos se pueden escribir en forma de Desigualdades Matriciales Lineales (LMlIs), por
lo que su verificacion es sencilla con las herramientas de que se disponen hoy en dia.

Luis Orihuela Espina 219



APPENDIX E. CONTROL Y ESTIMACION BASADOS EN MODELO PARA
SISTEMAS SOBRE REDES DE COMUNICACION

Capitulo 4. Control de sistemas con retraso y a través de red

Este capitulo se centra en el control de sistemas con retrasos. Como contribu-
cién, se presenta un nuevo método de disefio de controladores H,/H aplicable a
diferentes TDS y que deja gran libertad en la eleccion del funcional de Lyapunov-
Krasovskii. Con respecto a las soluciones propuestas por otros autores, se prueba
teéricamente que el método de disefio presentado da lugar a controladores mds 6p-
timos, en el sentido de que logran una cota menor para el indice de coste Hy, dado
un mismo indice Heo.

Seguidamente, y utilizando unas transformaciones bastantes extendidas en este
campo, se muestra que este método de disefio también puede ser aplicable a los sis-
temas de control a través de red. Finalmente, los controladores disefiados se prue-
ban en un robot de dos grados de libertad controlado a través de red, mostrando sus
capacidades de estabilizacién y sus posibilidades de sintonia.

Capitulo 5. Control basado en modelo de sistemas en red

Con este capitulo se cierra el control de sistemas de dimensién reducida. Puede
verse como una continuacién del anterior, al explorar los beneficios que se alcan-
zan al introducir un modelo de la planta junto al controlador. Utilizando un con-
trolador disefiado con anterioridad (por ejemplo, utilizando los métodos del capi-
tulo anterior), este capitulo estudia el ahorro de transmisiones en los enlaces sensor-
controlador y controlador-actuador, que se consigue por la introducciéon del modelo.

Se contribuye con dos esquemas de muestreo, uno periédico y otro asincrono.
Para ambos casos, se prueba que la estabilidad del sistema se mantiene a pesar de
la reduccion en el uso de ancho de banda.

Capitulo 6. Gestion de la comunicacién para la estimacién y el control

El problema de la gestién de la comunicacién encuentra su aplicaciéon en sistemas
de gran escala que se controlan de forma centralizada. Ademads, también se puede
aplicar en aquellas situaciones en los que el ancho de banda disponible esté muy
limitado.

Las salidas de la planta son medidas por un conjunto de sensores que deben com-
partir un mismo medio de comunicacién. El objetivo que se persigue es doble: por
una lado se desea estimar el estado de la planta a través de estas salidas parciales; y
por otro, utilizar esta estimacién para controlar el sistema.

Para conseguir estos objetivos, hay que resolver un problema de co-disefio: se
deben disefiar las ganancias de los observadores y los controladores vy, a la vez, es-
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pecificar un protocolo de comunicacién adecuado. En el capitulo se proponen dos
soluciones diferentes: una gestién periddica, en la que un patrén de muestras se
repite constantemente; y una gestion aperiddica, en la que la eleccién del sensor se
decide en base a un indice de coste. Se disefian, respectivamente, un observador
periédico He y un filtro de Kalman aperiédico.

Una de las principales contribuciones del capitulo es que se demuestra que,
bajo ciertas hipodtesis suaves, la gestién aperiddica a priori da lugar a un compor-
tamiento periddico en el régimen estacionario. Esto permite al ingeniero de disefio
aprovechar los beneficios que ambos métodos ofrecen, tanto la optimalidad como el
reducido coste energético y computacional.

Capitulo 7. Control y estimacién distribuidos

Cuando una planta de gran tamario esta siendo controlada desde diferentes pun-
tos, probablemente espaciados, los esquemas distribuidos son de interés. En el pro-
blema conjunto de control y estimacién, la tesis propone un nuevo método que per-
mite disefiar al mismo tiempo tanto los observadores como los controladores. Se
persigue de esta forma un objetivo de optimalidad global: minimizar la cota su-
perior de un indice de coste. Ademads, la reduccion del uso del ancho de banda se
hace posible mediante el empleo de comunicacién basado en eventos. Mediante este
método, los diferentes nodos o agentes sélo transmiten informacién cuando estiman
que es necesario.

Este esquema se ha probado en una planta real de cuatro tanques acoplados
mostrando, tanto una adecuada reduccién del tréfico, como las posibilidades de
sintonia del método de disefio.

Capitulo 8. Conclusiones

El dltimo capitulo presenta los principales logros que se han alcanzado durante
la tesis. De igual manera, se resaltan los puntos débiles y las limitaciones que tiene
desde un punto de vista objetivo. Ademads se valora el posible impacto de la tesis.
Finalmente, se detallan una serie de posibles lineas de investigacién futuras que

podrian servir como continuacién a este trabajo de investigacion.
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