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Abstract

In this work we study the sample complexity of probabilistic methods for control of uncertain
systems. In particular, we show the role of the binomial distribution for some problems
involving analysis and design of robust controllers with finite families. We also address
the particular case in which the design problem can be formulated as an uncertain convex
optimization problem. The results provide simple explicit sample bounds to guarantee that
the obtained solutions meet some pre-specified probabilistic specifications.

We also present a randomized strategy for design under uncertainty. The main con-
tribution is to provide a general class of sequential algorithms which satisfy the required
specifications using probabilistic validation. At each iteration of the sequential algorithm,
a candidate solution is probabilistically validated by means of a set of randomly generated
uncertainty samples.

The idea of validation sets has been used in some randomized algorithms when a given
candidate solution is classified as probabilistic solution when it satisfies all the constraints
on the validation set. In this thesis, we show the limitations of this strategy and present a
more general setting where the candidate solution may violate the specifications for a reduced
number of elements of the validation set. This generalized scheme exhibits some advantages,
in particular in terms of obtaining a probabilistic solution.

We propose a randomized algorithm for feasibility of uncertain LMIs. The algorithm
is based on the solution of a sequence of semidefinite optimization problems involving a
reduced number of constraints. A bound of the maximum number of iterations required by
the algorithm is given. Analogies and differences with the gradient and localization methods
are discussed. Finally, the performance and behaviour of the algorithm are illustrated by
means of a numerical example.

We present here a general strategy for the design of a fault-detection block with proba-
bilistic validation (PCV- Processing, Classification, Validation). A general scheme of PCV
is proposed, that allows to design a fault detection block with probabilistic validation in the
maximum percentage of non detected faults (set as design condition) and in the percentage
of false alarms (obtained a posteriori). In each iteration of the sequential algorithm, a candi-



ii

date solution is probabilistically validated by a set of samples randomly generated. A general
framework is presented in which the candidate solution can violate the constraints for a li-
mited number of elements of the validation set. This generalized scheme shows significant
advantages, in particular in terms of the obtention of the probabilistic solution.

We illustrate some of these methodologies by illustrative examples, such as the applica-
tion to feedback controllers or frequential identification.
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Chapter 1

Introduction

1.1 State of the art

1.1.1 Complexity of robust design problems in control

The first critical issue of the classical robustness paradigm is computational complexity. In
particular, various control problems have been shown to fall into the category of the so-called
”intractable” problems, which are practically unsolvable if the number of variables becomes
sufficiently large. These problems are generally denoted as NP-hard.

In a typical instance of a computational problem, we are given input data x1,x2, . . . ,xd and
we are asked to compute some function of them. For example, in the determinant problem, an
instance consists of the entries of a given matrix and the desired outcome is its determinant.
We focus on digital computation and constrain the input data to be given with a finite number
of bits. For example, we will typically assume that the inputs take integer or rational values.
As far as negative complexity results are concerned, this is hardly restrictive. If a function
is difficult or impossible to evaluate on integer or rational inputs, then it certainly remains
so with arbitrary real inputs. Different instances of the same problem can have different
sizes. The size of an instance is defined as the number of bits used to encode the input
data according to a certain pre-specified format. In particular, any (nonzero) integer i can
be viewed as having size (bit length) approximately equal to log |i|, since this is roughly the
number of bits in a binary representation of i.

Loosely speaking, an algorithm is described by a program, i.e., a finite sequence of ins-
tructions of the type encountered in common programming languages. For a more precise de-
scription, we need to specify a model of computation. A rather simple such model is provided

1



2 1.1. State of the art

Figure 1.1: Big Picture

by a random access machine (RAM) ((Aho, Hopcrof and Ullman, 1974), (Papadimitriou,
1994)).

A RAM consists of a read-only tape that contains the input data x1,x2, . . . ,xd , an output
tape on which the outcome of the computation is written, an unlimited sequence of registers
used to store intermediate quantities generated in the course of the computation, and a pro-
gram. Each register and each memory location on the input and output tapes may contain
an arbitrary, possibly negative, integer. The program is a sequence of instructions, some of
which may be associated with labels that are used in ”jump to” instructions. The instruction
set can be assumed to contain the halting instruction, the four arithmetic operations, instruc-
tions for reading from a location on the input tape into a register (respectively, writing the
contents of a register to a location on the output tape), indirect addressing (e.g., read the
contents of the register whose address is stored in register i, and store them in register 1),
and jump instructions that move the program to a next instruction, possibly depending on
the outcome of the comparison of some register to zero. The exact nature of the allowed
instructions is not important, because alternative choices of the instruction set lead to com-
puting machines with equivalent computing capabilities, as long as all critical abilities, such
as jumping, are present. In a typical execution of the algorithm (or ”computation”), the input
data are loaded on the input tape, and the algorithm starts carrying out the program instruc-
tions. For any given input, the computation may or may not halt (that is, reach a halting
instruction). The algorithm is said to solve a particular problem if it always halts (for every
instance of the problem, that is, for every choice of the input data) and produces the correct
answer on the output tape. We also say that a problem is unsolvable if there exists no algo-
rithm (under our model of computation) that will always halt with the correct answer. One
may wonder whether the class of solvable problems depends on the choice of a model of
computation. According to the so-called Church-Turing thesis (Copeland and Jack, 2008),
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all reasonable models of digital computation lead to the same class of solvable problems, and
are therefore equally powerful. This thesis is supported by the fact that all reasonable models
that have been proposed and studied lead indeed to the same class of solvable problems. Still,
it only remains a thesis - rather than a theorem - because we do not have a precise definition
of ”all reasonable models” (Blondel and Tsitsiklis, 2000).

1.1.1.1 Decidable and undecidable problems

An undecidable problem is a decision problem for which it is impossible to construct a single
algorithm that always leads to a correct yes-or-no answer.

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs. Be-
cause of this, it is traditional to define the decision problem equivalently as the set of inputs
for which the problem returns yes. These inputs can be natural numbers, but also other val-
ues of some other kind, such as strings of a formal language. Using some encoding, such
as a Gödel numbering, the strings can be encoded as natural numbers. Thus, a decision pro-
blem informally phrased in terms of a formal language is also equivalent to a set of natural
numbers. To keep the formal definition simple, it is phrased in terms of subsets of the natural
numbers.

Formally, a decision problem is a subset of the natural numbers. The corresponding
informal problem is that of deciding whether a given number is in the set. A decision problem
A is called decidable or effectively solvable if A is a recursive set. A problem is called
partially decidable, semi-decidable, solvable, or provable if A is a recursively enumerable
set. This means that there exists an algorithm that halts eventually when the answer is yes
but may run for ever if the answer is no. Partially decidable problems and any other problems
that are not decidable are called undecidable.

1.1.1.2 Time complexity

Assuming that an algorithm halts, its running time is defined as the sum of the ”costs” of each
instruction. In the so-called random access machine (RAM) model, each arithmetic operation
involves a single instruction which is assumed to have a unit cost. More realistically, in the
bit model, the cost of an arithmetic is given by the sum of the bit length of the integers
involved in the operation, i.e. the running time of the algorithms depends on the size of the
problem instance.

Since the running time may be different for different instances of the same size, the
running time T(n) is defined as the worst-case running time over all instances of size n.



4 1.1. State of the art

Formally, we say that an algorithm runs in polynomial time is there exists an integer k such
that in the worst-case running time is:

T (n) = O(nk).

P is defined as the class of decision problems having polynomial-time algorithms. In
practice, the class P consists on all the problems that are efficiently solvable. Notice that the
notion of time complexity is associated with a specific algorithm and not with the problem
itself. For the same problems, algorithms with different complexity may be derived.

An alternative definition of polynomial-time algorithms is related to the notion of ”ave-
rage” running time. An example in this direction is the simplex method for solving linear
programming problems. An example of a problem which is solvable in polynomial time is
stability of a continuous-time system (Tempo, Calafiore and Dabbene, 2013).

1.1.1.3 NP- Completeness and NP-hardness

Non deterministic polynomial optimization problems (NPOP) are intended to provide a basis
for a natural generalization of the theory of NY sets. Intuitively an NPOP is a set whose
elements are encoded according to some reasonable scheme. Each element in the set has a
set of nonnegative integers associated with ill assumed to represent a certain combinatorial
property of the element, a property we are interested in. The elements of the set or rather their
encodings are assumed to be polynomially recognizable and the sets of numbers associated
with those elements are assumed to be: computable by a nondeterministic Turing machine
in polynomial time (Paz, 1981).

NP-hard (Non-deterministic Polynomial-time hard) is a class of problems that are, in-
formally, ”at least as hard as the hardest problems in NP”. A problem H is NP-hard if and
only if there is an NP-complete problem L that is polynomial time Turing-reducible to H. In
other words, L can be solved in polynomial time by an oracle machine with an oracle for H.
Informally, we can think of an algorithm that can call such an oracle machine as a subroutine
for solving H, and solves L in polynomial time, if the subroutine call takes only one step to
compute. NP-hard problems may be of any type: decision problems, search problems, or
optimization problems.

As consequences of definition, we have (note that these are claims, not definitions):

• Problem H is at least as hard as L, because H can be used to solve L.

Since L is NP-complete, and hence the hardest in class NP, also problem H is at least
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as hard as NP, but H does not have to be in NP and hence does not have to be a decision
problem (even if it is a decision problem, it need not be in NP)

Since NP-complete problems transform to each other by polynomial-time many-one
reduction (also called polynomial transformation), all NP-complete problems can be
solved in polynomial time by a reduction to H, thus all problems in NP reduce to H;
note, however, that this involves combining two different transformations: from NP-
complete decision problems to NP-complete problem L by polynomial transformation,
and from L to H by polynomial Turing reduction.

• If there is a polynomial algorithm for any NP-hard problem, then there are polynomial
algorithms for all problems in NP, and hence P= NP

• If P ̸= NP, then NP-hard problems cannot be solved in polynomial time, while P = NP
does not resolve whether the NP-hard problems can be solved in polynomial time.

• If an optimization problem H has an NP-complete decision version L, then H is NP-
hard.

A common mistake is to think that the NP in NP-hard stands for non-polynomial. Al-
though it is widely suspected that there are no polynomial-time algorithms for NP-hard pro-
blems, this has never been proven. Moreover, the class NP also contains all problems which
can be solved in polynomial time.

1.1.2 Deterministic approaches

In the early 1970s, a set-theoretic description of a plant family, often called unknown-but-
bounded model (Schweppe, 1973), emerged as a novel paradigm for estimation and Kalman
filtering. A few years later, researchers realized some drawbacks of optimal control, such
as the lack of guaranteed margins of linear quadratic Gaussian (LQG) (Doyle, 1978). Sub-
sequently, in the early 1980s, a successful alternative to the existing classical approach for
control has been developed. In the new setting, the design objective is to determine feedback
controllers that are guaranteed against all possible uncertainty realizations, i.e. worst-case
(or robust) controllers, see (Safonov, 2012) for an historical account on the history of robust
control. In other words, a controller is designed with the aim of guaranteeing a specified
performance for all plants that are compatible with the uncertainty description. (Le, Stoica,
Álamo, Camacho and Dumur, October 2013)

A major stepping stone in the robustness direction was the formulation in 1981 by Zames
of the H∞ problem (Zames, 1981). In the subsequent fifteen years, the research in robust
control evolved in various directions, each based on diverse problem formulations and math-
ematical tools. Even tough several subareas played a major role within robustness, we fell
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Figure 1.2: Probabilistic Robustness

that H∞ deserves the credit for its centrality and also for its connections with classical opti-
mal control. However, other successful methods to handle uncertainty have been developed.
In particular, we recall the methods based on the structured singular value, also known as
µ theory (Packard and Doyle, 1993), the approach dealing with systems affected by para-
metric uncertainty, or Kharitonov theory ((Barmish, 1994), (Bhattacharyya, Chapellat and
Keel, 1995)), the optimization-based methods based on linear matrix inequalities (Boyd,
Ghaoui, Feron and Balakrishnan, 1994), the l1 optimal control theory (Daleh and Dı́az Bo-
billo, 1995) and the so-called quantitative feedback theory (QFT) ((Horowitz, 1991),(Houpis
and Rasmussen, 1999)).

In the late 1980s, robust control became a well-known discipline (Athans, 1971), (Morari
and Zafiriou, 1989) so that the technical results and the algorithms developed were success-
fully used in various industrial applications, including aerospace, chemical, electrical and
mechanical engineering. Moreover, the impact of robust control theory has begun to spread
to other fields than engineering, such as economics (Hansen and Sargent, 2008).

A few years later, in the early 1990s, researchers in robust control realized more fully
some of its theoretical limitations, which can be roughly summarized as the issues of con-
servatism and computational complexity. In fact, when compared with classical stochastic
methods, the worst-case paradigm may lead to problems whose exact solution cannot be
determined in polynomial time, see (Blondel and Tsitsiklis, 2000). Therefore, relaxation
techniques are typically introduced so that the resulting problem can be solved with nu-
merically efficient algorithms (Bravo, Álamo, Redondo and Camacho, 2008). Clearly, this
entails a compromise between tightness of the solution and numerical complexity (Tempo
et al., 2013), (Álamo, Fiacchini, Cepeda, Limón and Camacho, 2007), (Camacho, Álamo,
Limón, Bravo, Ramı́rez, noz and Ruiz Arahal, 2005), (Bravo, Álamo and Camacho, 2004).

Robust linear matrix inequalities play an important role with rational dependence on
uncertainties in robust control (Bravo, Limón, Álamo and Camacho, 2005). Various classical
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relaxations based on the S-procedure can be subsumed to a unified framework. Based on
Lagrange duality for semi-definite programs, under some conditions, such relaxations can
be verified to be exact. The systematic construction of families of relaxations can be shown
to be asymptotically exact, based on recent results on the sum-of-squares representation of
polynomial matrices (Scherer, 2006).

1.1.3 Randomized approaches to analysis and design of control systems

In recent years, research on probabilistic analysis and design methods for systems and control
has significantly progressed. Specific areas where we have seen convincing developments
include uncertain and hybrid systems (Tempo, Calafiore and Dabbene, 2005),(Vidyasagar,
1997). A key technical ingredient of this approach is the use of the theory of rare events
and large deviation inequalities which suitably bound the tail of the probability distribution.
These inequalities are crucial in the area of Statistical Learning Theory (Vapnik, 1998; Vi-
dyasagar, 1997). The use of this theory for feedback design of uncertain systems has been
initiated in (Vidyasagar, 1997). Recently, significant improvements regarding the sample
complexity have been provided in (Álamo, Tempo and Camacho, 2009). For the special case
of convex optimization problems, the scenario approach has been introduced in (Calafiore
and Campi, 2006) for probabilistic controller design.

The utility of randomized algorithms stems from the fact they can circumvent the com-
plexity of nonconvex design problems. A sequence or other collection of random variables
is independent and identically distributed (i.i.d.) if each random variable has the same pro-
bability distribution as the others and all are mutually independent. In this setting, one can
draw N i.i.d. samples {w(1), . . . ,w(N)} from W according to probability PrW and solve the
sampled optimization problem.

Since obtaining a global solution to the previous problem is a difficult task in the general
case, we analyze in this work the probabilistic properties of any suboptimal feasible solution.
If one allows at most m violations of the N constraints.The idea of allowing some violations
of the constraints is not new and can be found, for example, in the context of identification
(Bai, Cho, Tempo and Ye, 2002). The randomized strategies corresponding to problems (2.2)
and (2.3) have been recently studied in (Álamo et al., 2009); see also (Tempo et al., 2005;
Vidyasagar, 1997).

We remark that the probability of failure is slightly different from the probability of one-
sided constrained failure introduced in (Álamo et al., 2009).
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1.1.4 Randomized validation schemes

The design in the presence of uncertainty is of paramount relevance in different fields. Un-
fortunately, the related semi-infinite optimization problems often exhibit an NP-hard nature
that seriously compromises their solution in a reasonable computational time (Blondel and
Tsitsiklis, 2000). There exist two ways to circumvent this NP-hard issue. One option consists
in resorting to deterministic relaxations of the original problem which are normally solved in
polynomial time but which might lead to overly conservative solutions (Scherer, 2006). An
alternative paradigm is to assume that the plant uncertainty is probabilistically described so
that a randomized algorithm may be derived to obtain, normally in polynomial time, a solu-
tion with some given properties normally stated in terms of the probability of error (Tempo
et al., 2005), (Vidyasagar, 1997).

The field of randomized algorithms have evolved significantly in the last years. A re-
cent survey on this topic can be found in (Calafiore, Dabbene and Tempo, 2011). Two
complementary approaches, non-sequential and sequential, have been proposed. A classical
approach for non-sequential methods is based upon statistical learning theory (Vapnik, 1998).
In particular, the use of this theory for feedback design of uncertain systems has been initiated
in (Vidyasagar, 1997); subsequent work along this direction include (Koltchinskii, Abdallah,
Ariola, Dorato and Panchenko, 2000), (Vidyasagar, 2001), (Vidyasagar and Blondel, 2001),
(Álamo et al., 2009). In (Álamo, Tempo and Luque, 2010a) and (Luedtke and Ahmed, 2008)
the particular case in which the design parameter set has finite cardinality is analyzed.

The advantage of these methods is that the problem under attention may be non-convex.
For convex optimization problems, a successful non-sequential paradigm, denoted as the
scenario approach, has been introduced in (Calafiore and Campi, 2005) and (Calafiore and
Campi, 2006). See also (Campi and Garatti, 2008), (Campi and Garatti, 2011), (Calafiore,
2010) and (Álamo et al., 2010a) for related results.

In non-sequential methods the original robust control problem is reformulated in terms
of a single optimization problem with sampled constraints which are randomly generated.
A relevant feature of these approaches is that they do not require any validation step. The
number of samples required to guarantee that the obtained solutions meet some probabilistic
specifications should take into account the specific nature of the problem under considera-
tion. The main result of this line of research is to derive explicit lower bounds to this required
sample size. Recently, improvements regarding this sample complexity have been provided
in (Álamo et al., 2009). However, the obtained explicit sample bounds can be overly conser-
vative because they rely on a worst-case analysis and grow (at least linearly) with the number
of decision variables.

For sequential methods, the resulting iterative algorithms are based on stochastic gradient
(Calafiore and Polyak, 2001), (Polyak and Tempo, 2001); ellipsoid iterations (Kanev, Schut-
ter and Verhaegen, 2003), (Oishi, 2007); or analytic center cutting plane methods (Calafiore
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Figure 1.3: Algorithms

and Dabbene, 2007); see also (Álamo, Tempo, Ramı́rez and Camacho, 2007) for other
classes of sequential algorithms. Convergence properties in finite-time are in fact one of the
focal points of these papers. Various control problems have been solved using these sequen-
tial randomized algorithms, including robust LQ regulators, switched systems, and uncertain
linear matrix inequalities (LMIs). Sequential methods are mostly used for uncertain convex
problems because the computational effort at each iteration is affordable. However, they
can be applied in principle to any kind of robust design problem. For example, a sequential
algorithm that can be applied to a rather general class of problems is presented in (Álamo
et al., 2009).

The main point in common of all these sequential algorithms is the use of the validation
strategy presented in (Oishi, 2003) (see (Oishi, 2007) for a journal version). The candidate
solutions provided at each iteration of these algorithms are validated using a validation set
which is drawn according to the probability measure defined in the uncertain set. If the
candidate solution satisfies the design specifications for every element of this validation set
then it is classified as probabilistic solution and the algorithm terminates. The main point
in this validation scheme is that the cardinality of the validation set increases with each
iteration of the algorithm. The strategy guarantees that if a probabilistic solution is obtained,
then it meets some probabilistic specifications. A similar approach, introduced in (Dabbene,
Shcherbakov and Polyak, 2010), has been presented in (Calafiore et al., 2011) in the context
of sequential algorithms. The contribution is a reduction on the cardinality required for the
validation sets.

The main contribution of this work is to propose a relaxed validation scheme in which
we allow the candidate solution to violate the design specifications for one or more of the
members of the validation set. The idea of allowing some violations of the constraints is not
new and can be found, for example, in the context of identification (Bai et al., 2002), chance-
constrained optimization (Campi and Garatti, 2011) and statistical learning theory (Álamo
et al., 2009). This scheme makes sense in the presence of soft constraints or when it is not
possible to find a solution satisfying the specifications for all the admissible realizations of
uncertainty.
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As it will be shown later, this relaxed scheme allows us to reduce, in some cases dra-
matically, the number of iterations required by the sequential algorithm. Another advantage
of the proposed approach is that it does not rely on the existence of a robust deterministic
solution. Furthermore, the presented strategy is quite general and is not based on a convexity
assumption.

1.1.5 Sequentially optimal R.A. for robust LMI feasibility problems

The use of randomized algorithms (see (Tempo et al., 2005)) has attracted the attention of the
control community in the last few years. One of the reasons for this widespread interest is
that randomization can be used to circumvent the NP-hard nature of a large number of robust
control problems (Nemirovskii, 1993),(Poljak and Rohn, 1993). Randomization allows one
to obtain a solution that satisfies the constraints of a given robustness problem for most of
the possible realizations of the uncertainty. This concept of approximate feasibility has been
introduced in the context of robust control in (Barmish and Scherbakov, 2002). Under rela-
tively mild assumptions, the randomized methods are able to compute (in polynomial time)
an approximate solution to a robust problem. The measure of the set of original constraints
that are violated by the approximate solution can be made smaller than any pre-specified
quantity.

The randomized gradient approach presented in (Polyak and Tempo, 2001),(Calafiore
and Polyak, 2001),(Fujisaki, Dabbene and Tempo, 2003) and (Liberzon and Tempo, 2004)
finds a solution to a robust problem involving linear matrix inequalities in a finite number
of iterations with probability one, if a strong feasibility condition holds. These gradients
algorithms are based on an iterative scheme where the current solution is updated towards a
descent direction obtained by a random gradient of a suitable feasibility violation function.

Another important class or randomized methods are based on probabilistic versions of
standard localization methods. These localization methods have better theoretical conver-
gence properties than the gradient ones. Among them one finds the probabilistic ellipsoid
method (Kanev et al., 2003),(Oishi, 2003) and the probabilistic analytic center cutting plane
method (Calafiore and Dabbene, 2006).

In the context of robust optimization, the scenario approach also plays a relevant role.
It is shown in (Calafiore and Campi, 2005) and (Calafiore and Campi, 2006) that by appro-
priate sampling of the constraints one obtains a standard convex optimization problem (the
scenario) whose solution is approximately feasible for the original (usually infinite) set of
constraints, i.e., the measure of the set of original constraints that are violated by the sce-
nario solution decreases to zero as the number of samples is increased.

In some sense, the scenario approach, the gradient and the ellipsoid methods have a very
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different nature. The scenario approach obtains an approximate solution to a robust opti-
mization problem solving a simple optimization problem with a large number of constraints.
On the other hand, the gradient method and the ellipsoid algorithm obtain an approximate
solution to a robust feasibility problem in a sequential way, by means of a considerable num-
ber of iterations in which the candidate solution is updated by means of a simple rule so that
no optimization is really required.

In this work we present a randomized algorithm that addresses the problem of obtaining
a feasible robust solution to a possibly uncountable number of linear matrix inequalities. The
presented algorithm does not belong to any of the aforementioned strategies. The algorithm
requires a finite number of iterations to converge. It addresses the robust feasibility problem
by means of the solution of a sequence of relatively simple optimization problems. The
proposed algorithm, as the gradient method and the ellipsoid algorithm, has a sequential na-
ture. However, instead of using a simple updating rule, each candidate solution is updated by
means of an optimization problem involving a reduced number of constraints obtained from
the original constraints of the problem. One of the advantages of the proposed algorithm
is that it is capable of determining the non feasibility of a given robust feasibility problem.
Our numerical experience shows that the algorithm performs satisfactorily: in an affordable
number of iterations it obtains an (approximately) feasible solution in case of feasibility, or
it detects that the problem is not feasible.

1.1.6 Applications of randomized algorithms

Probabilistic design methods and randomized algorithms have been developed for several
applications related to systems and control. We present a review (Tempo et al., 2013) of
some of the main areas where these methods have been successfully used. For extensive
information on applications on computer science, computational geometry and optimization,
see (Mitzenmacher and Upfal, 2005), (Motwani and Raghavan, 1995), (Mulmuley, 1994).

1.1.6.1 Fault detection

A fault is defined as any change in the behavior of some of the system components (not
allowed deviation of the one of characteristic parameters or properties) so that it and can not
fulfill the function for which it was designed (Blanke, 1999). Besides faults, there exist other
factors that alter the normal behavior of the system, as disturbances and noise. Disturbances
are non known entries that can occur in the system at any time but they have been taken
into account when designing the conventional control loop. Any disturbance which had not
been taken into account in this design will be considered a fault. Noise is also a non known
input manifested in the system but, unlike disturbance, has zero mean, and it is possible
to have a priori knowledge of which is its amplitude. A fault detection system must react
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to faults and be immune (robust), so far as possible, to the other factors in the system that
create uncertainty. Furthermore, many of the fault detection methods are based on a model
(mathematical or quantitative) of the monitored system which can never accurately describe
the real behavior of the system and therefore it will present a modeling error that must be
considered.

The goal of a fault detection block is, once a fault has occurred in an instant TF , to detect
it in a time range less or equal than TDmax , set in advance. Depending on the magnitude and
incidence of the faults desired to be detected and the possible presence of other uncertainty
factors in the system, it may not be possible to design a detection block detecting all faults
without false alarms in situations in which there are no faults. So there is always a compro-
mise between the proportion of undetected faults (MF ”Missed Faults”) and the proportion
of times that the detection block is activated without the presence of faults due to the uncer-
tainties present in the system (FA ”False alarms”). This compromise, that should be taken
into account in the design process of the detector block, it is logical to prioritize minimizing
not detected faults respect to the minimization of false alarms.

Figure 1.4: Fault Detection

The random nature of faults and uncertainties inherent in the system makes the design
problem of the detection block a robustness problem.

Typically, for a robustness problem, the design parameters, and different auxiliary vari-
ables, are described in terms of a vector of decision variables θ , denoted as ”design parame-
ter” and is restricted to the set Θ. Moreover, the uncertainty w is bounded on the set W . That
is, each element w ∈ W represents one of the admissible realizations of uncertainty, with
probability PrW . In our context of fault detection, θ corresponds to the decision variables
that determine the fault detection block. This block allows us to determine if there is a fault
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or not in a given scenario, so there will be two uncertainty sets WF and WN consisting in all
possible scenarios of the system to be monitored operation, with faults and without faults
respectively. Furthermore, wF and wN represent a realization of a scenario with and without
fault. WF and WN have spaces probability PrF and PrN respectively.

We also consider two measurable binary functions:

g(θ ,w) :=
{

0 if θ detects a fault
1 in other case.

h(θ ,w) :=
{

0 if θ doesn’t detect a fault
1 in other case.

Applying these two functions on the spaces WF and WN we obtain the following expected
values:

Eg(θ) := PrF{wF ∈ WF : g(θ ,wF) = 1}

Eh(θ) := PrN{wN ∈ WN : h(θ ,wN) = 1}.

Where Eg(θ) and Eh(θ) are the proportion of undetected faults (MF) and false alarms
(FA) respectively.

The utility of randomized algorithms arises when being able to treat the following design
problem

min
θ∈Θ

Eh(θ) subject to Eg(θ)≤ ηF (1.1)

where ηF is the maximum proportion of undetected faults imposed as a constraint of the
detector block.

In this context, we can extract NN and NF i.i.d. samples (independent and identically
distributed) {w(1)

N , . . . ,w(NN)
N } of WN and {w(1)

F , . . . ,w(NF )
F } of WF according to the probability

PrN and PrF respectively, and with a ratio between scenarios with fault and without fault
FN = NF

NN
determined by the probability of failure of the system to be monitored. This way

can solve the following sampled optimization problem
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min
θ∈Θ

NN

∑
ℓN=1

h(θ ,w(ℓN)
N ) (1.2)

subject to
NF

∑
ℓF=1

g(θ ,w(ℓF )
F )≤ ηFNF

In this work we propose a design method of a fault detector block based on the use of
historical or real simulations with and without faults, avoiding the difficulty of analysis, that
is not always possible, due to the complexity of problem.

The result thus obtained, through a probabilistic validation test, guarantees that the pro-
posed solution behaves the desired way with a certain probability, fixed a priori. It also
guarantees the satisfaction of probabilistic constraints. This technique is well suited for ad-
dressing complex problems.

1.1.6.2 Feedback controllers testing

In computer networks congestion appears when there are too many sources sending data
too fast for the network to handle. Techniques to reduce congestion are of great inter-
est (Mesquine, Tadeo and Álvarez, 2011). This thesis concentrates on congestion control
methodologies where feedback control techniques provide efficient solutions ((Jacobson,
1988), (S. Ryu and Qiao, 2004), (Hollot, Misra, Towsley and Gong, 2002), (Sun, Chan,
Ko, Chen and Zukerman, 2007), (Floyd and Jacobson, 1993)).

A central problem in designing controllers for these systems is the difficulty of ensuring
adequate performance in all possible conditions, as these systems operate under a very wide
range of conditions, are inherently nonlinear and suffer from significant time-varying delays.
Thus, designers frequently have to show the effectiveness of their proposal by extensive
simulations, which is a time-consuming methodology, and does not offer a definite guarantee
of performance: simulation results in most of the references show only specific cases and
scenarios.

Prompted by this problem, we concentrate on the following issue: given a required de-
gree of confidence, how many simulations are needed to check the adequate performance
of the controllers? Thus, we develop a randomized approach based on some ideas in ((Su-
Woon, Chang-Jin, Sin and Ho-Chan, 2012),(Álamo et al., 2009), (Álamo, Tempo and Luque,
2010b), (Fujisaki and Kozawa, 2006)), to test whether a controller robustly satisfies a set of
specifications with a given probabilistic error margin.

The presented results are stated in an implicit way, that is, the number of experiments
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required is obtained from a simple numerical procedure. The theoretical framework proposed
in (Álamo et al., 2009) and (Álamo et al., 2010b) is conveniently tailored for this particular
application. Hence this work constitutes a proof of concept of the methodology proposed in
the aforementioned references.

The main idea is to test the controller under a finite set of different scenarios. When the
controller satisfies the specifications for a sufficient number of these scenarios, then certain
properties can be concluded with a given degree of confidence, and no more simulations are
needed. One of the main characteristics of the technique is that it is independent of the family
of controllers (PI, PID, predictive, robust, etc). The methodology is applied in this chapter to
the active queue management (AQM) scheme, which complements the end-to-end Transmis-
sion Control Protocol (TCP), at the routers’ transport layer. The AQM objectives (S. Ryu and
Qiao, 2004), (Hollot et al., 2002), (Sun et al., 2007), are efficient queue utilization, queuing
delay and robustness.

Numerous AQM algorithms have been proposed (see (S. Ryu and Qiao, 2004) for a good
survey on the subject), with Random Early Detection (RED) (Floyd and Jacobson, 1993)
being the most widely used algorithm, as it can detect and respond to long-term traffic pat-
terns. This chapter uses the AQM mathematical models published in (Hollot et al., 2002),
and extensively used in the literature ((Jacobson, 1988), (S. Ryu and Qiao, 2004), (Hollot
et al., 2002), (Floyd and Jacobson, 1993), (Vidyasagar, 2001)) and the references therein)
for controller design and testing. The main metrics proposed to determine controller per-
formance are: router queue size (real value and standard deviation), link utilization and the
probability of packet losses (Álvarez and Martı́nez, 2013). As a demonstration, the proposed
technique is applied to a problem of two routers connected in a Dumbbell topology, which
represents a single bottleneck scenario.

The length of their queues is controlled with a PID ((Aström and Hägglund, 2006), (nez,
Camarillo, Moreno-Valenzuela and Campa, 2011)) whose probabilistic properties are gua-
ranteed following the results presented in the chapter. The simulations are done using the
software ns-2, which is a discrete event simulator targeted at networking research, provid-
ing substantial support for simulation of TCP, routing, and multicast protocols over wired
and wireless networks. It must be pointed out that although the proposed methodology was
prompted by a congestion control problem, and is demonstrated on this problem, it can be
directly applied to other control testing problems, as plants to be controlled are frequently
nonlinear, uncertain and subject to parameter variations ((nez et al., 2011)).

1.1.7 Thesis overview and contributions

The following is an outline of this thesis and its contributions:
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• Chapter 3: Explicit Bounds for Required Number of Random Samples. In this chap-
ter the sample complexity of probabilistic methods for control of uncertain systems
is studied. The particular case in which the design problem can be formulated as
an uncertain convex optimization problem is also addressed. Simple explicit sample
bounds to guarantee that the obtained solutions meet some pre-specified probabilis-
tic specifications are provided. Published partially in (Álamo et al., 2010b), (Álamo
et al., 2010a).

• Chapter 4: Randomized Validation Schemes. A randomized strategy for design under
uncertainty is presented. A general class of sequential algorithms which satisfy the
required specifications using probabilistic validation is provided. At each iteration of
the sequential algorithm, a candidate solution is probabilistically validated by means
of a set of randomly generated uncertainty samples. Published partially in (Álamo,
Luque, Ramı́rez and Tempo, 2012).

• Chapter 5: A sequentially optimal R.A. for robust LMI feasibility problems. A ran-
domized algorithm for feasibility of uncertain LMIs is proposed. The algorithm is
based on the solution of a sequence of semidefinite optimization problems involv-
ing a reduced number of constraints. A bound of the maximum number of iterations
required by the algorithm is given. Analogies and differences with the gradient and lo-
calization methods are discussed. The performance and behaviour of the algorithm are
illustrated by means of a numerical example. Published partially in (Álamo, Tempo,
Ramı́rez, Luque and Camacho, 2013).

• Chapter 6: Fault detection with probabilistic validation. A general strategy for the
design of a fault-detection block with probabilistic validation (PCV- Processing, Clas-
sification, Validation) is presented. A general scheme of PCV is proposed, that allows
to design a fault detection block with probabilistic validation in the maximum per-
centage of non detected faults (set as design condition) and in the percentage of false
alarms (obtained a posteriori). In each iteration of the sequential algorithm, a candi-
date solution is probabilistically validated by a set of samples randomly generated. A
general framework is presented in which the candidate solution can violate the con-
straints for a limited number of elements of the validation set. This generalized scheme
shows significant advantages, in particular in terms of the obtention of the probabilistic
solution. Published partially in (Blesa, Luque, Álamo and Dabbene, 2013).

• Chapter 7: Application to frequential identification. Identification of a fuel cell by
aplication of randomized algorithms. A Matlab trials tool is developed. With this tool
cells are evaluated in laboratory and an optimal exciting signal for modeling the fuel
cell is obtained. This way in the identification will become easier and quicker. The
objective is to find the exciting signal to reach the best approximation to fuel cells
model. Published partially in (Ponce, 2013).

• Chapter 8: A probabilistic approach for testing feedback controllers. A randomized
approach to test whether a controller robustly satisfies a set of specifications with a
given probabilistic error margin is presented. The results are stated in an implicit way,
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that is, the number of experiments required is obtained from a simple numerical proce-
dure. This chapter constitutes a proof of concept of the methodology proposed in the
previous chapters. The main idea is to test the controller under a finite set of different
scenarios. When the controller satisfies the specifications for a sufficient number of
these scenarios, then certain properties can be concluded with a given degree of confi-
dence, and no more simulations are needed. Published partially in (Maestre, Álvarez,
Álamo, Salim and Luque, 2012).

1.1.8 Publications

The following articles have been issued or submitted for publication during the elaboration
of this thesis:

BOOK CHAPTERS:

1. ”On the sample complexity of probabilistic analysis and design methods” T. Álamo,
R. Tempo, A. Luque. Perspectives in mathematical system theory, control and signal
processing. Lecture notes in control and information series 398. Springer. USA. 2010.

JOURNALS

1. A probabilistic approach for testing feedback controllers, with application to conges-
tion control. Jose M. Maestre, Teresa Álvarez, Teodoro Álamo, Anuar Salim and
Amalia Luque. Technical Notes. International Journal of Control, Automation, and
Systems.Volume 10, Number 4, August 2012.

2. Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta. T.
Álamo, R. Tempo, D.R. Ramı́rez, A. Luque, E.F. Camacho. RIAI. 2013.

3. The Sample Complexity of Randomized Methods for Analysis and Design of Uncer-
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Future work:
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2013. Terrassa. Barcelona.



Chapter 2

Explicit bounds for sample complexity of
random samples

2.1 A randomized approach to analysis and design of con-
trol systems

In this chapter, we study the sample complexity of probabilistic methods for control of uncer-
tain systems. In particular, we show the role of the binomial distribution for some problems
involving analysis and design of robust controllers with finite families. We also address
the particular case in which the design problem can be formulated as an uncertain convex
optimization problem. The results of the chapter provide simple explicit sample bounds to
guarantee that the obtained solutions meet some pre-specified probabilistic specifications.

In recent years, research on probabilistic analysis and design methods for systems and
control has significantly progressed. Specific areas where we have seen convincing devel-
opments include uncertain and hybrid systems (Tempo et al., 2005),(Vidyasagar, 1997).
A key technical ingredient of this approach is the use of the theory of rare events and
large deviation inequalities which suitably bound the tail of the probability distribution.
These inequalities are crucial in the area of Statistical Learning Theory (Vapnik, 1998),
(Vidyasagar, 1997). The use of this theory for feedback design of uncertain systems has
been initiated in (Vidyasagar, 1997). Recently, significant improvements regarding the sam-
ple complexity have been provided in (Álamo et al., 2009). For the special case of con-
vex optimization problems, the scenario approach has been introduced in (Calafiore and
Campi, 2006) for probabilistic controller design. This chapter is a more complete version of
(Álamo et al., 2010b) and contains the proofs of all technical results.
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In this section we first introduce some preliminary notation and definitions as well as two
randomized strategies. In Section 2.2 we provide bounds for the binomial distribution which
are used in Section 2.3 to analyze the probabilistic properties of different schemes involving
randomization. The chapter draws to a close in Section 2.5.

We assume that a probability measure PrW over the sample space W is given. Given W ,
a collection of N (i.i.d.) samples w = {w(1), . . . ,w(N)} drawn from W is said to belong to the
Cartesian product W N = W ×·· ·×W (N times). Moreover, if the collection w of N i.i.d.
samples {w(1), . . . ,w(N)} is generated from W according to the probability measure PrW ,
then the multisample w is drawn according to the probability measure PrW N . The scalars
η ∈ (0,1) and δ ∈ (0,1) denote probabilistic parameters. Furthermore, ln(·) is the natural
logarithm and e is the Euler number. For x ∈R, x > 0, ⌊x⌋ denotes the largest integer smaller
than or equal to x.

Typically, for a robustness problem, the design parameters, along with different auxiliary
variables, are parameterized by means of a decision variable vector θ , which is denoted
as “design parameter”, and is restricted to a set Θ. On the other hand, the uncertainty w
is bounded in the set W . That is, each element w ∈ W represents one of the admissible
uncertainty realizations. We also consider a binary measurable function g : Θ×W →{0,1}
and a real measurable function f : Θ×W → R which serve to formulate the specific design
problem under attention. In a control context, the binary function g : Θ×W → {0,1}, is
defined as

g(θ ,w) :=
{

0 if θ meets control specifications for w
1 otherwise.

Given θ ∈ Θ, there might be a subset of the elements of W for which the constraint
g(θ ,w) = 0 is not satisfied. This concept is rigorously formalized by means of the notion of
“probability of violation”, which is now introduced.

Definition 2.1 [probability of violation] Consider a probability measure PrW over W and
let θ ∈ Θ be given. The probability of violation of θ for the function g : Θ×W → {0,1} is
defined as

E(θ) := PrW { w ∈ W : g(θ ,w) = 1 }.

Given θ ∈ Θ, it is generally difficult to obtain the exact value of the probability of vi-
olation E(θ) since this requires the solution of a multiple integral. However, we can ap-
proximate its value using the concept of empirical mean. For given θ ∈ Θ, and multisample
w = {w(1), . . . ,w(N)}, drawn according to the probability measure PrW N , the empirical mean
of g(θ ,w) with respect to w is defined as

Ê(θ ,w) :=
1
N

N

∑
i=1

g(θ ,w(i)).
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Clearly, the empirical mean Ê(θ ,w) is a random variable. Since g(·, ·) is a binary function,
Ê(θ ,w) is always within the closed interval [0,1].

The utility of randomized algorithms stems from the fact they can circumvent the com-
plexity of nonconvex design problems of the type

min
θ∈Θ

J(θ) subject to g(θ ,w) = 0, for all w ∈ W (2.1)

where J : Θ → (−∞,∞) is a measurable function which normally represents the controller
performance. In this setting, one can draw N i.i.d. samples {w(1), . . . ,w(N)} from W accord-
ing to probability PrW and solve the sampled optimization problem

min
θ∈Θ

J(θ) subject to g(θ ,w(ℓ)) = 0, ℓ= 1, . . . ,N. (2.2)

Since obtaining a global solution to the previous problem is a difficult task in the general case,
we analyze in this chapter the probabilistic properties of any suboptimal feasible solution. If
one allows at most m violations of the N constraints, the following sampled problem can be
used to obtain a probabilistic relaxation to the original problem (2.1)

min
θ∈Θ

J(θ) subject to
N

∑
ℓ=1

g(θ ,w(ℓ))≤ m. (2.3)

The randomized strategies corresponding to problems (2.2) and (2.3) have been recently
studied in (Álamo et al., 2009), see also (Tempo et al., 2005; Vidyasagar, 1997). In order to
analyze the probabilistic properties of any feasible solution to problem (2.3), we introduce
the following definition.

Definition 2.2 [probability of failure] Given N, η ∈ (0,1), the integer m where 0 ≤ m ≤ N
and g : Θ×W →{0,1}, the probability of failure, denoted by p(N,η ,m) is defined as

p(N,η ,m) := PrW N{w ∈ W N : There exists θ ∈ Θ

such that Ê(θ ,w)≤ m
N

and E(θ)> η}.

We remark that the probability of failure is slightly different from the probability of one-
sided constrained failure introduced in (Álamo et al., 2009). Therefore, if the probability of
failure p(N,η ,m) is no greater than δ then every feasible solution θ ∈ Θ to problem (2.3)
satisfies E(θ) ≤ η with probability no smaller than 1− δ . From a practical point of view,
the objective is to obtain explicit expressions yielding a minimum number of samples N such
that the inequality p(N,η ,m)≤ δ holds.

We notice that the probability of failure can be easily bounded by the binomial distribu-
tion if Θ consists of a unique element. That is, if Θ = {θ̂} is a singleton, then

p(N,η ,m) =
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PrW N{w ∈ W N : Ê(θ̂ ,w)≤ m
N

and E(θ̂)> η}=

PrW N{w ∈ W N :
N

∑
ℓ=1

g(θ̂ ,w(ℓ))≤ m and E(θ̂)> η} ≤

PrW N{w ∈ W N :
N

∑
ℓ=1

g(θ̂ ,w(ℓ))≤ m and E(θ̂) = η}=

m

∑
i=0

(
N
i

)
η i(1−η)N−i.

On the other hand, if Θ consists of an infinite number of elements, a deeper analysis
involving Statistical Learning Theory is needed (Tempo et al., 2005),(Vidyasagar, 1997).
In Subsection 2.3.3 of this chapter, we address this problem under the assumption that Θ
consists of a finite number of elements.

In Subsection 2.3.4 we study the probabilistic properties of the optimal solution of pro-
blem (2.2) under the assumption that g(θ ,w) = 0 is equivalent to f (θ ,w) ≤ 0, where f :
Θ×W → R is a convex function with respect to θ in Θ. In this case the result is not ex-
pressed in terms of probability of failure because it applies only to the optimal solution of
problem (2.2), and not to every feasible solution.

2.2 Explicit sample size bounds for the binomial distribu-
tion

Given a positive integer N and a nonnegative integer m, m ≤ N, and η ∈ (0,1), the binomial
distribution is given by

B(N,η ,m) :=
m

∑
i=0

(
N
i

)
η i(1−η)N−i.

The problem we address in this section is the explicit computation of the sample com-
plexity, i.e. a function Ñ(η ,m,δ ) such that the inequality B(N,η ,m) ≤ δ holds for any
N ≥ Ñ(η ,m,δ ), where δ ∈ (0,1). As it will be illustrated in the following section, the in-
equality B(N,η ,m)≤ δ plays a fundamental role in probabilistic analysis and design meth-
ods. Although some explicit expressions are available, e.g. the multiplicative and additive
forms of Chernoff bound (Chernoff, 1952), the results obtained in this chapter are tuned on
the specific inequalities stemming from the control problems described in Section 2.3.

The following technical lemma provides an upper bound for the binomial distribution
B(N,η ,m).
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Lemma 2.3 Suppose that η ∈ (0,1) and that the nonnegative integer m and the positive
integer N satisfy m ≤ N. Then,

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1−η)N−i

≤ am
(η

a
+1−η

)N
, ∀a ≥ 1.

Proof:

B(N,η ,m) = am
m

∑
i=0

(
N
i

)
a−mη i(1−η)N−i

≤ am
m

∑
i=0

(
N
i

)
a−iη i(1−η)N−i

≤ am
N

∑
i=0

(
N
i

)(η
a

)i
(1−η)N−i

= am
(η

a
+1−η

)N
.

We notice that each particular choice of a ≥ 1 provides an upper bound for B(N,η ,m).
When using Lemma 2.3 to obtain a given sample complexity result, the chosen value for a
plays a significant role.

Lemma 2.4 Given δ ∈ (0,1) and the nonnegative integer m, suppose that the integer N and
the scalars η ∈ (0,1) and a > 1 satisfy the inequality

N ≥ 1
η

(
a

a−1

)(
ln

1
δ
+m ln a

)
. (2.4)

Then, m ≤ N and

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1−η)N−i ≤ δ .

Proof:
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We first prove that if inequality (2.4) is satisfied then N ≥ m. Since η ∈ (0,1) and δ ∈
(0,1), inequality (2.4) implies

N ≥
(

a
a−1

ln a
)

m.

We notice now that

d
da

(
a

a−1
ln a
)
=

(
−1

(a−1)2

)
ln a+

1
a−1

.

Since ln a < a−1 for every a > 1, we conclude that

d
da

(
a

a−1
ln a
)
>

(
−1

(a−1)2

)
(a−1)+

1
a−1

= 0.

Using this fact, we conclude that a
(a−1) ln a is a strictly increasing function for a > 1. This

means that

N ≥
(

a
a−1

ln a
)

m ≥ lim
â→1

(
â

â−1
ln â
)

m = m.

We now prove that inequality (2.4) guarantees that am(η
a +1−η)N ≤ δ . The inequality (2.4)

can be rewritten as

Nη
(

a−1
a

)
≥ ln

1
δ
+m ln a. (2.5)

Since x ≤ − ln(1− x) for every x ∈ (0,1), and η(a−1
a ) ∈ (0,1), from inequality (2.5), we

obtain a sequence of inequalities

−N ln
(

1−η
(

a−1
a

))
≥ ln

1
δ
+m ln a

ln δ ≥ m ln a+N ln
(

1−η
(

a−1
a

))
δ ≥ am

(η
a
+1−η

)N
.

We have therefore proved that inequality (2.4) implies m ≤ N and am(η
a +1−η)N ≤ δ . The

claim of the property follows now directly from Lemma 2.3.

Obviously, the best sample size bound is obtained taking the infimum with respect to
a > 1. However, a suboptimal value easily follows setting a equal to the Euler constant,
which yields the sample size bound

N ≥ 1
η

(
e

e−1

)(
ln

1
δ
+m

)
.

Since e
e−1 < 1.59, we obtain N ≥ 1.59

η
(
ln 1

δ +m
)
. If m > 0 then the choice a = 1+

ln 1
δ

m +√
2

ln 1
δ

m provides a less conservative bound (which is very close to the optimal one based on
extensive numerical experiments) at the price of a more involved expression.
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Corollary 2.5 Given δ ∈ (0,1) and the nonnegative integer m, suppose that the integer N
and the scalar η ∈ (0,1) satisfy the inequality

N ≥ 1
η

(
m+ ln

1
δ
+

√
2m ln

1
δ

)
. (2.6)

Then,

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1−η)N−i ≤ δ . (2.7)

The proof of this corollary is given in the appendix. This corollary improves upon the explicit
expression obtained when using the multiplicative form of the Chernoff bound (Tempo et al.,
2005), which turns out to be

N ≥ 1
η

m+ ln
1
δ
+

√(
ln

1
δ

)2

+2m ln
1
δ

 .

2.3 Sample complexity for probabilistic analysis and de-
sign

We now illustrate some control problems in the context of randomized algorithms where one
encounters inequalities of the form

B(N,η ,m) =
m

∑
i=0

(
N
i

)
η i(1−η)N−i ≤ δ .

In particular we show how the results of the previous section can be used to obtain explicit
sample size bounds guaranteeing that the probabilistic solutions resulting from different ran-
domized approaches meet some pre-specified probabilistic properties.

2.3.1 Worst case performance analysis

We recall here a result presented in (Tempo, Bai and Dabbene, 1997) for the probabilistic
worst case performance analysis.

Theorem 2.6 Suppose that given function f : Θ×W → R, and θ̂ ∈ Θ, the multisample
w = {w(1), . . . ,w(N)} is drawn from W N according to probability PrW N . Suppose also that

γ = max
ℓ=1,...,N

f (θ̂ ,w(ℓ)).



26 2.3. Sample complexity for probabilistic analysis and design

If

N ≥
ln 1

δ
ln 1

1−η
,

then PrW {w ∈ W : f (θ̂ ,w)> γ} ≤ η with probability no smaller than 1−δ .

The proof of this statement, that can be found in (Tempo et al., 1997), relies on the
fact that PrW {w ∈ W : f (θ̂ ,w) > γ} ≤ η with probability no smaller than 1− (1−η)N .
Therefore, it suffices to take N such that B(N,η ,0) = (1−η)N ≤ δ .

2.3.2 Analysis of the probability of violation

In the following theorem we provide a sample complexity result that characterizes how the
empirical mean converges in probability to the true probability of violation.

Theorem 2.7 Given θ̂ ∈ Θ, ρ , η with 0 ≤ ρ < η < 1 and δ ∈ (0,1), if

N ≥
ln 1

δ
(
√η −√ρ)2

then PrW N{w ∈ W N : Ê(θ̂ ,w)≤ ρ and E(θ̂)> η} ≤ δ .

Proof: We notice that

PrW N{w ∈ W N : Ê(θ̂ ,w)≤ ρ and E(θ̂)> η}=

PrW N{w ∈ W N : Ê(θ̂ ,w)≤ ⌊ρN⌋
N

and E(θ̂)> η}

≤ B(N,η ,⌊ρN⌋).

Therefore it suffices to show that the proposed sample size bound guarantees B(N,η ,⌊ρN⌋)≤
δ . Using Corollary 3.4 and taking into account that ρN ≥ ⌊ρN⌋ we obtain that this is in fact
the case if

N ≥ 1
η

(
ln

1
δ
+ρN +

√
2ρN ln

1
δ

)

=
1
η

(√
ln

1
δ
+
√

ρN

)2

− 2−
√

2
η

(√
ρN ln

1
δ

)
.
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This inequality is satisfied if

N ≥ 1
η

(√
ln

1
δ
+
√

ρN

)2

.

Equivalently,
(√η −√ρ

)√
N ≥

√
ln 1

δ which yields N ≥ ln 1
δ

(
√η−√ρ)2 .

For small values of γ = ρ
η , the obtained sample size using Theorem 2.7 is

ln 1
δ

η(1−√γ)2 ≈
ln 1

δ
η

.

This bound is significantly better (for small values of η and γ) than that corresponding to
the additive form of the Chernoff bound (Chernoff, 1952), which for this case has a sample
complexity given by

ln 1
δ

2(η −ρ)2 =
ln 1

δ
2η2(1− γ)2 ≈

ln 1
δ

2η2 .

On the other hand, the multiplicative form of the Chernoff bound (Tempo et al., 2005) pro-
vides the sample size bound

2η ln 1
δ

(η −ρ)2 =
2ln 1

δ
η(1− γ)2

which is worse than that provided by Theorem 2.7 for small values of γ = ρ
η . Finally, we

remark that the bound presented in Theorem 2.7 can be also obtained by means of a result
stated in (Okamoto, 1959), which is the so-called Okamoto bound.

2.3.3 Finite families for design

We consider here the nonconvex sampled problem (2.3) for the case when Θ consists of a
set of finite cardinality nC. As a motivation consider the case when, after an appropriate
normalization procedure, the design parameter set is rewritten as Θ̂ = { θ ∈ Rnθ : ∥θ∥∞ ≤
1 }. Suppose also that a gridding approach is adopted. For each component θ j, j = 1, . . . ,nθ
of the design parameters θ ∈ Rnθ , only nC j equally spaced values are considered. That is,

θ j is constrained into the set ϒ j = { −1+ 2(t−1)
(nC j−1) : t = 1, . . . ,nC j }. With this gridding, the

following finite cardinality set Θ= { [θ1, . . . ,θnθ ]
⊤ : θ j ∈ϒ j, j = 1, . . . ,nθ } is obtained. We

notice that the cardinality of the set is nC = ∏nθ
j=1 nC j . Another situation in which the finite

cardinality assumption holds is when a finite number of random samples in the space of
design parameter are drawn according to a given probability, see e.g. (Fujisaki and Kozawa,
2006; Koltchinskii et al., 2000; Vidyasagar, 2001).
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The following property states the relation between the binomial distribution and the pro-
bability of failure under this finite cardinality assumption.

Lemma 2.8 Suppose that the cardinality of Θ is no larger than nC. Then,

p(N,η ,m)≤ nC

m

∑
i=0

(
N
i

)
η i(1−η)N−i = nCB(N,η ,m).

Proof:

Denote ñC ≤ nC the cardinality of Θ. Therefore, Θ can be rewritten as Θ= {θ (1),θ (2), . . . ,θ (ñC)}.
Then,

p(N,η ,m) = PrW N{w ∈ W N : There exists θ ∈ Θ

such that Ê(θ ,w)≤ m
N

and E(θ)> η} ≤

ñC

∑
j=1

PrW N{w ∈ W N : Ê(θ ( j),w)≤ m
N

andE(θ ( j))> η} ≤

ñC

m

∑
i=0

(
N
i

)
η i(1−η)N−i ≤ nC

m

∑
i=0

(
N
i

)
η i(1−η)N−i.

Consider now the optimization problem (2.3). It follows from Lemma 2.8 that in order to
guarantee that every feasible solution θ̂ ∈ Θ satisfies E(θ̂) ≤ η with probability no smaller
than 1−δ , it suffices to take N such that nCB(N,η ,m)≤ δ , where nC is an upper bound on
the cardinality of Θ. As it will be shown next, the required sample complexity in this case
grows with the natural logarithm of nC. This means that we can consider finite families with
high cardinality and still obtain reasonable sample complexity bounds.

Theorem 2.9 Suppose that the cardinality of Θ is no larger than nC. Given the nonnegative
integer m, η ∈ (0,1) and δ ∈ (0,1), if

N ≥ inf
a>1

1
η

(
a

a−1

)(
ln

nC

δ
+m ln a

)
then p(N,η ,m)≤ δ . Moreover, if

N ≥ 1
η

(
m+ ln

nC

δ
+

√
2m ln

nC

δ

)
then p(N,η ,m)≤ δ .
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Proof:

From Lemma 2.8 we have that p(N,η ,m) ≤ δ provided that B(N,η ,m) ≤ δ
nC

. The two
claims of the property now follow directly from Lemma 2.4 and Corollary 3.4 respectively.

Consider the sampled optimization problem (2.3)

min
θ∈Θ

J(θ) subject to
N

∑
ℓ=1

g(θ ,w(ℓ))≤ m.

From the definition of p(N,η ,m) and Theorem 2.9 we conclude that if one draws N i.i.d.
samples {w(1), . . . ,w(N)} from W according to probability PrW , then with probability no
smaller than 1−δ , all the feasible solutions to problem (2.3) have a probability of violation
no larger than η , provided that the cardinality of Θ is upper bounded by nC and the sample
complexity is given by

N ≥ 1
η

(
m+ ln

nC

δ
+

√
2m ln

nC

δ

)
.

We remark that taking a equal to the Euler constant, the following sample size bound

N ≥ 1
η

(
e

e−1

)(
ln

nC

δ
+m

)
is immediately obtained from Theorem 2.9. If m > 0 then a suboptimal value for a is given
by

a = 1+
ln nC

δ
m

+

√
2

ln nC
δ

m
.

2.3.4 Optimal robust optimization for design

In this subsection, we study the so-called scenario approach for robust control introduced in
(Calafiore and Campi, 2006), see also (Campi and Garatti, 2008) for recent results in this
area. Suppose that in order to address the general semi-infinite optimization problem (2.1),
one resorts to randomization. That is, N i.i.d. samples {w(1), . . . ,w(N)} from W according to
probability PrW are drawn and one solves the following problem

min
θ∈Θ

J(θ) subject to g(θ ,w(ℓ)) = 0, ℓ= 1, . . . ,N. (2.8)
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We consider here the particular case in which J(θ) = c⊤θ , the constraint g(θ ,w) = 0 is
convex in Θ for all w ∈ W , the solution of (2.8) is unique1. These assumptions are now
stated precisely.

Assumption 2.10 [convexity] Let Θ ⊂ Rnθ be a convex and closed set. We assume that

J(θ) := c⊤θ and g(θ ,w) :=
{

0 if f (θ ,w)≤ 0,
1 otherwise

where f : Θ×W → [−∞,∞] is convex in Θ for any fixed value of w ∈ W .

Assumption 2.11 [feasibility and uniqueness] The optimization problem (2.8), for all possi-
ble multisample extractions {w(1), . . ., w(N)}, is always feasible and attains a unique optimal
solution. Moreover, its feasibility domain has a nonempty interior.

We state here a result proved in (Campi and Garatti, 2008) that relates the binomial
distribution to the probabilistic properties of the optimal solution obtained from (2.8).

Lemma 2.12 Let Assumptions 1 and 2 hold. Suppose that N, η ∈ (0,1) and δ ∈ (0,1) satisfy
the following inequality

nθ−1

∑
i=0

(
N
i

)
η i(1−η)N−i ≤ δ . (2.9)

Then, with probability no smaller than 1− δ , the optimal solution θ̂N to the optimization
problem (2.8) satisfies the inequality E(θ̂N)≤ η .

We now state an explicit sample size bound to guarantee that the probability of violation
is smaller than η with probability at least 1−δ .

Theorem 2.13 Let Assumptions 1 and 2 hold. Given η ∈ (0,1) and δ ∈ (0,1), if

N ≥ inf
a>1

(
a

η(a−1)

)(
ln

1
δ
+(nθ −1) ln a

)
(2.10)

or

N ≥ 1
η

(
ln
(

1
δ

)
+nθ −1+

√
2(nθ −1) ln

1
δ

)
(2.11)

then, with probability no smaller than 1− δ , the optimal solution θ̂N to the optimization
problem (2.8) satisfies the inequality E(θ̂N)≤ η .

1We remark that this uniqueness assumption can be relaxed in most cases, as shown in Appendix A of
(Calafiore and Campi, 2006).
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Proof: From Lemma 2.12 it follows that it suffices to take N such that B(N,η ,nθ −1)≤
δ . Both inequalities (2.10) and (2.11) guarantee that B(N,η ,nθ − 1) ≤ δ (see Lemma 2.4
and Corollary 3.4 respectively). This completes the proof.

We remark that a sample size bound which depends linearly on 1
η is obtained taking a

equal to the Euler constant

N ≥ 1
η

(
e

e−1

)(
ln

1
δ
+nθ −1

)
.

This bound always improves upon other recent bounds given in the literature, see e.g. (Álamo
et al., 2009). If nθ > 1 then a suboptimal value for a is given by

a = 1+
ln 1

δ
nθ −1

+

√
2

ln 1
δ

nθ −1
.

2.4 Numerical example

The objective of this numerical example is to obtain probabilistic upper and lower bounds of
a given time function y : W → R of the form

y(w) = [A(1+
1
2

t2)sin(7t +0.5)+B]e−
3
2 t ,

where w ∈ W .

The uncertainty set W is

W =
{

w = [t A B]T , t ∈ [0,1], A ∈ [1,3], B ∈ [1,3]
}
.

For a given order d, we define the regressor φd : W → Rd+1 as

φd(w) = φd([t A B]T ) =
[

1 t t2 · · · td
]T

.

The objective of this example is to find a parameter vector θ = [γd,λd]
T , γd ∈ Rd+1 and

λd ∈ Rd+1 such that, with probability no smaller than 1−δ ,

PrW { w ∈ W : |y(w)− γT
d φd(w)| ≥ λ T

d |φd(w)| } ≤ η .
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The vector |φd(w)| is obtained from the absolute values of φd(w). The binary function
g : Θ×W →{0,1}, is defined as

g(θ ,w) :=
{

0 if θ meets design specifications for w
1 otherwise,

where “design specifications” means satisfying the following constraint:

|y(w)− γT
d φd(w)| ≤ λ T

d |φd(w)|

for randomly generated samples w ∈ W .

A similar problem is addressed in (Campi and Garatti, 2008) using the scenario approach.
For the numerical computations, we take δ = 10−6 and η = 0.05. We address the problem
in this chapter from the finite families and scenario approach.

2.4.1 Finite families approach

We apply the results of Section 2.3.3 to determine both the degree d and the parameter
vectors (γd,λd) that meet the design specification and optimize a given performance index.

In this example, as it will be seen later, a finite family of cardinality nC = 150 is consi-
dered. In order to compare the finite family approach with the scenario one, we consider no
allowed failures (i.e m = 0). For this choice of parameters (m = 0, nC = 150, δ = 10−6 and
η = 0.05), the number of samples N required to obtain a solution with the specified prob-
abilistic probabilities is 377 (see Property 2.9). A set D of M = N samples is drawn (i.i.d.)
from W . We use these samples to select the optimal parameters (γ̃d, λ̃d) corresponding to
each of the different regressors φd(·). Each pair (γ̃d, λ̃d) is obtained minimizing the empir-
ical mean of the absolute value of the approximation error. That is, each pair (γ̃d, λ̃d) is the
solution to the optimization problem

min
γd ,λd

1
M ∑

w∈D
λ T

d |φd(w)|

s.t. |y(w)− γT
d φd(w)| ≤ λ T

d |φd(w)|, ∀w ∈ D.

We notice that the obtained parameters do not necessarily satisfy the probabilistic design
specifications. In order to resolve this problem, we consider a new set of candidate solutions
of the form

Θ = { θd, j = (γ̃d,e(
j

10−1)λ̃d) :

d = 1, . . . ,dmax, j = 1, . . . , jmax }.
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This family has cardinality nc = dmax jmax. We take a large factor e(
j

10−1), to increase
the probability of meeting the design specifications. Therefore, choosing a large enough
value for jmax leads to a non-empty intersection of Θ with the set of parameters that meet
the design specifications. In this example, we take jmax = 15 and dmax = 10. This yields to
nc = 150.

Using the finite family approach, we choose from Θ the design parameter that optimizes
a given performance index. We draw from W a set V of N (i.i.d.) samples and select the
pair that minimizes the empirical mean of the absolute value of the approximation error in
the validation set V . That is, we consider the performance index

1
N ∑

w∈V
e(

j
10−1)λ̃ T

d |φd(w)|

subject to the constraints

|y(w)− γ̃T
d φd(w)| ≤ e(

j
10−1)λ̃ T

d |φd(w)|, ∀w ∈V.

We remark that the feasibility of this problem can be guaranteed in two ways. The first one is
to choose jmax large enough. The second one is to allow m failures. As previously discussed,
in this example we take jmax = 15 and m = 0.

As the cardinality N of V has been chosen properly, the probability of violation and the
probability of failure of the best solution from Θ are bounded by η and δ respectively.

The obtained solution corresponds to d = 5 and j = 13. The corresponding value for
the performance index is 0.8121. Figure 3.1 shows the approximation for the set V and the
obtained probabilistic upper and lower bounds for the random function.

Finally, for illustrative purposes, we check with a validation set of sample size Nv = 10N,
obtaining a number of 60 failures. The experimental violation probability turned out to be
ηexp = 0.0146, while the specification was η = 0.05.

2.4.2 Convex scenario approach

In this case we take advantage of the result of Subsection 2.4.1 and take d = 5 as the order
of the approximation polynomial. Following the scenario approach we draw a set Wk of N
samples (i.i.d) from W and solve the convex optimization problem

min
γd ,λd

λ T
d E{|φd(t)|}

s.t. |y(w)− γT
d φd(w)| ≤ λ T

d |φd(w)|, ∀w ∈ Wk.
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In order to guarantee the design specifications we use Property 2.8 to determine the value of
N. Since the number of decision variables is 2(d +1), η = 0.05 and δ = 10−6, the resulting
value for N is 845. We notice that the convex scenario approach does not apply directly to the
minimization of the empirical mean. This is why one has to resort to the exact computation
of the mean of the approximation error λ T

d E{|φd(t)|}, see (Campi and Garatti, 2008).

Figure (3.1) shows the initial data set generated using the procedure described above,
plus the envelope that contains all the solution polynomials.

Again, for illustrative purposes, we check with a validation set of size Nv = 10N, obtain-
ing zero failures. The experimental value ηexp = 0 is obtained, while the specification was
η = 0.05.

Using this strategy, 845 design data are required, bigger than the number of required sam-
ples to use the finite families approach. We obtained a performance index of 0.8748, slightly
larger than that obtained by the finite families strategy. The advantage of the finite families
approach is that, using a smaller number of samples, a similar performance is obtained. This
allows us to determine the best order of the polynomial with the further advantage that the
exact computation of the mean of the error is not required.

2.5 Conclusion

In this chapter we have derived sample complexity results for various analysis and design
problems related to uncertain systems. In particular we provided new results which guarantee
that a binomial distribution expression is smaller than a pre-specified value. These results are
subsequently exploited for the analysis of worst case performance and constraint violation.
With regard to design problems we considered the case of finite cardinality of controller
families and the special case when the design problem can be recast as a robust convex
optimization problem.

2.6 Appendix

Proof of Corollary 3.4.

We first consider the case m = 0. Then, we obtain B(N,η ,0) = (1−η)N = eN ln(1−η) ≤
e−ηN . Therefore, it follows from ηN ≥ ln 1

δ that e−ηN ≤ eln δ = δ . This proves the result for
m = 0.
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Consider now the case m > 0. We first prove that

h(r) :=
√

2(r−1)− ln
(

r+
√

2(r−1)
)
≥ 0, ∀r ≥ 1. (2.12)

Since h(1) = 0, the inequality h(r) ≥ 0 holds if the derivative of h(r) is strictly positive for
every r larger than one.

d
dr

h(r) =

1√
2(r−1)

− 1
r+
√

2(r−1)

(
1+

1√
2(r−1)

)
=

(
1√

2(r−1)

)(
1−

1+
√

2(r−1)

r+
√

2(r−1)

)
=

(
1√

2(r−1)

)(
r−1

r+
√

2(r−1)

)
≥ 0, ∀r > 1.

This proves the inequality h(r)≥ 0, for all r ≥ 1. Denote now â = r+
√

2(r−1), with r =
1+ 1

m ln 1
δ . Clearly â > 1, therefore, from the direct application of Lemma 2.4 we conclude

that it suffices to choose N such that

Nη ≥ â
â−1

(
ln

1
δ
+m ln â

)
=

r+
√

2(r−1)

r−1+
√

2(r−1)

(
r−1+ ln(r+

√
2(r−1)

)
m.

Since h(r)≥ 0 we infer that

r−1+ ln(r+
√

2(r−1))

r−1+
√

2(r−1)
≤ 1.

From this, we finally conclude that inequality B(N,η ,m)≤ δ holds if

Nη ≥ (r+
√

2(r−1))m = m+ ln
1
δ
+

√
2m ln

1
δ
.
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Chapter 3

Randomized validation schemes

3.1 Introduction

In this chapter, we present a randomized strategy for design under uncertainty. The main
contribution is to provide a general class of sequential algorithms which satisfy the required
specifications using probabilistic validation. At each iteration of the sequential algorithm,
a candidate solution is probabilistically validated by means of a set of randomly generated
uncertainty samples.

The idea of validation sets has been used in some randomized algorithms when a given
candidate solution is classified as probabilistic solution when it satisfies all the constraints
on the validation set. In this chapter, we show the limitations of this strategy and present a
more general setting where the candidate solution may violate the specifications for a reduced
number of elements of the validation set. This generalized scheme exhibits some advantages,
in particular in terms of obtaining a probabilistic solution.

The design in the presence of uncertainty is of paramount relevance in different fields.
Unfortunately, the related semi-infinite optimization problems often exhibit an NP-hard na-
ture that seriously compromises their solution in a reasonable computational time (Blondel
and Tsitsiklis, 2000). There exist two ways to circumvent this NP-hard issue. One op-
tion consists in resorting to deterministic relaxations of the original problem which are
normally solved in polynomial time but which might lead to overly conservative solutions
(Scherer, 2006). An alternative paradigm is to assume that the plant uncertainty is prob-
abilistically described so that a randomized algorithm may be derived to obtain, normally
in polynomial time, a solution with some given properties normally stated in terms of the
probability of error (Tempo et al., 2005), (Vidyasagar, 1997).

37
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The field of randomized algorithms have evolved significantly in the last years. A recent
survey on this topic can be found in (Calafiore et al., 2011). Two complementary approaches,
non-sequential and sequential, have been proposed. A classical approach for non-sequential
methods is based upon statistical learning theory (Vapnik, 1998). In particular, the use of this
theory for feedback design of uncertain systems has been initiated in (Vidyasagar, 1997);
subsequent work along this direction include (Koltchinskii et al., 2000), (Vidyasagar, 2001),
(Vidyasagar and Blondel, 2001), (Álamo et al., 2009). In (Álamo et al., 2010a) and (Luedtke
and Ahmed, 2008) the particular case in which the design parameter set has finite cardinality
is analyzed.

The advantage of these methods is that the problem under attention may be non-convex.
For convex optimization problems, a successful non-sequential paradigm, denoted as the
scenario approach, has been introduced in (Calafiore and Campi, 2005) and (Calafiore and
Campi, 2006). See also (Campi and Garatti, 2008), (Campi and Garatti, 2011), (Calafiore,
2010) and (Álamo et al., 2010a) for related results.

In non-sequential methods the original robust control problem is reformulated in terms
of a single optimization problem with sampled constraints which are randomly generated.
A relevant feature of these approaches is that they do not require any validation step. The
number of samples required to guarantee that the obtained solutions meet some probabilistic
specifications should take into account the specific nature of the problem under considera-
tion. The main result of this line of research is to derive explicit lower bounds to this required
sample size. Recently, improvements regarding this sample complexity have been provided
in (Álamo et al., 2009). However, the obtained explicit sample bounds can be overly conser-
vative because they rely on a worst-case analysis and grow (at least linearly) with the number
of decision variables.

For sequential methods, the resulting iterative algorithms are based on stochastic gra-
dient (Calafiore and Polyak, 2001), (Polyak and Tempo, 2001), ellipsoid iterations (Kanev
et al., 2003), (Oishi, 2007), or analytic center cutting plane methods (Calafiore and Dabbene,
2007), see also (Álamo, Tempo, Ramı́rez and Camacho, 2007) for other classes of sequen-
tial algorithms. Convergence properties in finite-time are in fact one of the focal points of
these papers. Various control problems have been solved using these sequential randomized
algorithms, including robust LQ regulators, switched systems, and uncertain linear matrix
inequalities (LMIs). Sequential methods are mostly used for uncertain convex problems be-
cause the computational effort at each iteration is affordable. However, they can be applied
in principle to any kind of robust design problem. For example, a sequential algorithm that
can be applied to a rather general class of problems is presented in (Álamo et al., 2009).

The main point in common of all these sequential algorithms is the use of the validation
strategy presented in (Oishi, 2003) (see (Oishi, 2007) for a journal version). The candidate
solutions provided at each iteration of these algorithms are validated using a validation set
which is drawn according to the probability measure defined in the uncertain set. If the
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candidate solution satisfies the design specifications for every element of this validation set
then it is classified as probabilistic solution and the algorithm terminates. The main point in
this validation scheme is that the cardinality of the validation set increases with each iteration
of the algorithm. The strategy guarantees that if a probabilistic solution is obtained, then it
meets some probabilistic specifications. A similar approach, introduced in (Dabbene et al.,
2010), has been presented in (Calafiore et al., 2011) in the context of sequential algorithms.
The contribution is a reduction on the cardinality required for the validation sets.

The main contribution of this chapter is to propose a relaxed validation scheme in which
we allow the candidate solution to violate the design specifications for one or more of the
members of the validation set. The idea of allowing some violations of the constraints can
be found, for example, in the context of identification (Bai et al., 2002), chance-constrained
optimization (Campi and Garatti, 2011) and statistical learning theory (Álamo et al., 2009).
This scheme makes sense in the presence of soft constraints or when it is not possible to find
a solution satisfying the specifications for all the admissible realizations of uncertainty.

As it will be shown later in this chapter, this relaxed scheme allows us to reduce, in some
cases dramatically, the number of iterations required by the sequential algorithm. Another
advantage of the proposed approach is that it does not rely on the existence of a robust
deterministic solution. Furthermore, the presented strategy is quite general and is not based
on a convexity assumption.

The rest of the chapter is organized as follows. Section 3.2 presents the problem state-
ment. In Section 5.5.1 we introduce the proposed family of probabilistically validated al-
gorithms. The issue of sample size of the validating sets is analyzed in Section 5.5.2. A
comparison with the validation scheme presented in (Oishi, 2007) is provided in Section 3.5.
Section 3.6 discusses how to use the results of the chapter in the context of non-sequential
randomized algorithms. The chapter ends with a section of conclusions.

3.2 Problem statement

We assume that a probability measure PrW over the sample space W is given. Given W ,
a collection of N independent identically distributed (i.i.d.) samples w = {w(1), . . . ,w(N)}
drawn from W is said to belong to the Cartesian product W N = W × ·· · ×W (N times).
Moreover, if the collection w of N i.i.d. samples {w(1), . . . ,w(N)} is generated from W
according to the probability measure PrW , then the multisample w is drawn according to
the probability measure PrW N . The scalars ε ∈ (0,1) and δ ∈ (0,1) denote probabilistic
parameters. Furthermore, ln(·) is the natural logarithm, e is the Euler number and log2 is
the logarithm to the base 2. For x ∈ R, x ≥ 0, ⌊x⌋ denotes the largest integer smaller than or
equal to x; ⌈x⌉ denotes the smallest integer greater or equal than x. For α ∈ R, α > 1, ξ (α)
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denotes the Riemann zeta function (i.e. ξ (α) =
∞
∑

k=1

1
kα ).

Typically, for a robustness problem, the design parameters, along with different auxiliary
variables, are parameterized by means of a decision variable vector θ , which is denoted
as design parameter, and is restricted to a design parameter set Θ. On the other hand, the
uncertainty w is bounded in the set W . That is, each element w ∈ W represents one of
the admissible uncertainty realizations. We also consider a binary measurable function g :
Θ×W →{0,1}. In a control context, the binary function g : Θ×W →{0,1}, is defined as

g(θ ,w) :=
{

0 if θ meets control specifications for w
1 otherwise.

Given θ ∈ Θ, there might be a subset of the elements of W for which the constraint
g(θ ,w) = 0 is not satisfied. This concept is rigorously formalized by means of the notion of
“probability of violation”, which is now introduced.

Definition 3.1 [probability of violation] Consider a probability measure PrW over W and
let θ ∈ Θ be given. The probability of violation of θ for the function g : Θ×W → {0,1} is
defined as

E(θ) := PrW { w ∈ W : g(θ ,w) = 1 }.

We consider the robust optimization problem

min
θ∈Θ

J(θ) subject to E(θ)≤ ε (3.1)

where J : Θ → (−∞,∞) is a measurable function. Given accuracy ε ∈ (0,1) and confidence
δ ∈ (0,1), the main focus is to design an algorithm such that any probabilistic solution θ̂
obtained running the algorithm satisfies E(θ̂) ≤ ε with probability no smaller than 1− δ .
We address this issue by means of a rather general family of randomized algorithms with
probabilistic validation that are introduced in the following section.

3.3 Sequential algorithms with probabilistic validation

In this section we present a general family of randomized algorithms, which we denote
as “Sequential Probabilistic Validation algorithms”, SPV algorithms for short. The main
feature of this class of algorithms is that they are based on a probabilistic validation step. This
family encompasses most of the sequential randomized algorithms that have been mentioned
in the introduction of this chapter. As a matter of fact, the non-sequential strategies that can
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be found in the context of statistical learning theory (Vidyasagar, 1997) and convex scenario
(Calafiore and Campi, 2006) can be also provided with an outer iterative structure that makes
them fit in the proposed scheme. We explore this possibility in Section 3.6.

Each iteration of an SPV algorithm is composed of the computation of a candidate solu-
tion for the problem and a validation step. The results provided in this chapter are basically
independent of the particular strategy chosen to obtain candidate solutions. Therefore, in the
following discussion we restrict ourselves to a generic candidate solution computation step.

The accuracy ε ∈ (0,1) and confidence δ ∈ (0,1) required for the probabilistic solution
play a relevant role when determining the sample size of each validation step. The main
purpose of this chapter is to provide a validation scheme such that it guarantees that for
given accuracy ε and confidence δ , all the probabilistic solutions obtained running the SPV
algorithm have a probability of violation no larger than ε with probability no smaller than
1−δ .

We enumerate each iteration of the algorithm by means of integer k. We denote mk the
number of violations that are allowed at the validation step of iteration k. We assume that mk
is given by a function of k, that is, mk = m(k) where the function m : N→ N is given. We
also denote Mk the sample size of the validation step of iteration k. We assume that Mk is
given by a function of k, ε and δ . That is, Mk = M(k,ε,δ ) where M : N×R×R→N has to
be appropriately designed in order to guarantee the probabilistic properties of the algorithm
(the main contribution of (Oishi, 2007) was to provide this function for the particular case
mk = 0 for every k ≥ 1). For future references we denote the functions m(·) and M(·, ·, ·) as
level function and cardinality function respectively.

We are now in a position to introduce the structure of an SPV algorithm

(i) Set accuracy ε ∈ (0,1) and confidence δ ∈ (0,1) equal to the desired levels. Set k
equal to 1.

(ii) Obtain a candidate solution θ̂k to the robust optimization problem (A.4.1).

(iii) Set mk = m(k) and Mk = M(k,ε,δ ).

(iv) Obtain validation set Vk = {v(1), . . . ,v(Mk)} drawing Mk i.i.d validation samples from
W according to probability PrW .

(v) If
Mk
∑
ℓ=1

g(θ̂k,v(ℓ))≤ mk, then θ̂k is a probabilistic solution.

(vi) Exit if the exit condition is satisfied.

(vii) k=k+1. Goto (ii).
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Although the exit condition can be quite general, a reasonable one is to exit after a given
number of candidate solutions have been classified as probabilistic solutions or when a given
computational time has elapsed since the starting of the algorithm. After exiting one could
choose the probabilistic solution which maximizes a given performance index. In the follow-
ing section we propose a strategy to choose the cardinality of the validation set at iteration k
in such a way that with probability no smaller than 1−δ all candidate solutions classified as
probabilistic solutions by the algorithm meet the accuracy ε .

3.4 Adjusting the validation sample size

The cardinality adjusting strategy provided in this section constitutes a generalization of
that presented in (Oishi, 2007) and (Dabbene et al., 2010). To infer the different results of
this section we rely on some contributions on sample size complexity presented in (Álamo
et al., 2010a).

The following definition introduces the notion of failure function.

Definition 3.2 (failure function) The function µ : N→ R is said to be a failure function if
it satisfies

(i) µ(k) ∈ (0,1) for every positive integer k.

(ii)
∞
∑

k=1
µ(k)≤ 1.

We notice that the function
µ(k) =

1
ξ (α)kα ,

where ξ (·) is the Riemann zeta function, is a failure function for every α > 1. This is due to

the fact that
∞
∑

i=1

1
kα converges for every scalar α greater than 1 to ξ (α). This family has been

used in the context of validation schemes in (Calafiore et al., 2011) and in (Oishi, 2007) for
the particular value α = 2.

Property 3.3 Consider an SPV algorithm with given accuracy parameter ε ∈ (0,1), confi-
dence δ ∈ (0,1), level function m(·) and cardinality function M(·, ·, ·). If there exists a failure
function µ(·) such that

m(k)

∑
i=0

(
M(k,ε,ρ)

i

)
ε i(1− ε)M(k,ε,ρ)−i ≤ δ µ(k), ∀k ≥ 1
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then with a probability greater than 1− δ all the probabilistic solutions obtained running
the SPV algorithm have a probability of violation no greater than ε .

The proof of the previous property follows the same lines as the proof of Theorem 9 in
(Oishi, 2007).

Denote by δk the probability of classifying at iteration k the candidate solution θ̂k as a
probabilistic solution under the assumption that the probability of violation

δk = PrW Mk

{
{v(1), . . . ,v(Mk)} ∈ W Mk :

Mk

∑
j=1

g(θ̂k,v( j))≤ mk and E(θ̂k)> ε
}

< PrW Mk

{
{v(1), . . . ,v(Mk)} ∈ W Mk :

Mk

∑
j=1

g(θ̂k,v( j))≤ mk and E(θ̂k) = ε
}

=
mk

∑
i=0

(
Mk
i

)
ε i(1− ε)Mk−i

=
m(k)

∑
i=0

(
M(k,ε,ρ)

i

)
ε i(1− ε)M(k,ε ,ρ)−i

≤ δ µ(k).

Therefore the probability of misclassification of a candidate solution at iteration k is
smaller than δ µ(k). From here we conclude that the probability of erroneously classifying
one or more candidate solutions as probabilitic solutions running the algorithm is bounded
by

∞

∑
k=1

δk <
∞

∑
k=1

δ µ(k) = δ
∞

∑
k=1

µ(k)≤ δ .

In order to design a cardinality function M(·, ·, ·) satisfying the conditions of Property 3.3
we will use the following result (see Corollary 1 in (Álamo et al., 2010a)).

Corollary 3.4 Given δ ∈ (0,1) and the nonnegative integer m, suppose that the integer N
and the scalar η ∈ (0,1) satisfy the inequality

N ≥ 1
η

(
m+ ln

1
δ
+

√
2m ln

1
δ

)
.
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Then,
m

∑
i=0

(
N
i

)
η i(1−η)N−i ≤ δ .

We now present the main contribution of the chapter, which is a general expression to
compute the cardinality of the validation set at each iteration of the algorithm.

Theorem 3.5 Consider an SPV algorithm with given accuracy parameter ε ∈ (0,1), confi-
dence δ ∈ (0,1) and level function m(·). Suppose also that µ(·) is a failure function. Then
the cardinality function

M(k,ε,δ ) =⌈
1
ε

(
m(k)+ ln

1
δ µ(k)

+

√
2m(k) ln

1
δ µ(k)

)⌉
guarantees that with probability greater than 1− δ all the probabilistic solutions obtained
running the SPV algorithm have a probability of violation no greater than ε .

Proof:

Corollary 3.4 guarantees that the proposed choice for the cardinality function satisfies

m(k)

∑
i=0

(
M(k,ε,ρ)

i

)
ε i(1− ε)M(k,ε,ρ)−i ≤ δ µ(k), ∀k ≥ 1.

The result then follows from a direct application of Property 3.3.

We notice here that the proposed cardinality function depends on the previous selection of
the level function m(·) and the failure function µ(·). Reasonable choices for these functions
are m(k) = ⌊ak⌋, where a is a non negative scalar and µ(k) = 1

ξ (α)kα where α is greater than
one. We recall that this choice guarantees that µ(k) is a failure function. As it will be shown
in the following section, the proposed level and failure functions allows us to recover, for
the particular choice a = 0 the validation strategies proposed in (Dabbene et al., 2010) and
(Oishi, 2007). We rewrite the resulting algorithm in the following corollary

Corollary 3.6 Consider the following SPV algorithm

(i) Set accuracy ε ∈ (0,1), confidence δ ∈ (0,1) and scalars a ≥ 0, α > 1 equal to the
desired levels. Set k equal to 1.
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(ii) Obtain a candidate solution θ̂k to the robust optimization problem (A.4.1).

(iii) Set mk = ⌊ak⌋ and

Mk =

⌈
1
ε

(
mk + ln

ξ (α)kα

δ
+

√
2mk ln

ξ (α)kα

δ

)⌉
.

(iv) Obtain validation set Vk = {v(1), . . . ,v(Mk)} drawing Mk i.i.d validation samples from
W according to probability PrW .

(v) If
Mk
∑
ℓ=1

g(θ̂k,v(ℓ))≤ mk, then θ̂k is a probabilistic solution.

(vi) Exit if the exit condition is satisfied.

(vii) k=k+1. Goto (ii).

Then, with probability greater than 1−δ all the probabilistic solutions obtained running the
SPV algorithm have a probability of violation no greater than ε .

Proof: The result is inferred directly from Theorem 3.5 using as level funtion m(k) =
⌊ak⌋ and failure function µ(k) = 1

ξ (α)kα .

Since the probabilistic properties of the algorithm presented in Corollary 3.6 are indepen-
dent of the particular value of α > 1, a reasonable choice for α is the one that minimizes the
cardinality of the validation samples. In (Dabbene et al., 2010) it is shown that α = 1.1 min-
imizes the term ln ξ (α)kα . Thus setting α = 1.1 leads to a minimization of the cardinality
of the resulting validation sets regardless of the particular level function m(·).

3.5 Comparison with other validation schemes

In this section, we provide comparisons with the validation schemes presented in (Oishi,
2007). This strategy has been successfully used in different randomized algorithms dealing
with uncertain convex problems (Álamo, Tempo, Ramı́rez and Camacho, 2007), (Calafiore
and Dabbene, 2007), (Oishi, 2007). We notice that setting a = 0 and α = 2 in Corollary 3.6
we obtain m(k) = 0 for every iteration k and

M(k) =
⌈

1
ε

ln
(

ξ (2)k2

δ

)⌉
=

⌈
1
ε

ln
(

π2k2

6δ

)⌉
.
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This is the same cardinality function presented in (Oishi, 2007) if one takes into account that
for small values of ε , − ln(1− ε) can be approximated by ε . In the same way, a = 0 and
α = 1.1 lead to the cardinality function presented in (Dabbene et al., 2010).

Not allowing any failure in each validation test makes perfect sense for convex problems
if the robust feasibility set

Θr = { θ ∈ Θ : g(θ ,w) = 0 for all w ∈ W }

is not empty. Under this assumption, the algorithm takes advantage of the validation samples
that have not satisfied the specifications to obtain a new candidate solution. A common
feature of the papers using this strict validation scheme is the proof that if Θr is not empty, a
probabilistic solution (not necessarily belonging to the robust feasibility set Θr) is obtained
in a finite number of iterations of the algorithm, see e.g., (Álamo, Tempo, Ramı́rez and
Camacho, 2007), (Calafiore and Dabbene, 2007), (Oishi, 2007).

A very different situation is encountered when Θr is empty. We show by means of the
following property that one should not use a strict validation scheme (a = 0) to address the
case of empty robust feasible set because the algorithm might fail to obtain a probabilistic
solution even if the set { θ ∈ Θ : E(θ)≤ ε } is not empty.

Property 3.7 Consider the SPV algorithm presented in Corollary 3.6 with a = 0 and α >
1. Suppose that E(θ) ≥ µ > 0 for all θ ∈ Θ. Then the SPV algorithm does not find any
probabilistic solution in the first N iterations of the algorithm with probability greater than

1−
(

δ
ξ (α)

) µ
ε

Φ(
αµ
ε

,⌈log2 N⌉),

where given the scalar s > 0 and the integer t ≥ 0 the function Φ(s, t) is

Φ(s, t) :=


1−2(1−s)(t+1)

1−21−s if s ̸= 1

t +1 otherwise.

Proof: We notice that a= 0 implies that at iteration k the algorithm classifies a candidate
solution θ̂k as a probabilistic solution only if it satisfies the constraint g(θ̂k,v(k)) = 0, k =
1, . . . ,Mk where {v(1), . . . ,v(Mk)} is the randomly obtained validating set Vk. Since E(θ)≥ µ
for all θ ∈ Θ and a = 0, the probability of classifying a candidate solution as a probabilistic
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solution at iteration k is not greater than

(1−µ)Mk = eMk ln(1−µ)

< e−µMk

≤ e−
µ
ε ln

(
ξ (α)kα

δ

)

=

(
δ

ξ (α)kα

) µ
ε
.

Therefore, the probability of providing a probabilistic solution at any of the first N iterations
of the algorithm is smaller than

N

∑
k=1

(
δ

ξ (α)kα

) µ
ε

=

(
δ

ξ (α)

) µ
ε N

∑
k=1

(
1

kα

) µ
ε
.

Denoting s = αµ
ε and taking into account Property 3.11 in the appendix we have

N

∑
k=1

(
1

kα

) µ
ε
=

N

∑
k=1

1
ks ≤ Φ(s,⌈log2 N⌉).

We conclude that the probability of not finding any probabilistic solution in the first N itera-
tions of the algorithm is smaller than

1−
(

δ
ξ (α)

) µ
ε

Φ(
αµ
ε

,⌈log2 N⌉).

Example 3.8 Suppose that Θ = [0,1], W = [−0.08,1], ε = 0.1, δ = 10−4 and that

g(θ ,w) =
{

0 if θ ≤ w
1 otherwise.

Suppose also that PrW is the uniform distribution. It is clear that θ = 0 minimizes the
probability of violation and satisfies E(0) = 0.08

1.08 > 0.074. From here we obtain

E(θ)≥ 0.074 = µ for all θ ∈ Θ.

Consider now the choice α = 1.1 and a maximum number of iterations N equal to 106. We
infer from Property 3.7 that regardless of the strategy used to obtain candidate solutions
the choice a = 0 and α = 1.1 in Corollary 3.6 does not find any probabilistic solution with
probability greater than 0.98. The choice α = 2 leads to a probability greater than 0.99. This
illustrates that a strict validation scheme is not well suited for this robust design problem.
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The next result states that the validation scheme presented in this chapter obtains under
minor technical assumptions a probabilistic solution with probability one.

Property 3.9 Consider an SPV algorithm with given accuracy parameter ε ∈ (0,1), confi-
dence δ ∈ (0,1) and level function m(·). Suppose that

(i) µ(·) is a failure function.

(ii) The cardinality function M(k,ε,δ ) is given by⌈
1
ε

(
m(k)+ ln

1
δ µ(k)

+

√
2m(k) ln

1
δ µ(k)

)⌉
.

(iii) There exits an integer k∗, scalars µ ∈ (0,1) and p ∈ (0,1) such that at every iteration
k > k∗ a candidate solutions θ̂k satisfying E(θ̂k)≤ µ < ε is obtained with probability
greater than p.

(iv) lim
k→∞

1
m(k) ln 1

δ µ(k) = 0

then the SPV algorithm obtains with probability 1 a probabilistic solution in a finite number
of iterations.

Proof:

From the assumption

lim
k→∞

1
m(k)

ln
1

δ µ(k)
= 0

we infer that

lim
k→∞

M(k)
m(k)

= lim
k→∞

1
ε

(
1+

1
m(k)

ln
1

δ µ(k)

+

√
2

1
m(k)

ln
1

δ µ(k)

)
=

1
ε
.

This implies, along with the assumption µ < ε , that there is k̃ such that

µ <
m(k)
M(k)

, for every k > k̃.
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We conclude that the algorithm provides candidate solutions θ̂k satisfying

E(θ̂k)≤ µ <
m(k)
M(k)

(3.2)

for every k ≥ max{k∗, k̃} with probability no smaller than p. The validation test is satisfied
if

M(k)

∑
ℓ=1

g(θ̂k,v(ℓ))≤ m(k),

or equivalently, if
1

M(k)

M(k)

∑
ℓ=1

g(θ̂k,v(ℓ))≤
m(k)
M(k)

.

We notice that 1
M(k)

M(k)
∑
ℓ=1

g(θ̂k,v(ℓ)) is the empirical mean associated to g(θ̂k,v) (Tempo et al.,

2005). Moreover, recall that the probability of obtaining an empirical mean greater than the
actual probability of violation is smaller than 1

2 . We therefore infer from equation (3.2) that
the probability of classifying a candidate solution as a probabilistic one is no smaller than
p
2 for every iteration k > max{k∗, k̃}. Since p

2 > 0 we conclude that the algorithm obtains a
probabilistic solution with probability 1.

3.6 Application to non-sequential randomized algorithms

Motivated by the results presented in this chapter we present the following SPV algorithm
which takes advantages of the theoretical results obtained in the literature of non-sequential
randomized algorithms, see e.g., (Álamo et al., 2009), (Campi and Garatti, 2011), (Calafiore,
2010).

(i) Set accuracy ε ∈ (0,1), confidence δ ∈ (0,1), and scalars a > 0 and α > 1, equal to
the desired levels.

(ii) Set k equal to 1 and W1 equal to the empty set.

(iii) Set mk = ⌊ak⌋ and

Mk =

⌈
1
ε

(
mk + ln

ξ (α)kα

δ
+

√
2mk ln

ξ (α)kα

δ

)⌉
.

(iv) Obtain, if possible, a candidate suboptimal feasible solution θ̂k to the optimization
problem

min
θ∈Θ

J(θ) subject to ∑
w∈Wk

g(θ ,w)≤ (card Wk)
mk

Mk
.



50 3.6. Application to non-sequential randomized algorithms

(v) Obtain validation set Vk = {v(1), . . . ,v(Mk)} drawing Mk i.i.d validation samples from
W according to probability PrW .

(vi) If a feasible solution θ̂k was found at step (iv) then classify it as a probabilistic solution
if

Mk

∑
ℓ=1

g(θ̂k,v(ℓ))≤ mk.

(vii) Exit if the exit condition is satisfied.

(viii) Wk+1 = Wk
∪

Vk. k = k+1. Goto (iii).

Under rather general assumptions like finite VC-dimension of g(·, ·) (Álamo et al., 2009)
or convexity of the optimization problem with respect to the design parameter θ (see (Campi
and Garatti, 2011) and (Calafiore, 2010)), we have that the feasible solutions obtained at step
(iii) of the algorithm have a probability of violation smaller than mk

Mk
< ε with a probability

that tends to 1 with the cardinality of Wk. From this we conclude that if the optimization pro-
blem at step (iii) is feasible with probability greater than 0, the proposed algorithm satisfies
the assumptions of Property 3.9 and therefore provides a probabilistic solution that meets
accuracy ε and confidence δ . The main advantage of the proposed algorithm with respect
to the non-sequential algorithms available in the literature is that no explicit bound on the
number of samples is required. This might lead to a substantial reduction of the number of
required samples specially in the case of non-convex uncertain problems.

Illustrative example:

Suppose that Θ = [0,1], W = [−0.1,0.95], ε = 0.1, δ = 10−4 and that

g(θ ,w) =
{

0 if θ ≤ w
1 otherwise.

Suppose also that PrW is the uniform distribution. It is clear that θ = 0 minimizes the
probability of violation and satisfies the constraint E(θ) ≤ ε = 0.1 since E(0) = 0.1

1.05 =
0.0952. Consider now the choice α = 1.1. Since E(θ) ≥ 0.0952 ≥ ε

1.1 = 0.0909 for every
θ ∈ Θ we infer from Property 3.7 that regardless of the strategy used to obtain candidate
solutions and the number of iterations, the choice a = 0 and α = 1.1 in Corollary 3.6 never

founds a probabilistic solution with probability no smaller than 1− 5
2δ

1√
1.1 > 0.999. A similar

result is obtained for the choice a = 0 and α = 2. This illustrates that a strict validation
scheme is not well suited for this robust design problem.
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3.7 Numerical example

As in previous chapter, the objective of this numerical example is to obtain probabilistic
upper and lower bounds of a given time function y : W → R of the form

y(w) = [A(1+
1
2

t2)sin(7t +0.5)+B]e−
3
2 t ,

where w ∈ W .

The uncertainty set W is

W =
{

w = [t A B]T , t ∈ [0,1], A ∈ [1,3], B ∈ [1,3]
}
.

For a given order d, we define the regressor φd : W → Rd+1 as

φd(w) = φd([t A B]T ) =
[

1 t t2 · · · td
]T

.

The objective of this example is to find a parameter vector θ = [γd,λd]
T , γd ∈ Rd+1 and

λd ∈ Rd+1 such that, with probability no smaller than 1−δ ,

PrW { w ∈ W : |y(w)− γT
d φd(w)| ≥ λ T

d |φd(w)| } ≤ η .

The vector |φd(w)| is obtained from the absolute values of φd(w). The binary function
g : Θ×W →{0,1}, is defined as

g(θ ,w) :=
{

0 if θ meets design specifications for w
1 otherwise,

where “design specifications” means satisfying the following constraint:

|y(w)− γT
d φd(w)| ≤ λ T

d |φd(w)|

for randomly generated samples w ∈ W .

For the numerical computations, we take δ = 10−6 and η = 0.05. We address the problem
from the SPV approach.

3.7.1 SPV algorithm

We again take advantage of the result of Subsection 2.4.1 and take d = 5 as the order of
the approximation polynomial. Following the SPV algorithm approach, we begin setting



52 3.7. Numerical example

η = 0.05, confidence δ = 10−6, scalars a = 0.75, α = 2 and iteration index k = 1. The
initial Wk is a set of 400 samples drawn from W according to probability PrW .

(i) A candidate solution θ̂k to the problem

min
γd ,λd

λ T
d ∑ |φd(t)|

s.t. |y(w)− γT
d φd(w)| ≤

1
1.2

λ T
d |φd(w)|, ∀w ∈ Wk

is obtained.

(ii) Set mk = ⌊a(k)⌋ and

Mk =

⌈
1
η

(
mk + ln

ξ (α)kα

δ
+

√
2mk ln

ξ (α)kα

δ

)⌉
.

(iii) Obtain validation set Vk = {v(1), . . . ,v(Mk)} drawing Mk i.i.d. validation samples from
W according to the probability PrW .

(iv) If
Mk
∑
ℓ=1

g(θ̂k,v(ℓ)) ≤ mk, then θ̂k is a probabilistic solution. The failure function is

g(θ̂k,v(ℓ))

g(θ̂k,v(ℓ)) :={
0 if |y(w)− γT

d φd(w)| ≤ λ T
d |φd(w)|

1 otherwise.

(v) Exit if the exit condition is satisfied.

(vi) k = k+1. Wk = Wk
∪

Vk. Goto (i).
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Figure 3.1: Initial data set and envelope of the set of solutions.

Figure (3.1) shows the initial data set generated using the procedure described above,
and the envelope that contains all the solution polynomials. Using this strategy, 686 data are
required. We obtained a performance index of 0.8877, slightly larger than that obtained by
the finite families strategy.

The number of failures obtained in the last step of the algorithm is m = 5, being the
empirical probability of failure η = m

Mk
= 0 < 0.05.

We remark that if we set a = 0 in the algorithm, there are no allowed failures and this
coincides with the approach studied in (Oishi, 2007). In this case, the algorithm did not find
a solution for η = 0.05 and Mk < 30000.This is consistent with the results on Section 3.5.

In Table 1 the results of the three approaches are compared for different values of η .

η N f inite Nconvex NSPV
0.2 190 212 582
0.1 378 423 543
0.05 754 845 686
0.02 1884 2113 2230
0.01 2366 4225 4061
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3.8 Conclusions

In this chapter we presented a general class of randomized algorithms based on probabilistic
validation. We provided a strategy to adjust the cardinality of the validation sets to guarantee
that the obtained solutions meet the probabilistic specifications. The proposed strategy is
compared with other schemes from the literature and it has been shown that a strict validation
strategy in which the design parameter has to satisfy the constraints for all the elements of
the validation set might not be appropriate in some situations. Finally we proved that the
proposed approach does not suffer from this limitation because it allows the use of non strict
validation tests.

A randomized sequential algorithm that permits approaching optimization problems sub-
ject to uncertainty has been introduced. This algorithm is based on a strategy that iteratively
adjusts the sample size of the training and validation sets. The main advantage of this pro-
posal is that the algorithm leads to significant improvements in terms of the required sample
size. The results allow us to address non-convex optimization problems with uncertainties,
which is of great relevance in the context of robust control design.

3.9 Appendix

Property 3.10 Suppose that N is a positive integer and that s is a strictly positive scalar.
Then,

N

∑
k=1

1
ks ≤ Φ(s,⌈log2 N⌉)

where, given s ≥ 0 and the integer t ≥ 0,

Φ(s, t) :=


1−2(1−s)(t+1)

1−21−s if s ̸= 1

t +1 otherwise.

Property 3.11 Suppose that N is a positive integer and that s is a strictly positive scalar.
Then,

N

∑
k=1

1
ks ≤ Φ(s,⌈log2 N⌉)
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where, given s ≥ 0 and the integer t ≥ 0,

Φ(s, t) :=


1−2(1−s)(t+1)

1−21−s if s ̸= 1

t +1 otherwise.

Proof: Given N > 0 and s > 0, define t := ⌈log2(N)⌉ and S(t) :=
2t

∑
k=1

1
ks . With these

definition we have
N

∑
k=1

1
ks ≤

2t

∑
k=1

1
ks = S(t).

In what follows we show that S(t)≤ 1+21−sS(t−1) for every integer t greater than 0. Since
S(0) = 1 and S(1) = 1+2−s, the inequality is clearly satisfied for t = 1. We now prove the
inequality for t greater than 1.

S(t) =
2t

∑
k=1

1
ks =

2t−1

∑
k=1

[
1

(2k)s +
1

(2k−1)s

]

= 2−s
2t−1

∑
k=1

1
ks +

2t−1

∑
k=1

1
(2k−1)s

= 2−sS(t −1)+1+
2t−1

∑
k=2

1
(2k−1)s

≤ 2−sS(t −1)+1+
2t−1

∑
k=2

1
(2k−2)s

= 2−sS(t −1)+1+2−s
2t−1

∑
k=2

1
(k−1)s

= 2−sS(t −1)+1+2−s
2t−1−1

∑
k=1

1
ks

≤ 2−sS(t −1)+1+2−s
2t−1

∑
k=1

1
ks

= 2−sS(t −1)+1+2−sS(t −1)
= 1+21−sS(t −1).

We have therefore proved the inequality S(t) ≤ 1+ 21−sS(t − 1) for every integer t greater
than 0. Using this inequality in a recursive way with S(0) = 1 we obtain

S(t)≤
t

∑
k=0

2(1−s)k = Φ(s, t).
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This proves the result.



Chapter 4

A sequentially optimal R.A. for robust
LMI feasibility problems

4.1 Introduction

This chapter proposes a randomized algorithm for feasibility of uncertain LMIs (Álamo et al.,
2013). The algorithm is based on the solution of a sequence of semidefinite optimization
problems involving a reduced number of constraints. A bound of the maximum number of
iterations required by the algorithm is given. Analogies and differences with the gradient and
localization methods are discussed. Finally, the performance and behaviour of the algorithm
are illustrated by means of a numerical example.

The use of randomized algorithms (see (Tempo et al., 2005)) has attracted the attention of
the control community in the last few years. One of the reasons for this widespread interest is
that randomization can be used to circumvent the NP-hard nature of a large number of robust
control problems (Nemirovskii, 1993),(Poljak and Rohn, 1993). Randomization allows one
to obtain a solution that satisfies the constraints of a given robustness problem for most of
the possible realizations of the uncertainty. This concept of approximate feasibility has been
introduced in the context of robust control in (Barmish and Scherbakov, 2002). Under rela-
tively mild assumptions, the randomized methods are able to compute (in polynomial time)
an approximate solution to a robust problem. The measure of the set of original constraints
that are violated by the approximate solution can be made smaller than any pre-specified
quantity.

The randomized gradient approach presented in (Polyak and Tempo, 2001),(Calafiore
and Polyak, 2001),(Fujisaki et al., 2003) and (Liberzon and Tempo, 2004) finds a solution
to a robust problem involving linear matrix inequalities in a finite number of iterations with

57
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probability one, if a strong feasibility condition holds. These gradients algorithms are based
on an iterative scheme where the current solution is updated towards a descent direction
obtained by a random gradient of a suitable feasibility violation function.

Another important class or randomized methods are based on probabilistic versions of
standard localization methods. These localization methods have better theoretical conver-
gence properties than the gradient ones. Among them one finds the probabilistic ellipsoid
method (Kanev et al., 2003),(Oishi, 2003) and the probabilistic analytic center cutting plane
method (Calafiore and Dabbene, 2006).

In the context of robust optimization, the scenario approach also plays a relevant role.
It is shown in (Calafiore and Campi, 2005) and (Calafiore and Campi, 2006) that by appro-
priate sampling of the constraints one obtains a standard convex optimization problem (the
scenario) whose solution is approximately feasible for the original (usually infinite) set of
constraints, i.e., the measure of the set of original constraints that are violated by the sce-
nario solution decreases to zero as the number of samples is increased.

In some sense, the scenario approach, the gradient and the ellipsoid methods have a very
different nature. The scenario approach obtains an approximate solution to a robust opti-
mization problem solving a simple optimization problem with a large number of constraints.
On the other hand, the gradient method and the ellipsoid algorithm obtain an approximate
solution to a robust feasibility problem in a sequential way, by means of a considerable num-
ber of iterations in which the candidate solution is updated by means of a simple rule so that
no optimization is really required.

In this chapter we present a randomized algorithm that addresses the problem of obtain-
ing a feasible robust solution to a possibly uncountable number of linear matrix inequalities.
The presented algorithm does not belong to any of the aforementioned strategies. The al-
gorithm requires a finite number of iterations to converge. It addresses the robust feasibility
problem by means of the solution of a sequence of relatively simple optimization problems.
The proposed algorithm, as the gradient method and the ellipsoid algorithm, has a sequen-
tial nature. However, instead of using a simple updating rule, each candidate solution is
updated by means of an optimization problem involving a reduced number of constraints
obtained from the original constraints of the problem. One of the advantages of the proposed
algorithm is that it is capable of determining the non feasibility of a given robust feasibil-
ity problem. Our numerical experience shows that the algorithm performs satisfactorily: in
an affordable number of iterations it obtains an (approximately) feasible solution in case of
feasibility, or it detects that the problem is not feasible.

The chapter is organized as follows: Section 4.2 presents some notations. Section 4.3
details the class of feasibility problems under consideration. In Section 4.4 it is shown that
the feasibility problem can be rewritten as an optimization problem. The notion of normal-
ized valid cuts is introduced in Section 4.5. The proposed algorithm is presented in Section
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4.6. Section 4.7 addresses the problem of checking the robust feasibility of a given candi-
date solution. The relationship with other randomized algorithms is discussed in Section 4.8.
Some numerical results are presented in Section 4.9. The chapter draws to a close with a
concluding section.

4.2 Notation

• Given vector x, xi denotes its i-th component.

• Given symmetric matrix A, λ̄ (A) denotes its largest eigenvalue; A < 0 denotes that A
is negative definite; given symmetric matrices A and B, A < B denotes that A−B is
negative definite.

• The Euclidean norm is denoted as ∥ · ∥2.

• For x ∈ R, x > 0, ⌈x⌉ denotes the minimum integer greater than or equal to x.

4.3 Problem statement

In this chapter we address the solution of the following robust LMI problem: find z ∈ Rm

such that

A(z,w)< 0, ∀w ∈W (4.1)

where W is a compact set, A(z,w) =
m
∑

i=1
ziAi(w), and Ai(w) = A⊤

i (w) ∈ Rq×q, i = 1, . . . ,m,

∀w ∈ W . It will be assumed that each of the entries of the matrices Ai(w), i = 1, . . . ,m are
bounded for every w ∈ W . If z satisfies A(z,w) < 0, ∀w ∈ W then z is said to be a robust
feasible solution.

The set of feasible solutions to the robust LMI problem (4.1) will be denoted as D ,

D = { z ∈ Rm : A(z,w)< 0, ∀w ∈W }.

Note that the dependence of A(z,w) with respect to z is linear. This implies that A(µz,w)=
µA(z,w), ∀µ ∈ R. From this it is clear that if z is a robust feasible solution then z̄ = z√

z⊤z
is

also a robust feasible solution and z̄⊤z̄ = 1. This means that in order to analyze the robust
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feasibility of problem (4.1), it suffices to analyze if there exists a robust feasible solution in
the unit sphere { z ∈Rm : z⊤z ≤ 1 }. With this in mind, it is pertinent to introduce the notion
of ε-feasibility.

Definition 4.1 Given ε > 0, robust feasibility problem (4.1) is said to be ε-feasible if there
is z ∈ Rm such that

A(z,w) ≤ −εI, ∀w ∈W
z⊤z ≤ 1.

Next it is shown that a robust feasibility problem involving matrix inequalities in which
the dependence with respect to the decision variable is affine can be reformulated as a robust
LMI problem. Consider the problem of finding x ∈ Rn such that

F(x,w)< 0, ∀w ∈W (4.2)

with F(x,w)=F0(w)+
n
∑

i=1
xiFi(w) and where Fi(w)=F⊤

i (w), i= 0, . . . ,n, ∀w∈W . Note that

this class of robust feasibility problems appears very often in the context of robust control
(see e.g. (Boyd et al., 1994)).

Suppose that µ > 0. Then, the constraints given in equation (4.2) are equivalent to

µF0(w)+
n

∑
i=1

µxiFi(w)< 0, ∀w ∈W.

Denote now µxi = zi, i = 1, . . . ,n and µ = zn+1 and consider the following robust LMI
feasibility problem: find z ∈ Rn+1 such that

A(z,w) =

 zn+1F0(w)+
n
∑

i=1
ziFi(w) 0

0 −zn+1

< 0, (4.3)

∀w ∈W.

Note that feasibility problems (4.2) and (4.3) are equivalent: if x ∈ Rn is a feasible solu-
tion for problem (4.2) then z = [x⊤ 1]⊤ is a feasible solution for problem (4.3). Conversely, if
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z is a feasible solution to problem (4.3) then zn+1 > 0 and x = 1
zn+1

[z1 z2 . . . zn]
⊤ is a feasible

solution to problem (4.2). It is clear that feasibility problem (4.3) belongs to the class of fea-
sibility problems given by (4.1). This proves that any robust feasibility problem in which the
dependence with respect the decision variable is affine can be rewritten as a robust feasibility
problem in which the dependence is linear.

4.4 A related optimization problem

As it is shown in the following theorem, the feasibility problem (4.1) can be cast as an
optimization problem.

Theorem 4.2 Denote γ∗ the solution to the following minimization problem

γ∗ = min
z,γ

γ

s.t. A(z,w)≤ γI, ∀w ∈W
z⊤z ≤ 1.

(4.4)

Then

(i) The robust LMI problem (4.1) is feasible if and only if γ∗ ̸= 0.

(ii) The robust LMI problem is not ε-feasible for every ε >−γ∗.

Proof:

(i) First, it will be shown that γ∗ ̸= 0 implies that problem (4.1) is feasible. Note that
optimization problem (4.4) is always feasible (z = 0, γ = 0 is a feasible solution). This
means that γ∗ ≤ 0. From this and the assumption γ∗ ̸= 0 it is inferred that γ∗ is strictly
smaller than zero. That is, if the minimum of the minimization problem is attained at
(z∗,γ∗) then γ∗ < 0 and

A(z∗,w)≤ γ∗I < 0, ∀w ∈W.

From this it is concluded that z∗ is a feasible solution to problem (4.1).

To finish the proof of this first claim, we need to show that γ∗ = 0 implies that problem
(4.1) is unfeasible. This fact will be proved showing that feasibility of problem (4.1)
implies γ∗ < 0.
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Suppose that there is z̄ that satisfies the robust constraints of problem (4.1). That is,
z̄ belongs to D . The strict inequality of problem (4.1) implies that z̄ ̸= 0. Bearing in
mind the linear dependence with respect z, it results that ρ z̄ ∈ D for all ρ > 0, ρ ∈ R.
In particular, ẑ =

(
1√
z̄⊤z̄

)
z̄ ∈ D . Note that ẑ ∈ D and ẑ⊤ẑ = 1. From this and the

compactness of W it is inferred that there exits γ̂ < 0 such that

A(ẑ,w) ≤ γ̂I, ∀w ∈W
ẑ⊤ẑ ≤ 1.

From this we conclude that γ∗ < 0.

(ii) This fact stems directly from the definition of ε-feasibility. Suppose that ε >−γ∗ and
that the problem is ε-feasible. Then there is ẑ such that A(ẑ,w) ≤ −εI, ∀w ∈ W and
ẑ⊤ẑ ≤ 1. Thus, γ∗ ≤−ε . This contradicts the assumption ε >−γ∗.

4.5 Normalized valid cuts

In this section the notion of normalized valid cuts is introduced. The results of this section
play a fundamental role when analyzing the convergence of the proposed algorithm.

Given w ∈W ,

λ̄ (A(z,w)) = max
v∈Rq,v⊤v=1

v⊤A(z,w)v

= max
v∈Rq,v⊤v=1

m

∑
i=1

(v⊤Ai(w)v)zi.

This proves the following property.

Property 4.3 Denote

C(w) = {c ∈ Rm : there is v ∈ Rq such that

v⊤v = 1 and ci = v⊤Ai(w)v, i = 1, . . . ,m}.

With this notation, it results that A(z,w)≤ γI if and only if max
c∈C(w)

c⊤z ≤ γ .
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The union of all sets C(w) will be denoted C

C =
∪

w∈W

C(w).

C will be called the set of all normalized valid cuts. From this definition, and Property
4.3 it results that problem (4.4) can be rewritten as

γ∗ = min
z,γ

γ

s.t. c⊤z ≤ γ , ∀c ∈ C
z⊤z ≤ 1.

(4.5)

As it is shown in the following property, the feasibility of a given vector z can be deter-
mined by means of the set of all the normalized valid cuts.

Property 4.4 Vector z is a feasible solution to problem (4.1) if and only

c⊤z < 0, ∀c ∈ C .

Proof: The proof stems directly from the fact that A(z,w) is negative definite for every

w ∈W if and only if v⊤
(

m
∑

i=1
Ai(w)zi

)
v < 0 for every w ∈W and every v, v⊤v = 1. From the

definition of C , it is inferred that the last inequality is equivalent to c⊤z < 0, ∀c ∈ C .

Definition 4.5 Vector h belongs to the convex hull of set C , ( denoted Co{C } ) if and only
if there exists c1, . . . , cp and λ1, . . . , λp such that

h =
p

∑
i=1

λici

1 =
p

∑
i=1

λi

λi ≥ 0, i = 1, . . . , p
ci ∈ C , i = 1, . . . , p.
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The following property states that a lower bound of γ∗ is directly inferred from every
element in Co{C }.

Property 4.6 We have
γ∗ ≥−∥h∥2, ∀h ∈ Co{C }.

Proof:

Suppose that h̄ belongs to Co{C }. It will be proved that γ∗ ≥−∥h̄∥2. From h̄ ∈ Co{C }
it is inferred that there exists c1, . . . , cp and λ1, . . . , λp such that: h̄ =

p
∑

i=1
λici, 1 =

p
∑

i=1
λi,

λi ≥ 0, ci ∈ C , i = 1, . . . , p. From (4.5) it is inferred that

γ∗ ≥ γ∗c = min
z,γ

γ

s.t. c⊤i z ≤ γ , i = 1, . . . , p
z⊤z ≤ 1.

Note that the inequalities c⊤i z ≤ γ , i = 1, . . . , p imply

p

∑
i=1

λic⊤i z ≤
p

∑
i=1

λiγ = γ

(
p

∑
i=1

λici

)⊤

z = h̄⊤z ≤ γ.

Therefore,

γ∗ ≥ γ∗c ≥ γ∗d = min
z,γ

γ

s.t. h̄⊤z ≤ γ
z⊤z ≤ 1.

Note that the solution to the previous optimization problem is

z∗d =

{
−h̄√
h̄⊤h̄

if h̄ ̸= 0
0 if h̄ = 0

, γ∗d = h̄⊤z̄∗d =−∥h̄∥2.
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That is, it has been proved that

γ∗ ≥ γ∗c ≥ γ∗d =−∥h̄∥2.

4.6 Randomized algorithm

In this section, an algorithm to solve the robust feasibility problem (4.1) is presented. This
algorithm constitutes the main contribution of the chapter. Consider a given integer Nmax ≥ 1
and a real number ε ∈ (0,1) (the effect of Nmax and ε in the performance of the algorithm
will be clarified later). The proposed algorithm is detailed below.

Algorithm 1 Feasibility problem.

1. Pick an element of W, denote it w0 and solve the minimization problem

γ∗0 = min
z,γ

γ

s.t. A(z,w0) ≤ γI
z⊤z ≤ 1.

(4.6)

Denote (z∗0,γ
∗
0 ) the solution to this optimization problem. Make h0 = γ∗0 z∗0, S0 = {w0}

and k = 0.

2. Check if z∗k is a robust feasible solution to problem (4.1) (this might be done in a
probabilistic way as it is shown in next section).

3. If z∗k is a (probabilistic) robust feasible solution then STOP. Else, obtain wk+1 ∈ W
such that λ̄ (A(z∗k ,wk+1))> 0.

4. Make Sk+1 = Sk
∪

wk+1. If the number of elements of Sk+1 is greater than Nmax, then
eliminate from Sk+1 the vector ŵ ∈ Sk+1 that minimizes λ̄ (A(z∗k ,w)).

5. Solve the optimization problem

γ∗k+1 = min
z,γ

γ

s.t. h⊤
k z ≤ γ,

A(z,w)≤ γI, ∀w ∈ Sk+1
z⊤z ≤ 1.

(4.7)

Denote (z∗k+1,γ
∗
k+1) its solution. Make hk+1 = γ∗k+1z∗k+1.
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6. If γ∗k+1 >−ε then the robust feasible problem 4.1 is not ε-feasible. STOP. Else, make
k = k+1 and go to step 2.

The following theorem states that in a finite number of iterations, the algorithm finds
a (probabilistic) feasible solution or determines the non ε-feasibility of the problem. If a
feasible solution is obtained, the nature of such a solution will depend on how step 2 of the
algorithm is implemented. This question is addressed in the next section.

Theorem 4.7 Suppose that max
c∈C

∥c∥2 < σ and Nmax ≥ 1. Then the proposed algorithm

obtains a (probabilistic) robust feasible solution to problem (4.1), or determines that it is not
ε-feasible in no more than

kmax =

⌈
4σ2

ε2

⌉
+

⌈(
4σ2

ε2

)
ln ln

σ2

ε2

⌉

iterations.

Proof:

The proof of this theorem can be found in (Álamo, Tempo, Ramı́rez and Camacho,
2006b). The proof has not been included in here.

Next, a sketch of the proof is provided for the sake of completeness. The key point in the
proof is that hk ∈ Co{C }, k = 0,1, . . . , (see Theorem 2 in (Álamo et al., 2006b)). From this
and the fact that Sk ⊆W , k = 0,1, . . . , it is inferred that

γ∗ ≥ γ∗k , k = 0,1, . . .

Thus, if γ∗k > −ε then γ∗ ≥ γ∗k > −ε , which (according to Theorem 4.2) implies that the
problem is not ε-feasible. This means that if the algorithm classifies the problem as non
ε-feasible, then the problem is really not ε-feasible (this proves the correctness of the algo-
rithm).

On the other hand, it is shown in Section IX of (Álamo et al., 2006b) that

γ∗k+1 ≥ γ∗k

(
1−

(γ∗k )
2

8σ2

)
≥ γ∗k . (4.8)

This means that if the algorithm does not find a feasible solution then there exists kmax such
that γ∗kmax

> −ε . Therefore, the proposed algorithm obtains a (probabilistic) robust feasible
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solution, or determines that it is not ε-feasible in no more than kmax iterations. The bound on
the number of iterations given in the theorem is a direct consequence of equation (4.8) and
Property 10 of (Álamo et al., 2006b).

Remark 4.8 Note than Theorem 4.7 holds for every Nmax ≥ 1. Unfortunately, the provided
worst case number of iterations does not reflect the potential benefit of choosing Nmax > 1.
Our numerical experience shows that the number of iterations required by the algorithm
strongly decreases with increasing values of Nmax (see the numerical results presented in
Section 4.9).

4.6.1 Bounding the value of σ

Recall that each set C(w) is compact (C(w) is defined in Property 4.3). As W is also com-
pact, it results that C = ∑

w∈W
C(w) is a compact set. From this and the assumption that the

components of each matrix Ai(w), i = 1, . . . ,m are bounded for every w ∈ W we conclude
that there is a constant σ such that ∥c∥2 ≤ σ , for every c ∈ C . Thus, the assumption of the
existence of σ is not restrictive.

In order to implement the proposed algorithm it is not necessary to obtain a bound of
max
c∈C

∥c∥2. However, as the worst-case number of iterations required by the algorithm de-

pends on such a bound, it might be interesting in some applications to compute σ satisfying
max
c∈C

∥c∥2 < σ . In this way, the worst-case number of iterations required by the algorithm

can be computed in advance.

Note that

|ci| ≤ max
w∈W

max
v⊤v=1

|v⊤Ai(w)v|

= max
w∈W

√
λ̄ (A2

i (w))

= max
w∈W

σ̄(Ai(w)), i = 1 . . . ,m ∀c ∈ C

where σ̄(Ai(w)) denotes the largest singular value of the symmetric matrix Ai(w).

If the dependence of matrices Ai(w) with respect to w is affine (or linear-fractional) and
W is an structured norm-bounded set (W = { ∆ ∈ : ∥∆∥ ≤ ρ }), then it is possible to
use results from µ-theory (see (Zhou, Doyle and Glover, 1996)) or to introduce relaxations
(Ben-Tal and Nemirovski, 2001) to obtain σ1,σ2, . . . ,σm such that
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max
w∈W

σ̄(Ai(w))< σi, i = 1, . . . ,m.

Thus, the following (conservative) bound is obtained

max
c∈C

∥c∥2 <

√
m

∑
i=1

σ2
i .

4.7 Checking robust feasibility

It is clear that the results of µ-theory (see (Zhou et al., 1996)), and some techniques based
on relaxations (Ben-Tal and Nemirovski, 2001) could be used (under some assumptions) to
determine in a deterministic way if a given candidate solution is robustly feasible. However,
these results and techniques can be very conservative. In some important cases (for example,
affine dependence with respect to w), we can utilize vertex results to prove that a given
candidate solution is a robust feasible solution (Barmish, 1994),(Boyd et al., 1994). In these
cases, it suffices to check a finite number of elements of W , denoted WF . If the number
of elements of WF is affordable, step 2 of the proposed algorithm can be implemented in a
deterministic way. There exists different ways of visiting each one of the elements of WF ,
see for example the “scheduling function” presented in (Liberzon and Tempo, 2004).

However, in most vertex results, the number of elements required to prove robust stability
grows exponentially with the dimension of W . This is not a surprise since checking robust
feasibility is in many cases an NP-hard problem (see (Nemirovskii, 1993),(Poljak and Rohn,
1993)). Moreover, there are many robust feasibility problems in which it is not possible
to use any of the aforementioned vertex results. One of the ways of circumventing these
difficulties consists in the use of a relaxed notion of feasibility (see, for example, (Barmish
and Scherbakov, 2002)).

Definition 4.9 Consider a probability measure Prob over the uncertain set W. Vector z∈Rm

is said to be a δ -level robust feasible solution if

Prob { w ∈W : λ̄ (A(z,w))≥ 0 } ≤ δ .

As it is stated in the following theorem, the algorithm proposed in Section 4.6 can be
used to obtain a δ -level robust feasible solution with a pre-specified probability of failure β .

Theorem 4.10 Suppose that given 0 < β < 1 and 0 < δ < 1, steps 2 and 3 of the proposed
algorithm are substituted by
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2. Obtain the smallest integer Mk that satisfies (1−δ )Mk < 6β
π2(1+k)2 . Pick, according to

probability measure Prob, Mk elements of W: w̄1, . . . , w̄Mk .

3. If λ̄ (A(z∗k , w̄i))< 0, i = 1 . . . ,Mk then classify z∗k as a (δ -level) robust feasible solution.
Stop. Else, make wk+1 equal to one of the elements of { w̄i : λ̄ (A(z∗k , w̄i))≥ 0, i = 1 . . . ,Mk }.

With these modifications it results that if the algorithm stops classifying a given z∗k as a (δ -
level) robust feasible solution, then, z∗k is a (δ -level) robust feasible solution with probability
greater or equal to 1−β .

Proof:

This proof follows arguments very similar to those presented in (Oishi, 2003). Suppose
that at iteration k, z∗k is not a (δ -level) robust feasible solution. That is, Prob { w ∈ W :
λ̄ (A(z∗k ,w)) ≥ 0 } > δ . Then, the probability of classifying (erroneously) z∗k as a (δ -level)
robust feasible solution is smaller than

(1−δ )Mk ≤ 6β
π2(k+1)2 .

Thus, the probability that the algorithm stops at an erroneously classified (δ -level) robust
feasible solution is smaller or equal than

kmax

∑
k=0

6β
π2(k+1)2 <

(
6β
π2

) ∞

∑
k=1

1
k2 =

(
6β
π2

)(
π2

6

)
= β .

4.8 Relationships with other randomized algorithms

4.8.1 Gradient algorithms

In what follows, the analogies and differences of the proposed approach with respect to the
gradient algorithms (see (Calafiore and Polyak, 2001),(Liberzon and Tempo, 2004),(Tempo
et al., 2005) ) are now discussed. Given a candidate solution to a robust feasible problem,
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a (randomized) gradient algorithm tries to obtain (by means of a randomized method) an
element belonging to the uncertainty set that contradicts the feasibility of the candidate so-
lution. If such an element is found, the candidate solution is updated using a sub-gradient
obtained from such an element of the uncertainty.

Consider now the proposed algorithm with Nmax = 1. In this case, the candidate solution
is denoted z∗k . If z∗k is shown to be a non feasible solution then it is updated using hk = γ∗k z∗k
and an element of W that contradicts the feasibility of z∗k . The analogies with (randomized)
gradient algorithms are apparent. The main difference is that in the gradient algorithms the
update is done by means of a simple explicit formula while in the proposed algorithm this
is performed by means of an optimization problem. In order to stress those similarities, we
will say that the proposed algorithm runs in gradient mode if Nmax is small when compared
to the number of decision variables of the problem.

To better illustrate the analogies with the gradient algorithms, the following property is
presented.

Property 4.11 Suppose that robust feasible problem (4.1) is ε-feasible. Suppose also that
max
c∈C

∥c∥2 < σ . Then, there is z̄, z̄⊤z̄ ≤ 1 such that

A(z,w)≤ −ε
2

I, ∀w ∈W, ∀z ∈ { z : ∥z− z̄∥2 ≤
ε

2σ
}.

Proof:

As the problem is assumed to be ε-feasible, there exists z̄ such that z̄⊤z̄≤ 1 and λ̄ (A(z̄,w))≤
−ε , ∀w ∈ W . Suppose now that z ∈ { z : ∥z− z̄∥2 ≤ ε

2σ } and that w ∈ W . Property 4.3
guarantees that

λ̄ (A(z,w)) = max
c∈C(w)

c⊤z

= max
c∈C(w)

c⊤(z̄+(z− z̄))

≤ max
c∈C(w)

c⊤z̄+ max
c∈C(w)

c⊤(z− z̄)

≤ λ̄ (A(z̄,w))+ max
c∈C(w)

∥c∥2∥z− z̄∥2

≤ −ε +max
c∈C

∥c∥2∥z− z̄∥2

≤ −ε +σ
ε

2σ
=−ε

2
.
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Gradient algorithms are normally based on a strong feasibility condition: it is assumed
that the robust feasible set contains a ball or radius r. Under this assumption, the worst case
number of iterations required by such gradient algorithms is bounded by a quantity propor-
tional to

⌈
L
r2

⌉
(where L is proportional to the distance of the initial guess of the solution to

the robust feasibility set (see (Calafiore and Polyak, 2001),(Liberzon and Tempo, 2004))).

Suppose that problem (4.1) is ε-feasible and consider the feasibility problem: Find z
such that z⊤z ≤ 1, A(z,w))+ ε

2 I ≤ 0. Property 4.11 guarantees that the feasibility radius
of this problem is not smaller than ε

2σ . Hence, a gradient algorithm could be used to find
a robust feasible solution to the aforementioned feasibility problem with a number of itera-
tions bounded by

⌈
4σ2L

ε2

⌉
. Recall now the worst case number of iterations of the proposed

algorithm (see Theorem 4.7)

⌈
4σ2

ε2

⌉
+

⌈(
4σ2

ε2

)
ln ln

σ2

ε2

⌉
.

The analogies are clear: the number of iterations is basically determined by σ2

ε2 . This
means that the worst case number of iterations quickly degrades for both the gradient algo-
rithms and the proposed algorithm, when ε is too small. This degradation of the performance
with decreasing ε is observed in our numerical experience only for small values of Nmax (gra-
dient mode). The numerical results show that when Nmax is chosen large enough (a sensible
choice is Nmax = m) the number of iterations grows in a benign way with decreasing ε (see
Section 4.9).

4.8.2 Localization methods

The localization methods keep at each iteration an updated set that is guaranteed to con-
tain the original feasible set of the problem. Cutting plane methods, as the ellipsoid algo-
rithm, belong to this class of optimization algorithms. The ellipsoid algorithm has been used
in a randomized scheme to address the robust feasibility problem in (Kanev et al., 2003)
and (Oishi, 2003). A probabilistic analytic center cutting plane method is also presented in
(Calafiore and Dabbene, 2006) to solve robust feasibility problems. Normally, the localiza-
tion methods exhibit better theoretical worst-case performance than the gradient methods.
This is mainly due to the fact that for some methods (as the ellipsoid method) it is possi-
ble to show that the volume of the region that bounds the feasibility region decreases in an
exponential way with the number of iterations.
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In what follows it is shown that the proposed algorithm is a localization method if Nmax
is greater than kmax (or equivalently, when no element is eliminated from set Sk). Note that
kmax is the worst case number of iterations required by the proposed algorithm. With this
choice of Nmax it results that S0,S1, . . . ,Sk satisfy the relations S0 ⊂ S1 ⊂ . . . ⊂ Sk.

Denote now Dk = { z ∈Rm : A(z,w)< 0, ∀w ∈ Sk }. It follows that each set Dk contains
the feasibility region. From Sk ⊂ Sk+1, it is inferred that Dk+1 ⊆ Dk. Note now that from the
definition of z∗k it is clear that z∗k belongs to the interior of Dk. Moreover, by construction, z∗k ̸∈
Dk+1. This means that Dk+1 is strictly included in Dk. The similarities with the localization
methods are thus clear.

4.9 A numerical example

Consider the following system {
ẋ = Ax+Bu+Ew
y = Cx+Du

where A ∈ Rnx×nx , B ∈ Rnx×nu , E ∈ Rnx×nw , C ∈ Rny×nx and D ∈ Rny×nu are affected by
interval uncertainty. That is,

A ∈ AI = { A : |Ai, j − Ãi, j| ≤ 0.02,∀i,∀ j }
B ∈ BI = { B : |Bi, j − B̃i, j| ≤ 0.02,∀i,∀ j }
E ∈ EI = { E : |Ei, j − Ẽi, j| ≤ 0.02,∀i,∀ j }
C ∈ CI = {C : |Ci, j −C̃i, j| ≤ 0.02,∀i,∀ j }
D ∈ DI = { D : |Di, j − D̃i, j| ≤ 0.02,∀i,∀ j }

where

Ã =


0.083 0.650 −0.627 −0.624 0.091

−0.832 −0.261 −0.023 0.275 0.658
−0.985 −0.447 −0.007 0.731 −0.942

0.179 −0.957 0.649 −0.873 −0.350
−0.305 0.239 0.610 −0.752 −0.624

 ,
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B̃ =


0.316 0.545
0.819 −0.355
0.303 0.120

−0.518 −0.490
−0.889 −0.955

 , Ẽ =


−0.935 0.282

0.023 −0.753
−0.597 0.329

0.152 −0.010
−0.680 0.858

 ,

C̃ =


−0.433 0.131 0.877 0.986 0.179

0.823 0.551 −0.664 −0.930 −0.747
0 0 0 0 0
0 0 0 0 0

 ,

D̃ =


0 0
0 0

0.876 −0.368
0.317 0.773

 .

The total number of uncertain parameters is nx(nx + nu + nw)+ ny(nx + nu) = 73. This
means that the uncertainty can be parameterized by means of a vector of 73 components:
W = { w ∈ R73 : ∥w∥∞ ≤ 0.02 }.

The objective of the synthesis problem is to find a state feedback gain K such that the L2
gain of the system is minimized. It is well known (see, for example (Boyd et al., 1994)) that
the L2 gain of the closed loop uncertain system is bounded by φ if there is P > 0 such that

d
dt
(x⊤Px)+ y⊤y−φ2w⊤w ≤ 0.

Denoting Q = P−1 and Y = KQ, the synthesis problem can be rewritten as

min
Q,Y,φ

φ2

s.t.
AQ+QA⊤+BY +Y⊤B⊤ ∗ ∗ ∗

E⊤ −φ2I ∗ ∗
CQ+DY 0 −I ∗

0 0 0 −Q

< 0 (4.9)

∀A ∈ AI,∀B ∈ BI,∀C ∈ CI,∀D ∈ DI.

It is well known that due to the interval nature of the considered uncertainty and the affine
parametric dependence, it suffices to check all the extreme realizations of the uncertainty.
That is, the 273 > 1021 vertices of the hypercube W (see (Horisberger and Belanger, 1976)).
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In order to reduce the number of vertices, a recent vertex result (Álamo, Tempo, Ramı́rez
and Camacho, 2006a) can be used. This result reformulates the full interval matrix uncer-
tainty into an equivalent diagonal uncertainty and, when applied to this example, reduces the
number of required vertices to 218 = 262,144.

Using a bisection approach for the decision variable φ , this optimization problem can
be solved by means of a sequence of robust feasibility problems of the form: given φ > 0,
obtain (if possible) Q and Y such that the robust constraint (4.9) is satisfied for every possible
realization of the interval uncertainty (that is, for every w ∈ W ). Taking into account the
symmetry of Q, it is possible to parameterize matrices Q ∈Rnx×nx and Y ∈Rnu×nx by means
of a vector of 25 components. Thus, the previous feasibility problem can be rewritten as a
feasibility problem of the following form: find x ∈ R25 such that

F0(w)+
25

∑
i=1

xiFi(w)< 0, ∀w ∈W.

Using the strategy presented in Section 4.3, this optimization problem can be recast as a
feasibility problem of the form: find z ∈ R26 such that

A(z,w)< 0, ∀w ∈W

where A(z,w) =
26
∑

i=1
ziAi(w).

As discussed before, in this example we can check in an affordable time if a given pair
(Q,Y ) is a robust feasible solution (for a given φ). This means that given z, we can check
in a deterministic way if A(z,w) < 0, ∀w ∈ W . Therefore, each of the feasibility problems
required to obtain an optimal value of φ can be solved using the proposed algorithm without
resorting to the notion of δ -level feasible solution (that is, step 2 of the algorithm has been
implemented in a deterministic way).

Note that when the bisection algorithm is close to the optimal value of φ , the associated
feasibility problem (if feasible) will be ε-feasible only for small values of ε . This has two
consequences

1. The obtained optimal value of φ will depend on the choice of ε . The smaller ε is,
the closer the final obtained value of φ will be to the actual solution of the robust L2
optimization problem.

2. In the bisection process aimed to the computation of the smallest value of φ for which
the associated robust feasible problem is ε-feasible, the proposed algorithm will en-
counter the following two situations when it approaches the final value of φ:
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• The problem is ε-feasible, but as φ is close to the final solution, the feasibility
radius of the problem can be very small. In this case, the reduced feasibility
radius increases the number of iterations required to obtain a feasible solution.

• The problem is not ε-feasible, but there is ε̃ , only slightly smaller than ε , for
which the problem is ε̃-feasible. In this case, the algorithm has to determine the
non ε-feasibility of a problem that is “almost” ε-feasible. This is also a worst-
case situation that increases the number of iterations required to determine the
non ε-feasibility.

Thus, an optimization problem in which the final solution is obtained using a sequence of
feasibility problems is, in our opinion, the best scenario to test the properties of an algorithm
designed for the feasibility problem.

In order to illustrate the effect of both ε and Nmax in the performance of the proposed
algorithm, the L2 robust optimization problem has been solved for different values of the
pair (Nmax,ε). The numerical results presented in this section have been obtained with an
Intel Pentium 4 at 1.8 GHz using the LMI toolbox of Matlab. Table 4.1 shows the numerical
results for ε = 0.01 and different values of Nmax. As discussed before, in order to solve the
optimization problem, different feasibility problems are solved. In Table 4.1, max iterations
has the following meaning: all the feasibility problems (corresponding to a given pair (Nmax,
ε)) have been solved with a number of iterations smaller or equal to max iterations. The
entry total CPU time is the total time in seconds required to solve the optimization problem
(the computation of φ). The entry obtained φ denotes the minimal value of φ for which a
feasible solution has been found.

Table 4.2 shows the numerical results for ε = 0.001 and different values of Nmax. It
results apparent from the comparison of this table with Table 4.1 that for small values of
Nmax, the entry max iterations and total CPU time clearly degrades with decreasing ε . The
best computational times are obtained for Nmax = 10 (several order of magnitudes smaller
than the one corresponding to Nmax = 1). It is also important to note that the obtained value of
φ corresponding to ε = 0.001 is significantly smaller than the one corresponding to ε = 0.01.

In Table 4.3, the numerical results for Nmax = 10 and different values of ε are shown.
In contrast to the case in which Nmax is very small, the behavior of the algorithm does not
degrade with decreasing ε . It can be observed from the table that the obtained value of φ does
not improve significantly beyond ε = 10−5. This means that the optimal robust solution to
the robust L2 gain problem is obtained with ε = 10−5 and Nmax = 10 in less than two minutes.
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Nmax 1 2 5 10
max iterations 255 16 8 9
total CPU time 533.4 67.9 21.7 36.2

obtained φ 2.04 2.09 2.03 2.01

Table 4.1: Numerical results for different values of Nmax with ε equal to 0.01.

Nmax 1 2 5 10
max iterations 6021 2726 405 9
total CPU time 2.4 ·104 1.2 ·104 2.2 ·103 63.5

obtained φ 1.64 1.60 1.59 1.59

Table 4.2: Numerical results for different values of Nmax with ε equal to 0.001.

ε 10−2 10−3 10−4 10−5 10−6

max iterations 9 9 12 9 16
total CPU time 36.2 63.5 103.0 102.3 128.1

obtained φ 2.01 1.59 1.56 1.55 1.55

Table 4.3: Numerical results for different values of ε with Nmax equal to 10.

4.10 Conclusions

In this chapter a new randomized algorithm that addresses the robust feasibility problem
under uncertain LMIs is presented. The proposed algorithm has clear differences with ran-
domized gradient and localization methods. The algorithm is guaranteed to obtain a δ -level
feasible solution if the problem is ε-feasible. Additionally, if the problem is not ε-feasible
the algorithm detects this non feasibility in a finite number of iterations. A bound on the
maximal number of iterations required has been obtained. Moreover, the analogies and dif-
ferences with other existing randomized methods have been discussed. A numerical example
that illustrates the merits of the algorithm has been provided.



Chapter 5

Fault detection with probabilistic
validation

5.1 Introduction

We present here a general strategy for the design of a fault-detection block with probabilis-
tic validation (PCV- Processing, Classification, Validation) (Blesa et al., 2013). A general
scheme of PCV is proposed, that allows to design a fault detection block with probabilistic
validation in the maximum percentage of non detected faults (set as design condition) and
in the percentage of false alarms (obtained a posteriori). In each iteration of the sequential
algorithm, a candidate solution is probabilistically validated by a set of samples randomly
generated. A general framework is presented in which the candidate solution can violate the
constraints for a limited number of elements of the validation set. This generalized scheme
shows significant advantages, in particular in terms of the obtention of the probabilistic so-
lution.

A fault is defined as any change in the behavior of some of the system components (not
allowed deviation of the one of characteristic parameters or properties) so that it and can not
fulfill the function for which it was designed (Blanke, 1999). Besides faults, there exist other
factors that alter the normal behavior of the system, as disturbances and noise. Disturbances
are non known entries that can occur in the system at any time but they have been taken
into account when designing the conventional control loop. Any disturbance which had
not been into account in this design will be considered a fault. Noise is also a non known
input manifested in the system but, unlike disturbance, has zero mean, and it is possible
to have a priori knowledge of which is its amplitude. A fault detection system must react
to faults and be immune (robust), so far as possible, to the other factors in the system that
create uncertainty. Furthermore, many of the fault detection methods are based on a model
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(mathematical or quantitative) of the monitored system which can never accurately describe
the real behavior of the system and therefore it will present a modeling error that must be
considered.

The goal of a fault detection block is, once a fault has occurred in an instant TF , to detect
it in a time range less or equal than TDmax , set in advance. Depending on the magnitude and
incidence of the faults desired to be detected and the possible presence of other uncertainty
factors in the system, it may not be possible to design a detection block detecting all faults
without false alarms in situations in which there are no faults. So there is always a compro-
mise between the proportion of undetected faults (MF ”Missed Faults”) and the proportion
of times that the detection block is activated without the presence of faults due to the uncer-
tainties present in the system (FA ”False alarms”). This compromise, that should be taken
into account in the design process of the detector block, it is logical to prioritize minimizing
not detected faults respect to the minimization of false alarms.

The random nature of faults and uncertainties inherent in the system makes the design
problem of the detection block a robustness problem.

Typically, for a robustness problem, the design parameters, and different auxiliary vari-
ables, are described in terms of a vector of decision variables θ , denoted as ”design parame-
ter” and is restricted to the set Θ. Moreover, the uncertainty w is bounded on the set W . That
is, each element w ∈ W represents one of the admissible realizations of uncertainty, with
probability PrW . In our context of fault detection, θ corresponds to the decision variables
that determine the fault detection block. This block allows us to determine if there is a fault
or not in a given scenario, so there will be two uncertainty sets WF and WN consisting in all
possible scenarios of the system to be monitored operation, with faults and without faults
respectively. Furthermore, wF and wN represent a realization of a scenario with and without
fault. WF and WN have spaces probability PrF and PrN respectively.

We also consider two measurable binary functions:

g(θ ,w) :=
{

0 if θ detects a fault
1 in other case.

h(θ ,w) :=
{

0 if θ doesn’t detect a fault
1 in other case.

Applying these two functions on the spaces WF and WN we obtain the following expected
values:
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Eg(θ) := PrF{wF ∈ WF : g(θ ,wF) = 1}

Eh(θ) := PrN{wN ∈ WN : h(θ ,wN) = 1}.

Where Eg(θ) and Eh(θ) are the proportion of undetected faults (MF) and false alarms
(FA) respectively.

The utility of randomized algorithms arises when being able to treat the following design
problem

min
θ∈Θ

Eh(θ) subject to Eg(θ)≤ ηF (5.1)

where ηF is the maximum proportion of undetected faults imposed as a constraint of the
detector block.

In this context, we can extract NN and NF i.i.d. samples (independent and identically
distributed) {w(1)

N , . . . ,w(NN)
N } of WN and {w(1)

F , . . . ,w(NF )
F } of WF according to the probability

PrN and PrF respectively, and with a ratio between scenarios with fault and without fault
FN = NF

NN
determined by the probability of failure of the system to be monitored. This way

can solve the following sampled optimization problem

min
θ∈Θ

NN

∑
ℓN=1

h(θ ,w(ℓN)
N ) (5.2)

subject to
NF

∑
ℓF=1

g(θ ,w(ℓF )
F )≤ ηFNF

In this chapter we propose a design method of a fault detector block based on the use of
historical or real simulations with and without faults, avoiding the difficulty of analysis, that
is not always possible, due to the complexity of problem.

The result thus obtained, through a probabilistic validation test, guarantees that the pro-
posed solution behaves the desired way with a certain probability, fixed a priori. It also
guarantees the satisfaction of probabilistic constraints. This technique is well suited for ad-
dressing complex problems.

Finally, this chapter illustrates the proposed methodology with the presentation of an
application, in this case, the design of a fault detector with probabilistic guarantee in a virtual



80 5.2. Proposed design scheme

deposit that models the behavior of a collector of a network of sewer as detailed in (Puig and
Blesa, 2013).

5.2 Proposed design scheme

As previously discussed, the objective of this work is to propose a scheme that allows a fault
detection block design with probabilistic validation in the maximum percentage of unde-
tected faults (imposed as a design condition) and the false alarm rate (obtained posteriori).
The operation of this failure detection block is described in the diagram of Figure 5.1. From
input / output data of the system to monitor, each time instant j some attributes or indica-
tors (r(1)j ,r(2)j , ...,r(nr)

j ) are extracted from it by a processing block which acts on sliding time
horizon. These indicators, that can be of different types, are sensitive to the presence of fail-
ures but also to noise, disturbances and other factors such as modeling errors. For this reason
they are introduced in a classifier that determines whether or not a failure in the system has
occurred.

Figure 5.1: Fault detector scheme on line

Furthermore, the off-line algorithm of the process to the design detector block is de-
scribed in the diagram of Figure 5.2.

At the beginning the processing block is designed or, what is the same, it is determined
which indicators will be useful in order to detect faults present in the system. For this step the
knowledge of the plant and basic techniques for fault detection (Isermann, 2006), (Isermann,
2011) must be used. The nature of the used indicators can be very diverse: residuals between
measurements and estimates, certain signals to detect faults such as vibration, sound signals,
and so on; magnitudes to determine a change of operation of the plant such as temperature,
humidity, etc.

After determining the indicators to be extracted from the information available of the
plant, the probabilistic requirements bound in percentage of undetected faults (MF) and
guaranteed minimum probabilistic compliance must be specified. Then we proceed to de-
sign a classifier to which plant data are provided in situations of operation with and without
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Figure 5.2: Scheme of design of the fault detection block offline

faults (real or simulated). By and optimization process the number of false alarms (FA) is
minimized and we impose (as a constraint) a maximum number of non detected faults (MF)
and the classifier is calibrated properly. The classifier is then evaluated using a probabilis-
tic validation test using different data than those used in the design of the classifier. If the
probabilistic validation test is not passed, come back to the design stage of the classifier.
If the validation test is passed, the classifier meets the specifications for MF with the im-
posed probabilistic constraints and we proceed to a probabilistic study of the number of false
alarms. If the result is not satisfactory (high number of false alarms) there are two options:
change (relax) the probabilistic requirements MF or improve the processing design (better
indicators).
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5.3 Processing design

As discussed above, the indicators extracted from the monitored system may be of different
nature. In this section two examples of possible indicators used in fault detection methods
based on mathematical models are shown. In this type of methods consistency or inconsis-
tency of the model of the system to monitor is checked with the obtained measurements of
this system.

For example, if we consider that the monitored system can be described by the regression
model in discrete time

y( j) = φT ( j)β0 + e( j), j = 1, . . . ,M (5.3)

where

• y( j) is the output measurement

• φ( j) is the regression vector of dimension nβ function of inputs u( j) and outputs y( j)

• β0 is the nominal parameters vector of dimension nβ

• e( j) is the additive error that contains measurements noise and modeling error.

Then this consistence can be evaluated computing in each instant j the residual ∆( j)
between the measured output and the estimation given by the model

∆( j) = y( j)−φT ( j)β0. (5.4)

In an ideal case, the residual should be different from zero just in the case that a there was
a fault in the system. However, due to the presence of noise and modeling error in the system,
the residual can be different from zero when there is no fault and the detection method should
be robust. One way to approach this problem is applying the Set-Membership techniques that
consider the error e(j) unknown but bounded (Milanese, Norton, Lahanier and Walter, 1996),
that is

|e( j)| ≤ σ j = 1, . . . ,M.
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This way the following detection fault test can be applied{
If |∆( j)| ≤ σ ⇒ NoFault
If |∆( j)|> σ ⇒ Fault.

And therefore the design of the diagnostician consists on choosing a proper bound σ .
This test is called direct test.

Another way to look at the consistency of the model with the measurements in the pa-
rameter space, using a time window of N samples, can be made by a parameter estimation

β̂ ( j) =
(
ΦT ( j)Φ( j)

)−1ΦT ( j)Y ( j) (5.5)

where Φ( j) =

 φT ( j−N)
...

φT ( j)

 y

Y ( j) =

 y( j−N)
...

y( j)


and in the same way than with the temporal residual, a residual of parameters can be

calculated respect to a nominal model

∆β ( j) = β̂ ( j)−β0

and like this define the following detection test{
If ∆β ( j) ∈ B ⇒ NoFault
If ∆β ( j) /∈ B ⇒ Fault,

where B is the paramenters uncertainty set due to the additive error e( j) and the small
richness of the data used in the identification.

Both direct and inverse tests can be included in the general scheme 5.1 choosing r(1)j =

∆( j) for the direct test and r(2)j = ∆β ( j) for the inverse test. In addition to this, basic tests
such as maximum values, fixed or maximum variations in the obtained data by the sensor
can be implemented choosing the correct indicators.
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5.4 Classification design

With the purpose of achieving a good discrimination between scenarios with and without
faults, a two stages classifiers is proposed: a static and a dinamic stage, as shown in 5.3.

Figure 5.3: Scheme of the proposed classifier

The objective of the static classifier is to determine in a time instant j, with the indicators
vector in this same time instant r j, if the situation is symptom of fault or not by a binary
signal ϕ j. If the situation suggests a fault ϕ j = 1 and if not ϕ j = 0. This operation could be
done by a vectorial analogical input function and binary output hest

ϕ j = hest
(
r j
)

where rT
j = (r(1)j ,r(2)j , ...,r(nr)

j )T .

The objective of the dynamic classifier of order Tp is to determine in the time instant j if
a fault has occurred or not with the last Tp symptomatic signals. That is:

Fj = hdin
(
ϕ j,ϕ j−1, · · · ,ϕ j−TP+1

)
.

Where hdin is a function of binary inputs and outputs and, for the definition of detectabil-
ity, it holds that TP ≤ TDmax . The reason for dividing in two parts the classifier is to make it the
most robust as possible respect to false alarms without worsen the detectability performances
(non detected faults).

To design these two classifiers there will be scenarios with and without faults {w(1)
N , . . . ,w(NN)

N }
from WN and {w(1)

F , . . . ,w(NF )
F } from WF respectively. Each scenario consists on a sequence

of indicators r1
(i),r2

(i), · · · ,rTSi
(i) where TSi is the number of time instants that lasts scenario

i. The set of all the indicators of all the scenarios can be divided in two subsets: the set of the
indicators that have a fault and the set of indicators free of faults ℜF and ℜN respectively.
It holds that all the indicators that belong to an scenario free of faults belong to the set ℜN ,
while some of the indicators belonging to a faulty scenario are affected for the effect of the
fault (and therefore belong to ℜF ) and some of them are free of the effects of the fault (and
therefore belong to ℜN).
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The purpose of the static classifier is to distinguish as much as possible between the
indicators belonging to the two sets (ℜF and ℜN). This can be achieved by the correct
election of a vector λ satisfying the best as possible the following constraints

f T (r)λ > 0 ⇒ r ∈ ℜF
f T (r)λ ≤ 0 ⇒ r ∈ ℜN

,

where f (r) is a vectorial expression of r. The value of λ can be found by the following
convex optimization problem

min
λ

(
∑

r∈ℜF

e−τ f T (r)λ + ∑
r∈ℜN

e f T (r)λ

)
(5.6)

where τ ∈ (0,∞) is a constant determined before solving the optimization problem and
allows penalizing to a greater or lesser extent the classification errors of indicators r ∈ ℜF
respect to the classification errors of indicators r ∈ ℜN and therefore prioritize more or less
the behavior of the system respect the non detected faults or respect the false alarms. Specif-
ically, the greater τ the more penalization will be applied to the indicators classified as nor-
mal situation, that is to say, non detected faults, and therefore the false alarms will have less
weight.

As mentioned before, in the design process of the fault detector we will impose a maxi-
mum value of non detected faults (MF defined by ηF ) and this will be achieved choosing
a proper τ . The problem of the static classifier is that taking the decision depending on
the indicators in a certain time instant, imposing a low number of faults may imply a high
sensitivity to the system uncertainties and this could be translated in a high number of false
alarms. The second classifier’s objective is to filter the effect of these uncertainties and allow
a diagnosis as robust as possible using the last TP outputs of the static diagnostician. As the
diagnostician function hdin is a function of binary input and binary output with 2TP combi-
nations, these can be proved exhaustively and choose which one of them presents the best
performance.

Therefore the design of the classifier is reduced to finding the minimum value of τ satis-
fying the maximum number of allowed false alarms. The obtained block of fault detection
will be called θ .
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5.5 Validation

5.5.1 Sequential algorithms with probabilistic validation in MF

In this section a general family of randomized algortihms is presented, called SPV algorithms
(“Sequential Probabilistic Validation algorithms”), see (Álamo et al., 2012).

The main characteristic of this type of algorithms is that they are based on a probabilistic
validation step.

Each iteration of an SPV algorithm is composed of the computation of a candidate so-
lution for the problem and a validation step. The results are basically independent of the
particular strategy chosen to obtain candidate solutions.

The objective of using these algorithms in this context is to guarantee a maximum level
of undetected faults (MF) defined by ηF with a minimum probabilistic guarantee of achieve-
ment of 1−δF .

The accuracy ηF ∈ (0,1) and confidence δF ∈ (0,1) required for the probabilistic solution
play a relevant role when determining the sample size of each validation step. The main
purpose of this chapter is to provide a validation scheme such that it guarantees that for
given accuracy ηF and confidence δF , all the probabilistic solutions obtained running the
SPV algorithm have a probability of violation no larger than ηF with probability no smaller
than 1−δF .

We enumerate each iteration of the algorithm by means of integer k. We denote mk the
number of violations that are allowed at the validation step of iteration k. We assume that mk
is given by a function of k, that is, mk = m(k) where the function m : N→ N is given. We
also denote Mk the sample size of the validation step of iteration k. We assume that Mk is
given by a function of k, ε and δ . That is, Mk = M(k,ε,δ ) where M : N×R×R→N has to
be appropriately designed in order to guarantee the probabilistic properties of the algorithm
(the main contribution of (Oishi, 2007) was to provide this function for the particular case
mk = 0 for every k ≥ 1). For future references we denote the functions m(·) and M(·, ·, ·) as
level function and cardinality function respectively.

Structure of an SPV algorithm

(i) Set ηF ∈ (0,1) and δF ∈ (0,1) equal to the desired levels. Set k equal to 1.

(ii) Obtain a candidate solution θ̂Fk to the robust optimization problem (A.4.1).
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(iii) Set mk = m(k) and Mk = M(k,ηF ,δF).

(iv) Obtain validation set Vk = {v(1), . . . ,v(Mk)} drawing Mk i.i.d validation samples from
W according to probability PrW .

(v) If
Mk
∑
ℓ=1

g(θ̂Fk ,v
(ℓ))≤ mk, then θ̂Fk is a probabilistic solution.

(vi) Exit if the exit condition is satisfied.

(vii) k=k+1. Goto (ii).

Figure 5.4 shows the part of the proposed general designed structure that corresponds
with the SPV algorithm, where it is indicated which step of the algorithm corresponds with
each block.

Figure 5.4: Scheme of probabilistic validation of non detected faults

Although the algorithm exit condition can be quite general, a reasonable strategy is to exit
after a given number of candidate solutions have been classified as probabilistic solutions or
if it exceeds a certain computational time since the beginning of the algorithm. After exit-
ing you can choose from probabilistic solutions the one that optimizes a given performance
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index. In the next subsection we propose a strategy for choosing the cardinality of the vali-
dation set in iteration k so that, with probability not less than 1− δF all solutions classified
as probabilistic solutions for the algorithm satisfy the accuracy ηF .

5.5.2 Sample size

Let’s consider an SPV algorithm with given accuracy ηF ∈ (0,1), confidence δF ∈ (0,1) and
level function m(·). Then, the cardinality function

M(k,ηF ,δF) =⌈
1

ηF

(
m(k)+ ln

1
δF µ(k)

+

√
2m(k) ln

1
δF µ(k)

)⌉
,

where
µ(k) =

1
ξ (α)kα ,

where ξ (·) is the zeta Riemann function, and α > 1,

guarantees that, with probability greater than 1− δF all the probabilistic solutions ob-
tained by the SPV algorithm have a probability of violation (non detected faults) no greater
than ηF (Álamo et al., 2012). Function µ(k) can adopt other expressions, see (Álamo
et al., 2012).

5.5.3 False alarms

Once a classifier satisfying the probabilistic constraints respecting non detected faults has
been designed, the result obtained in (Álamo et al., 2010a) can be used, where the sample
complexity given as an empirical mean converge in probability to the real probability of
violation (in this case false alarms), to determine the accuracy ηN ∈ (0,1) and confidence
δN ∈ (0,1) in terms of false alarms (FA).

Given θ̂ ∈ Θ obtained in the design process of the detection block and a set of NN sce-
narios free of fault, it holds that

NN ≥
ln 1

δN

(
√ηN −√ρN)2
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with 0 ≤ ρN < ηN < 1 where ρN is the proportion of false alarms obtained applying the
designed detection block to the NN available scenarios free of faults.

ρN =
Number of false alarms

NN
.

Then

PrW N{w ∈ W N : Ê(θ̂ ,w)≤ ρN and E(θ̂)> ηN} ≤ δN .

Therefore, if our estimation of false alarms Ê(θ̂ ,w) is given by the value ρN , it is gua-
ranteed that the discrepancy between this value and the probability that the real number of
false alarms E(θ̂) is greater than other value ηN > ρN fixed a priori, is bounded by δN .

If a desired δN is imposed, the statistical guarantee ηN is determined by the previous
inequations. Specifically

ηN =

( ln( 1
δN
)

NN

) 1
2

+
√

ρN

2

(5.7)

5.6 Results

To prove the effectiveness of the presented methodology it has been applied to the design
of a fault detection block with probabilistic guarantee in the virtual deposit shown in Figure
5.5 modeling the behaviour of a collector of a network of sewers as detailed in (Puig and
Blesa, 2013).

We have taken into account faults in the input and output sensors ( fu(t), fy(t)) and para-
metric faults ( fa(t), fb(t)) as indicated in Figure 5.6. The behavior of the real system consi-
dering these faults can be described by the following discrete time model

ỹ( j) = (ã+ fa( j−1)) ỹ( j−1)+
(
b̃+ fb( j−1)

)
ũ( j−1)+ ed( j)

where

• ã, b̃ are the real parameters of the system
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Figure 5.5: Virtual Deposit

• ũ( j), ỹ( j) are the real input and output of the system

• ed( j) is the discretization error that will depend on the sampling time

• eu( j), ey( j) son los errores aditivos introducidos por los sensores

Figure 5.6: Posible faults in the virtual deposit system

Thus, with the available measurements

y( j) = ỹ( j)+ fy( j)+ ey( j)

u( j) = ũ( j)+ fu( j)+ eu( j)

the following model can be used to describe the behavior of the real system

y( j) = a0y( j−1)+b0u( j−1)+ e( j) (5.8)

where
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• a0, b0 are the parameters of the model obtained with input and output data of the
system without fault

• e( j) is the modeling error taking into account the error ed( j), eu( j), ey( j) and the
possible discrepance between the real parameters (ã,b̃) and those of the model (a0,b0)

With the purpose of obtaining the data of the normal behavior and the behavior with faults
a simulator in Matlab-Simulink has been implemented, where scenarios with and without
faults, based in real situations, have been introduced, having possible errors between the
model and the real system. The objective is to design a fault detector satisfying MF < 1%
with probabilitty no smaller of 1− 10−6 (ηF = 0.01 δF = 10−6) with a maximum delay in
fault detection of TDmax = 5 samples.

First, using the obtained input/output data of the procces we have studied which of the
indicators that will allow to distinguish between the situations with fault and those of normal
performance. Figures 5.7 and 5.8 show the error indicators in the parameters identification
r(1)j = (∆a( j),∆b( j))T (∆a( j) = â( j)−a0 y ∆b( j) = b̂( j)−b0) taking a time window of 50
samples, for scenarios with and without faults respectively. Moreover, in this figures it is also
shown the area f T (r)λ ≤ 0 obtained designing an optimal classifier. Only with this indicator
the 65% of the faults can be detected with a very low level of false alarms(0.001%).

Figure 5.7: Residual indicator of parameters in scenarios without faults and set f T (r)λ ≤ 0

One advantage of the use of classifiers is that, in order to improve discrimination between
scenarios with and without fault, other indicators can be added. In this case, in addition to the
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Figure 5.8: Residual indicator of parameters in scenarios with faults and set f T (r)λ ≤ 0

indicator described above, other indicators have been added: the same error in the estimation
of parameters but with windows of 15 and 100 samples, the temporal residual (5.3) using
the model given by (5.6) and accumulating this residual with windows of 15, 50 and 100
samples, and maximum values in the measures determined by the maximum allowed draft in
the collector.

Having decided the indicators to be used by the classifier, the algorithm 5.2 has been
used to find the classifier that meets the probabilistic constraints MF defined above (a priori)
obtaining τ = 7.1. Applying the designed classifier to the set of scenarios without failure of
the system it is obtained, a posteriori, one level of false alarms FA < 4.5% with a probability
not less 1−10−6 (ηN = 0.045 δN = 10−6)

5.7 Conclusions

In this chapter we have proposed a general methodology for the design of fault detectors with
probabilistic guarantee. The great advantage of the proposed methodology is, on the one
hand its flexibility to introduce different tools of fault detection and on the other its certified
probabilistic guarantee of the proposed detector. The operation of this methodology has
been illustrated with an application example to a virtual deposit. As future work, following
the philosophy of the proposed scheme, it would be interesting to address the problem of
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designing a diagnostician to determine, once a fault is detected, which type of failure has
occurred with a certain probabilistic guarantee.
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Chapter 6

Application to frequential identification

6.1 Introduction

The main objective is the identification of a fuel cell applying randomized algorithms (Ponce,
2013). It aims to develop a testing tool in Matlab to evaluate the batteries in the laboratory
and obtain an optimal signal stimulus for modeling these, in order to characterize them in the
future as quickly and accurately as possible . This algorithm is based on the results presented
in (Álamo et al., 2010a) . Batteries are very complex devices that have many components,
and their performance depend on variables that can be easily measured , such as voltage
and temperature , and others that are not so easy to measure, such as age, manufacturing
tolerances and variations between cells within the battery, which can have a big impact on
performance at the end. In all manufacturing processes (specially chemical processes), no
matter how good they are, something unexpected can always occur. There are several reasons
why one should test battery systems: to ensure that the equipment is fine to prevent unex-
pected failures by checking the battery status, to warn or prevent depletion and to answer
three basic questions: What is the capacity and battery status now?; When to replace it?;
What can you do to improve its life? For all these reasons, tests should always be performed
for proper maintenance. One important thing to know is the state in which the battery is, are
provided by the capacity and the electrical impedance model.

The approach of this chapter is useful for this modeling, as it deals with finding the signal
which can get the best approximation of the electric battery model . During execution of the
experiments the batteries will be excited with piecewise constant signals chosen randomly.
Randomized algorithms are many times faster than the traditional algorithms and other solu-
tions , solutions that are not possible within the domain of traditional algorithms. In common
practice, the algorithms approximate random number generator with pseudo-random num-
ber generation. In this chapter a brief introduction to randomized algorithms is made, and
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the current state of the storage systems on the market and new lines of research are also
presented.

6.2 Fuel cells

Several properties make fuel cells attractive for electricity production, but the strongest in-
centives are high efficiency and high energy density. The fuel cell provides a highly efficient
conversion of the chemical energy in hydrogen, natural gas, or hydrocarbons into electrical
e n e r g y. This is extremely beneficial for automotive applications and small-scale energy
production for stationary uses. And because of their high energy density (energy per unit
weight of the power source), fuel cells are superior to batteries in portable equipment. Fuel
cells may have their greatest environmental impact in motor vehicles. In most automotive
engines, gasoline is converted into mechanical energy through heat produced during com-
bustion. The efficacy of this process is limited by the efficiency formula for the Carnot cycle,
which describes the thermomechanical operation that takes place in a gasoline engine. The
operating temperature of the engine determines its efficiency, which is about 20 per cent for
an automobile. In a fuel-cell-powered vehicle, the chemical energy in the fuel is converted to
electrical energy and then to mechanical energy by an electric motor. The process bypasses
the limitations of the Carnot cycle, such as the 20 per cent engine efficiency. As a result, the
theoretical efficiency of fuel cells is substantially higher than that of the combustion engine
(around 90 per cent). In practice, values reach about 50 per cent.

Figure 6.1: Fuel Cell

This higher efficiency implies that fuel-cell-powered automobiles can travel more than
twice as far as conventional cars using the same amount of fuel. Consequently, carbon diox-
ide emissions are lower. The electronics industry is pursuing miniature fuel cells. Motorola
has demonstrated a cellular telephone powered by a fuel cell whose operating time with one
fuel cartridge is five times longer than that of a conventional battery with one recharge. Other
likely applications include power supplies in laptop computers and portable video, audio, and
entertainment equipment. Fuel cells, which generated electrical power for the Apollo space-
craft during the U.S. lunar-landing program, have great potential for generating power in
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places without an electrical infrastructure. They can also serve as power sources in boats,
portable construction tools, temporary traffic-control stations, mobile life-support units, and
military applications. In batteries, energy is stored as chemical energy in the battery itself. In
fuel cells, chemical energy is stored in the fuel tank and electricity is produced on demand.
This separation eliminates downtime for recharging (add a source of hydrogen, and the fuel
cell can generate electricity in less than 1 minute). Fuel cells also provide an uninterrupted
power supply because there is no self- discharge, as occurs with batteries, an advantage that
minimizes maintenance and maximizes the reliability of the system. In addition, fuel cells
have a higher energy density and therefore a higher power capacity per unit of weight. The
development of fuel-cell-powered equipment and vehicles has accelerated during the past
years (see The Industrial Physicist, February 1999). Competition among companies is grow-
ing, and the fight for a share of a potentially huge market has already started. Technology
development is an important weapon at this stage, and small companies with technical skills
in fuel-cell processes have become important partners to the large electronic and automotive
companies. In this rapidly developing and highly competitive market, the time from idea to
prototype has shrunk. Therefore, tools for developing virtual prototypes have become excep-
tionally important. Optimizing performance of a fuel cell in combination with its auxiliary
equipment and operation of the electric motor requires a lot of mathematical puzzling. Thus,
mathematical modeling, the basis of virtual prototyping, is a vital tool in the development of
fuel cells.

A combination of modeling and experimentation has reduced the cost and accelerated the
pace of building and understanding prototype systems. Modeling provides valuable insights
into the electrochemistry of the fuel cell and the processes that take place in the heart of the
fuel cell system (the electrodes and electrolyte in the fuel cell stack). These processes are
described at the microlevel: single catalyst agglomerates; a unit cell consisting of an anode,
a cathode, and the electrolyte between them; and as reactor models of the fuel processor in
fuel cells for cars. Other important aspects include the design of the bipolar plates of the
fuel cell, their influence on ohmic losses in the fuel cell stack, and the use of modeling to
optimize the design of fuel cell systems.

6.3 Frequential analysis

Frequency response is the quantitative measure of the output spectrum of a system or device
in response to a stimulus, and is used to characterize the dynamics of the system. It is a
measure of magnitude and phase of the output as a function of frequency, in comparison to
the input. In simplest terms, if a sine wave is injected into a system at a given frequency,
a linear system will respond at that same frequency with a certain magnitude and a certain
phase angle relative to the input. Also for a linear system, doubling the amplitude of the
input will double the amplitude of the output. In addition, if the system is time-invariant,
then the frequency response also will not vary with time.
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One application of frequency response analysis is to give the closed-loop system im-
proved response as compared to the uncompensated system. The feedback generally needs
to respond to system dynamics within a very small number of cycles of oscillation (usually
less than one full cycle), and with a definite phase angle relative to the commanded control
input. For feedback of sufficient amplification, getting the phase angle wrong can lead to
instability for an open-loop stable system, or failure to stabilize a system that is open-loop
unstable.

6.4 Estimation and plotting. Bode diagram

Estimating the frequency response for a physical system generally involves exciting the sys-
tem with an input signal, measuring both input and output time histories, and comparing the
two through a process such as the Fast Fourier Transform (FFT). One thing to keep in mind
for the analysis is that the frequency content of the input signal must cover the frequency
range of interest or the results will not be valid for the portion of the frequency range not
covered.

The frequency response of a system can be measured by applying a test signal, for ex-
ample: applying an impulse to the system and measuring its response; sweeping a constant-
amplitude pure tone through the bandwidth of interest and measuring the output level and
phase shift relative to the input; applying a signal with a wide frequency spectrum (for ex-
ample digitally-generated maximum length sequence noise, or analog filtered white noise
equivalent, like pink noise); and calculating the impulse response by deconvolution of this
input signal and the output signal of the system.

Figure 6.2: Bode Diagram
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The frequency response is characterized by the magnitude of the system’s response, typ-
ically measured in decibels (dB) or as a decimal, and the phase, measured in radians or
degrees, versus frequency in radians/sec or Hertz (Hz).

These response measurements can be plotted in three ways: by plotting the magnitude
and phase measurements on two rectangular plots as functions of frequency to obtain a Bode
plot; by plotting the magnitude and phase angle on a single polar plot with frequency as a pa-
rameter to obtain a Nyquist plot; or by plotting magnitude and phase on a single rectangular
plot with frequency as a parameter to obtain a Nichols plot.

Figure 6.3: Nyquist Diagram

For design of control systems, any of the three types of plots [Bode, Nyquist, Nichols]
can be used to infer closed-loop stability and stability margins (gain and phase margins) from
the open-loop frequency response, provided that for the Bode analysis the phase-versus-
frequency plot is included.

6.5 Randomized algorithms

We consider N experiments consisting in the random i.i.d. generation of N sequences (of in
principle unlimited length) numbers in the interval [−1,1].

w(i) = {w1(1),w1(2), . . . ,w1(k), . . . ,

w(2) = {w2(1),w2(2), . . . ,w2(k), . . . ,
... =

...
w(N) = {wN(1),wN(2), . . . ,wN(k), . . . ,
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We assume a strategy to generate a random signal to excite the battery. The strategy
depends of four parameters:

1. Number of samples per second: ns.

2. Number of seconds per period: np.

3. Number of periods per experiment: ne.

4. Excitation factor: A.

The signal corresponding to experiment w(i) and parameters ns, np, ne and A is such that
it is piecewise constant (during 1

ns
seconds). The value corresponding to the k-th constant

period is Awi(k). This signal is periodic with period np. That is, only the first npns random
numbers of the sequence w(i) are used. This signal is repeated ne times. That is, the total
duration of the experiment is then npne.

Therefore, each experiment w(i) provides a temporal signal u(i)(ns,np,ne,A, t) that de-
pends on the particular choice for ns, np, ne and A. An experimental Bode can be obtained
from this signal and we can assess the quality of the obtained experimental Bode comparing
it with the real one. We say that the parameters ns, np, ne and A are appropriate for the par-
ticular experiment w(i) if a given performance index is satisfied or not (this index depends
on the quadratic error between the results and the theoretical bode). In order to simplify the
notation, we define θ as the design vector composed by the four parameters. That is,

θ =


ns
np
ne
A

 .

We assume therefore that one has the function g(·, ·) that provides a value of 0 if the
specifications are met and 1 otherwise. That is,

g(w(i),θ) =


0 if θ =


ns
np
ne
A

meets the specifications for experiment w(i)

1 otherwise.

We assume that every possible parameter vector θ belongs to parameter design set Θ,
which given the integers m+

s , m+
p , m+

e and m+
A is given by:
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Θ = {


ns
np
ne
A

=


2ms

10mp

ne
mA
m+

A

 : 1 ≤ ms ≤ m+
s ,−m+

p ≤ mp ≤ m+
p ,1 ≤ ne ≤ m+

e ,1 ≤ mA ≤ m+
A }

In the previous definition, ms, ms, ne and mA are integers. Therefore, the cardinality of Θ
is nC = m+

s (2m+
p + 1)m+

e m+
A . Between the possible values for θ , one should take the one

minimizing a given performance criteria J(θ) subject to the constraint that the specifications
are met for a given percentage of the experiments. That is, the following problem should
addressed

min
θ∈Θ

J(θ)

s.t.
N

∑
i=1

g(w(i),θ)≤ m

It has been proved in (Álamo et al., 2010a) that if

N ≥ 1
η

(
m+ ln

nC

δ
+

√
2m ln

nC

δ

)
experiments are generated and a feasible (maybe suboptimal) solution θ̂ is obtained for the
proposed optimization problem then this solution satisfies with a probability no smaller than
1−δ that for any experiment w, the probability of having g(w, θ̂) = 1 is no larger than η .

6.6 Application. Modeling and identification of fuel cells

Any of the mentioned factors can have a huge impact on the final performance, it is conve-
nient to carry out a monitoring of the state of the battery. The best way to do it is obtaining
its electrical model and use this data to establish tendencies about changes. It is interesting
to model this kind of systems from the electrical point of view, because the real behavior
is approximated, allowing the use of the more important experimental measurements. The
equivalent circuit of a battery is mainly a impedance. By definition, a impedance is the oppo-
site of a current measurement. If there exists any way to quantify precisely the degradation of
the battery, it would be measuring the internal impedance. The value of internal impedance
has a direct relationship with the degradation of its internal components. The impedance is
a modern, quick and low-cost test of the battery (Ponce, 2013).
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Figure 6.4: Electrical model of the battery

Figure 6.4 represents the equivalent circuit for an energy cell. Rs corresponds with the
metallic resistance. C is the capacity of the parallel plates that constitute the electrodes of
the cell and Rc is the resistance of charge transfer.

Figure 6.5: Methodology

To obtain the frequential response of a system, it can be stimulated with any kind of
signal, to compare input and output and obtain the relationship in magnitude and phase, and
then the experimental Bode. Some inconveniences can appear, for example, if the system has
a very slow dynamics the test signal have to be of very low frequency, and the test time would
be very long. For the optimization of the response analysis in frequency, an algorithm is
implemented with the purpose of obtaining the optimal stimulus signal. N experiments based
on the generation of N numerical random sequences i.i.d. are considered, in the interval [-
1,1], as explained in previous sections.
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6.7 Methodology and design of the tool

The battery is stimulated with random signals, to measure voltage and current, process these
measurements and obtain data of the impedance in frequency domain. From the internal
impedance of the battery the characteristical parameters of the electrical model (Rs, Rc y
C) of the battery can be computed by EIS (Electrochemical Impedance Spectroscopy) tests.
With these Rs,Rc and C values precision of the electrical model is valorated, comparing
values with the theoretical ones. The goodness of the stimulus signal could be obtained this
way. Stimulus signals are constant signals defined by four parameters:

Figure 6.6: Normalization

• Maximum amplitude that the signal can have. The values of the steps is in the interval
[0,m+

a ]. Then the signal is normalized in amplitude, bounding it in the interval [0,1]
with a minimum gap of 1/(m+

a ). With a higher maximum amplitude higher precision
will be obtained.

• Number of periods in the signal (ne).

• Time length of the period (np), an entire number.

• Sampling frequency, defined as the number of samples per time unit, taken from a
continuous signal to produce a discrete signal. The used unit is the Hertz. It would be
defined by 2ms , being ms an entire number.

For the random generation of the stimulus, a function is created. This function define
the stimulus from random numbers. As a result, different signals defined with the same
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Figure 6.7: Sampling

parameters will be completely different.The set of signals defined with the same parameters
is called family of signals. To study the battery a single complex and extensive experiment
is done. This experiment is composed by many test or small sub-experiments, each of them
corresponding to a different stimulus signal for the battery. Among all these stimulus signals
we will select the one with the closest results to the theoretical ones.

To do the experiments, it is necessary to define a limit for each parameter that determines
the stimulus signal. The total length of the experiment depends on this choice. They will be
introduced by the user at the beginning of the experiment by a graphical interface, created
to make the tool more intuitive. The length of the experiment can therefore be modified
depending on the battery to study. All the experiments done for the same battery have to be
identical in length, that is to say, the same limits should be introduced in all the experiments,
in order to avoid affecting the obtained results. Once the limits are introduced, the experiment
is configured.

During the execution of the experiments, all the possible signals in the limits should be
evaluated. It is necessary to have a main loop, with several loops in it, to go over the different
parameters.

For each set of four parameters the main function or program of the tool is run. Each
execution of the main function corresponds with a sub-experiment. During it, a stimulus
signal to excite the battery is generated, data are read and processed, minimizing the noise as
far as possible, using different filters and approximations. At last, energy of the system and
characteristical values of the battery are computed.

Having small period time and small sampling period can cause a precision not enough
to make a suitable frequential analysis, not having enough points. The sampling frequency
also determines the complexity of the process. More acquired samples are more samples to
be processed.

(Npoints)/period = ns ×np
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Figure 6.8: Flow diagram

Only signal with at least two points per period are considered (ns ×np ≥ 2).
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An experiment is build from the execution of the main program or function with each of
the different stimulus signals. The inputs for the main program are the characteristics of the
signal, and the outputs are the characteristical values of the electrical model of the battery
(Rs, Rc y C) and the energy (J). The closest to the theory results are chosen.

The validation of the obtained results consists on a comparison between the experimental
values of the electrical model and the theoretical ones. If the theoretical values of the battery
are not available, they will be previously computed by a frequencial sine-wave scanning as
shown in figure 6.9. This process has to be done only the first time the battery is studied,
because data are saved for future uses.

Figure 6.9: Frequencial sine-wave scanning

If the error between the characteristical parameters of the battery computed by the tool
and the theoretical ones is higher than 10 per cent, the signal will be considered a fail and
the analysis will continue with more signals of the same family. The error is defined as:

error = (ExperimentalValue)/(T heoreticalValue)×100

If the number of failures in the same signal families is higher than the maximum allowed
one, defined as m for the total of N experiments done for each family, the family is discarded.
If the error is smaller of 10 per cent, energy of the system (J) is computed. The solution will
be chosen minimizing the energy, among all the valid families satisfying the constraint of
allowed failures.
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Figure 6.10: Flow diagram

6.8 Results

Some tests done with the aim to show the tool’s power are presented. All the experiments
done with the same fuel cell have the same limit parameters. A maximum frequency of 10
kHz for the stimulus signal has been chosen, because for higher frequencies data can not be
acquired properly. Results of a first experiment are shown.

An optimal signal to be used as stimulus is obtained. Its sampling frequency is 2048
points per second, 7 cycles or steps, 1 second long each of them, and with an amplitude of
10 A.

Once the parameters that define the stimulus signal are obtained, we proceed to verify
the validity of this signal. A signal with the same characteristics is generated, and one single
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Figure 6.11: Overflowing

Figure 6.12: Results of a first experiment

test is done, to obtain the frequential response of the battery and draw Bode and Nyquist
diagrams.

Having all the measurements, they are processed to eliminate all the noise, obtaining
useful data for interpretation.
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Figure 6.13: Data acquisition

Figure 6.14: Frequency response

Results obtained using the stimulus signal resulting from the experiments are quite good.
The obtained characteristical values of the equivalent electrical model are

Rs = 0.0729

Rc = 0.0481

C = 0.0398
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Figure 6.15: Experimental Bode

Figure 6.16: Processed Bode

To confirm the results, the experiment is repeated, obtaining almost the same result. After
the verification of the results achieved for the first battery, some experiments are done with
the other battery available in the laboratory. The results are shown in the following figure.

As both battery have the same specifications, the results is very similar. In this case it
seems that the battery is in a better condition, due to the fact that in the equivalent electrical
model the capacity is a bit higher, while the internal resistance is slightly smaller.
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Figure 6.17: Experimental Nyquist

Figure 6.18: Results of the second experiment

6.9 Conclusions

The aim of this work has been developing a tool able to obtain an optimal signal to charac-
terize fuel cells applying randomized algorithms. To do it, fuel cells have been stimulated
by a randomized input signal and their frequential response has been studied. Variations in
magnitude and phase have been translated to a Nyquist diagram.

To build the tool, Matlab program has been used, as well as for the connection between
the fuel cell and Labview. Communication between these two programs has been a challenge.
The solution requires the exchange of the text files with the data wanted for each of the
programs, depending on the sense of the communications. Concluded the design of the tool,
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some tests have been done in order to confirm its proper performance. This tests have been
a success, and many results checks have been done. The tool is able to generate a random
signal, interact with Labview to stimulate the battery, make the acquisition and measuring,
and compute the frequential response and characteristical parameters. Once obtained a signal
useful to characterize a battery, it is no longer necessary to perform long experiments in
every frequency. Not only the optimal signal is obtained, but also all the parameters of
the equivalent models. Comparing these values with old ones it is possible to diagnose the
current state of the battery.

The main advantages for this method that can be mentioned are:

• The saving of time.

• It can be run in any computer, having Matlab, Labview and the acquisition tools

• Any kind of battery can be studied, changing the limits of the experiments to improve
performance.

• The visualization of the electrical equivalent model.

As future work, a data base could be added to the tool. This way a complete historical
archive of all studied cells could be used. When studying a battery its optimal stimulus
signal could be found in the historical archive. Another possible future work is integrating
the available Labview program in the main Matlab program and to make communications
more fluent, making the tool more robust and composed of a unique block.



Chapter 7

Application of R.A. to feedback
controllers testing and congestion control

7.1 Introduction

In computer networks congestion appears when there are too many sources sending data
too fast for the network to handle. Techniques to reduce congestion are of great inter-
est. This chapter concentrates on congestion control methodologies where feedback control
techniques provide efficient solutions ((Jacobson, 1988), (S. Ryu and Qiao, 2004), (Hollot
et al., 2002), (Sun et al., 2007), (Floyd and Jacobson, 1993)).

A central problem in designing controllers for these systems is the difficulty of ensuring
adequate performance in all possible conditions, as these systems operate under a very wide
range of conditions, are inherently nonlinear and suffer from significant time-varying delays.
Thus, designers frequently have to show the effectiveness of their proposal by extensive
simulations, which is a time-consuming methodology, and does not offer a definite guarantee
of performance: simulation results in most of the references show only specific cases and
scenarios. Prompted by this problem, the chapter concentrates on the following issue: given
a required degree of confidence, how many simulations are needed to check the adequate
performance of the controllers?

Thus, we develop a randomized approach based on some ideas in ((Su-Woon et al.,
2012),(Álamo et al., 2009), (Álamo et al., 2010b), (Fujisaki and Kozawa, 2006)), to test
whether a controller robustly satisfies a set of specifications with a given probabilistic error
margin. The results presented in this chapter are stated in an implicit way, that is, the num-
ber of experiments required is obtained from a simple numerical procedure. The theoretical
framework proposed in (Álamo et al., 2009) and (Álamo et al., 2010b) is conveniently tai-
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lored for this particular application. Hence this chapter constitutes a proof of concept of the
methodology proposed in the aforementioned references. The main idea is to test the con-
troller under a finite set of different scenarios. When the controller satisfies the specifications
for a sufficient number of these scenarios, then certain properties can be concluded with a
given degree of confidence, and no more simulations are needed.

One of the main characteristics of the technique is that it is independent of the family of
controllers (PI, PID, predictive, robust, etc). The methodology is applied in this chapter to the
active queue management (AQM) scheme, which complements the end-to-end Transmission
Control Protocol (TCP), at the routers’ transport layer. The AQM objectives (S. Ryu and
Qiao, 2004), (Hollot et al., 2002), (Sun et al., 2007), are efficient queue utilization, queuing
delay and robustness. Numerous AQM algorithms have been proposed (see (S. Ryu and
Qiao, 2004) for a good survey on the subject), with Random Early Detection (RED) (Floyd
and Jacobson, 1993) being the most widely used algorithm, as it can detect and respond
to long-term traffic patterns. This chapter uses the AQM mathematical models published
in (Hollot et al., 2002), and extensively used in the literature ((Jacobson, 1988), (S. Ryu
and Qiao, 2004), (Hollot et al., 2002), (Floyd and Jacobson, 1993), (Vidyasagar, 2001))
and the references therein) for controller design and testing. The main metrics proposed to
determine controller performance are: router queue size (real value and standard deviation),
link utilization and the probability of packet losses.

As a demonstration, the proposed technique is applied to a problem of two routers con-
nected in a Dumbbell topology, which represents a single bottleneck scenario. The length
of their queues is controlled with a PID ((Aström and Hägglund, 2006), (nez et al., 2011))
whose probabilistic properties are guaranteed following the results presented in the chap-
ter. The simulations are done using the software ns-2, which is a discrete event simulator
targeted at networking research, providing substantial support for simulation of TCP, rout-
ing, and multicast protocols over wired and wireless networks. It must be pointed out that
although the proposed methodology was prompted by a congestion control problem, and is
demonstrated on this problem, it can be directly applied to other control testing problems, as
plants to be controlled are frequently nonlinear, uncertain and subject to parameter variations
((nez et al., 2011)). This chapter is organized as follows: Section 2 introduces the theory be-
hind the proposed randomized test method. Results and an example of application are given
in section 3. Finally, some conclusions are presented (Maestre et al., 2012).

7.2 Randomized test method

This section develops the mathematical tools needed to establish a bound on the number
of simulations needed to guarantee certain properties of the feedback controller with a pre-
specified level of confidence.
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7.2.1 Notation

θ ∈Θ is a vector representing the parameters that characterize the controller (as the controller
is a PID, there are three parameters: the proportional, the integral and the derivative terms).
w ∈W is a vector that contains the parameters that characterize any possible scenario where
the controller will work (parameters of the model, states and inputs).

7.2.2 Assumptions

The following assumptions are needed to develop the proposed methodology:

1. The controller belongs to a finite family Θ that contains m elements: Θ= θ1,θ2, . . . ,θm.
Remark 1: This assumption is frequent in robustness problems, where the controller
design parameters, along with different auxiliary variables, are parameterized by means
of the decision variable vector θ ∈ Θ. If the set of parameters is infinite, finite cardi-
nality can be forced by gridding (Álamo et al., 2009).

2. The network and its possible inputs can both be fully determined in terms of a set
when the parameters are contained in the vector w ∈W . This assumption relies on the
fact that for these particular systems there exist well-known parameterized models (see
for example (Fujisaki and Kozawa, 2006)) that can be used to simulate the network.
The set W represents a reasonable range of variation of not only the parameters that
characterize the given network but also of additional terms of probabilistic nature.

3. Given t2 > t1, a scenario ŵ ∈ W and a controller θ̂ ∈ Θ , there exists a procedure to
evaluate whether the controller θ̂ fulfils the design specifications for a particular sce-
nario during the time interval [t1, t2] for the scenario ŵ . Mathematically, the procedure
is a function g such that:

g : Θ×W −→ 0,1.

Thus, the procedure g gives 0 if the specifications are satisfied; otherwise it gives 1.
This is a very mild assumption. We just assume that we can check if a given controller
satisfies the design specifications for a given scenario w.

Remark 2: For congestion control, this procedure is based on the result of a network
simulation that makes it possible to check whether a given controller fulfils the speci-
fications.

4. There is a probability distribution PrW defined over the set W and an algorithm that
provides elements of W according to PrW . In other words, it is possible to generate
a sequence w1,w2, . . . ,wk of characteristic independent and identically distributed el-
ements of W obtained according to PrW . Remark 3: This assumption can be relaxed
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if it is possible to generate the sequence of characteristic elements w1,w2, . . . ,wk ∈W
without knowing the exact probability distribution of the parameters.

7.2.3 Problem formulation

The objective is to test whether a controller satisfies the design specifications described by
the function g with a probability greater than 1− ε that is:

Eg(θ̂) = Prw ∈W : g(θ̂ ,w) = 1 < ε,

where ε is the probability that the given controller θ̂ does not work properly in a scenario
w. In general, it is not possible to test the controller in all possible scenarios, so we propose
a probabilistic approach. To this end, the set of N scenarios w1,w2, . . . ,wN ∈W , that fulfils
Assumption IV, is used. These scenarios test if the controller satisfies the specifications and
allow the probability of failure to be estimated:

Êg(θ̂) =
1
N

N

∑
i=1

g(θ̂ ,wi)≤ ρ

where ρ is a bound of the probability of failure (level parameter) for the controllers being
tested (empirically estimated). In other words, ρ sets the maximum acceptable probability
of failure, so it can be used as a design parameter. Additionally, we will require ρ < ε , that
is, the estimated probability of failure must be lower than the real probability of failure ε .
This constraint means that in practice more restrictive conditions are applied and provides
a margin to assure that the real behavior will fail with a probability smaller than ε . As a
probabilistic methodology is applied, it is important to consider the probability of false pos-
itives, that is, that (2) is empirically satisfied, but (1) is not (these false positives correspond
to situations in which the choice of the characteristic sequence w1,w2, . . . ,wN ∈W does not
represent W in an appropriate way). This will be considered by estimating the probability β
of the failure of the methodology, defined as:

β = Pr(Eg(θ̂)> ε|Êg(θ̂)< ρ)

Note that, given a controller θ̂ ∈Θ, this probability is a function of ε , ρ and N. Logically,
the greater the number of different scenarios used to test the controller, the better the results
provided by the proposed methodology. It can be proved that the function of the probability
of failure of the methodology verifies:
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lim
N→∞

β (ε,ρ ,N) = 0.

As it is not possible to make infinite simulations to guarantee that the probability of false
positives of the methodology is 0, we will set a bound that represents the maximum rate
allowed. In other words, we require β < β̂ . Based on these ideas, we now present a method
for determining a bound on the number N of scenarios needed to test controllers so that it
can be guaranteed with a level of confidence β̂ that the chosen controller works properly
according to the design parameters; that is, β (ε,ρ,N)≤ β̂ .

7.2.4 Testing a single controller

Some confidence bounds are derived now to ensure that a given controller fulfils the design
specifications for a given number of scenarios N. This confidence bounds can then be used
directly to derive a condition on the number of scenarios needed for a specific controller to
satisfy those bounds.

Theorem 1: The minimum number N of representative scenarios needed to guarantee
that the controller fulfils the design specifications described by the function g, with a proba-
bility greater than 1− ε , and a confidence level β̂ can be calculated solving the following
equation:

⌊ρ·N⌋

∑
k=0

(
N
k

)
εk(1− ε)N−k ≤ β̂

where ⌊N ·ρ⌋ is N ·ρ floor rounded, and ρ the level parameter.

Proof: As a single controller is tested then Θ = θ̂ . Without loss of generality, it can be
temporarily assumed that

E(θ̂) = Pr{w ∈W : g(θ̂ ,w) = 1}= ε̂, ε̂ ≥ ε

that is, the chosen controller does not fulfil the required specifications for all the scenarios
w ∈W . With this assumption, we can calculate the probability that this controller passes the
tests. It is obvious that a controller that fails with ε̂ = ε has a bigger chance of passing the
tests and therefore this case, the most restrictive one, will be used to establish the bound.
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When the controller is tested with the N scenarios the goal is to verify (2), which can be
transformed into:

N

∑
i=1

g(θ̂ ,w1)≤ ⌊ρ ·N⌋,

Note that the last inequality is a sufficient condition to guarantee that (2) holds. The
probability for this event can be calculated with the aid of the binomial distribution, which is
defined as the sum of the probabilities of all the cases where the number of failed scenarios
is lower than or equal to ⌊ρ ·N⌋ .

Pr(
N

∑
i=1

g(θ̂ ,w1)≤ ⌊ρ ·N⌋) =
⌊ρ ·N⌋

∑
k=0

(
N
k

)
εk(1− ε)N−k

This is the probability that sets the bound of confidence in the methodology, so N has to
be chosen such that

⌊ρ ·N⌋

∑
k=0

(
N
k

)
εk(1− ε)N−k ≤ β̂

which completes the proof.

Thus, given β̂ , ε and ρ , it is possible to establish a number N of representative scenarios
that are enough to guarantee that the controller works properly with a confidence level of β̂ .
There are several ways to find the value of N that validates (4) (see (Álamo et al., 2009) for
a more detailed description), but a simple numerical bisection method is enough.

7.2.5 Selecting one controller

In the general case, several controllers will be tested until one is found that satisfies the spec-
ifications with the required degree of confidence (that includes the possibility of choosing
a set of non-relevant scenarios for a given controller). Therefore, we assume that the set of
tested controllers has a finite cardinality m > 1.

Corollary 1: The minimum number N of representative scenarios needed to guarantee
that a set of controllers Θ = θ1,θ2, . . . ,θm fulfils the design specifications described by the
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function g, with a probability greater than 1− ε , and a confidence level β̂ is

m ·
⌊ρ ·N⌋

∑
k=0

(
N
k

)
εk(1− ε)N−k ≤ β̂

where ⌊N ·ρ⌋ is N ·ρ floor rounded, and ρ the level parameter.

Proof: The proof is direct, by considering Theorem 1 for each of the controllers and
considering the worst-case.

Remark 4: Notice that (5) admits other possible applications. For instance, given a set N
of possible simulations and controllers to be tested, it provides probability bounds.

Remark 5: The finite cardinality assumption holds for cases such as when there are a
random number of samples in the space of design parameters according to a given probability
((Álamo et al., 2009), (Álamo et al., 2010b),(Fujisaki and Kozawa, 2006)).

7.3 TCP/IP network problem

This section presents the application of the method developed in section 2 to the congestion
control problem. The main objective is to select from a set of possible congestion controllers
one that fulfils certain performance specifications. This selection is based on testing the
controllers on a number of detailed simulations determined by the proposed technique. To
this end, Corollary 1 is used to establish the desired properties for the controllers. As a
demonstration, the proposed technique is applied to a problem of two routers connected in a
Dumbbell topology, which represents a single bottleneck scenario (see Figure 1). The length
of their queues controlled with a PID (Maestre, Álvarez, Salim and Álamo, 2010) whose
properties are guaranteed following the results presented in the chapter. The simulations
needed for the scenarios were done using the software ns-2 (Vidyasagar, 2001). The main
metrics proposed to determine controller performance were: the router queue size (real value
and standard deviation); the link utilization; and the probability of packet losses. In this case,
Corollary 1 is used to establish the number of required simulations for each controller, so that
the desired properties can be statistically guaranteed. As we are interested in finding the best
possible controller within a predefined set of controllers, all of them are put to the test and
the one that offers the best results (in terms of confidence in fulfilling the specifications) is
chosen. In the case that none of the controllers passes the simulation tests, the specifications
would have to be relaxed or the control scheme re-evaluated. Of course, with an increment
in the number of simulations, the probability bounds could also be improved if needed, at
the cost of additional testing time.
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7.3.1 Parameters selection

Most of the parameters in the proposed technique are given by statistical considerations. The
following set of parameters has been found to give good results in practical applications:

• ε = 0.05 : in 5

• ρ = 0.01 : for each 100 scenarios, only one failure is tolerated that is, the controller
under test has not achieved the required performance in one scenario.

• β̂ = 0.1, this value gives a controller that fulfills the probabilistic constraints imposed
with a probability of 90

• m = 54 (number of controllers to be tested).

How was m selected? To select m, some preliminary simulations were carried out on
a linearized model to check the range of valid parameters for the controller. For this, the
working scenario defined in (Wang, Ji and Zhu, 2009) was used: nominal number of TCP
sessions NTCP = 40 TCP sessions, nominal link capacity C=250 packets/sec., and nominal
transportation delay Tp = 0.3 sec., with the following expected changes in the conditions
of the experiments: the number of TCP sessions can fluctuate between 20 and 180, the
link capacity between 100 and 1000 packets/sec and the transportation delay Tp, between
0.1 and 0.6 seconds. The set of PID parameters was restricted to the following ranges:
Kp = −0.0004,−0.0005, . . . ,−0.0009, Ti = 1,1.5,2 and Td = 2,2.75,3, where the parame-
ters correspond to the standard PID controller:

u(t) = Kp[e(t)+
1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

],

The control signal is the probability of marking a packet (p) and the error is evaluated from
the difference between the desired bottleneck queue length and the real one (q). Thus, 54 dif-
ferent controllers are considered to be tested, which makes possible to fix the last parameter
needed for evaluation of Corollary 1.

7.3.2 Results

Evaluating Corollary 1 with the selected parameters, the resulting number of different sce-
narios needed to obtain a controller that guarantees the specifications was 168 simulations. A
simulation is considered to be satisfactory (i.e., g=0) if the queue length q, whose reference
will be at 120 packets, has a mean value in the interval [116,124] and its mean deviation is
smaller than 17. These are the bounds that define the function g introduced above.
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Figure 7.1: Dumbbell topology

Once N has been determined, the procedure consisted in testing, using ns-2 simulations,
one controller after another for the N simulations until one is found that fulfills the design
specifications. Following (Maestre et al., 2010), the equations used to implement the PID
controller in ns-2 are given by

p(ts) = Kpe(tk),

d(tk) =
Td

Td +NTCP ·Ts
(d(tk−1)−KpNTCP(y(tk)− y(tk−1))),

u(tk) = sat(p(tk)+d(tk)+ i(tk)),

i(tk+1) = i(tk)+
Kp

Ti
e(tk),

where Ts is the sampling period.

After all the scenarios were tested for the set of selected controllers, it was concluded
that the controller with Kp = −0.0009, Ti = 1.5 and Td = 3 successfully passed the tests:
therefore its performance is statistically guaranteed within the range established. Figs.7.2
and 7.3 show, respectively, all the scenarios and the ones that passed the specifications, for
the selected controller. To show that the proposed controller really achieves the desired
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Figure 7.2: All experiments for the selected controller (Kp =−0.0009,Ti = 1.5,Td = 3)

Figure 7.3: Valid experiments for selected controller (Kp =−0.0009,Ti = 1.5,Td = 3)
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Figure 7.4: Final validation of the selected controller for the scenarios in Table 7.5. Evolution of the
queue size in packets

Figure 7.5: Data for scenarios in Fig.4

performance, validation was carried out with some additional simulations using parameters
that might not be in the testing set. Some simulation results are shown in Fig. 7.4, that
correspond to the three different scenarios presented in Table 7.5. It can be seen that for
those extreme scenarios the designed controller performs correctly.

7.4 Conclusions

Prompted by a congestion control problem in computer networks, a methodology has been
presented in this chapter that guarantees statistical properties of a family of controllers when
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applied to a certain set of plants. The proposed method does not depend on the family of
controllers considered, as it is very flexible. For instance, it can be used to determine pro-
bability bounds or establish a minimum number of simulations required to accept or reject a
controller. The importance of this result can be seen in the fact that it allows some properties
to be guaranteed, with a given probability level, in cases where there is a great difficulty, or
impossibility, to demonstrate those properties. This is especially useful in congestion con-
trol, as it is common to find design procedures in the literature that are only tested in a few
cases with no guarantee that the controller behavior will be similar in other scenarios. The
methodology has been tested on a single bottleneck problem: two routers connected in a
Dumbbell topology, using TCP/AQM protocol, controlled by a PID selected using the pro-
posed method. The results confirm the applicability of the method proposed to certifying
properties of congestion controllers.



Chapter 8

Conclusions and future work

This chapter summarizes the contributions made by this thesis, as well as the main conclu-
sions that can be drawn from it. It also gives insights on some possible directions for future
research in the continuation of this work.

8.1 Conclusions

Sample complexity results for various analysis and design problems related to uncertain
systems have been derived. In particular we provided new results which guarantee that a
binomial distribution expression is smaller than a pre-specified value. These results are sub-
sequently exploited for the analysis of worst case performance and constraint violation. With
regard to design problems we considered the case of finite cardinality of controller families
and the special case when the design problem can be recast as a robust convex optimization
problem.

A general class of randomized algorithms based on probabilistic validation has been pre-
sented. We provided a strategy to adjust the cardinality of the validation sets to guarantee
that the obtained solutions meet the probabilistic specifications. The proposed strategy is
compared with other schemes from the literature and it has been shown that a strict valida-
tion strategy in which the design parameter has to satisfy the constraints for all the elements
of the validation set might not be appropriate in some situations. We also proved that the
proposed approach does not suffer from this limitation because it allows the use of non strict
validation tests.

A randomized sequential algorithm that permits approaching optimization problems sub-
ject to uncertainty has been introduced. This algorithm is based on a strategy that iteratively
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adjusts the sample size of the training and validation sets. The main advantage of this pro-
posal is that the algorithm leads to significant improvements in terms of the required sample
size. The results allow us to address non-convex optimization problems with uncertainties,
which is of great relevance in the context of robust control design.

A new randomized algorithm that addresses the robust feasibility problem under un-
certain LMIs is presented. The proposed algorithm has clear differences with randomized
gradient and localization methods. The algorithm is guaranteed to obtain a δ -level feasible
solution if the problem is ε-feasible. Additionally, if the problem is not ε-feasible the algo-
rithm detects this non feasibility in a finite number of iterations. A bound on the maximal
number of iterations required has been obtained. Moreover, the analogies and differences
with other existing randomized methods have been discussed. A numerical example that
illustrates the merits of the algorithm has been provided.

A general methodology for the design of fault detectors with probabilistic guarantee has
been presented. The great advantage of the proposed methodology is, on the one hand its
flexibility to introduce different tools of fault detection and on the other its certified prob-
abilistic guarantee of the proposed detector. The operation of this methodology has been
illustrated with an application example to a virtual deposit. As future work, following the
philosophy of the proposed scheme, it would be interesting to address the problem of design-
ing a diagnostician to determine, once a fault is detected, which type of failure has occurred
with a certain probabilistic guarantee.

Prompted by a congestion control problem in computer networks, a methodology has
been presented that guarantees statistical properties of a family of controllers when applied
to a certain set of plants. The proposed method does not depend on the family of controllers
considered, as it is very flexible. For instance, it can be used to determine probability bounds
or establish a minimum number of simulations required to accept or reject a controller. The
importance of this result can be seen in the fact that it allows some properties to be guaran-
teed, with a given probability level, in cases where there is a great difficulty, or impossibility,
to demonstrate those properties. This is especially useful in congestion control, as it is com-
mon to find design procedures in the literature that are only tested in a few cases with no
guarantee that the controller behavior will be similar in other scenarios. The methodology
has been tested on a single bottleneck problem: two routers connected in a Dumbbell topol-
ogy, using TCP/AQM protocol, controlled by a PID selected using the proposed method.
The results confirm the applicability of the method proposed to certifying properties of con-
gestion controllers.

A tool able to obtain an optimal signal to characterize fuel cells applying randomized
algorithms has also been developed. To do it, fuel cells have been stimulated by a randomized
input signal and their frequential response has been studied. Variations in magnitude and
phase have been translated to a Nyquist diagram.
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To build the tool, Matlab program has been used, as well as for the connection between
the fuel cell and Labview. Communication between these two programs has been a challenge.
The solution requires the exchange of the text files with the data wanted for each of the
programs, depending on the sense of the communications. Concluded the design of the tool,
some tests have been done in order to confirm its proper performance. This tests have been
a success, and many results checks have been done. The tool is able to generate a random
signal, interact with Labview to stimulate the battery, make the acquisition and measuring,
and compute the frequential response and characteristical parameters. Once obtained a signal
useful to characterize a battery, it is no longer necessary to perform long experiments in
every frequency. Not only the optimal signal is obtained, but also all the parameters of
the equivalent models. Comparing these values with old ones it is possible to diagnose the
current state of the battery.

The main advantages for this method that can be mentioned are:

• The saving of time.

• It can be run in any computer, having Matlab, Labview and the acquisition tools

• Any kind of battery can be studied, changing the limits of the experiments to improve
performance.

• The visualization of the electrical equivalent model.

8.2 Future work

The possible areas that have been tackled by the thesis and could be considered for further
study are listed below:

• Application to CUDA and parallel processing.

• Application to identification (for example, to stock market) (Arahal, Soria and Diaz,
2006). Functionals to be minimized can be associated to an economical criteria. A
senior project on this topic has been developed (Molleja, 2013).

• Application to MPC. Model Predictive Control (MPC) can use iterative optimization
to obtain a controller for a given system.

• Application to renewable energies (Berenguel, Arahal and Camacho, 1998), as shown
in (Luque, 2010).
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• Improvements in the identification tool. A data base could be added. The available
Labview program could be integrated in the main Matlab program.



Appendix A

Resumen en castellano

A.1 Enfoques aleatorios para análisis y diseño de sistemas
de control

En los últimos años, la investigación en análisis probabilı́stico y métodos de diseño para sis-
temas y control ha progresado significativamente. Áreas especı́ficas en las que se han visto
desarrollos convincentes incluyen los sistemas hı́bridos e inciertos (Tempo et al., 2005),
(Vidyasagar, 1997). Un ingrediente técnico clave de este enfoque es el uso de la teorı́a de
eventos raros y desigualdades de grandes desviaciones que son susceptibles de acotar la cola
de la distribución de probabilidad. Éstas desigualdades son cruciales en el área de Statis-
tical Learning Theory (Vapnik, 1998), (Vidyasagar, 1997). El uso de esta teorı́a para el
diseño realimentado sistemas inciertos fue iniciado por (Vidyasagar, 1997). Recientemente,
se han proporcionado mejoras significativas en relación a la complejidad muestral en (Álamo
et al., 2009). Para el caso especial de problemas de optimización convexa, el enfoque del es-
cenario ha sido introducido por (Calafiore and Campi, 2006) para el diseño de controladores
probabilı́sticos.

La utilidad de los algoritmos aleatorios se apoya en el hecho de que pueden sortear los
problemas de complejidad del diseño no convexo.
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En este marco, se pueden extraer N muestras i.i.d. {w(1), . . . ,w(N)} de W de acuerdo con
la probabilidad PrW y resolver el problema de complejidad muestral.

Dado q obtener una solución global al problema anterior es difı́cil en el caso general, anal-
izamos en este trabajo las propiedades probabilı́sticas de las soluciones factibles subóptimas
(si se permiten como máximo m violaciones de las N restricciones). La idea de permitir al-
guna violación de las restricciones no es nueva y puede encontrarse, por ejemplo, en el con-
texto de identificación (Bai et al., 2002). Las estrategias aleatorias han sido recientemente
estudiadas en (Álamo et al., 2009), ver también (Tempo et al., 2005; Vidyasagar, 1997).

A.2 Esquemas de validación aleatoria

El diseño en presencia de incertidumbre es de máxima relevancia en diferentes campos. De-
safortunadamente, los problemas de optimización semi-infinita relacionados a menudo son
de tipo NP-duros, lo que compromete seriamente su solución en un tiempo computacional
razonable (Blondel and Tsitsiklis, 2000). Existen dos modos de sortear este asunto. Una
opción consiste en relajar las resticciones del problema original que normalemnte se re-
suelven en tiempo polinomial pero que pueden llevar a soluciones demasiado conservadoras
(Scherer, 2006). Otro enfoque es asumir que la planta incierta es descrita probabilı́sticamente
de modo que se puede derivar un algoritmo aleatorio para obtener, normalmente en tiempo
polinomial, una solución con algunas propiedades dadas, normalmente en términos de la
probabilidad de error (Tempo et al., 2005), (Vidyasagar, 1997).

El campo de los algoritmos aleatorios ha evolucionado significativamente en los últimos
años. Un estudio reciente de este tema puede encontrarse en (Calafiore et al., 2011). Se
han propuesto dos enfoques complementarios, métodos secuenciales y no-secuenciales. El
enfoque clásico para los métodos no-secuenciales se basa en la ‘statistical learning theory‘
(Vapnik, 1998). En particular, el uso de esta teorı́a para el diseño realimentado de sistemas de
control para sistemas inciertos ha sido iniciado en (Vidyasagar, 1997); más trabajos en esta
dirección incluyen (Koltchinskii et al., 2000), (Vidyasagar, 2001), (Vidyasagar and Blondel,
2001), (Álamo et al., 2009). En (Álamo et al., 2010a) y (Luedtke and Ahmed, 2008) se
analiza el caso particular en el que el conjunto de parámetros de diseño tiene cardinalidad
finita.

La ventaja de estos métodos es que el problema a abordar puede ser no-convexo. Para los
problemas de optimización convexa, se ha introducido un exitoso paradigma no-secuencial,
denotado como escenario, en (Calafiore and Campi, 2005) y (Calafiore and Campi, 2006).
Ver también (Campi and Garatti, 2008), (Campi and Garatti, 2011), (Calafiore, 2010) y
(Álamo et al., 2010a) para resultados relacionados.
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En los métodos no secuenciales el problema original de control robusto es reformulado en
términos de un único problema de optimización con restricciones muestreadas que son gene-
radas aleatoriamente. Un tema relevante de estos enfoques es que no requieren ningún paso
de validación. El número de muestras requerido para garantizar que la solución obtenida
cumple algunas especificaciones debe tener en cuenta la naturaleza especı́fica del problema
en cuestión. El resultado principal de esta lı́nea de investigación es derivar cotas inferi-
ores explı́citas para este tamaño muestral requerido. Recientemente, se han proporcionado
mejoras en esta complejidad muestral en (Álamo et al., 2009). En cualquier caso, las cotas
explı́citas obtenidas para la complejidad muestral pueden ser muy conservadoras, porque se
basan en un análisis del peor caso posible y crecen (al menos linealmente) con el número de
variables de decisión.

Para los métodos secuenciales, los algoritmos iterativos resultantes se basan en el gradi-
ente estocástico (Calafiore and Polyak, 2001), (Polyak and Tempo, 2001), iteraciones elip-
soidales (Kanev et al., 2003), (Oishi, 2007), o métodos de plano de corte y centro analı́tico
(Calafiore and Dabbene, 2007), ver también (Álamo, Tempo, Ramı́rez and Camacho, 2007)
para otras clases de algoritmos secuenciales. Las propiedades de convergencia en tiempo
finito son de hecho uno de los puntos de interés de estas publicaciones. Varios problemas
de control se han resuelto utilizando estos algoritmos secuenciales, incluyendo reguladores
LQ robustos, sistemas multi-estado y desigualdades matriciales lineales inciertas (LMIs).
Los métodos secuenciales se usan mayormente para problemas inciertos convexos porque el
esfuerzo computacional de cada iteración es asumible. De todos modos, pueden ser aplica-
dos en principio a cualquier tipo de problema de diseño robusto. Por ejemplo, un algoritmo
secuencial que puede ser aplicado a una generalidad de tipos de problemas se presenta en
(Álamo et al., 2009).

El principal punto en común de todos estos algoritmos secuenciales es el uso de una
estrategia de validación presentada en (Oishi, 2003) (ver (Oishi, 2007) para una versión de
revista). Las soluciones candidatas proporcionadas en cada iteración de estos algoritmos son
validadas usando un conjunto de validación que se extrae de acuerdo a una medida proba-
bilı́stica definida en el conjunto incierto. Si la solución candidata satisface las especifica-
ciones de diseño para cada elemento de este conjunto de validación entonces es clasificada
como solucion probabilı́stica y el algoritmo termina. El principal punto de este esquema
de validación es que la cardinalidad del conjunto de validación se incrementa con cada it-
eración del algoritmo. La estrategia garantiza que si se obtiene una solucion probabilı́stica,
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entonces esta cumple algunas especificaciones probabilı́sticas. Un enfoque similar, intro-
ducido en (Dabbene et al., 2010), se presenta en (Calafiore et al., 2011) en el contexto de
algoritmos secuenciales. La contribución es una reducción de la cardinalidad requerida para
los conjuntos de validación.

La principal contribución de este trabajo es proponer un esquema de validación relajado
en el que se permita a las soluciones candidatas violar las especificaciones de diseño para
uno o más de los miembros del conjunto de validación. La idea de permitir algunas viola-
ciones de las restricciones no es nueva y puede ser encontrada, por ejemplo, en el contexto de
identificacion (Bai et al., 2002), optimización con restricciones (Campi and Garatti, 2011)
y statistical learning theory (Álamo et al., 2009). Este esquema tiene sentido en presen-
cia de restricciones suaves o cuando no es posible encontrar una solución que satisfaga las
especificaciones para todas las realizaciones admisibles de la incertidumbre.

Este esquema nos permite reducir, en algunos casos drásticamente, el número de itera-
ciones requeridas por el algoritmo secuencial. Otra ventaja del esquema propuesto es que
no se basa en la existencia de una solución robusta determinista. La estrategia presentada es
bastante general y no se basa en asumir convexidad.

A.3 Algoritmos aleatorios secuencialmente óptimos para prob-
lemas factibles LMI

En los últimos años, los algoritmos aleatorios ((Tempo et al., 2005), (Calafiore and Dabbene,
2007), (Calafiore et al., 2011), (Álamo et al., 2009)) han despertado el interés de los investi-
gadores en control, fundamentalmente por la posibilidad de usarlos para evitar la naturaleza
NP-dura de muchos problemas que aparecen en control robusto ((Nemirovskii, 1993)). Es-
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tos algoritmos permiten obtener en tiempo polinomial una solución aproximada que satisface
la mayor parte de las restricciones1 asociadas a posibles valores de la incertidumbre de un
problema de robustez. Además, el número de restricciones del problema original que son
violadas por la solución aproximada se puede hacer tan pequeño como se desee.

Una clase destacada en las estrategias aleatorias son las basadas en métodos graden-
ciales ((Polyak and Tempo, 2001; Calafiore and Polyak, 2001; Fujisaki et al., 2003; Liberzon
and Tempo, 2004)). Estas estrategias son capaces de encontrar, con probabilidad uno, una
solución a un problema de control robusto basado en LMIs en un número finito de itera-
ciones, si el problema es factible. Estos métodos están basados en un esquema iterativo, en
el que la solución actual se actualiza en la dirección obtenida del gradiente aleatorio de una
función de factibilidad apropiada.

Otro tipo importante de algoritmos aleatorios son los basados en versiones probabilı́sticas
de los métodos de localización. La convergencia a la solución en estos métodos es, teóricamente,
mejor que los gradenciales. Entre estos métodos cabe citar el algoritmo probabilı́stico del
elipsoide ((Oishi, 2003; Kanev et al., 2003)) y la versión probabilı́stica del método del plano
de corte por el centro analı́tico de un conjunto de LMIs ((Calafiore and Dabbene, 2006)).

La estrategia del escenario juega también un papel importante en la resolución de prob-
lemas de optimización robusta. Tal y como se demuestra en (Calafiore and Campi, 2006),
muestreando de manera apropiada el conjunto de restricciones, se obtiene un problema con-
vexo (el escenario) cuya solución es aproximadamente factible para el problema original (el
cual implica un número mucho mayor, posiblemente infinito, de restricciones). Al incremen-
tar el número de muestras, el número de restricciones del problema original que se violan
tiende a cero.

La estrategia de escenario, los métodos gradenciales y el método del elipsoide tienen
una naturaleza muy diferente. La primera obtiene una solución aproximada mediante la
resolución de un único problema convexo con un número alto de restricciones. Por otra
parte los métodos gradenciales y el método del elipsoide obtienen una solución aproximada
de manera secuencial, empleando un número considerable de iteraciones, en cada una de

1Es decir la solución encontrada gozarı́a de una factibilidad aproximada según la definición presentada en
(Barmish, 1994).
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las cuales se actualiza una solución candidata mediante una sencilla regla sin optimización
alguna.

En este trabajo se presenta un algoritmo aleatorio que resuelve el problema de obtener
una solución robusta factible para un conjunto posiblemente infinito de LMIs. Este algo-
ritmo no pertenece a ninguna de las clases anteriores y converge en un número finito de
iteraciones, siendo además capaz de determinar la no factibilidad del problema. La solución
se alcanza mediante una secuencia de problemas de optimización relativamente simples. El
método propuesto comparte con los métodos gradenciales y de elipsoide su naturaleza se-
cuencial. A diferencia de éstos utiliza una regla de actualización de la solución candidata
basada en un problema de optimización en el que se emplea un reducido número de restric-
ciones obtenidas del problema original. Una de las ventajas del método propuesto es que es
capaz de determinar la no factibilidad del problema de factibilidad robusta. En la práctica el
algoritmo funciona de manera muy satisfactoria, obteniendo una solución aproximadamente
factible o detectando la no factibilidad en un número razonable de iteraciones.

A.4 Aplicaciones de los algoritmos aleatorios

Se han desarrollado metodos de diseño y algoritmos aleatorios para varias aplicaciones rela-
cionadas con sistemas y control (Tempo et al., 2013).

A.4.1 Detección de fallos

Se entiende como fallo todo cambio en el comportamiento de alguno de los componentes
del sistema (desviación no permitida de alguna de sus propiedades o parámetros carac-
terı́sticos) de manera que éste ya no puede satisfacer la función para la cual ha sido diseñado
(Blanke, 1999). Además de los fallos, existen otros factores que alteran el comportamiento
normal del sistema, como las perturbaciones y el ruido. Las perturbaciones son entradas
no conocidas que pueden manifestarse en el sistema en cualquier momento pero que se han
tenido en cuenta a la hora de diseñar el lazo de control convencional. Cualquier perturbación
que no se haya tenido en cuenta en este diseño será considerada como un fallo. El ruido
también es una entrada no conocida que se manifiesta en el sistema pero, a diferencia de
las perturbaciones, tiene media nula y, además, a priori se puede tener conocimiento de cual
es su amplitud. Un sistema de detección de fallos ha de reaccionar frente a los fallos y ser
inmune (robusto), en la medida de lo posible, a los otros factores presentes en el sistema
que generan incertidumbre. Por otro lado, muchos de los métodos de detección de fallos se
basan en un modelo (matemático o cuantitativo) del sistema a monitorizar que nunca podrá
describir de manera exacta el comportamiento del sistema real y por lo tanto presentará un
error de modelado que también se deberá tener en cuenta.
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El objetivo de un bloque de detección de fallos es, una vez se ha producido un fallo en un
instante TF , detectarlo en un intervalo de tiempo menor o igual a TDmax fijado previamente.
Dependiendo de la magnitud e incidencia de los fallos que se deseen detectar y de la pres-
encia de otros factores de incertidumbre en el sistema, no siempre será posible diseñar un
bloque de detección que detecte todos los fallos sin que en situaciones de no fallo se activen
falsas alarmas. Ası́ que siempre existirá un compromiso entre la proporción de fallos que no
se detecten (MF ”Missed Faults”) y la proporción de veces que se active el bloque detector
sin la presencia de fallos debido a los factores de incertidumbre presentes en el sistema (FA
”False alarms”). En este compromiso que se deberá tener en cuenta en el proceso de diseño
del bloque detector de fallos es l’ogico priorizar la minimización de fallos no detectados
respecto a la minimización de falsas alarmas.

La naturaleza aleatoria de los fallos y las incertidumbres inherentes del sistema con-
vierten el problema de diseño del bloque de detección en un problema de robustez.

Tipicamente, para un problema de robustez, los parámetros de diseño, asi como difer-
entes variables auxiliares, son descritos en terminos de un vector de variables de decision θ ,
que se denota como parametro de diseño, y es restringido al conjunto Θ. Por otro lado, la
incertidumbre w está acotada en el conjunto W . Es decir, cada elemento w ∈ W representa
una de las realizaciones admisibles de la incertidumbre, con probabilidad PrW . En nuestro
contexto de detección de fallos, θ corresponde a las variables de decisión que determinan el
bloque de detección de fallos. Dicho bloque permite determinar si hay un fallo o no en un
determinado escenario, por lo tanto tendremos dos conjuntos de incertidumbre WF y WN que
consisten en todos los posibles escenarios de funcionamiento del sistema a monitorizar con
fallo y sin fallo respectivamente. Por otro lado, wF y wN representan una realización de un
escenario con fallo y sin fallo. WF y WN tienen asociados unos espacios de probabilidad PrF
y PrN respectivamente.

Además consideramos también dos funciones binarias medibles:

g(θ ,w) :=
{

0 si θ detecta fallo
1 en otro caso.

h(θ ,w) :=
{

0 si θ no detecta fallo
1 en otro caso.

Al aplicar estas dos funciones sobre los espacios WF y WN se obtienen las siguientes
esperanzas

Eg(θ) := PrF{wF ∈ WF : g(θ ,wF) = 1}
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Eh(θ) := PrN{wN ∈ WN : h(θ ,wN) = 1}.

Donde Eg(θ) y Eh(θ) son el tanto por uno de fallos no detectados (MF) y falsas alarmas
(FA) respectivamente. La utilidad de los algoritmos aleatorios surge del hecho de poder tratar
el siguiente problema de diseño

min
θ∈Θ

Eh(θ) sujeto a Eg(θ)≤ ηF (A.1)

donde ηF es el tanto por uno máximo de fallos no detectados impuesto como requerim-
iento del bloque detector.

En este marco, se pueden extraer NN y NF i.i.d. muestras (independientes e identicamente
distribuidas) {w(1)

N , . . . ,w(NN)
N } de WN y {w(1)

F , . . . ,w(NF )
F } de WF de acuerdo a la probabilidad

PrN y PrF respectivamente y con una proporción entre escenarios de fallo y no fallo FN = NF
NN

determinada por la probabilidad de fallo del sistema a monitorizar. De esta manera se puede
resolver el siguiente problema de optimización muestreado

min
θ∈Θ

NN

∑
ℓN=1

h(θ ,w(ℓN)
N ) (A.2)

sujeto a
NF

∑
ℓF=1

g(θ ,w(ℓF )
F )≤ ηFNF

La idea de permitir algunas violaciones de las restricciones no es nueva y puede encon-
trarse, por ejemplo, en el contexto de identificación (Bai et al., 2002).

En este artı́culo se propone un método de diseño del bloque detector de fallos basado en
la utilización de históricos o simulaciones de episodios reales con fallo y sin fallo evitando
la dificultad del análisis, que no siempre es posible, debido a la complejidad del problema.
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El resultado ası́ obtenido, mediante un test de validacion probabilı́stica, garantiza que la
solución propuesta se comporta de la manera deseada con una cierta probabilidad, fijada a
priori. Se garantiza asimismo la satisfacción probabilı́stica de las restricciones. Esta técnica
resulta muy adecuada para el abordaje de problemas complejos.

A.4.2 Identificación de una pila de combustible

El objetivo principal es la identificación de una pila de combustible mediante la aplicación
de algoritmos aleatorios. Se pretende desarrollar una herramienta de ensayos en Matlab con
la que evaluar baterı́as en el laboratorio y obtener una señal de estı́mulo óptima para el mod-
elado de estas, con el fin de caracterizarlas en un futuro de la manera más rápida y precisa
posible. Para ello se apoya en el algoritmo presentado en (Álamo et al., 2010b). Las baterı́as
son dispositivos muy complejos que tienen numerosos componentes, y su rendimiento de-
pende de variables que se pueden medir de forma sencilla, como el voltaje y la temperatura,
y otras que no son tan sencillas de medir, como la edad, las tolerancias de fabricación y
las variaciones entre celdas dentro de la baterı́a, que pueden tener un gran impacto en el
rendimiento final.
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Por todo esto siempre se debe realizar pruebas para un mantenimiento adecuado, inspec-
cionando su estado hasta que sea necesario reemplazarla. Unas pruebas importantes para
conocer el estado en el que se encuentra la baterı́a son aquellas que permiten conocer la
capacidad e impedancias de su modelo eléctrico. El planteamiento de este trabajo es de util-
idad en este aspecto, ya que se ocupa de encontrar la señal con la que se pueda conseguir la
mejor aproximación del modelo eléctrico de la baterı́a. Durante la ejecución de los experi-
mentos se excitarán las baterı́as con señales constantes definidas a trozos elegidas de forma
aleatorias. Los algoritmos aleatorios, presentan, en muchas ocasiones, soluciones más velo-
ces que los algoritmos tradicionales y en otras, soluciones que no serı́an posibles dentro del
dominio de los algoritmos tradicionales. En la práctica común, los algoritmos aleatorios son
una aproximación con un generador de números pseudo-aleatorios.

A.4.3 Pruebas de controladores realimentados

En las redes informaticas la congestión aparece cuando hay demasiadas fuentes enviando
datos demasiado rápido como para que la red los maneje. Las técnicas para reducir la con-
gestión son de gran interés. Este trabajo se concentra en las metodologı́as donde las técnicas
de control realimentado proporcionan soluciones eficientes ((Jacobson, 1988), (S. Ryu and
Qiao, 2004), (Hollot et al., 2002), (Sun et al., 2007), (Floyd and Jacobson, 1993)).

Un problema central al diseñar controladores para estos sistemas es la dificultad de ase-
gurar desempeño adecuado en todas las condiciones posibles, porque estos sistemas operan
bajo un rango muy amplio de condiciones, son inherentemente no lineales y sufren de retra-
sos que varı́an muy significativamente. Por ello, los diseñadores a menudo tienen que mostrar
la efectividad de su propuesta mediante simulaciones extensivas, lo cual es una metolodogı́a
muy costosa en tiempo, y no ofrece garantı́a definitiva de desempeño: los resultados de
simulación en la mayorı́a de las referencias muestran solo casos y escenarios especı́ficos.
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Enfrentados a este problema, nos concentramos en lo siguiente: dado un grado de con-
fianza requerida, ¿cuántas simulaciones se necesitan para comprobar el desempeño ade-
cuado de los controladores? Ası́, desarrollamos un enfoque aleatorio, basado en algunas
ideas en (Su-Woon et al., 2012),(Álamo et al., 2009), (Álamo et al., 2010b), (Fujisaki and
Kozawa, 2006), para comprobar si un controlador satisface de manera robusta un conjunto
de especificaciones con un margen de error probabilı́stico.

Los resultados se muestran de modo implı́cito, es decir, el número de experimentos re-
querido es obtenido por un simple procedimiento numérico. El marco teórico propuesto en
(Álamo et al., 2009) y (Álamo et al., 2010b) es convenientemente retocado para esta apli-
cación. Ası́ este trabajo constituye una prueba de concepto de la metodologı́a propuesta en
las referencias mencionadas.

La idea principal es probar el controlador bajo un conjunto finito de diferentes escenar-
ios. Cuando el controlador satisfaga las restricciones para un número suficiente de estos
escenarios, entonces ciertas propiedades se pueden concluir con un grado de confianza dado,
y no se necesitan más simulaciones. Una de las caracterı́sticas principales de esta técnica es
que es independiente de la familia de controladores (PI, PID, predictivo, robusto, etc).

Debe señalarse que aunque la metodologı́a propuesta ha sido enfrentada a un problema
de control, y ha sido demostrada en este problema, puede ser directamente aplicada a otros
problemas de control y pruebas, dado que las plantas a ser controladas son frecuentemente
no lineales, tienen incertidumbres y variaciones de parametros ((nez et al., 2011)).

A.5 Esquema de la tesis y contribuciones

Lo que sigue es un esquema de la tesis y sus contribuciones:
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• Capı́tulo 3: Cotas explı́citas para la complejidad muestral requerida. En este capı́tulo
se estudia la complejidad muestral de métodos probabilı́sticos para el control de sis-
temas inciertos. Se aborda también el caso particular en el que el problema de diseño
puede ser formulado como un problema incierto de optimización convexa. Se propor-
cionan cotas simples y explı́citas para garantizar que las soluciones obtenidas cumplen
algunas especificaciones probabilisticas pre-especificadas.

• Capı́tulo 4: Esquemas de validación aleatoria. Se presenta una estrategia para el
diseño bajo incertidumbre. Se proporciona una clase general de algoritmos secuen-
ciales que satisfacen las especificaciones requeridas usando validación probabilı́stica.
En cada iteración del algoritmo secuencial se válida una solución candidata, en términos
de un conjunto de muestras inciertas generadas aleatoriamente.

• Capı́tulo 5: Se propone un algoritmo aleatorio secuencialmente óptimo para prob-
lemas de factibilidad robusta de LMIs. El algoritmo se basa en la solución de una
secuencia de problemas de optimización semidefinidos que involucran a un pequeño
número de restricciones. Se da una cota para el máximo número de iteraciones requeri-
das por el algoritmo. Se discuten analogı́as y diferencias con los métodos del gradiente
y de localización. El desempeño y comportamiento del algoritmo son ilustrados en
términos de un ejemplo numérico.

• Capı́tulo 6: Detección de fallos con validación probabilı́stica. Presentamos una es-
trategia general para el diseño de un bloque de detección de fallos con validación prob-
abilı́stica (PCV- Procesado, clasificación, validación). Se propone un esquema general
de PCV, que permite diseñar un bloque de detección de fallos con validación proba-
bilı́stica en el porcentaje máximo de fallos no detectados (impuesto como condición
de diseño) y en el porcentaje de falsas alarmas (obtenido a posteriori). En cada it-
eración del algoritmo secuencial, una solución candidata se valida probabilı́sticamente
mediante un conjunto de muestras generadas aleatoriamente. Presentamos un marco
general en el que la solución candidata puede violar las restricciones para un reducido
número de elementos del conjunto de validación. Este esquema generalizado muestra
significativas ventajas, en particular en términos de la obtención de la solución proba-
bilı́stica.

• Capı́tulo 7: Aplicación a la identificación frecuencial. Identificación de una pila de
combustible mediante la aplicación de algoritmos aleatorios. Se desarrolla una her-
ramienta de ensayos en Matlab con la que evaluar baterı́as en el laboratorio y obtener
una señal de estı́mulo óptima para el modelado de éstas, con el fin de caracterizarlas
en un futuro de la manera más rápida y precisa posible, ya que se ocupa de encontrar la
señal con la que se pueda conseguir la mejor aproximación del modelo eléctrico de la
baterı́a. Durante la ejecución de los experimentos se excitarán las baterı́as con señales
constantes definidas a trozos elegidas de forma aleatoria.

• Capı́tulo 8: Un enfoque probabilı́stico para probar controladores realimentados. Se
presenta un enfoque probabilı́stico para probar si un controlador satiface de forma ro-
busta un conjunto de especificaciones con un cierto margen probabilı́stico de error. Los
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resultados se expresan de modo implı́cito, esto es, el número de experimentos requeri-
dos se obtiene de un simple procedimiento numérico. Este capı́tulo constituye una
prueba de concepto de la metodologı́a propuesta en capı́tulos anteriores. La idea prin-
cipal es probar controladores bajo un número finito de posibles escenarios. Cuando el
controlador satisface las especificaciones para un número suficiente de estos escenar-
ios, entonces ciertas propiedades pueden concluirse con un nivel de confianza dado, y
no se necesitan más simulaciones.

A.6 Publicaciones

Los siguientes artı́culos se han presentado o han sido enviados para su publicación durante
la elaboración de esta tesis:

CAPÍTULOS DE LIBRO:

1. ”On the sample complexity of probabilistic analysis and design methods” T. Alamo,
R. Tempo, A. Luque. Perspectives in mathematical system theory, control and signal
processing. Lecture notes in control and information series 398. Springer. USA. 2010.

REVISTAS:

1. A probabilistic approach for testing feedback controllers, with application to conges-
tion control. José M. Maestre, Teresa Alvarez, Teodoro Alamo, Anuar Salim and
Amalia Luque. Technical Notes .International Journal of Control, Automation, and
Systems.Volume 10, Number 4, August 2012.

2. Un algoritmo secuencial, aleatorio y óptimo para problemas de factibilidad robusta. T.
Álamo, R. Tempo, D.R. Ramı́rez, A. Luque, E.F. Camacho. RIAI. 2013.

3. The Sample Complexity of Randomized Methods for Analysis and Design of Uncer-
tain Systems. T. Alamo, R. Tempo b, A. Luque, D.R. Ramı́rez. Submitted to Auto-
matica.

Trabajo en curso:

• Detección de fallos usando validación probabilı́stica. Para ser enviado a Auto-
matica.

• Validación de controladores. Para ser enviado a una revista.

• Publicación sobre identificación frecuencial.
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CONGRESOS:

1. ”Dynamic model of the relationships between technology and employment.” A. Luque,
A. Conseglieri, T. Álamo. Proceedings of the European Control Conference 2009.
Budapest-Hungrı́a. 23-26 Agosto 2009. ISBN 978-963-311-369-1

2. ”Algoritmos aleatorios”. A. Luque, T. Álamo, R. Tempo. XXX Jornadas de Au-
tomática. Valladolid. 2-4 Septiembre 2009. ISBN 13-978-84-692-2387-1

3. ”Modelado de sistemas hı́bridos de energias renovables y su aplicación a una planta
termosolar de agua caliente sanitaria (A.C.S.)” . A. Luque, A. Quintero, T. Álamo, D.
Limón, M. R. Arahal, A. Conseglieri. XXX Jornadas de Automática. Valladolid. 2-4
Septiembre 2009. ISBN 13-978-84-692-2387-1.

4. ”Randomized Algorithms and their application to renewable energy systems”. A.
Luque, T. Álamo. IFAC - Conference on control methodologies and technology for
energy efficiency. Marzo 2010.

5. ”On the Sample Complexity of Randomized Approaches to the Analysis and Design
under Uncertainty”. T. Alamo, R. Tempo, A.Luque. Proceedings of the 2010 Ameri-
can Control Conference (ACC10), ISBN: 978-1-4244-7425-7. Junio 2010.

6. ”Algoritmo para el diseño robusto de sistemas complejos”. A. Luque, T. Alamo.
XXXI Jornadas de Automatica. Jaén. 2-4 Septiembre 2010. ISBN: 978-84-693-0715-
1

7. ”Modeling of a hybrid renewable/fossil hot water production system”. A. Luque T.
Alamo M. R. Arahal, D. Limón. 2010 IEEE International Conference on emerging
technologies and factory automation (ETFA’ 2010), ISBN: 978-1-4244-6849-2. Sep-
tiembre 2010.

8. ”Hybrid modeling of renewable energy systems and its application to a hot water solar
plant”. A.Luque, A. Quintero, T. Álamo, D. Limón, M. R. Arahal, A. Conseglieri, E.
F. Camacho. IFAC Conference on control methodologies and technology for energy
efficiency. Marzo 2010.

9. T. Alamo, A. Luque, D. R. Ramı́rez and R. Tempo, ”Randomized Control Design
through Probabilistic Validation,” Proc. of the American Control Conference, Mon-
treal, Canada, June 2012.

10. Detección de fallos con validación probabilı́stica. Blesa, Joaquin ; Luque-Sendra,
Amalia; Álamo-Cantarero, Teodoro; Dabbene, F. XXXIV Jornadas de Automatica.
2013. Terrassa. Barcelona.
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A.7 Conclusiones

Se han derivado resultados para varios problemas de análisis y diseño relacionados con sis-
temas inciertos. En particular, hemos proporcionado nuevos resultados que garantizan que
una expresión de distribución binomial es menos que un valor pre-especificado. Estos re-
sultados son explotados para el análisis del peor caso y la violación de restricciones. En
relación a los problemas de diseño consideramos el caso de cardinalidad finita de familias de
controladores y el caso especial cuando el problema de diseño puede ser reescrito como un
problema de optimización robusta convexo.

Se ha presentado una clase general de algoritmos aleatorios basados en validación prob-
abilı́stica. Proporcionamos una estrategia para ajustar la cardinalidad del conjunto de val-
idación para garantizar que las soluciones obtenidas cumplen las especificaciones proba-
bilı́sticas. La estrategia propuesta es comparada con otros esquemas de la literatura y se
muestra que una estrategia de validación estricta, en la que el parametro de diseño tenga que
satisfacer las restricciones para todos los elementos del conjunto de validación, puede no ser
apropiada en algunas situaciones. También probamos que el enfoque propuesto no sufre de
esta limitación porque permite el uso de pruebas de validación no estrictas.

Se propone un algoritmo secuencial aleatorio que permite abordar los problemas de opti-
mización sujetos a incertidumbres. Este algoritmo está basado en una estrategia que iterati-
vamente ajusta el tamaño muestral de los conjuntos de entrenamiento y validación. La prin-
cipal ventaja de esta propuesta es que el algoritmo lleva a mejoras significativas en términos
del tamaño muestral requerido. El resultado permite abordar problemas de optimización no
convexos con incertidumbres, que es de gran relevancia en el contexto de diseño de control
robusto.

Se ha presentado un algoritmo aleatorio que aborda en problema de factibilidad ro-
busta bajo LMIs con incertidumbres. El algoritmo propuesto tiene diferencias claras con
los métodos del gradiente aleatorio y de localización. El algoritmo garatiza obtener una
solucion factible de nivel δ si el problema es ε-factible. Adicionalmente, si el problema no
es ε-factible el algoritmo detecta esta no-factibilidad en un número finito de iteraciones. Se
obtiene una cota para el número máximo de iteraciones requeridas. Se discuten ademas las
analogı́as y diferencias con otros métodos aleatorios existentes. Se proporciona un ejemplo
numérico que ilustra el mérito del algortimo propuesto.

Se presenta una metodologı́a para el diseño de detectores de fallo con garantı́a proba-
bilı́stica. La gran ventaja de la metodologı́a propuesta es, por un lado, su flexibilidad para in-
troducir diferentes herramientas de detección de fallos y otra su garantı́a probabilı́stica certi-
ficada del detector propuesto. La operación de esta metodologı́a se ha ilustrado con un ejem-
plo de aplicación para un depósito virtual. Como trabajo futuro, siguiendo la metolodogı́a
del esquema propuesto, podrı́a ser interesante abordar el problema de diseño que determine,
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una vez que se detecta un fallo, qué tipo de fallo ha ocurrido con una cierta garantı́a proba-
bilı́stica.

Enfrentados a un problema de congestión y control en redes de ordenadores, se pre-
senta una metodologı́a que garantiza propiedades estadı́sticas de una familia de controladores
cuando se aplica a un cierto conjunto de plantas. El método propuesto no depende de la fa-
milia de controladores considerada, ası́ que es muy flexible. Por ejemplo, puede ser usada
para determinar las cotas probabilı́sticas o para establecer un número mı́nimo de simula-
ciones requeridas para aceptar o rechazar un controlador. La importacia de este resultado
se puede ver en el hecho de que permite garantizar algunas propiedades, con un cierto nivel
de probabilidad, en casos en los que hay un alto nivel de dificultad, o imposibilidad, de de-
mostrar esas propiedades. Esto es especialmente útil en control de congestión, porque es
común encontrar procedimientos de diseño en la literatura que sólo son probados en unos
cuántos casos sin garantı́a de que el comportamiento del controlador sea similar en otros es-
cenarios. La metodologı́a ha sido probada en un problema de cuello de botella: dos routers
conectados en una topologı́a Dumbbell, usando un protocolo TCP/AQM, controlados por un
PID seleccionado usando el método propuesto. Los resultados confirman la aplicabilidad del
método propuesto para certificar propiedades de los controladores de congestión.

Las posibles áreas que han sido abordadas en la tesis y que se pueden considerar para
trabajo futuro son:

• Aplicacion a CUDA y procesamiento paralelo.

• Aplicaciones de identificación (por ejemplo, a la bolsa de valores). Los funcionales a
minimizar pueden ser asociados a un criterio económico. Un proyecto fin de carrera
sobre esto puede ser encontrado en (Molleja, 2013).

• Aplicación a MPC. Model Predictive Control (MPC) puede usar la optimización iter-
ativa para obtener un controlador para un determinado sistema.

• Aplicación a las energı́as renovables, como se muestra en (Luque, 2010).

• Mejoras en la herramienta de identificación. Puede añadirse una base de datos. El pro-
grama de Labview disponible puede ser integrado en el programa principal de Matlab.



Bibliography

Aho, A., Hopcrof, J. and Ullman, J. (1974), The design and analysis of computer algorithms,
Addison-Wesley, Reading.
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Álamo, T., Tempo, R., Ramı́rez, D., Luque, A. and Camacho, E. (2013), ‘Un algoritmo
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Bravo, J., Limón, D., Álamo, T. and Camacho, E. (2005), Aplicación del Análisis Inter-
valar al Control Predictivo Basado en Modelo. El Análisis de Intervalos en España:
Desarrollos, Herramientas y Aplicaciones, Documenta Universitaria, Gerona, Spain.

Calafiore, G. (2010), ‘Random convex programs’, SIAM Journal of Optimization 20, 3427–
3464.

Calafiore, G. and Campi, M. (2005), ‘Uncertain convex programs: randomized solutions and
confidence levels’, Math. Program. 102, 25–46.

Calafiore, G. and Campi, M. (2006), ‘The scenario approach to robust control design’, IEEE
Transactions on Automatic Control 51(5), 742–753.

Calafiore, G. and Dabbene, F. (2006), ‘A probabilistic analytic center cutting plane method
for feasibility of uncertain LMIs’, Technical Report pp. 1–28.

Calafiore, G. and Dabbene, F. (2007), ‘A probabilistic analytic center cutting plane method
for feasibility of uncertain lmis’, Automatica 43, 2022–2033.

Calafiore, G., Dabbene, F. and Tempo, R. (2011), ‘Research on probabilistic methods for
control system design’, Automatica 47, 1279–1293.

Calafiore, G. and Polyak, B. (2001), ‘Stochastic algorithms for exact and approximate feasi-
bility of robust lmis’, IEEE Transactions on Automatic Control 46(11), 1755–1759.
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Maestre, J., Álvarez, T., Salim, A. and Álamo, T. (2010), A method for testing aqm con-
trollers with probability guaranteed properties, in ‘Proceedings of the World Congress
on Engineering’, pp. 1679–1685.
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