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Abstract 

Protective nanocomposite coatings based on hard ceramic phases (TiC, TiB2) combined 

with amorphous carbon (a-C) are of interest because of their adequate balance between 

mechanical and tribological performances. In this work, Ti-B-C nanocomposite coatings 

were prepared by co-sputtering of graphite and TiB2 targets. Varying the discharge 

power ratio applied to the graphite and TiB2 targets from 0 to 2, the a-C content in the 

coatings could be tuned from 0 to 60%, as observed by means of Raman and X-ray 

photoelectron spectroscopy (XPS). The microstructural characterization demonstrated a 

progressive decrease in crystallinity from an initial nanocrystalline (nc) TiB2-like 

structure to a distorted TiBxCy ternary compound with increasing C concentration. X-

ray absorption near-edge structure measurements on the B K-edge helped to determine a 

hexagonal arrangement around the B atoms in the ternary TiBxCy phase. A fitting 

analysis of the C1s XPS peak allowed to evaluate the relative amount of a-C and TiBxCy 

components. A drastic change in hardness (from 52 to 13 GPa) and friction coefficient 
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values (from 0.8 to 0.2) is noticed when moving from nc-TiB2 to TiBC/a-C 

nanocomposites. The fraction of a-C necessary to decrease the friction below 0.2 was 

found to be 45 %. Raman observation of the wear tracks determined the presence of 

disordered sp2-bonded carbon phase associated to the diminution of the friction level.  
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1. Introduction 

Nanostructured multiphase composites based upon TiB2 and TiC or TiN are 

attractive for the development of new coating materials due to their high hardness, high 

melting point and their unique functional properties as high wear and corrosion 

resistance [1-6]. These properties make these composite materials valid candidates as 

wear-resistant coatings in forming dies and cutting tools [7-13]. Nonetheless, they 

cannot afford low friction coefficient (namely 0.6 or superior) in unlubricated 

conditions, especially when compared to diamond-like carbon (DLC) [14] and other 

carbon containing coatings for which coefficients of friction are approximately 0.1 [15]. 

They also present brittle properties induced by the ceramic character of their 

components which makes necessary to reinforce their fracture toughness. In an attempt 

to improve the friction, wear and toughness properties, the formation of a Ti-B-C 

nanocomposite mixing hard materials with a ductile phase like amorphous carbon (a-C) 

is positioned as a good strategy to obtain a blend of good mechanical and tribological 

performance. Thus, reactive magnetron sputtering from a TiB2 target with mixtures of 

argon and different carbon gaseous precursors (C3H8 [16] or CH4 [17]) was firstly 

investigated. Later works deposited Ti-B-C films by non-reactive sputtering of TiB2 and 

C targets [18,19]. X-ray photoelectron spectroscopy (XPS) of the C1s revealed the 
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existence of a TiBxCy phase together with the segregation of a-C that decreased the 

friction although the hardness was also reduced [19,20]. Alternatively, it has been also 

considered the possibility of co-sputtering a unique TiC:TiB2 combined target and a 

lubricant phase such as graphitic carbon [20-25] or amorphous CNx phases using Ar/N2 

mixtures [12,13]. These multiphase coatings rendered similar tribological behaviour but 

maintaining a moderate hardness value of 25-30 GPa, of particular interest for 

tribological applications. The origin of such behaviour was related to the relative higher 

contribution of TiBxCy and TiC hard phases in a quasi-amorphous or nanocomposite 

structure [26] or to a multilayer effect, in the case of TiBCN:CNx coatings [13]. The 

formation of the ternary TiBxCy solid solution was further confirmed by X-ray 

absorption near edge structure (XANES) studies [27]. This absorption spectroscopy is 

based on the excitation of electrons from core level shells to empty states giving rise to 

the observation of some fine structural features related to different bonding 

environments. 

In this paper, we obtain further insight concerning the correlation between the 

phase composition, chemical bonding and tribomechanical properties by means of a 

series of Ti-B-C coatings prepared by the most employed approach of TiB2/graphite 

targets and later comparison with those previously obtained by these authors using a 

mixed TiC:TiB2 target. This study can also be very useful for giving practical advices 

regarding the optimization of the coating process for specific applications (e.g. hardness 

for cutting tools or low friction and wear for contact loading surfaces). 

 

2. Materials and methods 

The Ti-B-C coatings were prepared by direct current (dc) magnetron sputtering 

using a CemeCon® CC800/8 PVD equipment with four rectangular magnetrons (200 
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mm x 88 mm x 5 mm) in an Ar atmosphere (0.5 Pa; 220 sccm). The deposition process 

started with resistive heating of the chamber to reach a base pressure below 110-6 Pa, 

followed by a plasma etching of the substrates in Ar at −200 V r.f. bias voltage. During 

the coating process, a dc bias of -65 V was applied to the substrate and the temperature 

on the sample holder was found to be 350 ºC. Two TiB2 targets (set at 1750 W of 

sputtering power, PTiB2
) and two graphite targets (sputtering power, PC, from 0 to 3300 

W) were installed for the experiments. The thicknesses of the coating span between 3.5 

and 8 µm. The parameter used to control the carbon content in the coatings was the 

relative sputtering power ratio (R), defined as the ratio of sputtering power applied to 

the graphite target in relation to the TiB2 target (i.e. PC/PTiB2
). All the coatings were 

deposited on Si (100) and hardened AISI M2 steel discs of 45 mm diameter and 5 mm 

thick with a surface finish of 0.01 mm Ra. The tempering process of the M2 substrates 

was done at 700-850ºC (preheating), 1200ºC (quenching) and 560ºC (tempering) to give 

a final hardness of 65 HRc. 

The crystal structure of the films was examined by grazing incidence X-ray 

diffraction (XRD) using an angle of 1º and Cu Kα radiation in a Siemens D5000 

diffractometer. A JEOL JXA-8200 electron probe microanalysis (EPMA) instrument 

was used to determine the chemical composition. Raman spectra measurements (200-

2000 cm-1) were carried out with a LabRAM (from Horiba Jobin Yvon) spectrometer 

equipped with a charge-coupled device detector and a He-Ne laser (532 nm) at 5 mW. 

All the samples were analyzed with 100 s exposure times and aperture openings of 100 

μm. XANES B K-edge spectra were collected using the Variable Line Spacing Plane 

Grating Monochromator (VLS PGM, 11ID-2) at the Canadian Light Source (CLS) 

synchrotron. Bulk-sensitive total fluorescence yield (TFY) data were recorded using a 

two-stage multichannel plate detector with the sample surface positioned approximately 
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80º with respect to the incident X-ray beam. XPS measurements were carried out using 

a Leybold-Heraeus spectrometer equipped with an EA-200 hemispherical electron 

multichannel analyzer, operating with a non-monochromated Mg Kα X-ray source 

(1253.6 eV). A five-minute Ar+ sputtering at a voltage of 3 kV and a pressure of 2×10-6 

Pa was carried out in order to remove the surface contamination and oxidation. Fitting 

analysis was performed on the C 1s peak in order to estimate the relative amount of the 

different carbon bonds (carbides and amorphous carbon). Data fitting was carried out by 

a least squares routine supplied by XPS Peak Fitting Programme 4.1 [28], using mixed 

Gaussian-Lorentzian peaks following a Shirley background subtraction.  

The mechanical properties were measured on coated AISI M2 steel disks with a 

Fischercope H100 dynamic microprobe instrument using a conventional Vickers 

indenter, at loads up to 10 mN. The maximum load was selected in such a way that the 

maximum indentation depth did not exceed 10-15% of the coating thickness, thus 

avoiding the influence of the substrate in the measurement. The test parameters were 

fixed to an initial load of 0.4 mN, increasing to a maximum load of 10 mN in 40 load 

steps, with a 0.5 s interval between loading steps. The hardness and reduced Young’s 

modulus were calculated from the load-unload displacement curves. The tribological 

properties of the coatings were evaluated on coated M2 steel disks by ball-on-disk 

friction tests in unlubricated sliding against WC or 100Cr6 steel 6-mm balls in ambient 

air, with relative humidity between 40-50%. The test parameters were set to an applied 

load of 1N for the WC balls and 5N for the steel balls (corresponding to a similar 

maximum initial Hertzian contact pressure of around 1GPa), a linear speed of 10 cm/s, 

and a sliding distance of 1000 m. Normalized wear rates (mm3/Nm) were evaluated 

from cross-sectional profiles taken across the disk-wear track using stylus profilometry.  
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3. Results and discussion 

 

3.1. Chemical and structural characterization 

 

The chemical composition of the Ti-B-C coatings as determined by EPMA is 

summarized in Table 1. Oxygen contamination was found in the level of 0-5 at. %, 

increasing with the incorporation of carbon. The influence of the sputtering power ratio 

is revealed by a continuous increment of the C content at an approximate constant ratio 

B/Ti. These results are in agreement with previously published results on Ti-B-C 

coatings using a similar target configuration following the tie-line of TiB2-C of a Ti-B-

C phase diagram [1,7,19,29,30]. 

 

XRD patterns collected from the six coatings are shown comparatively in Fig. 1. 

The position of the main diffraction peaks for TiB2 and TiC phases are marked in the 

graph for comparison. The first coating prepared by single sputtering of the TiB2 target 

exhibits a diffraction pattern in agreement with a hexagonal TiB2–like structure. Later, 

with the progressive incorporation of carbon into the coatings, the peaks become 

broader and less intense. Focussing in the (001) peak, the next sample (R0.5 with 22 

at.% of C) exhibits two components with higher and lower spacing than that of pure 

TiB2. The higher lattice spacing (i.e., lower 2θ values) is probably caused by the 

interstitial solid-solution of carbon atoms in the TiB2 crystal cell whilst the lower 

spacing can be explained by substitutional carbon in the TiB2 hexagonal layers forming 

a ternary TiBxCy phase. The lower atomic radius of carbon (0.77 Å) in respect of boron 

atoms (0.97Å) is responsible of the lattice contraction. The formation of a ternary 

TiBxCy compound has been previously proposed by Knotek and others 
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[17,18,23,27,31], although other authors suggest the formation of mixture of quasi-

amorphous TiC and TiB2 phases [7]. The remaining samples show preferentially this 

TiBxCy peak with a marked reduction of the average crystallite size. This fact is in 

agreement with the decrease of boron concentrations with respect to carbon, particularly 

above R1, favouring the replacement of the former atoms by the latter ones.  

Figure 2 shows the B K-edge XANES spectra for the set of the Ti-B-C films and 

three references for bulk microcrystalline TiB2, cubic and hexagonal ternary TiBxCy 

phases. The spectra of the samples with the lowest C contents (R0 and R0.5) differ 

noteworthy from the remaining ones indicating a drastic structural change for carbon 

contents above 30 at. %. Such trend is in agreement with the deterioration of the 

crystalline order and change of phase composition assessed by XRD (cf. Fig. 1). Several 

features appear in the 190-195 eV region of the B K-edge spectra displayed in Fig. 2 

that provide information about the local-arrangements of B sites within the compound. 

The first peak at 190.6 eV (B1) can be assigned to B atoms in hexagonal configuration 

as present in the TiB2 reference. This feature is dominant for C < 30 at. % and decreases 

for larger C contents due to the deterioration of the nc-TiB2 structure. As expected from 

the XRD pattern in Fig. 1, the spectra of the R0.5 sample resembles that obtained by 

sputtering of the TiB2 target (R0). When the carbon content overcomes 30 at.% a new 

peak at 192.9 eV (B3) becomes dominant. This peak can be related to boron atoms in a 

hexagonal ternary TiBxCy compound as compared to the reference spectrum [27]. The 

intensity of this peak manifests an increment at the expense of B1, indicating an 

evolution of the hexagonal structure from nc-TiB2-like to short-range arrangements in a 

disordered ternary h-TiBxCy phase. This peak becomes dominant at higher carbon 

contents confirming the hypothesis of a certain incorporation of carbon atoms inside the 

lattice of TiB2 and formation of a hexagonal ternary (disordered) compound, as 
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proposed by many authors [17,18,21], instead of a mixture of nc-TiB2 in a quasi-

amorphous TiC phase [7]. Interestingly, the formation of cubic TiBxCy arrangements 

reported in [27] when using a mixed TiB2/TiC target is not observed in the present work 

(cf. reference c-TiBC). Such phase was identified with a characteristic feature around 

192.4 eV. This result implies that phase formation in the Ti-B-C system is not only 

driven by compositional issues but can also be tuned by specific conditions such as the 

appropriate selection of the sputtering targets.   A small contribution appears in some of 

the spectra at 194.3 eV (B4) due to B-O formation since its position matches that of 

B2O3 [32]. As commented before, we noted a slight oxygen contamination within the 

sample increasing with the C content. 

Fig. 3 depicts the Raman spectra for the as-deposited coatings. The spectra were 

measured in identical conditions to allow a direct comparison of their intensities. The 

presence of the D and G peaks at 1350 and 1585 cm-1 respectively, characteristic of the 

sp2 sites of all disordered carbons [33], is more significant when increasing the carbon 

content inside the coating. Nevertheless there are differences regarding the onset of 

development and definition of the D and G peaks. Thus, the Ti-B-C coatings with less 

carbon content, up to 22 at.% of C, do not show evidences of segregated a-C. Beyond 

this point the peaks are better defined exhibiting a progressive increase in intensity and 

downward shift of the D peak. This result correlates with the noticeable decrease in the 

crystallinity observed by XRD. Once the solubility of carbon inside the TiB2 lattice is 

reached, either in substitutional or interstitial sites, the further addition of C atoms 

yields the formation of a disordered a-C phase that surrounds the TiBxCy nanocrystals. 

It is therefore important to determine the distribution of the carbon atoms in this 

chemical state as the mechanical and tribological performance can be directly 



 9

influenced by them. In order to assess this fraction XPS analysis was performed on the 

C1s peak following the same procedure as reported previously [20,26]. 

Fig. 4a shows the C 1s photoelectron spectra for the coatings with C content 

above 22 at. %, when the presence of a disordered C-C phase was noticed. Basically, 

three main components can be considered at 283.2, 284.5 and 286.0 eV corresponding 

to typical binding energies of C in TiBxCy, sp2 C-C and C-OH bonds respectively. No 

peak was clearly detected at 282.0 eV for Ti-C bonding. A gradual shift of the main 

peak towards the value characteristic of the C-C phase is observed as the concentration 

of C increases. In order to obtain a more quantitative insight of the compositional 

changes a fitting analysis was carried out. Fig 4b shows the fitted C 1s XPS peaks after 

Ar+ bombardment for the sample containing 34 at.% as a representative example.We 

define the fraction of the different bonding types, xi (%), as the fraction of a specific 

type of carbon bonding in respect to the total carbon content. The obtained values are 

plotted in Fig. 5. A continuous decrease of the xTiBxCy (especially above R1) is observed 

with the increment of the carbon content. The xa-C becomes comparable or even higher 

for the richest C contents. The estimation of the phases present in the nanocomposite 

will be very useful to obtain correlation with the tribomechanical properties as shown in 

the next section. 

 

3.2. Tribo-mechanical characterization 

 

 Figure 6 shows the tribological results (friction coefficient and film wear rate) 

for the six coatings using steel balls (Fig. 6a) and WC balls (Fig. 6b) as counterface 

materials. The hardness values are also superimposed on the same bar-chart showing a 

marked decreasing trend, from 52 to 13 GPa as the power ratio increases. The 
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tribological behaviour is very similar independently of the nature of the counterpart 

displaying lower friction coefficient and wear rates as the carbon content is increased. 

Note that the worn track profile in R0 was not possible to be measured due to material 

transfer from the steel ball. Considering the relative amount of a-C (xa-C) estimated 

previously by XPS, we can re-plot the tribomechanical properties as a function of this 

parameter. Figure 7 shows the obtained graph using the tests made with WC balls as 

representative example. It can be noticed the separation of the samples into two main 

categories corresponding to pure nc-TiB2 and TiBxCy/a-C nanocomposites. The 

hardness reaches a maximum value of 52 GPa for the nanocrystalline TiB2 coating as 

corresponds to its high ceramic nature. When the a-C content increases, both the friction 

coefficient and film wear rates diminish continuously. The friction coefficient can be 

reduced below 0.2 when the xa-C overcomes 45%. This tribological behaviour agrees 

with that typically observed in carbon-based lubricant nanocomposite coatings [14,15]. 

The a-C phase is able to accommodate sliding motion, decreasing the shear strength and 

wear as it comes out from the coating. In comparison with previous TiBC/a-C coatings 

obtained by some of the present authors using a compound target of TiC:TiB2 [26,27], 

the tribological and mechanical properties are worsened at a comparable fraction of a-C. 

The origin must be found in the different phases present in the composite. Thus, while 

co-sputtering from TiB2 and graphite targets only promoted the formation of hexagonal 

ternary TiBxCy compounds, the combination of mixed TiC:TiB2 and graphite targets 

promotes the formation of TiC1-x and cubic TiBxCy hard phases maintaining higher 

average hardness values [27]. This is also consistent with the TiB2-TiC-C phase 

diagram; the first route produces coatings varying their composition along the TiB2-C 

tie-line while the coatings prepared by the second one are inside the region where the 

three phases (two hard and one soft) can coexist. This might explain the increment of 
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the film wear rate resistance by a factor of three in the case of a mixed TiC:TiB2 target. 

In addition, for achieving a low friction coefficient (i.e. 0.2), less amount of xa-C is 

needed (between 15-20%) what helps to maintain an average higher hardness as the 

contribution of the soft lubricant phase is lower. In conclusion, the co-sputtering of  

graphite with a mixed TiC:TiB2 target is more efficient than combining with a TiB2 

target for preparing tribological TiBC/a-C nanocomposites. Nevertheless, if we are 

seeking for extremely hard coatings without requirements of lubricant behaviour, the  

sputtering route (TiB2/C) is more appropriate because of the formation of 

nanocrystalline TiB2 with superhardness properties (52 GPa). 

 A deeper investigation of the friction mechanism was carried out by Raman 

spectroscopy analysis on the ball scars for representative coatings exhibiting friction 

coefficient of 0.8, 0.4 and 0.2. Fig. 8 depicts the Raman spectra obtained from the ball 

scars (steel and WC) for the coatings R0, R1 and R1.9 with xa-C percentages of 0, 25 and 

62% respectively. The optical micrographs obtained from the steel balls are shown as 

example to illustrate the increment of the worn volume as the fraction of lubricant a-C 

phase decreases in the coating. In the high friction regime (0.8), the Raman spectra 

taken from the material adhered to the ball did not show the characteristics D and G 

bands of disordered sp2 carbon structures that appear clearly identified in the other 

cases. In this case, the presence of iron and tungsten oxides is predominant. Particularly, 

a higher reactivity is noticed in the case of the 100Cr6 ball where a mixture of α-Fe2O3, 

Fe2O3 and Fe3O4 compounds is identified. This is in agreement with the transfer of ball 

material to the film counterface observed with the R0 sample, the hardest film without 

a-C fraction. For the WC balls, several broad bands appear below 800 cm-1 that can be 

related to W–O–W bending modes (in the range of 200–400 cm-1) and W–O-W 

stretching modes (600–900 cm-1) of disordered tungsten oxides [34-36]. The presence 
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of mixed boron or titanium oxides cannot be totally discarded. The formation of 

graphitic-like structures in the contact appears associated to the decrease of the friction 

coefficient as seen previously in many nanocomposites and carbon-based solid 

lubricants [14,15,37-39]. It is also manifested a sharpening of the D and G peaks as 

compared to the initial state.  

  

4. Conclusions 

 

Protective Ti-B-C coatings based on the combination of hard ternary phases (TiBxCy) 

and a-C were prepared by magnetron co-sputtering technology using the combination of 

TiB2 and graphite targets. The obtained series of coatings manifested differences in the 

structural evolution, chemical bonding and tribo-mechanical properties as the carbon 

content increased. Thus, the film structure evolves from nc-TiB2 to nanocomposite 

TiBC/a-C. In the nanocomposite films, a ternary TiBxCy compound with a hexagonal 

arrangement was assessed by XANES analysis of the B K-edge, indicating the 

replacement of boron by carbon atoms in the TiB2 lattice. Concerning the tribological 

properties, the friction mechanism is controlled by the relative amount of a-C phase 

formed in the contact, as demonstrated by estimation of the xa-C and Raman study of the 

worn surfaces. When there is sufficient lubricant a-C (approximately xa-C> 45%) the 

friction coefficient and film wear rates were reduced to 0.2 and 10-6 mm3/Nm, 

respectively. However, a comparison with homologous TiBC/a-C nanocomposites 

prepared by co-sputtering from a mixed TiC:TiB2 and graphite targets showed better 

wear resistance, probably linked to the formation of cubic TiBxCy and TiC1-x  

compounds, with resulting improved mechanical properties. The appropriate selection 

of the nature of the target composition used for the PVD process is revealed as an 
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important factor to consider to tune the final properties of a specific coating material for 

a selected application since it has a direct influence on the type of chemical bonding 

present in the films and their properties as a result.  
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Figure captions 
 
Fig. 1.Grazing angle X-ray diffraction patterns of Ti-B-C coatings deposited onto M2 

steel substrates. The reflections from references of TiC (JCPDS Nr: 32-1383) and TiB2 

(075-0967) materials are included for comparison. 

 

Fig. 2. B-K XANES spectra for the Ti-B-C films at five different synthesis conditions. 

The spectra for cubic and hexagonal TiBxCy structures together with a microcrystalline 

TiB2 powder from Sigma-Aldrich are included for comparison. 

 

Fig. 3.Raman spectra for the Ti-B-C coatings as a function of the sputtering conditions 

and total carbon content.  

 

Fig. 4.(a) XPS spectra in the C 1 s region for Ti-B-C films under study as a function of 

the carbon content. (b) Curve fitted XPS C1s peak for the sample R1.3 as representative 

example. 

 

Fig. 5. Relative amount of the different carbon-containing phases xi (%) as a function of 

the total carbon content. 

 

Fig. 6.Tribological properties of the Ti-B-C coatings using 100Cr6 steel (a) or WC (b) 

balls as antagonist materials. The measured hardness values are superimposed in the 

same graph. 

 

Fig. 7. Dependence of the tribo-mechanical properties of the Ti-B-C coatings vs. WC 

balls with the relative fraction of amorphous carbon phase. 
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Fig.8. Raman analysis of the worn ball surfaces corresponding to samples R0, R1 and 

R1.9: (a) steel balls; (b) WC balls. The optical micrographs corresponding to the scars 

obtained on the steel balls are included as example. 
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