
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017 1133

On Multiple AER Handshaking Channels Over
High-Speed Bit-Serial Bidirectional LVDS Links

With Flow-Control and Clock-Correction on
Commercial FPGAs for Scalable

Neuromorphic Systems
Amirreza Yousefzadeh, Mirosław Jabłoński, Taras Iakymchuk, Alejandro Linares-Barranco, Alfredo Rosado,

Luis A. Plana, Steve Temple, Teresa Serrano-Gotarredona, Steve B. Furber, Fellow, IEEE,
and Bernabé Linares-Barranco, Fellow, IEEE

Abstract—Address event representation (AER) is a widely
employed asynchronous technique for interchanging “neural
spikes” between different hardware elements in neuromorphic sys-
tems. Each neuron or cell in a chip or a system is assigned an
address (or ID), which is typically communicated through a high-
speed digital bus, thus time-multiplexing a high number of neural
connections. Conventional AER links use parallel physical wires

Manuscript received June 27, 2016; revised April 20, 2017; accepted June 4,
2017. Date of publication August 14, 2017; date of current version September
25, 2017. This work was supported in part by the European Research Coun-
cil under the European Union.s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement 320689, in part by the U.K. Engineering and
Physical Sciences Research Council (EPSRC) under Grant EP/G015740/1, in
part by EU FP7 Grant 604102 "The Human Brain Project" (HBP), in part by
EU H2020 under Grants 644096 "ECOMODE" and 687299 "NEURAM3," in
part by Polish grant from the Ministry of Science and Higher Education AGH
UST no. 11.11.120.612, in part by Spanish grants from the Ministry of Econ-
omy and Competitivity TEC2012-37868-C04-01/02 (BIOSENSE), TEC2015-
63884-C2-1-P (COGNET), and TEC2016-77785-P (COFNET) (with support
from the European Regional Development Fund), and in part by Andalusian
grants TIC-6091 (NANO-NEURO) and P12-TIC-1300 (MINERVA). The work
of A. Yousefzadeh was supported by a Spanish FPI Scholarship from the Min-
istry of Economy and Competitivity. This paper was recommended by Associate
Editor G. Cauwenberghs. (Corresponding author: Bernabe Linares-Barranco.)

A. Yousefzadeh, T. Serrano-Gotarredona, and B. Linares-Barranco are with
the Instituto de Microelectrnica de Sevilla, IMSE-CNM (CSIC and University of
Sevilla), Sevilla 41092, Spain (e-mail: reza@imse-cnm.csic.esl; terese@imse-
cnm.csic.es; bernabe@imse-cnm.csic.es).

M. Jabłoński is with the Instituto de Microelectrnica de Sevilla, IMSE-CNM
(CSIC and University of Sevilla), Sevilla 41092, Spain, and also with the
AGH University of Science and Technology, Kraków 30-059, Poland (e-mail:
mjk@agh.edu.pl).

T. Iakymchuk and A. Rosado are with the School of Engineering, Univer-
sity of Valencia, Valéncia 46010, Spain (e-mail: Taras.Yakymchuk@uv.es; Al-
fredo.Rosado@uv.es).

A. Linares-Barranco is with the Department of Computer Architectures, Uni-
versity of Sevilla, Sevilla 41004, Spain (e-mail: alinares@atc.us.es).

L. A. Plana, S. Temple, and S. B. Furber are with the School of Com-
puter Science, University of Manchester, Manchester M13 9PL, U.K.
(e-mail: luis.plana@manchester.ac.uk; steven.temple@manchester.ac.uk;
steve.furber@manchester.ac.uk).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBCAS.2017.2717341

together with a pair of handshaking signals (request and acknowl-
edge). In this paper, we present a fully serial implementation using
bidirectional SATA connectors with a pair of low-voltage differ-
ential signaling (LVDS) wires for each direction. The proposed
implementation can multiplex a number of conventional parallel
AER links for each physical LVDS connection. It uses flow control,
clock correction, and byte alignment techniques to transmit 32-bit
address events reliably over multiplexed serial connections. The
setup has been tested using commercial Spartan6 FPGAs attaining
a maximum event transmission speed of 75 Meps (Mega events per
second) for 32-bit events at a line rate of 3.0 Gbps. Full HDL codes
(vhdl/verilog) and example demonstration codes for the SpiNNaker
platform will be made available.

Index Terms—Address event representation (AER), event-
driven system, neuromorphic engineering, scalable neuromorphic
systems, spiking systems, virtual wiring.

I. INTRODUCTION

ADDRESS Event Representation (AER) is now a fairly
popular “virtual wiring” technique adopted by many

neuromorphic hardware engineers to interconnect spiking neu-
romorphic systems [1]–[12]. Digital inter-chip communication
is several orders of magnitude faster than firing frequencies of
biological neurons. This is exploited in AER to time-multiplex
numerous synaptic connections between neurons on a high-
speed digital bus. In AER, whenever a spiking neuron in a chip
(or module) generates a spike, its “address” (or any given ID) is
written on a high speed digital bus and sent to the receiving neu-
rons in one or more destination modules/chips. AER started out
as a point-to-point protocol for interconnecting neurons from
one chip with those on another chip using a hand-shaken parallel
digital bus with a fixed number of bits [1]–[3]. As neuromorphic
systems have been scaling up in size and complexity over the
years, researchers have developed more complex and smarter
AER “variations” to improve efficiency, reconfigurability and
reliability. It became apparent very early on that bulkiness of the
original parallel-AER (pAER) bus would limit the scalability of
AER systems to arbitrary sizes, and researchers started looking
at serial connectivity options [13]. In 2004 Boahen proposed
a word-serial AER link to reduce the number of parallel wires

1932-4545 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

1134 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

[14]. The 48-chip SpiNNaker PCB [15] uses six bidirectional
8-wire 4-bit word serial AER-type links per chip, employing
a highly power-efficient delay-insensitive 2-of-7 NRZ protocol
[16] to asynchronously interchange 32-bit events between the
chips, each chip holding 18 ARM968 integer-arithmetic cores.

Fully bit-serial Low-Voltage-Differential-Signaling (LVDS)
[17] AER links have also attracted the attention of some neuro-
morphic engineers, as they allow for multi-gigabit-per-second
communication speeds using only one pair of wires. Since only
two uni-directional differential wires are available, it is not
straightforward how to implement a handshaking protocol per
event transmission, or a flow-control scheme to signal data con-
gestion on the receiver side. Miro et al. [18] and Berge et al. [19]
experimented with fully bit-serial links. The former with off-the-
shelf MAXIM ser/des components, showing measurements that
revealed the links could operate up to 40 Meps (Mega-events-
per-second) for 16-bit AEs (Address Events). The latter with
the 2.5 Gbps (Giga-bit-per-second) LVDS Rocket-IO IP blocks
available in the VirtexII-Pro Xilinx FPGAs, achieving 41.66
Meps for 16-bit AEs, with 8b/10b encoding for byte-alignment
comma transmission when the channel is idle. However, in both
cases, the FSMs (Finite State Machines) implemented did not
include any hand-shaking or flow-control mechanisms to avoid
data loss if the event consumer system on the receiver side was
temporarily slower than the event generator system on the trans-
mitter side. Fasnacht et al. [20] reported a bit-serial interface
based on off-the-shelf commercial 16-bit Serializer/Deserializer
components (TLK 2501/3101) connected to a Spartan3E par-
allel event AER processor and using a second, reverse, LVDS
link for flow control signaling. The bit-serial link could operate
at line speeds of 2.5 Gbps (TLK 2501) or 3.125 Gbps (TLK
3101) and also used 8b/10b encoding to allow for idle commas.
On the reverse LVDS link the receiver put a square wave whose
frequency signaled whether to stop or resume event transmis-
sion from the sender. Using this setup, the link could transmit
32-bit events at a maximum rate of 62.5 Meps (for 2.5 Gbps) or
78.125 Meps (for 3.125 Gbps), at the cost of sacrificing one re-
verse LVDS link for flow control. Zamarreo et al. [21] developed
a bi-directional LVDS link using Virtex6 FPGA Rocket-I/O IPs.
In this scheme, two 2.5 Gbps LVDS links were used to com-
municate 32-bit events in each direction with 8b/10b encoding.
Flow-control in each direction was implemented by inserting
special control symbols in the opposite direction link to toggle
between the stop and resume states. However, this design did
not include any clock-correction support, thus hampering scala-
bility by limiting this approach to situations in which all FPGAs
use the same physical reference clock.

Fully ASIC designs for 32-bit event transmission over 1 GHz
bandwidth LVDS links have also been reported recently using ei-
ther current-mode [22] or voltage-mode [23] drivers.1 These use
4 wires: two for high-speed 1GHz bit-serial LVDS data trans-
mission and two for hand-shaking. The extra hand-shake wires
allow the drivers to be turned ON/OFF during inter-event pauses

1Although the CMOS process used was quite old with a large minimum
feature size (0.35 μm), the drivers achieved an impressive performance of up to
1.4 GHz bandwidth.

(with nano-second latencies), resulting in power consumption
proportional to the information transmission rate. This way, no
idle commas have to be transmitted and 8b/10b encoding is
not necessary. On the down-side, Manchester encoding is nec-
essary to allow for simultaneous data and clock transmission
per symbol [24], reducing effective data transmission to half of
maximum physical rate. Nevertheless, maximum 32-bit event
rates of up to 15 Meps have been measured over a channel with
a physical bandwidth 1.4GHz.

All previous asynchronous pAER to bit-serial AER conver-
sion schemes operate correctly if there is only one clock do-
main at each synchronous side of each link. This is usually
the case in fully ASIC designs, where all AER processing is
fully asynchronous and there is only one local clock per LVDS
Transmitter/Receiver link located at the transmitter side (the
receiver uses the clock extracted from the transmission). In
the case of the reported FPGA interfaces with unidirectional
links, the situation is similar, because normally the FPGA syn-
chronous circuit only implements one state machine to interface
with an asynchronous hand-shaken pAER port. One single, iso-
lated clock domain can therefore be used per link. In the case of
bi-directional links, the situation is not so straightforward when
using commercial FPGAs with bit-serial IPs, and two interfering
clock domains might be required. The problem becomes even
worse when interconnecting multiple FPGAs, each with its own
synchronous event processing subsystem and multiple bidirec-
tional LVDS links per FPGA. In this case, each FPGA will have
one or more local clock domains, which may interfere with
the clock domains of neighboring FPGAs. Under these circum-
stances it is necessary to use some kind of clock correction tech-
nique to compensate for clock frequency/phase drifts and avoid
sudden byte misalignment problems and data loss. In a prelim-
inary work [25], we used the elastic buffers available in Xilinx
Rocket-I/O serial LVDS IPs, although the test involved a fully
synchronous handshake-less system deployed over two FPGAs.
Each link was unidirectional since the reverse LVDS path was
fully occupied handling flow-control. More recently, the SpiN-
Naker team has developed bidirectional bit-serial LVDS links
[26] to bundle eight 2-of-7 AER multi-symbol inter-SpiNNaker-
chip links [16] into one bit-serial SATA link. This scheme, devel-
oped to interconnect multiple (up to 1200) 48-chip SpiNNaker
Boards [27], uses flow-control, clock correction, and a complex
framing protocol that samples the eight channels and performs
CRCs (Cyclic Redundancy Checks) to improve reliability. How-
ever, this introduces extra overheads, theoretically limiting the
maximum throughput for each of the eight channels to 50/8 =
6.25 Meps.

In this paper we present an extended version of the solution
reported earlier [25], with a fully bidirectional bit-serial LVDS
communication capability, a token-based flow-control protocol,
a clock correction capability, and a robust interface with con-
ventional parallel AER ports (like those used in AER sensor
chips) using 4-phase asynchronous handshaking. At an LVDS
line transmission rate of 3.0 Gbps, it is possible to achieve 32-
bit transmission at a sustained rate of 75.0 Meps, as shown later
in the Experimental Results section. Fig. 1 shows an example
target setup consisting of an array of 40 AER-Node Boards

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1135

Fig. 1. Example heterogeneous neuromorphic sensing and computing system consisting of (a) 5 × 8 grid of FPGA-based AER-Node boards connected to
each other via four bi-directional LVDS links, (b) two SpiNNaker boards comprising each 48 SpiNNaker chips (each with 18 ARM CPUs) organised into grids
connected via 2-of-7 asynchronous parallel buses with 2-phase handshaking, and (c) two asynchronous artificial retina vision sensors connected via parallel AER
16-bit external buses with 4-phase handshaking.

[25] all interconnected via SATA wires to their neighbours, to
two 48-chip SpiNNaker Boards [27] and to two AER retina
sensors [28].

The presented serial intercommunication protocol exten-
sively exploits the Spartan6 GTP transceiver instance using
specific configurations together with user designed TX and RX
blocks for low bandwidth overhead intercommunication of het-
erogeneous components (multiple clock-domain synchronous
modules with fully asynchronous sensors), while multiplexing
multiple AER channels with independent flow control with min-
imum latency and almost maximum physical channel through-
put. This results in very efficient assembly capability of het-
erogeneous neuromorphic systems. Application examples are
illustrated at the end of the paper.

The paper is structured as follows. Section II explains how
we used the 8b/10b encoding scheme for bi-directional token-
based flow-control and 32-bit event alignment. Section III exam-
ines in detail the problem of multiple interfering clock domains
when using multiple FPGAs each with multiple bi-directional
links, and how to overcome it using elastic buffers and clock-
correction. Finally, Section IV provides experimental results.

II. BI-DIRECTIONAL TOKEN-BASED FLOW-CONTROL AND

EVENT-ALIGNMENT USING 8B/10B ENCODING

When transmitting GHz range bit-serial data over a single
lane (either differentially over a pair of wires as in LVDS, or
using one single wire), the transmitted stream must include not
only the serial data itself but also sufficient clues to allow clock

recovery at the receiver.2 The Manchester encoding scheme [29]
encodes bits ‘0’ and ‘1’ as two different transitions: from high-
to-low or from low-to-high. This way, for each symbol (either
‘0’ or ‘1’) there is always a physical transition that makes it
possible to recover the clock instantly during symbol extraction.
The drawback is that the data rate is only half the channel’s
maximum possible physical rate.

8b/10b encoding [30] overcomes this drastic limitation by
mapping 8-bit words to 10-bit symbols, assuring enough state
changes for reasonable clock recovery, while achieving DC
balance. The difference between the counts of ‘1 s’ and ‘0
s’ (called “disparity”) in a string of at least 20 bits is no more
than two and there are not more than five ‘1 s’ or ‘0 s’ in a
row.3 Consequently, this scheme allows effective data trans-
mission at a rate of 80% of the physical channel bandwidth.
Clock recovery from the bit stream is not instantaneous and
is normally performed by complex PLL (phase locked loop)
circuits at the receiver, which may require sequences in the or-
der of thousands of bits to lock to the clock frequency. Also,
in order to keep the PLLs locked all the time, the channel

2In the case of multiple bit-serial lanes operating in parallel (which is not
the case considered in this paper), one lane can be dedicated to transmitting the
reference clock. In this case, the lanes have to be very well matched to avoid
excessive skew.

3Since shuffling five ‘0 s’ and five ‘1 s’ (perfectly DC balanced 10-bit sym-
bols) yields less than 256 10-bit symbols, some 8-bit symbols are mapped into
two unbalanced 10-bit symbols (one with four ‘0 s’ and six ‘1 s’ and the other
with six ‘0 s’ and four ‘1 s’). A counter keeps track of the “running disparity”
(RD) between ‘1 s’ and ‘0 s’ and picks one of the two possible 10-bit symbols
so that the RD is compensated.

1136 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

TABLE I
CONTROL COMMAS IN 8B/10B CODING

8-bit in 10-bit out

Name DEC HEX BIN RD = − 1 RD = +1

K28.0 28 1C 000 11100 001111 0100 110000 1011
K28.1 60 3C 001 11100 001111 1001 110000 0110
K28.2 92 5C 010 11100 001111 0101 110000 1010
K28.3 124 7C 011 11100 001111 0011 110000 1100
K28.4 156 9C 100 11100 001111 0010 110000 1101
K28.5 188 BC 101 11100 001111 1010 110000 0101
K28.6 220 DC 110 11100 001111 0110 110000 1001
K28.7 252 FC 111 11100 001111 1000 110000 0111
K23.7 247 F7 111 10111 111010 1000 000101 0111
K27.7 251 FB 111 11011 110110 1000 001001 0111
K29.7 253 FD 111 11101 101110 1000 010001 0111
K30.7 254 FE 111 11110 011110 1000 100001 0111

needs to keep transmitting symbols even when no informa-
tion has to be sent. Fortunately, when mapping the 256 8-bit
symbols into 10-bit symbols, there are more than 256 10-bit
symbols that satisfy the DC balance and state change restric-
tions. These extra 10-bit symbols (which do not have a cor-
responding 8-bit symbol) can be used as “control symbols”,
also called “control commas”. One of them can be used as
the “idle comma” to keep transmitting data over the channel
and keep the PLLs locked. Table I shows the 12 possible con-
trol symbols allowed in 8b/10b coding. The first column shows
the names given to these control symbols. The next 3 columns
show their 8-bit representation format (in DEC, HEX, and BIN),
and the last 2 columns show their 10-bit binary representation
depending on the running disparity RD.4 If K28.7 (FC) is not
used, it is easy to use K28.1 (3C) and K28.5 (BC) for synchro-
nizing byte alignment within the bit-stream: that is to say, to find
the start/end of the consecutive 10-bit symbols. This is because
the unique sequences ‘0011111’ or ‘1100000’ cannot be found
at any bit position within any combination of normal codes.

Fig. 2 shows a block diagram of a bi-directional AER link us-
ing two FPGA PCBs connected by one single SATA cable (con-
taining two differential pairs of signal wires and three ground
wires). Each FPGA connects to one hand-shaken 32-bit pAER
sender and one pAER receiver. The “wrapper” block is an IP
block generated by Xilinx Core Generator. It contains a wrapper
transmitter sub-block wTX and a wrapper receiver sub-block
wRX. wTX takes a 32-bit clock-synchronous “sDATA” word
and a 4-bit “kchar” word as input. Each of the four “kchar”
bits indicate whether the corresponding four bytes in the 32-bit
“sDATA” word are control comma bytes or regular user data
bytes. In our case, the selected LVDS line rates were 3.0Gbps,
obtained from a low jitter differential 150 MHz reference Xtal
oscillator on the FPGA PCB. This means that the 32-bit data,
transformed into a 40-bit sequence by the 8b/10b code, needed
40/(3 × 109 Hz) = 13.3 ns to be transmitted. The wrapper

4Note that 10-bit “control commas” do not have a corresponding 8-bit data
representation, so columns 2 to 4 in Table I would not make sense. In practice,
however, the 8-bit to 10-bit conversion circuitry includes an extra control bit
(called “kchar”) to signal the generation of one of the 12 commas from an 8-bit
input code.

provides two reference clocks for the user circuitry: one at fre-
quency f = 1/13.3 ns = 75.0 MHz, at the rising edges of which
the user circuitry has to provide the 32-bit parallel “sDATA”
word and the corresponding 4-bit “kchar” word; and the other
at frequency 4f = 300 MHz (because the 32-bit “sDATA” word
contains 4 bytes) and synchronized to clock f . The user designed
circuitry within each FPGA in Fig. 2 has 6 blocks:

1) Asynchronous to Synchronous Converter Block
(async2sync): This block handles asynchronous
handshaking with the 32-bit pAER input port and
synchronization between the asynchronous and syn-
chronous domains (or two synchronous domains driven
by unrelated clocks). It also provides a 32-bit parallel
synchronous version “sDATA” word clock-synchronized
with its corresponding “Data Valid” (DV) control signal.

2) Transmitter FIFO Block (TX-FIFO): This block holds a
“Stop/Run” state for the transmission of data which is
used by the flow control protocol discussed later. It also
includes a small FIFO for transient data storage. The need
for this FIFO will become more apparent later when we
address extension to multi-channel multiplexing.

3) Transmitter Block (TX): For each clock cycle this provides
the 32-bit “sDATA” word and the 4-bit “kchar” word re-
quired by the “wrapper” (wTX), generates start-up byte
alignment sequences, and inserts control symbols for flow
control, clock correction, idle commas, or periodic com-
mas for alignment.

4) Receiver Block (RX): This block receives and separates
data and control commas. Data symbols are sent to the
RX-FIFO block, while control commas are interpreted
and executed for proper flow control, word (re)alignment,
and clock correction.

5) Receiver FIFO block (RX-FIFO): This block accumulates
32-bit synchronous data symbols from the RX block into
a FIFO register, while it empties the FIFO by sending
data out to the “sync2async” block. If the fifo fills up
above a certain threshold it will trigger the flow control
mechanism, as explained below.

6) Synchronous to Asynchronous Block (sync2async). This
blocks handles asynchronous handshaking with the 32-
bit pAER output port and synchronization with the syn-
chronous data “sDATA” clock domain.

A. Four-Byte Alignment

At start-up, and after all PLLs are properly locked, each TX
block will send a sequence of 1024 32-bit comma words (3C
BC BC BC) for event word alignment at the RX block on the
other side of the link. The Xilinx wrapper IP includes internal
circuitry for aligning bytes, using either control comma K28.5
(BC) or K28.1 (3C). In our implementation we selected K28.5
(BC) as the byte alignment comma to be recognized by receiver
wRX in the wrapper. As soon as the wrapper receiver circuit de-
tects this comma, from then on all bit sequences will be aligned
to recognizable bytes. In our case, our event or data words con-
sisted of 4 bytes. We therefore needed to add extra circuitry in
the user receiver to properly align 4-byte events. In principle,

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1137

Fig. 2. 2-FPGA LVDS bi-directional AER communication link with flow-control to/from four pAER ports. The figure illustrates how stop/resume control tokens
are exchanged via the complementary channel to achieve flow control.

Fig. 3. Illustration of 4-byte re-alignment depending on running offset. The
four different offset cases are shown and how the output data is assembled from
the flowing input data.

the transmitted control word for alignment “3C BC BC BC” can
be received on the receiver side (after correct byte alignment)
with four possible offsets: “3C BC BC BC” (offset = 0), “BC
3C BC BC” (offset = 1), “BC BC 3C BC” (offset = 2), or
“BC BC BC 3C” (offset = 3). Depending on which of these
four possibilities is obtained, the receiver will set its initial “off-
set” to either ‘0’, ‘1’, ‘2’, or ‘3’, respectively. Once the offset is
known, the four byte sequence is then correctly reconstructed by
holding the 4-byte data in two consecutive registers, as shown
in Fig. 3. First, the 32-bit data read from the wrapper is stored
in register ‘datain_1’, and in the next clock cycle it is copied
from register ‘datain_1’ to register ‘datain_2’. Depending on
the running value of “offset”, four bytes from ‘datain_1’ and
‘datain_2’ are copied to output register ‘out_data’, as shown in
Fig. 3, to reconstruct the correct 4-byte event sequence. Once
the running offset is detected, it will remain fixed for the forth-
coming data stream sequence, unless there is a clock correction
(this is discussed in Section III). In this case, the running offset

will be updated. For now, let us assume that, after the initial
4-byte alignment, all 32-bit data and control commas sent from
the sender side remain aligned and are correctly received on the
receiver side. Implementation of the flow control mechanism is
explained below.

B. Flow Control

With reference to Fig. 2, let us assume that we are sending
events from the left-side pAER sender (top left of FPGA-1 in
Fig. 2) to the right-side pAER receiver (top right of FPGA-
2 in Fig. 2). Event communication and flow control in the
opposite direction is fully symmetric and simultaneous. If no
control token needs to be communicated, the default operation
is as follows: the async2sync block (see details in Section II-
C) acknowledges incoming 32-bit AER events, synchronizes
them to the local f = 75 MHz clock and transfers the synchro-
nized event “sDATA” in a single clock cycle to the “TX-FIFO”
block. By default, this block is in the “Run” state, in which the
32-bit “sDATA” event is transferred to the top left “TX” block
in one clock cycle. This TX block will send the 32-bit “sDATA”
event to the input port of the “wrapper” (wTX) while setting k-
char = ‘0000’ (that is to say, none of the four bytes is a control
comma). This way, the events read from the pAER sender will
be streamed one after another over the bit-serial LVDS line to the
destination FPGA. As will be explained below, the async2sync
block needs several clock cycles to acquire one 32-bit event,
while the other synchronous blocks need only one clock cy-
cle to transfer “sDATA”. Since the “wrapper” needs to read
32-bit data at every f = 75 MHz rising clock edge, the TX block
will insert “idle commas” (3C BC BC BC) whenever there is
no actual event to be transmitted. On the receiver FPGA, the
“wrapper” (wRX) will provide reconstructed 32-bit “sDATA”
words together with their corresponding 4-bit “kchar” words.
Depending on the running “offset” value, the RX block will
correctly align the four bytes for each event, and send the cor-
rectly assembled 4-byte 32-bit events to the RX-FIFO block.
After the sync2async block, the top right pAER receiver will
read all these events from RX-FIFO. If the top right pAER
receiver temporarily reads events at a speed slower than the
top left pAER sender, the RX-FIFO block will accumulate an
increasing number of events and eventually fill up. To over-
come this, a flow control mechanism is required. We defined
two threshold levels for the RX-FIFO block: a “stop threshold”

1138 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

Fig. 4. Simplified diagram of async2sync (top) and sync2async (bottom)
blocks. The figure comprises the standard scheme (solid lines) together with a
proposed accelerated scheme (dashed lines).

and a “resume threshold”. If the FIFO is filled above the “stop
threshold”, it asserts a “STOP” bit signal for the bottom right
TX block (in FPGA-2) of the reverse transmission link. As soon
as the TX block detects this active “STOP” signal, it will send a
32-bit “stop token” control word (01 1C 1C 1C), together with
kchar = ‘0111’, through the reverse LVDS channel to the bot-
tom left RX block in FPGA-1. This RX block will then activate
a “STOP” signal for the top left TX-FIFO block in FPGA-1,
which will then change its state to “Stop” and will refuse to
accept new events (by activating “Busy”). Consequently, from
now on, no more events will be transmitted on the upper for-
ward channel from left to right, and the RX-FIFO in FPGA-2
will be gradually emptied. When the RX-FIFO content crosses
the “resume threshold”, it will de-assert the “STOP” signal and
the TX block in FPGA-2 will send a 32-bit “resume token” con-
trol word (00 1C 1C 1C), together with kchar=‘0111’, through
the reverse channel to the RX block in FPGA-1. This block will
de-assert the “Stop/Resume” bit signal and the TX-FIFO block
in FPGA-1 will resume accepting events. Token control word
transmission has higher priority than normal event word trans-
mission, so the TX blocks will momentarily stop accepting new
events (by activating the “Busy” signal) until the 32-bit token
is sent. This will introduce a latency of just one clock cycle in
regular event data transmission.

The stop/resume thresholds can be adjusted experimentally
for worst case delay. A simple method to measure this delay is
by using two GTP transceivers in one FPGA and a counter to
obtain the number of clock cycles between sending and receiving
a given event. We also observed in previous research [31] that
slight differences (∼ 30 ppm) in Xtal oscillator frequencies can
also impact system behaviour by introducing asymmetries in
the data rates of the links, therefore justifying also the need for
adjusting these thresholds experimentally.

C. Asynchronous to Synchronous Domain Interfacing

Fig. 4 shows simplified diagrams for the Asynchronous to
Synchronous (top) and Synchronous to Asynchronous (bottom)
blocks in Fig. 2. These blocks interface between the synchronous
circuits in one FPGA clock domain and external AER circuits,
which may be fully asynchronous or driven by other domain
clocks. In either case, synchronization is required. Here we used
the conventional two D-flip-flop scheme to read in and synchro-
nize the external incoming handshake signals (either Req for

the top part, or Ack for the bottom part). We have performed
tests using two schemes: (a) The conventional two D-Flip-Flop
scheme [32] shown in Fig. 4 when ignoring the wires and blocks
with dashed lines, and (b) an accelerated scheme that includes
the wires and blocks with dashed lines. The conventional scheme
requires on average 12 clock cycles for one event transaction,
while the accelerated one needs on average 6 clock cycles.

1) Conventional Scheme: The conventional synchronization
scheme introduces a delay of an extra two clock cycles per hand-
shake signal (Req on the receiver and Ack on the sender). The
FIFOs are both small (4 registers). On the synchronous side
(right) of the local clock domain, data is transferred with a sin-
gle clock cycle transaction whenever signal DV (data valid)
is activated while signal Busy is inactive. On the left side,
data is transferred using 4-phase handshaking. Under these
circumstances, one event transaction requires 10 to 12 clock
cycles [32].

2) Accelerated Scheme: For the accelerated scheme we have
to impose some restrictions on the sender, the delays of the inter-
connection lines, and the relative difference between the clock
frequencies of sender and receiver circuits. For the sender, the
Req signal has to be set one (sender) clock cycle after the data
lines, the jitter of the interconnection lines has to be negligible
with respect to clock cycles, and the difference in clock frequen-
cies between sender and receiver cannot be greater than a factor
two. Under these circumstances, one event transaction can be
performed in either 5 or 6 transmitter clock cycles. The scheme
works as follows. For the async2sync receiver interface (top in
Fig. 4), the (active low) Ack signal is formed by the OR of signal
(active high) “FIFO almost full” and (active low) Req. Conse-
quently, the returning Ack signal needs to be synchronized on
the other side, and this is done using another two D-flip-flop
scheme. The receiver also synchronizes all data lines, in order
to delay them 2 clock cycles. It is well known that, in general,
synchronizing parallel data lines does not work [33]. This is
because each data bit can be captured at different receiver clock
edges due to jitter in the sender data edges, jitter in the receiver
data latches clock edges, different delays of the data bit lines,
or different threshold levels of the data bit latches. However, if
it is guaranteed that at the receiver side (a) Req arrives always
after all data lines have stabilized, and (b) Req and all data lines
stay stable for at least 2 clock cycles, then the synchronized
version of Req will capture all data bits correctly. The chance
of metastability, however, is multiplied by the number data bits
plus one (33 in our case). Nonetheless, for the Spartan6 speci-
fications, this chance is still several years. In the experimental
results (Section V) we show in-hardware verifications of both
schemes, the conventional one and the accelerated one, tested
for over 65 hours without any transmission errors.

III. CLOCK CORRECTION

A. The Problem of Multiple Clock Domains

Fig. 5 shows the bi-directional LVDS link between the two
FPGA PCBs in Fig. 2, this time highlighting the reference Xtal
oscillator in each FPGA PCB. Each PCB has its own Xtal oscil-
lator which generates a low-jitter reference clock (in our case,

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1139

Fig. 5. 2-FPGA LVDS bi-directional AER communication link highlighting the reference Xtal oscillator in each FPGA. Xtal frequencies may differ by a few
ppms, thus requiring clock correction techniques for reliable communications.

150 MHz). In FPGA-1 PCB, reference clock frefclk1 will be
up-converted by special circuitry inside the wrapper to the line
frequency fGHz1 used by the LVDS transmission (wTX) lane
(typically in the range of a few GHz). Extra clock management
circuitry also provides two additional reference clocks of fre-
quencies f and 4f (when 32-bit 4-byte data is read per clock
cycle).5 Wrapper input data (32-bit “DATA” and 4-bit “kchar”)
is read at the rising edges of f . Clock fGHz1 is used to encode
the bit-serial data stream through the top LVDS lane in Fig. 5.
The receiver circuitry inside the wrapper (wRX) in FPGA-2
PCB will recover the fGHz1 clock to decode the serial data and
convert it back to parallel 32-bit “DATA” words. Let us call this
recovered clock frGHz1 . It will have exactly the same frequency
as fGHz1 but with totally uncorrelated phases and higher jitter.
On the receiver side it is possible to down-convert the recov-
ered clock frGHz1 to the original frequency of fref clk1 . Clock
signals fref clk1 , f , 4f , fGHz1 in FPGA-1 PCB, and recovered
clocks frGHz1 and fref clk1 in FPGA-2 PCB are all mutually
synchronous because they are all from the same reference Xtal1
oscillator.

Likewise, similar clocks are generated derived from the Xtal2
oscillator in FPGA-2 PCB. Both Xtal oscillators (Xtal1 and
Xtal2) must have the same frequency. However, there is al-
ways a small frequency difference (typically approximately
+/− 100 ppm) between reference clock sources. As a re-
sult, each wrapper uses a slightly different frequency for
its transmit datapath (wTX) and its receive datapath (wRX).
There are therefore two independent clock domains and at
some interface they are bound to interfere with each other.
This situation can be dealt with using a clock correction
technique.

Alternatively, instead of clock correction, an attempt can be
made to extend the same clock domain to all circuitries by
propagating the clock recovered at wRX. The drawback of
this approach is that the clock recovered by a receiver in a
wrapper has higher jitter than the original clock, resulting in
less reliable communication. If, instead of having just one bi-

5Frequencies fGHz and f are related by fGHz = 10 × nbpe × f , where
nbpe is the number of bytes per event. Throughout this paper nbpe = 4, fGHz =
3 GHz, 4f = 300 MHz, and f = 75 MHz.

directional link (as in Fig. 5), there are more links per FPGA-
PCB and many PCBs are interconnected, then it will be im-
practical to propagate a single Xtal reference clock to all PCBs
through a sequence of clock up-conversions and recovery down-
conversions. This would progressively degrade clock jitter and
ultimately render the links unusable. In this case, clock cor-
rection techniques offer a robust, reliable solution. The use
of one such technique, available in some FPGAs, is detailed
below.

B. Clock Correction Implementation

Consider the situation in Fig. 6(a), which shows an FPGA with
4 bi-directional LVDS links (8 LVDS lanes). This FPGA can be
thought of as being held in one FPGA-PCB with its reference
Xtal oscillator. Many of these single-FPGA PCBs could be in-
terconnected in a mesh-like fashion using bi-directional LVDS
links to form a 2D array of PCBs, as shown in Fig. 1. Each
FPGA contains 4 “wrapper” circuits (like the ones discussed in
Section II and shown in Figs. 2 and 5), one per bi-directional
LVDS link.

Each FPGA-PCB has one low jitter Xtal oscillator (150 MHz
in our case). These low jitter oscillators usually provide a differ-
ential output signal, which is converted to a single-ended signal
inside the FPGA with specially dedicated low-jitter buffers.
This reference clock is then routed to all wrapper transmitter
(wTX) subcircuits, where it is up-converted to a clock signal at
line frequency fGHzi (in the range of 1–3.2 GHz for Spartan-6).
The reference clock fref clki is also routed to a “clock manager
module” (clk mgr in Fig. 6(a)), where two synchronized clocks
of frequency f and 4f are provided. These two synchronized
clocks are routed to the wrappers and are also available for user
logic.

Fig. 6(b) shows the internal structure of the wrapper in more
detail (although still overly simplified). In the wrapper trans-
mitter sub-block (wTX), “DATA_out” (32-bit events or control
commas) is read synchronously at the rising edges of clock
f , together with its corresponding 4-bit “kchar_out” word. This
parallel 32-bit word is then converted byte by byte, using 8b/10b
encoding, to give a 40-bit parallel word, which is then serial-
ized into a bit-stream using the up-converted clock frequency

1140 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

Fig. 6. (a) FPGA PCB with four bi-drectional LVDS bit-serial links. (b) Detail of wrapper transmitter (wTX) and receiver (wRX) sub-blocks.

fGHz1 , and sent through the appropriate LVDS driver circuits
to a differential pair of wires. Fig. 6(b) also shows the sim-
plified internal structure of the “wrapper receiver sub-block”
(wRX). A CDR (Clock and Data Recovery) circuit receives the
LVDS bit-serial stream of input data, extracting a recovered
clock frGHz2 . A deserializer circuit then converts this bit-stream
into a sequence of parallel bytes, detecting byte-alignment com-
mas and immediately aligning the bytes. 8b/10b encoded 10-
bit words are then decoded into 8-bit data or comma bytes.
Up to this point, logic has been clocked using clocks derived
from the recovered line clock frGHz2 , but now the recovered
32-bit events (or commas) need to be transferred to registers and
logic has to be clocked by clock signal f , which belongs to a
different clock domain (the one derived from fref clk1). This
clock domain “crossover” is handled using an “Elastic Buffer”
[34] provided by the FPGA manufacturer within the wrapper. An
Elastic Buffer is an asynchronous FIFO which is written using
one clock and read using another clock. The frequencies of the
two clocks are fairly similar but not exactly equal. As a result,
the elastic buffer will slowly either fill up or empty out. This is
avoided by defining a clock correction comma. The clock cor-
rection comma, which can be defined as a single byte, a 2-byte
group, or a 4-byte group, has to be inserted into the data stream
sent by the user-designed transmitter TX with certain period-
icity (the exact periodicity depends on the expected worst case
discrepancy between fGHz1 and fGHz2). If the elastic buffer fills
up above a given threshold, one clock correction comma is re-
moved and not delivered to the output port. This way, the elastic
buffer is suddenly emptied by the amount of one comma. On the
other hand, if the elastic buffer is emptied below another given
threshold, one clock-correction comma is inserted in the elastic
buffer, and this comma has to be ignored at the user-designed
receiver, RX in Figs. 2 and 5. The elastic buffer is thus suddenly
filled by the amount of one comma. Since we were using 4-byte
events, it made sense to use 4-byte clock-correction commas
to avoid event de-alignment after clock-correction. However,
we decided to use a one-byte clock-correction comma (BC) for
lower comma traffic, which combined with our byte-alignment
circuit, allows for on-the-fly event re-alignment. The use of

one-byte clock correction commas had the effect of changing
the alignment offset in Fig. 3, either incrementing it or decre-
menting it by ‘1’. The insertion and removal by the wrapper of
user-defined clock-correction commas is signaled by the 3-bit
signal ‘clkcorr’. The user circuit RX state machine is designed
to properly handle these commas.

IV. MULTIPLE CHANNEL MULTIPLEXING

One SATA link with a line frequency of 3.0 Gbps using
8b/10b byte encoding and transmitting 32-bit events can trans-
mit at a rate of 75 Meps (including control commas) per link
direction. This event rate is fairly high compared to transmis-
sion speed through a standard parallel asynchronous AER port.
For example, purely asynchronous 128 × 128 pixel DVS sen-
sors have been reported to achieve speeds of almost 10Meps
for 15-bit events [28]. The synchronization circuitry within the
async2sync and sync2async blocks also results in event trans-
actions of a maximum of 6 clock cycles (if the conditions dis-
cussed in Section II-C are met). This would result in an event
rate of 12.5Meps. To take advantage of the available bandwidth
in these SATA links, several asynchronous parallel AER chan-
nels can be multiplexed over one link. Fig. 7 illustrates our
proposed multiplexing of 2 × k AER channels over one bidi-
rectional SATA link (k channels in each direction). The blocks
shown within the broken lines in Figs. 2 and 5 are now replaced
by the blocks shown within the broken lines in Fig. 7. If q is
the smallest integer such that 2q ≥ k, then the top q bits of
the 32 sDATA bits are sacrificed to encode AER channel num-
ber within each event. Each TX-FIFO receives AER events of
32-q bits and writes them into its registers, activating an out-
put signal “Empty” when there is no data left in its registers.
The “Fair Tag Encoder” FSM selects one non-empty TX-FIFO
to read, following a fair selection algorithm (see below in
Section IV-B). This TX-FIFO channel is selected by the Ch-
MUX multiplexer block. The 32-q bit data is read, the corre-
sponding top q bits (Channel ID) are appended, and the complete
32-bit sDATA is then sent to the TX block if its “Busy” signal is
non-active. On the receiver side, the “Tag Decoder” block reads

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1141

Fig. 7. Block diagram of channel multiplexing arrangement with k trans-
mitting and k receiving channels together with flow control and tag handling
blocks.

the top q bits and activates the corresponding “Write-enable”
signal for the destination RX-FIFO, which reads the lower 32-q
bits of the incoming sDATA (32 bit) word. Each RX-FIFO will
be read out through its output channel.

A. Flow Control

If the read out speed at the output of an RX-FIFO is slower
than the speed at which events are received, the corresponding
RX-FIFO will fill up. RX-FIFOs will activate a “stop” signal if
they are filled beyond a pre-set threshold (which should be lower
than the FIFO’s capacity), or a “resume” signal if they are emp-
tied below a second pre-set threshold. This one-bit stop/resume
signal is read by the “Flow Control Encoder” FSM, which will
tell the TX block with highest priority the channel number “Ch-
NUM” whose RX-FIFO is getting close to full while activating
the “Ch-valid” signal. The TX block will send a 32-bit flow
control comma (Ch 1C 1C 1C), with kchar = ‘0111’, where Ch
is an 8-bit byte in which: (a) the 7 most significant bits encode
the channel number (so that up to 128 channels can be multi-
plexed), and (b) the least significant bit is either ‘1’ to signal
“stop” or ‘0’ to signal “resume”. This flow control comma is re-
ceived by the RX block on the other side of the link, which will
communicate the channel stop/resume command to the “Flow
Control Decoder” FSM. This FSM will then decode the saturat-
ing channel’s ID and set the corresponding stop/resume signal
(one of the 2q lines) for the “Fair Tag Encoder”, which will in
turn enable/disable the “Read Enable” signal for the channel,
so that the corresponding channel TX-FIFO will stop/resume
accepting new input events.

Note that this flow control scheme is very similar to the single-
channel scheme explained in Section II-B, except that here the
flow control comma uses all 8 bits of the first byte and the upper
q bits of the events are sacrificed to encode channel number.

Fig. 8. Fair encoder operation diagram.

Fig. 9. Schematic operational diagram of barrel priority encoder.

B. Fair Tag Encoding Operation

Fig. 8 shows a simplified diagram of the “Fair Tag Encoder”
block. Channel signals ‘stop/resume’ and ‘empty’ are OR-ed
to generate ‘ready’ signals. These ‘ready’ signals are fed to a
“Barrel Priority Encoder”. This block is basically a priority en-
coder whose priority preference is circularly shifted one position
each clock cycle, as illustrated in Fig. 9. The “Barrel Priority En-
coder” generates the corresponding output channel Tag, which
is used by a Decoder circuit to generate ‘Read_Enable’ signals.

V. EXPERIMENTAL RESULTS

In the experimental measurements reported here we use
Spartan-6 GTP interfaces operating at 3.0 Gbps with error-free
transmission. This data rate is very close to their maximum data
rate limit of 3.2 Gbps. This requires careful PCB design and
component choices. The high speed traces on the PCB were
designed using industry-standard techniques. The PCB manu-
facturer supplied track width and spacing based on the proposed
board stack-up and required impedance. The Cadence Allegro
PCB tools were set up to use these parameters. The differ-
ential pairs were automatically length matched and all bends
were chamfered and vias avoided where possible. The high
speed tracks were routed on the outer layers of the PCB with a
ground plane beneath. Standard surface mount SATA connec-
tors were used on the PCB. During board commissioning, the
drive strength of the FPGA differential drivers was adjusted to
ensure adequate noise margin on the links.

1142 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

Fig. 10. Separate setup to test and characterize the accelerated Sync2Async
and Async2Sync scheme. (a) Schematic diagram, and (b) Experimental setup.

A. Test of Accelerated sync2async and async2sync Scheme

In a preliminary characterization, we tested first the correct
operation of the accelerated async2sync and sync2async scheme
presented in Section II-C. Fig. 10(a) shows the schematic dia-
gram of the setup used for this, with the TX on the left and
the RX on the right sides, each with its own independent clock.
Let us call their clock periods PT X and PRX respectively. At
TX the 32-bit AER data is set one clock cycle before Req. Ack
returns (if STOP/resume signal is low) without passing through
any synchronization nor state machine at the receiver. If wire
delays are negligible, the TX requires 6PT X to perform one full
data transfer: 1st to write data, 2nd to write Req, 3rd to capture
Ack, 4th and 5th to capture the synchronized version of Ack by
the TX FSM, and 6th to allow the FSM to write the new data. If
there are delays in the wires, pads, and OR gate, then one event
transmission requires 6PT X + 4τline (where 2τline includes one
full round: two physical wires and connectors, four pads, and the
OR gate). On the RX side, the circuit needs 3PRX to capture one
event. If RX clock is faster than TX clock (PT X > PRX) there
are no communication problems. However, if TX clock is faster,
we have to guarantee that 6PT X + 4τline > 3PRX . The worst
case is when τline is negligible, which results in 2PT X > PRX

(or 2fRX > fT X). Consequently, if TX clock frequency is not
more than twice the RX clock frequency, correct communica-
tion is guaranteed, independent of the physical delays of lines,
pads, connectors, etc.

To verify this, we assembled the experimental setup shown in
Fig. 10(b) with intentional long external wires. Two AER-Node
boards [25] were used, interconnected through their parallel
ports with a relatively long parallel bus ribbon cable. The TX
circuit was clocked at 250 MHz while the RX was clocked
at 143MHz. This setup showed error-free transmission tested
over several days. Fig. 11(a) shows signals Data, Req, Ack at
pad, and Ack after synchronizers, captured inside the TX FPGA
using Chipscope. We can see that one event cycle transmis-

Fig. 11. Chipscope captured signals at (a) TX circuit with 250 MHz clock
and (b) RX circuit with 143 MHz clock frequency.

Fig. 12. Example setup with two ATIS retinas [35] connected via AER parallel
ports to the AER-Node board [25], which connects via SATA to a 48-chip
SpiNNaker Board [27].

sion requires 17 TX clock cycles (68 ns), although sometimes
it would require 16. The measured average was 16.98 cycles
(67.93 ns). Since we estimated this delay as 6PT X + 4τline , it
results in τline = 10.98 ns (equivalent to 2.75 TX clock cycles).
Fig. 11(b) shows signals Data at the pads, after synchronizers,
Req at the pad, after synchronizers, and Ack at the pad, cap-
tured inside the RX FPGA using Chipscope. We can see one
event cycle transmission of 10 RX clock cycles (69.93 ns) and
another one of 9 RX clock cycles (62.94 ns). The measured
average was 9.71 RX clock cycles (67.93 ns). Therefore, this
accelerated scheme setup was able to transmit at an average of
67.93 ns per event, or equivalently, 14.72 Meps. By using the
non accelerated scheme the average event transmission rate was
9.75 Meps.

In the experiments that follow, the async2sync and
sync2async interfaces are completely inside the FPGAs thus
minimizing τline . The measured results shown next also demon-
strate error free transmissions.

B. Serial Link Characterization

Figs. 12 and 13 show two typical setups in which the proposed
bidirectional serial link was used. The figures show two separate
AER retina sensors, each connected to the AER-Node Board
[25] by a parallel AER connector (using a custom adapting

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1143

Fig. 13. Example setup with two DVS [28] retinas connected via AER parallel
ports to the AER-Node board [25], which connects via SATA to a 48-chip
SpiNNaker Board [27].

PCB that makes it possible to connect up to 4 AER parallel
ports). The two retinas communicate with the Spartan6 FPGA
on the AER-Node Board, which in turn communicates with
one 48-chip SpiNNaker Board [27] through serial SATA. The
SpiNNaker board receives events from the two retinas’ AER
ports, processes them and sends the resulting event flow back to
the AER-Node Board via the same SATA wire. The AER-Node
Board sends the results through another parallel AER port to
a USBAERmini2 Board [10] which communicates with a host
computer by USB to display the results in real time.

The proposed communication scheme was experimentally
characterized using a pair of Spartan6 FPGAs located on two
different (SpiNNaker) PCBs. Each Spartan6 (XC6SLX45T-3)
FPGA used its own 150MHz Xtal oscillator. To test the mul-
tiplexed link at maximum throughput (thereby, forcing flow
control), we used one GTP port on each FPGA, as illustrated
schematically in Fig. 14. Each FPGA used its local 150 MHz
reference clock plus an additional 67 MHz clock, so each FPGA
included two separate clock domains. The setup was configured
with 4 separate bidirectional AER Channels (3 synchronous
and one asynchronous) multiplexed over the SATA link. For
this we used a “Test Pattern Generator” (TPG) and “Test Pattern
Checker” (TPC) transmitter/receiver pair. The TPG provides a
known sequence of patterns, while the TPC checks and counts
event errors in that sequence and computes the effective event
rate received (excluding all control commas). In each FPGA,
three TPG/TPC pairs were clocked with the same clock as the
Transceiver/Multiplexing core discussed in Figs. 2, 5, and 7.
This is a clock running at f = 75 MHz, derived from the ex-
ternal 150 MHz Xtal reference oscillator. Each of the 3 syn-
chronous TPGs could therefore provide an event rate of up to 75
Meps (one per clock cycle). The 4th TPG/TPC pair was clocked
with the additional 67 MHz clock and interfaced through a pair
of async2sync blocks. The LVDS line rate was set at 3.0 Gbps.
We tested the setup using the two synchronization schemes dis-
cussed in Section II-C and Fig. 4: the faster one requiring on
average 6 clock cycles per event transaction, and the slower one
requiring on average 12. Table II summarizes the results for the
6-cycle case after testing the setup for 65 hours. None of the

TABLE II
EXPERIMENTAL CHARACTERIZATION TEST FOR FAST 6-CYCLE EVENT

TRANSACTION SYNCHRONIZATION SCHEME ON CHANNEL 1

Channel# Event Rate (Meps) Link utilization(%) Error Ratio

Channel1 11.14 14.85 0
Channel2 26.29 35.05 0
Channel3 18.75 25.00 0
Channel4 18.75 25.00 0
Total 74.93 99.90 0

TABLE III
EXPERIMENTAL CHARACTERIZATION TEST FOR SLOWER 12-CYCLE EVENT

TRANSACTION SYNCHRONIZATION SCHEME ON CHANNEL 1

Channel# Event Rate (Meps) Link utilization(%) Error Ratio

Channel1 6.43 8.57 0
Channel2 31.00 41.33 0
Channel3 18.75 25.00 0
Channel4 18.75 25.00 0
Total 74.93 99.90 0

channels detected a single error in the transmission. The link
bandwidth (75 Meps) was shared by the four Channels as in-
dicated in Table II, covering effective data events plus control
commas (for flow control, clock correction, or idle commas).
The TPGs clocked at 75 MHz attempted to deliver data at one
event per clock cycle, but were slowed down by the correspond-
ing “Fair State Encoder” whenever the SATA link bandwidth
was reached. The TPG clocked at 67 MHz (Channel 1) could
only deliver events at a much lower rate because of the syn-
chronization delays. This explains why the effective event rate
for this link dropped to 11.14 Meps. The rest of the bandwidth
was split up between the other Channels as shown in Table II.
Note that Channel2 ends up transmitting at a higher rate than
Channels 3–4. This is because of the priority endcoder design
in Figs. 8 and 9, which assigns to each Channel different prior-
ities every clock cycle (to prevent one pAER transmitter from
blocking others). Since Channels 2 to 4 always have data ready
to send, they will use 25% of the time (when they have high-
est priority) to send their data. When highest priority is with
Channel1, sometimes there is no data ready to send. In this
case Channel2 has second priority and will use this time for
its data.

Total data bandwidth was thus 74.93 Meps (99.90% of link
bandwidth). The remaining 0.07 Meps bandwidth (0.10%) was
used by control commas. Table III shows the same results, but for
the case of using the slower 12-cycle synchronization scheme.
In this case Channel 1 achieved a lower throughput, but the total
link bandwidth was kept the same. Note that Channel1 event rate
in Table III is slightly faster than half of that in Table II, which
might be surprising because we are expecting the fast scheme
to require between 5-to-6 clock cycles and the slow scheme
between 10-to-12. When using the fast scheme, throughput is
limited by the TX clock at 67 MHz. However, for the slow
scheme the delays depend on both the TX and RX clocks, and
the effective clock cycle is somewhere between 67 MHz and

1144 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

Fig. 14. Simplified diagram illustrating the experimental configuration inside the two Spartan6 FPGAs.

Fig. 15. Measured event error rate while sweeping interval sampling point.

75 MHz, resulting in an event transmission rate slightly better
than half of the fast one.

The FPGA GTP receivers made it possible to tune the volt-
age sampling point of the physical LVDS line to compensate
for possible asymmetries. This sampling point is expressed as
a percentage of the full range, the central point being 50%. We
tested the event error rate of the link as a function of the in-
terval sampling point. The results are shown in Fig. 15, where
it can be seen that event error rate was null between sampling
points 0.35% and 0.65%. Outside this range, the event error rate
increased exponentially.

Fig. 16 shows the eye diagram measured using an
Agilent DSO81304B oscilloscope with 12GHz bandwidth sol-
dered probes. Eye opening was 235 ps width times 224 mV
height, with an average rms jitter of 14.3 ps. This confirms a
safe enough margin on the physical design side for the trans-
mission speed of 3 Gbps (333 ps per bit). We can see in the
figure that transmission of one bit requires an average of 328
ps, which yields an average transmission frequency of 3.046
GHz. The figure also shows that the differential amplitude of
the physical LVDS signal has an average of about 700 mV peak
to peak.

C. Application Example

Fig. 17(a) illustrates a multi-FPGA multi-PCB application
example of a neuromorphic system that extensively exploits the

Fig. 16. Measured eye diagram on the LVDS lanes operating at 3.0 Gbps.

presented LVDS interface protocol technique. The setup shows
17 Spartan6-based AER-Node Board PCBs [25] which receive
real-time events from an event-driven spiking retina Dynamic
Vision Sensor [28]. The sensor event flow is distributed to a
mesh of event-driven convolution filters [21] that emulate the
operation of the vertebrate V1 visual cortex. These convolution
filters are implemented on the Spartan6 FPGAs and the event
traffic is distributed using the SATA LVDS links. The output
event flow of each convolution filter is then routed back through
the same SATA LVDS links and concentrated on one of the
AER-Node Boards, which converts the input and a selected
number of outputs to parallel AER, which is then interfaced to a
PC through a USBAERmini2 PCB [10], to monitor in real time
the activity of the selected V1 filters on a screen, as shown in
Fig. 17(b), using jAER [36].

Typical techniques for mapping generic spiking networks
onto modular hardware exploit the mapping of computational
architectures to 2D meshes [15], [21], where unit elements are
connected to nearest neighbours. Each unit element includes a
processing module and a router. Each router contains its own
routing table, and the set of all routing tables defines how the
original computational architecture has been mapped onto the

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1145

Fig. 17. Example application of neuromorphic event-driven sensing and computing setup including an event-driven Dynamic Vision Sensor and array of event-
driven filtering blocks emulating the V1 layer of the vertebrate visual system. (a) Physical setup using 17 Spartan6 AER-Node Boards [25] intercommunicated
through our SATA serial protocol, one event-driven vision camera [28], and one USBAERmini2 computer interfacing PCB [10] to monitor computations in real
time on a monitor screen, shown in (b).

2D array. In this approach, physical links only exist between
neighbours. This may result in congestions if for example two
distant unit elements have to maintain a high event data rate
between them, because this event traffic would use time of all
the routers in the path. However, with the proposed technique
of multiplexing multiple AER paths on the same physical SATA
wire, it is possible to establish direct paths between distant
unit elements without necessarily going through all the routers
within the 2D mesh path.

VI. CONCLUSION

We have presented a method for multiplexing multiple asyn-
chronous and/or synchronous Address-Event-Representation
channels over a physical bidirectional inter-FPGA LVDS link.
The scheme allows for the separate, independent flow control
of each AER channel and includes proper byte alignment con-
trol for the serial communication, together with clock correction
techniques for compensating clock drifts between the reference
clocks of the FPGAs. Experimental results using the LVDS links
of two Spartan6 FPGAs on separate boards demonstrated the
correct operation of the link. Exhaustive tests were carried out in
hardware, demonstrating error free transmissions over extended
time periods while communicating events at the full bandwidth
of the physical links. Complete vhdl/verilog codes and example
setups are made available as supplementary material.

Although the lowest data transmission layers are well known
and widely used (Xilinx IP wrapper), our contribution in the field
of biology-inspired computing is the setup of heterogeneous ar-
chitectures able to combine various custom processing elements
(like concurrent ARM-based Spinnaker platform, massively par-
allel FPGA-based emulators of spiking neurons) connected to
each other via various asynchronous interfaces (2-of-7 parallel
bus, pAER 16-bit parallel bus, bi-directional LVDS serial links)
and driven by multiple event-based neuromorphic sources of
real sensory signals (such as artificial Retinas or Cochleas). Even
though computing elements (CPU’s and FPGA’s) and transmis-
sion links operate asynchronously and at different speeds, we
have proven that they are able to cooperate and the transmission
can be error-free even when reaching physical data rate limits.

One special concern and contribution in this work was shar-
ing the bandwidth of single LVDS channels by various agents
(multiple transmitters and receivers). We demonstrate error-free
transmission running at almost maximum possible speed shar-
ing the bandwidth of single bit-serial channels among multiple
synchronous and asynchronous elements running at different
rates. Priority encoding and flow-control is critical for avoiding
buffer overflow when control and data events appear concur-
rently. Illustrations of multiple and heterogenous neuromorphic
setups are provided.

REFERENCES

[1] M. Sivilotti, “Wiring considerations in analog VLSI systems with appli-
cation to field-programmable networks,” Ph.D. thesis, Comput. Neural
Syst., Caltech, Pasadena, CA, USA, 1991.

[2] M. Mahowald, “VLSI analogs of neuronal visual processing: A synthe-
sis of form and function,” Ph.D. thesis, Comput. Neural Syst., Caltech,
Pasadena, CA, USA, 19‘92.

[3] K. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Trans. Circuts Syst. II, vol. 47, no. 5,
pp. 416–434, May 2000.

[4] V. Chan, C. Jin, and A. van Schaik, “An address-event vision sensor for
multiple transient object detection,” IEEE Trans. Biomed. Circuits Syst.,
vol. 1, no. 4, pp. 278–288, Dec. 2007.

[5] Z. Fu, T. Delbrck, P. Lichsteiner, and E. Culurciello, “An address-event fall
detector for assisted living applications,” IEEE Trans. Biomed. Circuits
Syst., vol. 2, no. 2, pp. 88–96, Jun. 2008.

[6] B. Wen and K. Boahen, “A silicon cochlea with active coupling,” IEEE
Trans. Biomed. Circuits Syst., vol. 3, no. 6, pp. 444–455, Dec. 2009.

[7] S. Mitra, S. Fusi, and G. Indiveri, “Real-time classification of complex
patterns using spike-based learning in neuromorphic VLSI,” IEEE Trans.
Biomed. Circuits Syst., vol. 3, no. 1, pp. 32–42, Feb. 2009.

[8] R. Mill, S. Sheik, G. Indiveri, and S. L. Denham, “A model of stimulus-
specific adaptation in neuromorphic analog VLSI,” IEEE Trans. Biomed.
Circuits Syst., vol. 5, no. 5, pp. 413–419, Oct. 2011.

[9] D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-modulation
imaging—Review and performance analysis,” IEEE Trans. Biomed. Cir-
cuits Syst., vol. 5, no. 1, pp. 64–82, Feb. 2011.

[10] R. Serrano-Gotarredona et al., “CAVIAR: A 45k neuron, 5M synapse, 12G
connect/s AER hardware sensory-processing-learning-actuating system
for high speed visual object recognition and tracking,” IEEE Trans. Neural
Netw., vol. 20, no. 9, pp. 1417–1438, Sep. 2009.

[11] M. Kahn et al., “SpiNNaker: Mapping neural networks onto a massively-
parallel chip multi-processor,” in Proc. IEEE Int. Joint. Conf. Neural
Netw., Jun. 2008, pp. 2849–2856.

[12] J. Fieres, J. Schemmel, and K. Meier, “Realizing biological spiking net-
work models in a configurable wafer-scale hardware system,” in Proc.
IEEE Int. Joint. Conf. Neural Netw., Jun. 2008, pp. 969–976.

1146 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 5, OCTOBER 2017

[13] P. O. Pouliquen and A. G. Andreou, “Bit-serial address-event representa-
tion,” in Proc. 33rd Annu. Conf. Inform. Sci. Syst., Baltimore MD, USA,
Mar. 1999, pp. 893–896.

[14] K. Boahen, “A burst-mode word-serial address-event link I, II, III,” IEEE
Trans. Circuits Syst. I, vol. 51, no. 7, pp. 1269–1300, Jul. 2004.

[15] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The SpiNNaker project,”
Proc. IEEE, vol. 2, no. 5, pp. 652–665, May 2014.

[16] L. A. Plana et al., “A GALS infrastructure for a massively parallel
multiprocessor,” IEEE Des. Test Comput., vol. 24, no. 5, pp. 454–463,
Sep./Oct. 2007.

[17] LVDS Owner’s Manual, 4th ed., Nat. Semiconductors, Santa Clara, CA,
USA, 2008.

[18] L. M.-A. et al., “A LVDS serial AER link,” in Proc. 13th IEEE Int. Conf.
Circuits Syst., 2006, pp. 938–941.

[19] H. Berge and P. Hfliger, “High-speed serial AER on FPGA,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2007, pp. 857–860.

[20] D. B. Fasnacht, A. M. Whatley, and G. Indiveri, “A serial communication
infrastructure for multi-chip address event systems,” in Proc. IEEE Int.
Symp. Circuits Syst., May 2008, pp. 648–651.

[21] C. Zamarreo-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Multi-casting mesh AER: A scalable assembly ap-
proach for eeconfigurable neuromorphic structured AER systems. appli-
cation to ConvNets,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 1,
pp. 82–102, Feb. 2013.

[22] C. Zamarreo-Ramos, T. Serrano-Gotarredona, and B. Linares-Barranco,
“A 0.35 um Sub-ns wake-up time ON-OFF switchable LVDS driver-
receiver chip I/O pad pair for rate-dependent power saving in AER bit-
serial links,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 5, pp. 486–497,
Oct. 2012.

[23] C. Zamarreo-Ramos, R. Kulkarni, J. Silva-Martnez, T. Serrano-
Gotarredona, and B. Linares-Barranco, “A 1.5 ns OFF/ON switching-time
voltage-mode LVDS driver/receiver pair for asynchronous AER bit-serial
chip grid links with up to 40 times event-rate dependent power savings,”
IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 722–731, Oct. 2013.

[24] C. Zamarreo-Ramos, T. Serrano-Gotarredona, and B. Linares-
Barranco, “An instant-startup jitter-tolerant manchester-encoding seri-
alizer/deserializar scheme for event-driven bit-serial LVDS inter-chip
AER links,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 11,
pp. 2647–2660, Nov. 2011.

[25] T. Iakymchuk et al., “An AER handshake-less modular infrastructure PCB
with x8 2.5Gbps LVDS serial links,” in Proc. IEEE Int. Symp. Circuits
Syst., 2014, pp. 1556–1559.

[26] L. Plana et al., “spI/O: A library of FPGA designs and reusable
modules for I/O in SpiNNaker systems,” 2014. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.51476

[27] S. Furber et al., “Overview of the SpiNNaker system architecture,” IEEE
Trans. Comput., vol. 62, no. 12, pp. 2454–2467, Dec. 2013.

[28] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128 × 128 1.5%
contrast sensitivity 0.9% FPN 3us latency 4 mW asynchronous frame-
free dynamic vision sensor using transimpedance amplifiers,” IEEE J.
Solid-State Circuits, vol. 48, no. 3, pp. 827–838, Mar. 2013.

[29] P. Popescu, A. Solheim, and M. Wight, “Experimental monolithic high
speed transceiver for Manchester encoded data,” in Proc. 1995 Bipo-
lar/CMOS Circuits Technol. Meeting, Oct. 1995, pp. 110–113.

[30] P. A. Franaszek and A. X. Widmer, “Byte oriented DC balanced (0,4)
8b/10b partitioned block transmission code,” U.S. Patent 4 486 738,
Dec. 4, 1984.

[31] M. Jablonski, T. Serrano-Gotarredona, and B. Linares-Barranco, “High-
speed serial interfaces for event-driven neuromorphic systems,” in Proc.
2015 Int. Conf. Event-Based Control, Commun. Signal Process., Jun. 2015,
pp. 1–4.

[32] R. Dobkin and R. Ginosar, “Zero latency synchronizers using four and
two phase protocols,” VLSI Syst. Research Center, Technion—Israel Inst.
Technol., Haifa, Israel, Internal Rep., Oct. 2007.

[33] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Proc. 9th Int.
Symp. Asynchronous Circuits Syst., 2003, pp. 89–96.

[34] Spartan-6 FPGA GTP Transceiver, Advanced Product Specifications.
UG386 (v2.2), Xilinx, San Jose, CA, USA, Apr. 30, 2010.

[35] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video com-
pression and time-domain CDS,” IEEE J. Solid-State Circ., vol. 46, no. 1,
pp. 259–275, Jan. 2011.

[36] T. Delbruck, “jAER Open Source Project,” 2007. [Online]. Available:
http: //jaer. wiki. sourceforge. net

Amirreza Yousefzadeh (M’11) was born in Tehran,
Iran, in 1988. He received the dual B.Sc. degrees
in electronic and communication engineering from
Amirkabir University of Technology, Tehran Poly-
technic, Tehran, Iran, in 2010 and the M.Sc. degree in
digital-electronics from Sharif University of Technol-
ogy, Tehran, in 2013. He is currently working toward
the Ph.D. degree at the Instituto de Microelectronica
de Sevilla (IMSE-CNM), CSIC University of Seville,
Seville, Spain. His research interests include design
and VLSI implementation of bioinspired vision pro-

cessing algorithms.

Mirosław Jabłoński received the M.Sc.Eng. degree
in electronics and telecommunication and the Ph.D.
degree (Hons.) in automatics and robotics, both from
the Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics, AGH-University
of Science and Technology (UST), Kraków, Poland,
in 2001 and 2009, respectively. He worked as a Re-
search and Teaching Assistant in the Department of
Automatic Control (2001–2009) and since 2010 as
an Assistant Professor in the Department of Auto-
matic Control and Bioengineering, AGH-UST. He

was awarded a Postdoc position (2014–2015) at the Sevilla Microelectronics
Institute (IMSE-CNM-CSIC). His research interests include parallel implemen-
tations of machine vision algorithms and biologically inspired computation by
means of FPGAs and GPUs.

Taras Iakymchuk received the M.Sc. diploma
degree from the Wroclaw University of Technology,
Wroclaw, Poland, in 2011. He is currently working
toward the Ph.D. degree at the University of Valen-
cia, Valencia, Spain, in the Digital Signal Processing
Group. He was collaborating with research groups
from Sevilla, Manchester, and the Institute of Neu-
roinformatics in Zurich. His main research interests
include embedded systems, neural networks, hard-
ware learning, and bioinspired computation.

Alejandro Linares-Barranco (M’04–SM’17) re-
ceived the B.S., M.S., and Ph.D. degrees in computer
science from the University of Sevilla, Sevilla, Spain,
in 1998, 2002, and 2003, respectively. From January
1998 to June 1998, he was a Second Lieutenant in the
Spanish Air Force working as a System Administrator
and a Software Developer. From 1998 to 2000, he was
a Member of the Technical Staff at the Sevilla Micro-
electronics Institute (IMSE-CNM-CSIC). From 2000
to 2001, he was a Development Engineer with the Re-
search and Development Department, at ABENGOA

Group, Sevilla. From 2001 to 2006, he was an Assistant Professor in the Com-
puter Architecture and Technology Department, University of Sevilla. In 2006,
he was promoted to an Associate Professor. He has been serving as the Director
of the Department since 2017. His recent research interests include VLSI for
FPGA digital design, neuro-inspired event-based processing, motor control and
computer interfaces. In 2013, he became the Chair of the Neural Systems and
Applications Technical Committee of the IEEE Circuits and Systems Society.
He was a Visiting Professor with the University of Zurich, Zurich, Switzerland,
in 2014.

YOUSEFZADEH et al.: ON MULTIPLE AER HANDSHAKING CHANNELS OVER HIGH-SPEED BIT-SERIAL BIDIRECTIONAL LVDS LINKS 1147

Alfredo Rosado received the M.Sc. and Ph.D. de-
grees in physics from the University of Valencia, Va-
lencia, Spain, in 1994 and 2000, respectively. He is
currently an Associate Professor in the Department of
Electronic Engineering, University of Valencia. His
work is related to automation systems, digital hard-
ware design (embedded systems) for digital signal
processing and control systems, especially targeted
for biomedical engineering, and bioinspired systems.
He is a member of International Federation of Auto-
matic Control.

Luis A. Plana (M’97–SM’07) received the Ingeniero
Electrnico degree from Universidad Simn Bolivar,
Caracas, Venezuela, the M.Sc. degree in electrical
engineering from Stanford University, Stanford, CA,
USA, and the Ph.D. degree in computer science from
Columbia University, New York, NY, USA. He was
with Universidad Politecnica, Venezuela, for over 20
years, where he was a Professor of Electronic En-
gineering. He is currently a Research Fellow in the
School of Computer Science, University of Manch-
ester, Manchester, U.K.

Steve Temple received the B.A. degree in computer
science and the Ph.D. degree in research into local
area networks from the University of Cambridge,
Cambridge, U.K., in 1980 and 1984, respectively. He
was subsequently a Research Fellow with the Uni-
versity of Cambridge, Computer Laboratory. He was
a self-employed Computer Consultant from 1986 to
1993, when he took up his current post of Research
Fellow in the School of Computer Science, Univer-
sity of Manchester, Manchester, U.K.

Teresa Serrano-Gotarredona (M’07) received the
B.S. degree in electronic physics and the Ph.D. de-
gree in VLSI neural categorizers from the Univer-
sity of Sevilla, Sevilla, Spain, in 1992 and 1996,
respectively, and the M.S. degree in electrical and
computer engineering from The Johns Hopkins Uni-
versity, Baltimore, MD, USA, in 1997. She was an
Assistant Professor in the Electronics and Electro-
magnetism Department, University of Sevilla, from
1998 to September 2000. Since September 2000, she
has been a Tenured Scientist at the Sevilla Micro-

electronics Institute (IMSE-CNM-CSIC), Sevilla, and in July 2008 she was
promoted to a Tenured Researcher. She has been a Visitng Professor/Fellow at
Texas A&M University College-Station, College-Station, TX, USA, The Uni-
versity of Manchester, Manchester, U.K., and the University of Lincoln, Lincoln,
U.K. Her recent research interests include AER vision chips, Real-time vision
sensing and processing chips, and nanoscale memristor-type AER systems. She
received two IEEE Transactions Best Paper Awards, and has been an Associate
Editor of the PLoS ONE Journal and the IEEE TRANSACTIONS IN CIRCUITS AND

SYSTEMS PART II. She is currently an Associate Editor the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS-I. From 2013 to 2015, he was the Chair of the IEEE
Circuits and Systems Society Spain Chapter.

Steve B. Furber (F’05) was born in Manchester,
U.K., in 1953. He received the B.A. degree in math-
ematics and the Ph.D. degree in aerodynamics from
the University of Cambridge, Cambridge, U.K., in
1974 and 1980, respectively, and the Honorary Doc-
torate degrees from Edinburgh University, Edinburgh,
U.K., in 2010, and Anglia Ruskin University, Cam-
bridge, U.K., in 2012. From 1978 to 1981, he was
a Rolls Royce Research Fellow in Aerodynamics at
Emmanuel College, Cambridge, U.K., and from 1981
to 1990, he was at Acorn Computers Ltd., Cambridge,

U.K., where he was a Principal Architect of the BBC Microcomputer, which
introduced computing into most U.K. schools, and the ARM 32-bit RISC micro-
processor, over 100 billion of which have been shipped by ARM Ltd.’s partners.
In 1990, he moved to the ICL Chair in Computer Engineering at the University
of Manchester, Manchester, U.K. His research interests include asynchronous
digital design, low-power systems on chip, and neural systems engineering. He
is a Fellow of the Royal Society, the Royal Academy of Engineering, the British
Computer Society, the Institution of Engineering and Technology, and the Com-
puter History Museum (Mountain View, CA). He was a Millennium Technology
Prize Laureate (2010) and holds an IEEE Computer Society Computer Pioneer
Award (2013).

Bernabé Linares-Barranco (M’94–F’10) received
the B.S. degree in electronic physics, the M.S. de-
gree in microelectronics, and the first Ph.D. degree
from the University of Sevilla, Sevilla, Spain, in 1986,
1987, and 1990, respectively, and a second Ph.D.
degree from Texas A&M University, College Sta-
tion, TX, USA, in 1991. Since 1991, he has been with
the Sevilla Microelectronics Institute (IMSE-CNM),
from the Spanish Research Council (CSIC) of Spain,
where he currently is a Full Professor of Research.
He has been a Visiting Professor/Fellow at The Johns

Hopkins University, Baltimore, MD, USA, Texas A&M University, College
Station, The University of Manchester, Manchester, U.K., and the University of
Lincoln, Lincoln, U.K. His recent interests include address-event-representation
VLSI, real-time AER vision sensing and processing chips, memristor circuits,
and extending AER to the nanoscale. He received two IEEE Transactions Best
Paper Awards, and has been an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS-II, the IEEE TRANSACTIONS ON NEURAL NETWORKS,
and Frontiers in Neuromorphic Engineering. From 2011 to 2013, he was the
Chair of the IEEE Circuits and Systems Society Spain Chapter.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

