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SUMMARY7

A general, efficient and robust boundary element method (BEM) formulation for the numerical solution of
three-dimensional linear elastic problems in transversely isotropic solids is developed in the present work.9
The BEM formulation is based on the closed-form real-variable expressions of the fundamental solution
in displacements Uik and in tractions Tik , originated by a unit point force, valid for any combination11
of material properties and for any orientation of the radius vector between the source and field points.
A compact expression of this kind for Uik was introduced by Ting and Lee (Q. J. Mech. Appl. Math.13
1997; 50:407–426) in terms of the Stroh eigenvalues on the oblique plane normal to the radius vector.
Working from this expression of Uik , and after a revision of their final formula, a new approach (based15
on the application of the rotational symmetry of the material) for deducing the derivative kernel Uik, j
and the corresponding stress kernel �i jk and traction kernel Tik has been developed in the present17
work. These expressions of Uik , Uik, j , �i jk and Tik do not suffer from the difficulties of some previous
expressions, obtained by other authors in different ways, with complex-valued functions appearing for19
some combinations of material parameters and/or with division by zero for the radius vector at the
rotational-symmetry axis. The expressions of Uik , Uik, j , �i jk and Tik have been presented in a form21
suitable for an efficient computational implementation. The correctness of these expressions and of their
implementation in a three-dimensional collocational BEM code has been tested numerically by solving23
problems with known analytical solutions for different classes of transversely isotropic materials. Copyright
q 2007 John Wiley & Sons, Ltd.25
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1. INTRODUCTION1

An accurate and efficient evaluation of the integral kernels, typically represented by a fundamental
solution ( free-space Green’s function) and its derivatives, is a key issue in the numerical solution3
of boundary integral equations (BIEs) by the boundary element method (BEM) [1–3], the method
of fundamental solutions [4] and other approaches.5

Consider a homogeneous linearly elastic anisotropic material characterized by the fourth rank
tensor of elastic stiffnesses Ci jk� (i, j, k, �= 1, 2, 3), verifying the symmetry relations Ci jk� =7
C jik� =Ck�i j . Then, the constitutive law can be written as

�i j (x)=Ci jk�εk�(x) =Ci jk�uk,�(x) (1)9

where �i j , εk� and uk , are respectively, the tensors of stresses and strains and the vector of
displacements at a point x= (x1, x2, x3). It is assumed that Ci jk� is a positive-definite tensor, i.e.11
Ci jk�εi jεk�>0 for any non-zero strain tensor.

Let U(x) denote a fundamental solution for the above material given by a 3× 3 matrix whose13
columns represent displacement vectors (at a point x �= 0) originated in the infinite anisotropic
elastic medium (R3) by an application of the unit point forces at the origin of coordinates and15
oriented in the direction of coordinate axes.

As the closed-form expressions U(x) do not exist for all classes of these materials, and an17
efficient numerical procedure for evaluation of U(x), and even more of its derivatives, is not
immediate, BEM is still not so popular for these materials as it is for isotropic materials and,19
thus, any progress in extending the scope of BEM applicability to these materials would be
welcome.21

For a better understanding of the context of the present work, the main contributions to the
development of expressions of different kinds for U(x) suitable for implementation in 3D BEM23
codes will be briefly reviewed.

1.1. Fundamental solution for general anisotropic materials in 3D25

With reference to general anisotropic elastic materials, working from the Fredholm expression
of U(x) [5] obtained by the 3D Fourier transform, subseq contributions were aimed at obtaining27
an expression of U(x) as explicit and simple as possible. Lifshitz and Rozentsweig [6] applied
the Cauchy residue calculus to a 1D integral obtained from the 3D Fourier integral, giving an29
explicit expression of U(x) in terms of the complex poles, roots of a sixth-order algebraic equation
(called the Stroh eigenvalues at present), excluding degenerate cases with multiple poles from their31
calculation.

The application of the Stroh formalism to anisotropic elasticity (see Ting [7]) to evaluate U(x)33
and its derivatives in 3D has been shown to be a fruitful approach, leading to several substantial
contributions in the 1970s, e.g. by Malén [8], expressing U(x) in terms of the normalized Stroh35
eigenvectors provided that all eigenvalues are distinct, and also more recently, without assuming
the distinctness of the eigenvalues, by Nakamura and Tanuma [9] (expressing U(x) in terms of37
the Stroh eigenvalues and eigenvectors) and Ting and Lee [10] and Lee [11] (expressing U(x)
in terms of the Stroh eigenvalues only). Also Wu’s [12] generalization of the Stroh formalism to39
3D elasticity has been shown to be fruitful in generating Green’s functions of different kinds in a
uniform way, although its full potential still needs to be fully explored.41

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
DOI: 10.1002/nme



UNCORRECTED P
ROOF

NME 2176

FUNDAMENTAL SOLUTION FOR TRANSVERSELY ISOTROPIC ELASTIC MATERIALS 3

Recently, Lee [11] deduced new general analytical expressions of the first- and second-order1
derivatives of U(x) in terms of the Stroh eigenvalues only, which further develop expressions
originally derived by Barnett [13].3

Note, at this point, that the problem of finding a closed-form analytical expression of U(x) in
terms of elastic stiffnesses for a general anisotropic elastic material appears to be equivalent to5
finding closed-form expressions for the roots of the above-mentioned sextic equation. According
to the work of Head [14], no general solution is possible in radicals of this sextic equation, and7
therefore it seems that a fully closed-form expression of U(x) for general anisotropy will never be
available.9

BEM applications to anisotropic elastic materials started with the work of Wilson and Cruse [15],
who implemented the expressions of U(x) and its first- and second-order derivatives in terms of a11
1D integral over the unit circle [5, 6] and achieved an efficient numerical procedure by tabulating the
values ofU(x) and its derivatives (with respect to spherical angles) and finally by interpolating these13
values in BEM calculations. Although, apparently, for a long time this was the only satisfactory and
widely used numerical procedure, e.g. Schclar [16], it requires large computer storage for tabulated15
values and may not provide sufficient accuracy in materials with a high degree of anisotropy.

A new numerical procedure for a direct evaluation of U(x) and its derivatives, which is more17
accurate and more efficient (in terms of both computer storage and time), was developed by Gray
and co-workers [17–19] from expressions obtained by residue calculations [20], covering also the19
degenerate cases with multiple poles. Another 3D BEM implementation based on Wang’s [21]
residue calculations was developed by Tonon et al. [22].21

Finally, let us mention that, to the best of the authors’ knowledge, the explicit expressions of
U(x) for general anisotropic materials obtained using the concepts of the Stroh formalism in [9–11]23
have not yet been implemented and validated in the BEM context.

1.2. Fundamental solution for transversely isotropic materials in 3D25

Now, with reference to transversely isotropic elastic materials, the above-mentioned sextic equation
can be solved in radicals [23, 24], and consequently the closed-form expressions of U(x) and its27
derivatives are possible. This feature represents a fundamental difference with respect to the above-
discussed general anisotropy case and will be further exploited in the present work.29

Whereas numerical approaches, such as modulation function interpolation [15, 16] or numer-
ical solution of the sextic equation for different relative orientations of the source and field31
points [17–19], are the unique option for generally anisotropic materials where closed-form expres-
sions are not available, it is expected that using a closed-form expression of U(x) for transversely33
isotropic materials will yield significant savings in computing time and a higher accuracy.

Without loss of generality, let the x3-axis be the rotational-symmetry axis, and the x1x2-plane be35
the isotropy plane. Applying Voigt reduced notation [7], the elastic stiffnesses are represented by
a symmetric and positive-definite matrix CI J (I, J = 1, . . . , 6). A transversely isotropic material37
is characterized by the following five elastic constants:

C1111 =C11, C3333 =C33, C1122 =C12, C1133 =C13, C2323 =C44 (2)39

It holds that C1212 =C66 = (C11 − C12)/2. Let

� =√C11C33 − C13 − 2C44 (3)41
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Figure 1. Points x and x̂ in spherical coordinates associated with a transversely isotropic material.

Consider a point x �= 0 and a pair of orthogonal unit vectors n(x) and m(x), n⊥m, situated on1
the plane perpendicular to (the position vector) x so that (n,m, x/r), r = |x|, form a right-handed
triad. Let �, 0����, be the angle between the x3-axis and vector x, shown in Figure 1.3

Several closed-form expressions of U(x) for a transversely isotropic material presented in the
past have been obtained in different ways. Whereas Lifshitz and Rozentsweig [6], Kröner [25],5
Willis [26], Lejček [27] and Hu et al. [28] directly evaluated expressions obtained from the general
formula of Fredholm [5], Elliot [29], Chen [30], Pan and Chou [31], Fabrikant [32], Hanson [33]7
and Loloi [34] applied the potential function approach, and Nakamura and Tanuma [9], Ting and
Lee [10] and Lee [11] combined Fredholm’s approach and Stroh formalism.9

It will be instructive to relate, in what follows, the degeneracy cases (depending on the material
properties and the direction of x) observed in the expressions of U(x) for transversely isotropic11
materials obtained by the potential function approach with the classification of the fundamental
elasticity matrix N(n,m), in the framework of the Stroh formalism [7, 35].13

The fundamental elasticity matrix N(n,m) in the Stroh formalism is non-semisimple (having
a double or a triple eigenvalue, and only two independent eigenvectors) if � = 0 [23, 24]. It is15
not difficult to show that � = 0 is equivalent to zero discriminant of the characteristic quadratic
equation of the potential theory.17

The case of �= 0 or � also leads to a non-semisimple matrix N(n,m) [23, 24]. In these cases,
the potential function approach may lead to division by zero in the expressions of U(x) and some19
specific arrangements have to be applied [31, 33, 34].

In the remaining cases, N(n,m) is semisimple (having a double eigenvalue for a specific21
combination of elastic stiffnesses with C44/C66, giving a solution of the characteristic quadratic
equation of the potential theory) or simple (having three different eigenvalues), and has three23
independent eigenvectors in any case. In these cases, �>0 and �<0, respectively, lead to real
and complex solutions of the characteristic quadratic equation of the potential theory, which25
correspondingly produce real- and complex-variable expressions of U(x).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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Note that the complex-variable expressions of U(x) obtained by using the potential theory in the1
case �<0 include complex functions, which are cumbersome for implementing in a BEM code and
require very careful programming to keep their values in the same branch when multivaluedness3
arises [31]. Therefore, it is not a surprise that BEM results obtained by using these complex-
variable expressions of U(x) for materials with �<0 have not been published so far, at least to5
the knowledge of the present authors.

From the above-mentioned closed-form expressions of U(x), the expression deduced by Pan7
and Chou [31] is usually used in BEM codes; see Sáez et al. [36] and Loloi [34] for its BEM
implementations and Ariza and Domı́nguez [37] for an expression of the hypersingular kernel in9
the traction BIE obtained from the second-order derivatives of U(x).

As discussed above, this solution [31] has several features that make its implementation covering11
all possible cases somewhat cumbersome: (i) expressions depending on the values of � (positive,
negative or zero) and in particular its complex-variable character for �<0; (ii) a loss of precision13
and/or a division by zero for �= �. Although the difficulty with the degeneracy problem at � = �
has been solved by Loloi [34] by means of an ad hoc approach (using the sign(x3) function), the15
mentioned features may still cause some difficulties in using this expression in further analytical
deductions and in BEM development.17

The aim of the present work is to obtain, and numerically test, completely general and closed-
form real-variable expressions of Uik(x), its derivative Uik, j (x), and its corresponding stress �i jk19
and traction Tik(x) solutions, valid for any transversely isotropic material. In Sections 2 and 3, a
deduction of such an expression of Uik(x) introduced by Ting and Lee [10] is briefly revised for the21
sake of completeness and the necessary notation introduced. Section 4 presents new expressions
for the associated solutions: Uik, j (x), �i jk and Tik(x), obtained by differentiating this expression23
of Uik(x), which uphold all its advantages. The formulation of the Somigliana displacement
identity, where Uik(x) and Tik(x) play the role of the integral kernels, with its free-term coefficient25
tensor is discussed in Section 5, where also a BEM implementation of this identity is presented.
Finally, numerical tests, where the correctness of the expressions of Uik(x) and Tik(x) and of their27
implementation in a BEM code is verified, are presented in Section 6.

2. DISPLACEMENT FUNDAMENTAL SOLUTION FOR ANISOTROPIC MATERIALS29

According to Malén [8] and Lothe [38], U(x) can be expressed in terms of the Barnett–Lothe
tensor H(x) as31

U(x)= 1

4�r
H(x) (4)

Thus, in the context of BIEs, H(x) represents the characteristic (or modulation) function of the33
displacement fundamental solution U(x). It is well known that H(x) can be evaluated in several
ways [7, 9, 10], one option being given by the integral35

H(x)= 1

�

∫ +∞

−∞
C−1(p) dp (5)

with the matrix37

C(p) =Q + p(R + RT) + p2T (6)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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expressed in terms of a parameter p and the matrices Q, R and T defined for an x �= 0 as1

Qi j =Ci jk�n jn�, Rik =Ci jk�n jm�, Tik =Ci jk�m jm� (7)

where superscript T denotes the matrix transpose. Note that the matrices Q and T are symmetric3
and positive-definite matrices.

It can be shown that H(x) is independent of the choice of n and m on the plane perpendicular5
to x [7]. As follows from the above relations, H(x) is a symmetric and positive-definite matrix
depending only on the direction of x but not on its magnitude, i.e. H(x)=H(x/r), and fulfilling7
H(−x)=H(x). Hence, U(x) is also a symmetric positive-definite matrix and U(−x)=U(x).

Lifshitz and Rozentsweig [6] obtained, by applying the Cauchy residue theory, an expression9
of the integral in (5), which can be expressed in the following form:

H(x)= 2i
3∑

v=1

Ĉ(pv)

|C(pv)|′ (8)
11

where |C(p)| is the determinant of C(p), |C(p)|′ = d|C(p)|/dp, Ĉ(pv) is the adjoint matrix
of C(pv) defined by the relation C(pv)Ĉ(pv) = |C(pv)|I , where I is the identity matrix, and13
p� = �v + i�v (v = 1, 2, 3) are the three complex roots with the positive-definite imaginary part
(�v>0) of the sextic algebraic equation (sometimes called Stroh eigenvalues):15

|C(p)| = 0 (9)

It should be noted that the expression of H(x) in (8) is not valid for mathematically degenerate17
cases with repeated roots pv , e.g. p1 = p2 or p1 = p2 = p3.

Ting and Lee [10], starting from (8) and writing Ĉ(p) as a polynomial of degree 4 in p:19

Ĉ(p) =
4∑

n=0
pnĈ

(n)
(10)

achieved a new general expression of H(x) valid for any kind of linearly elastic material:21

H(x)= 1

|T|
4∑

n=0
qnĈ

(n)
(11)

where the real coefficients qn are expressed through fractions defined in terms of pv , with no23
division by zero in the degenerate cases as happens with the expression of H(x) in (8).

A simplified expression of H(x) can be achieved for configurations, materials and some specific25
positions of x with respect to a material, for which (9) is a cubic equation with real coefficients
in p2. In this case the determinant |C(p)| is expressed using (6) as27

|C(p)| = |T|(p2 − p21)(p
2 − p22)(p

2 − p23) (12)

which leads to the following form of the sextic equation (9):29

[p4 + (g2 − 2h)p2 + h2][p2 + �23] = 0 (13)

g, h and �3 being real and positive. The two roots p1 and p2 are pure imaginary or complex31
numbers, whereas the root p3 is always a pure imaginary number.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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Then, applying (10) and (12) in (8), a simple expression in the form of (11) is obtained1

H(x)= 1

|T |�
{

�

h�3
Ĉ

(0) + Ĉ(2) + �Ĉ
(4)
}

(14)

where the real and positive numbers �, � and � defined as
3

� = −i(p1 + p2 + p3) = g + �3 (15a)

� = −(p1 p2 + p2 p3 + p3 p1) = h + g�3 (15b)

� = i(p1 + p2)(p2 + p3)(p1 + p3) = g(h + g�3 + �23) (15c)

depend only on p1 + p2, p1 p2 and p3. Thus, it is not necessary to evaluate individually all
the roots of the sextic equation, and the final expression (14) is valid for both non-degenerate5
and degenerate cases. Explicit expressions for �3, h and g can be determined from (9) and (13)
by determining first the pure imaginary root p3 = i�3 by an explicit formula for roots of cubic7
algebraic equations [10].

Finally, the following key results by Ting and Lee [10] (Section 4 therein) will be useful in the9
evaluation of H(x) presented in the next section. If x is situated on a plane of elastic symmetry,
then, without loss of generality, one can assume that this plane coincides with a coordinate plane11
(applying a suitable rotation of the coordinate system if necessary), which implies the reduction
of (9) to (13) and the vanishing of some components of H(x) (e.g. H12(x)= 0 and H23(x)= 0 if13
the plane x2 = 0 is a plane of elastic symmetry).

3. DISPLACEMENT FUNDAMENTAL SOLUTION FOR TRANSVERSELY15
ISOTROPIC MATERIALS

Consider a transversely isotropic material as specified in (2). Any plane that contains the x3-axis17
is a plane of elastic symmetry and, according to [10], form (12) of the sextic equation and the
completely explicit expression of H(x) from (14) could be applied for any point x.19

The following procedure leads to a relatively simple and general expression of H(x). Let us
define a vector21

x̂= (r12, 0, x3) where r12 =
√
x21 + x22 (16)

Let c= cos�= x3/r and s = sin� = r12/r , the angle 0���� being shown in Figure 1. Then,23
defining n= (c, 0,−s) and m= (0, 1, 0), [n,m, x̂/r ] forms a right-handed triad. Explicit expres-
sions for the non-zero terms of25

H( x̂ ) =

⎛⎜⎜⎜⎝
H11 0 H13

0 H22 0

H13 0 H33

⎞⎟⎟⎟⎠ (17)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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L. TÁVARA ET AL.

can be obtained using (14)1

H11 = 1

C66�3
+ C44c2 + C33s2

C11C44gh
− f

�

H22 = 1

C11g
+ f

�

H33 = 1

gh

{
h + c2

C44
+ s2

C11

}
H13 = H̃13s

(18)

where3

H̃13 = (C13 + C44)c

C11C44gh

	 =C11C33 − C2
13 − 2C13C44

�3 =
{
C66c2 + C44s2

C66

}1/2

h =
{
c4 + 	s2c2

C11C44
+ C33s4

C11

}1/2

g =
{
2(h + c2) + 	s2

C11C44

}1/2
� = g(h + g�3 + �23)

f = h + c2

C66
+ gh

C66�3
+ C33s2

C11C44

(19)

�3, h, g and � being positive dimensionless functions of c and s.5
A general expression of the tensor H(x) for any x, in terms of cos and sin functions of spherical

angles � and 
 of x, can be obtained from (17) and (18) by the following transformation of7
components of H( x̂ ):

Hik(x) = �ia�kbHab( x̂ ) (20)9

where the rotation matrix X is defined as

X=
⎛⎜⎝
cos 
 − sin 
 0

sin 
 cos 
 0

0 0 1

⎞⎟⎠ (21)

11

the angle 0�
<2� being shown in Figure 1. Note that transformation rule (20) with (21) for H(x)
evaluation has been obtained by a small correction in the original formula given in Reference [10].13

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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Finally, bringing together Equations (4) and (17)–(21), an explicit and completely general1
expression for the fundamental solution U(x) in a transversely isotropic material is obtained.
The form of this expression suitable for a computational implementation obtained by performing3
explicitly the transforms indicated in (20) is given in the Appendix, see (A1), where the presence
of several zero components in H( x̂ ) and X has provided simple and short expressions of the5
components of H(x).

4. TRACTION FUNDAMENTAL SOLUTION FOR TRANSVERSELY7
ISOTROPIC MATERIALS

Let Ei jk(x) represent strains at x originated in the infinite elastic medium subjected to a unit point9
force in the k-direction at the origin of coordinates. Then,

Ei jk(x)= 1

2

(
�Uik

�x j
(x) + �Ujk

�xi
(x)
)

= 1

2
(Uik, j (x) +Ujk,i (x)) (22)

11

Derivatives of the displacement fundamental solution appearing in (22) can be expressed in a form
analogous to (4):13

Uik, j (x) = Ûik, j (x)
4�r2

(23)

where Ûik, j (x) is the characteristic (or modulation) function, which depends only on the direction15
of x but not on its magnitude, i.e. Ûik, j (x)= Ûik, j (x/r). Notice that Ûik, j (x)= Ûki, j (x) and
Ûik, j (−x)= −Ûik, j (x).17

Starting from the expression of Uik(x) given by (4) and (17)–(21) and directly performing dif-
ferentiation leads to somewhat large expressions for Ûik, j (x), which, additionally, when expressed19
in terms of coordinates of point x, include terms of the type ‘zero divided by zero’ when x is placed
on the x3-axis. To avoid this problem, a trick analogous to that proposed by Ting and Lee [10]21
can be used here.

First, Ûik, j ( x̂ ) is evaluated by the above-described procedure. Then, considering that x3 is the23
rotational-symmetry axis of the material, a general expression of Ûik, j (x), in terms of cos and
sin functions of spherical angles � and 
 of a point x, is simply obtained by a transformation25
analogous to (20):

Ûik, j (x)=�ia�kb� jcÛab,c( x̂ ) (24)27

Analytical evaluation of Ûik, j ( x̂ ) has been performed with the aid of the computer algebra
software Mathematica [39]. The completely general and closed-form expressions of Ûik, j ( x̂ )29
obtained are presented in a compact form suitable for computer implementation:

Û11,1 = H ′
11c − H11s, Û12,2 = H̃12s, Û11,3 =−H ′

11s − H11c

Û22,1 = H ′
22c − H22s, Û23,2 = H̃13, Û22,3 = −H ′

22s − H22c

Û33,1 = H ′
33c − H33s, Û33,3 = −H ′

33s − H33c

Û13,1 = H ′
13c − H13s, Û13,3 = −H ′

13s − H13c

(25)

31

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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where1

H̃12 = C33

C11C44gh
− 	c2 + C33C44s2

C11C44(h + c2)

(
1

C11gh
+ g

C66�3�

)
+ 1

�

(
	 − 2C33C66

C11C44C66
+ C44g

C2
66�3

)

�′
3 = (C44 − C66)cs

C66�3

h′ = 1

h

(
−2c3s + 	cs

C11C44
(c2 − s2) + 2C33cs3

C11

)

g′ = 1

g

(
h′ − 2cs + 	cs

C11C44

)

�′ = g(h′ + g′�3 + g�′
3 + 2�3�

′
3) + g′�

g

f ′ = h′ − 2cs

C66
+ 1

C66�3

(
hg′ + h′g − �′

3gh

�3

)
+ 2C33cs

C11C44

H ′
11 = − �′

3

C66�
2
3

− C44c2 + C33s2

C11C44gh

(
h′

h
+ g′

g

)
+ 2(C33 − C44)cs

C11C44gh
− 1

�

(
f ′ − �′ f

�

)

H ′
22 = − g′

C11g2
+ 1

�

(
f ′ − �′ f

�

)

H ′
33 = − 1

gh

(
2cs

C11
+ h′ − 2cs

C44

)
− H33

(
h′

h
+ g′

g

)

H ′
13 = C13 + C44

C11C44gh

(
c2 − s2 − cs

(
h′

h
+ g′

g

))

(26)

Functions �′
3, h

′, g′, �′, f ′ and H ′
ik represent the first-order derivatives with respect to the angle �3

of the corresponding functions defined in (18)–(19).
The remaining components of Ûik, j ( x̂ ) vanish:5

Û12,1 = Û23,1 = Û11,2 = Û13,2 = Û22,2 = Û33,2 = Û12,3 = Û23,3 = 0 (27)

It should be mentioned that in the original expression of Û12,2( x̂ ), directly obtained by differ-7
entiating (20), the term (H11 − H22)/s appeared, which would lead to zero divided by zero for
points at the x3-axis. This term, which has a finite limit value for �→ 0 or �, has been rewritten9
in the form H̃12s, which is well defined for any point with r>0.
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By applying the stress–strain constitutive law in matrix form, the stresses corresponding to the1
above fundamental solution are obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�11k

�22k

�33k

�23k

�13k

�12k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E11k

E22k

E33k

2E23k

2E13k

2E12k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1k,1

U2k,2

U3k,3

U2k,3 +U3k,2

U1k,3 +U3k,1

U1k,2 +U2k,1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(28)

3

where �i jk(x) represents the stress tensor �i j at x originated in the infinite elastic medium subjected
to a unit point force in the k-direction at the origin of the coordinates. Again, it will be useful to5
write the stress fundamental solution in the form analogous to (4) and (23):

�i jk(x) = �̂i jk(x)
4�r2

(29)7

where �̂i jk(x)= �̂i jk(x/r). Notice that �̂i jk(x)= �̂ j ik(x) due to the symmetry of the stress tensor

and �̂i jk(−x)=−�̂i jk(x).9
By substituting expressions (23) and (29) into (28), it is easily seen that a relation analogous

to (28) holds for the characteristic functions Ûik, j (x) and �̂i jk(x) as well. Then, using expres-11
sions (25)–(27) directly gives the following closed-form expressions of �̂i jk( x̂ ):

�̂111 =C12 H̃12s + C11(H ′
11c − H11s) + C13(−H ′

13s − H13c)

�̂221 =C11 H̃12s + C12(H ′
11c − H11s) + C13(−H ′

13s − H13c)

�̂331 =C13 H̃12s + C13(H ′
11c − H11s) + C33(−H ′

13s − H13c)

�̂131 =C44(−H ′
11s − H11c) + C44(H ′

13c − H13s)

�̂232 =C44(−H ′
22s − H22c) + C44 H̃13

�̂122 =C66 H̃12s + C66(H ′
22c − H22s)s

�̂113 =C13(−H ′
33s − H33c) + C12 H̃13 + C11(H ′

13c − H13s)

�̂223 =C13(−H ′
33s − H33c) + C11 H̃13 + C12(H ′

13c − H13s)

�̂333 =C33(−H ′
33s − H33c) + C13 H̃13 + C13(H ′

13c − H13s)

�̂133 =C44(H ′
33c − H33s) + C44(−H ′

13s − H13c)

(30)

13

The remaining components of �̂i jk( x̂ ) vanish due to the fact that the plane x2 = 0 is the
symmetry or skew-symmetry plane of the elastic problem associated with a particular direction of15
the point force, namely

�̂121 = �̂231 = �̂112 = �̂222 = �̂332 = �̂132 = �̂123 = �̂233 = 0 (31)17
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Again, considering that x3 is the rotational-symmetry axis of the material, a general expression1
of �̂i jk(x), in terms of cos and sin functions of spherical angles � and 
 of a point x, is obtained
by a transformation analogous to (24):3

�̂i jk(x)=�ia� jb�kc�̂abc( x̂ ) (32)

The corresponding traction fundamental solution Tik(x) associated with the unit normal vector5
n(x) is directly obtained from �i jk(x) by applying the Cauchy lemma:

Tik(x) =�i jk(x)n j (x) (33)7

The main advantage of the above-presented expressions for Uik, j (x), �i jk(x) and Tik(x) in
comparison with the previous expressions of other authors [31, 34] is that they are completely9
general real-variable expressions, valid for any combination of material parameters and any position
of the evaluation point.11

For a direct and efficient computational implementation of the obtained expressions of Ûik, j (x)
and �̂i jk(x) for any point x �= 0, the transforms indicated in (24) and (32) have been explicitly13
performed, producing compact and general expressions presented in the Appendix, which take
advantage of the presence of many zero components in Ûik, j ( x̂ ) and �̂i jk( x̂ ). It has been numer-15
ically verified that, in terms of computational time, expressions (A2) and (A3) are significantly
more efficient than their counterparts (24) and (32).17

Finally, it should be mentioned that the reason for presenting in an explicit way expressions of
the derivatives of the displacement fundamental solution and not only of the stress fundamental19
solution is the fact that BEM programmers sometimes prefer to use the first one instead of the
second, and also the fact that these expressions are applied to second-order derivatives of the21
displacement fundamental solution for the deduction of the Somigliana stress identity.

5. BOUNDARY INTEGRAL EQUATION: FORMULATION AND NUMERICAL SOLUTION23

5.1. Somigliana displacement identity

Consider a linearly elastic transversely isotropic solid � ⊂ R3 with a bounded piecewise smooth25
Lipschitz boundary �= ��.

Starting from the second Betti theorem of reciprocity of work, taking the fundamental solution as27
the auxiliary elastic state, and then applying the limit to the boundary, the Somigliana displacement
identity, also called displacement BIE (u-BIE), is obtained [1–3]:29

Cik(x′)ui (x′) + −
∫

�
Tik(x, x′)ui (x) dS(x)=

∫
�
Uik(x − x′)ti (x) dS(x) (34)

where Cik(x′) = �ik for x′ ∈ �, Cik(x′) = 0 for x′ ∈ R3\(�∪�), ui (x) and ti (x) are, respectively,31
are boundary displacements and tractions, Tik(x, x′) and Uik(x − x′), represent respectively, the
traction fundamental solution (associated with the unit outward normal vector n(x), x∈ �) and33
the displacement fundamental solution at the field point x due to the unit point force applied at
the source point x′. The strongly singular integral on the left-hand side is evaluated in the Cauchy35
principal value sense, whereas the weakly singular integral on the right-hand side is evaluated as
an improper integral.37
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The free-term coefficient tensor Cik(x′) for a boundary point x′ ∈ � can be evaluated as1

Cik(x′) = − lim
ε → 0+

∫
Sε(x′) ∩�

Tik(x, x′) dS(x)= − −
∫

�
Tik(x, x′) dS(x) (35)

where Sε(x′) is a spherical surface of radius ε centred at x′. Equation (35) implies thatCi j (x′) = 1
2�i j3

for x′ placed at a smooth part of �, whereas for x′ at an edge or a corner its value depends on the
local form and spatial orientation of � at x′ and on the elastic material properties. An application5
of the Stokes theorem to obtain a more explicit formula for Cik(x′) at edge and corner points,
advantageous for numerical (and possibly for analytic) computations, in a similar way as was7
previously done for isotropic materials [40], would also require an analogous decomposition of
Tik . In fact, such a decomposition is related to the Burgers formula [41], giving a displacement field9
originated by a unit dislocation loop. A generalization of the Burgers formula to general anisotropic
materials was developed by Indenbom and Orlov [42], see also Lothe [38], and introduced in the11
framework of the symmetric Galerkin BEM by Rungamornrat [43] recently. According to these
works, Tik can be decomposed as13

Tik(x, x′) = −�ikn jr, j
4�r2

+ Di j (Pjk(x − x′)) (36)

where r = |x−x′| and r, j = (x j − x ′
j )/r , Di j is the antisymmetric (tangential) differential operator15

defined by Di j = ni (x)�x j −n j (x)�xi and the weakly singular integral kernel Pjk can be expressed
using a line integral similar to that appearing in (5). Then, the Stokes theorem, after the limit17
ε → 0, leads to

Cik(x′) = �(x′)
4�

�ik +
∫

�S1(x′,�)

�i jl Pjk(x − x′) dxl (37)
19

where �S1(x′,�) is the closed contour representing the boundary of the so-called characteristic
surface S1(x′,�) of � at x′ (a polygon cut on the unit sphere S1(x′) by the tangential planes to � at21
x′). �(x′) is the solid angle of S1(x′, �) viewed from x′. Formula (37) represents a generalization
to anisotropic materials of the analogous formula for Cik(x′), in terms of �(x′) and regular line23
integrals over �S1(x′,�), obtained previously for isotropic materials [40]. Note that the regular
angular integrals over edges of �S1(x′,�) can be evaluated numerically by standard quadratures.25
A study of the possibility of an analytical evaluation of these integrals would require a closed-
form expression of Pjk , e.g. in a form similar to that shown for Uik in Sections 2 and 3. To our27
knowledge, such a formula is not available at present.

Expressions ofUik and Tik , respectively, introduced in Equations (4) with (20) and (33) with (32)29
are considered in a cartesian coordinate system associated with the material (x3-axis being the
symmetry axis). An application of these expressions in a different coordinate system, cartesian31
or curvilinear, may be required at times. Rizzo and Shippy [44] analysed the corresponding
transformations considering these fundamental solutions as two-point tensor functions. In the33
simpler case of a different cartesian coordinate system, it will be sufficient, first to evaluate these
fundamental solutions in the material coordinate system, obtaining values U∗

mn and T ∗
mn , and,35

second, to apply the standard transformation rule for second-rank tensors:

Uik = QimQknU
∗
mn, Tik = QimQknT

∗
mn (38)37
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where Q is an orthogonal transformation matrix. It should be emphasized that the coordinates of1
the radius vector x − x′ between the field and source points and the normal vector appearing in
the expressions of U∗

mn and T ∗
mn should be given in the material coordinate system.3

5.2. Boundary element method

The above-introduced expressions of Uik and Tik have been implemented in a 3D collocational5
BEM code (written in Fortran 90) for the numerical solution of u-BIE (34). The main features of
the present BEM code [45] are as follows: (i) 9-node Lagrangian quadrilateral boundary elements7
with quadratic shape functions; (ii) a numerical evaluation of regular integrals by 8× 8 Gaussian
quadrature with adaptive subdivision of elements in the case of quasi-singular integrals [46]; (iii)9
the polar coordinate transformation applied to a numerical evaluation of weakly singular integrals
with the integral kernel Uik ; (iv) the rigid-body-motion procedure applied to a numerical evaluation11
of the sum of the free-term coefficient tensor Cik and the Cauchy principal value integral with the
integral kernel Tik .13

6. NUMERICAL TESTS

The primary means of providing confidence in the correctness of the expressions of the displacement15
fundamental solution Uik and traction fundamental solution Tik introduced in the present work and
also of their implementation in the present BEM code will be their application in the numerical17
solution of u-BIE (34) by this code.

Numerical results for problems in transversely isotropic elastic solids with known analytical19
solutions [47], coinciding with some problems solved by other authors [15, 34], except for the case
with �<0, where no previous numerical results by other authors have been found in the literature,21
will be studied.

For the purpose of comparison with expressions of Uik and Tik studied in the present work, the23
expression of Uik due to Loloi [34] and an explicit expression of Tik deduced by us, working from
Loloi’s expression of Uik , have also been implemented in the BEM code. It can be mentioned25
that no final explicit expression of Tik was given in Reference [34]. Note also that 4-node linear
boundary elements were used in Reference [34], whereas 9-node quadratic boundary elements27
have been used in the present BEM code.

6.1. Example 129

Let � be an elastic transversely isotropic cube whose sides of length � are parallel to coordinate
axes, with the x3-axis being the rotational-symmetry axis. Consider now this cube subjected to a31
simple tension. The elastic properties used in this example are given in Table I. The properties of
Material 1 (with �>0) and Material 2 (with � = 0) have been taken from Loloi [34], with the aim33
of comparing the numerical results obtained by using the expressions deduced from the original
work of Pan and Chou [31] and those obtained here, starting from the work of Ting and Lee [10],35
both implemented in the present BEM code. Material 3 (with �<0) is a hexagonal crystal of zinc.

In the BEM model used, the cube boundary is discretized by six elements, one element per cube37
side. Three load cases with normal stresses in the coordinate axes directions have been solved, with
the symmetry boundary conditions applied at coordinate planes. Although an implicit symmetry39
can be applied for this example [34], the explicit symmetry was used here.
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Table I. Elastic properties considered in Example 1, values given in 106 psi.

Constants Material no. 1 Material no. 2 Material no. 3
(�>0) (� = 0) (�<0)

C11 49.40 49.40 23.35
C12 34.60 34.60 4.96
C13 9.70 9.70 7.27
C33 38.10 38.10 8.85
C44 14.20 16.84 5.55

Table II. Results of Example 1, Material no. 1 (�>0).

Load direction Displacements Analytical solution Present solution Solution using [34]
x3 u1/u

e
3 −0.1154762 −0.1154762 −0.1154762

u2/u
e
3 −0.1154762 −0.1154762 −0.1154762

u3/u
e
3 1.0000000 1.0000000 1.0000000

x1 u1/u
e
1 1.0000000 0.9999998 0.9999998

u2/u
e
1 −0.6846397 −0.6846395 −0.6846395

u3/u
e
1 −0.0802886 −0.0802886 −0.0802886

x2 u1/u
e
2 −0.6846397 −0.6846395 −0.6846395

u2/u
e
2 1.0000000 0.9999998 0.9999998

u3/u
e
2 −0.0802886 −0.0802886 −0.0802886

Numerical results in displacements for Materials 1 and 2 are shown in Tables II and III together1
with the results obtained using the expressions derived from Loloi [34] and implemented in the
present BEM code. The differences between both numerical solutions and the analytical solution3
are almost negligible, as could be expected from the characteristic of the analytical solution, linear
in displacements and constant in stresses. An analogous conclusion is also valid for Material 3,5
(results shown in Table IV), where only the results obtained using the expressions of Uik and Tik
introduced in the present work are shown, as complex-variable expressions of Uik are given for7
materials with �<0 in Loloi [34].
6.2. Example 29

A prismatic rod subjected to an axial load, Figure 2(a), is considered. The elastic properties in the
material coordinate system are defined by11

E/E ′ = 2.0, E/�′ = 6.0, 
= 0.3, 
′ = 0.4 (39)

where E and 
 are Young’s elastic modulus and the Poisson ratio associated with the isotropy plane,13
E ′ is Young’s modulus along the rotational-symmetry axis, and �′ and 
′ are the shear modulus
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Table III. Results of Example 1, Material no. 2 (� = 0).

Load direction Displacements Analytical solution Present solution Solution using [34]
x3 u1/u

e
3 −0.1154762 −0.1154762 −0.1154867

u2/u
e
3 −0.1154762 −0.1154762 −0.1154867

u3/u
e
3 1.0000000 1.0000000 1.0000306

x1 u1/u
e
1 1.0000000 0.9999998 0.9999943

u2/u
e
1 −0.6846397 −0.6846395 −0.6846325

u3/u
e
1 −0.0802886 −0.0802886 −0.0802905

x2 u1/u
e
2 −0.6846397 −0.6846395 −0.6846325

u2/u
e
2 1.0000000 0.9999998 0.9999943

u3/u
e
2 −0.0802886 −0.0802886 −0.0802905

Table IV. Results of Example 1, Material no. 3 (�<0).

Load direction Displacements Analytical solution Present solution

x3 u1/u
e
3 −0.2567997 −0.2567997

u2/u
e
3 −0.2567997 −0.2567997

u3/u
e
3 1.0000000 0.9999999

x1 u1/u
e
1 1.0000000 1.0000000

u2/u
e
1 0.0582394 0.0582393

u3/u
e
1 −0.8693108 −0.8693107

x2 u1/u
e
2 0.0582394 0.0582393

u2/u
e
2 1.0000000 1.0000000

u3/u
e
2 −0.8693108 −0.8693107

and Poisson ratio at the planes perpendicular to, the plane of isotropy. The plane of isotropy is1
inclined 45◦ with respect to the plane x1x2, which coincides with one rod base (Figure 2(a)). A
BEM model of one-fourth of the rod, symmetry boundary conditions having been considered at3
the planes x1x3 and x2x3, with 14 elements, three elements at each lateral side and one element at
each extreme section, has been used. Tension has been applied at the extreme sections, whereas,5
the lateral sides have been traction free.

Numerical results in displacements and stresses at the points indicated in Figure 2(a) are7
presented in Table V and compared with analytical values. Numerical solutions, in displacements
and stresses, obtained by expressions ofUik and Tik from the present work and from Reference [34]9
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(a) (b)

Figure 2. Transversely isotropic problem configurations with an inclined plane of isotropy
for Examples 2 and 3.

Table V. Results of Example 2, transversely isotropic rod under axial tension.

Point Results u1/u
e
3 u2/u

e
3 u3/u

e
3 �33/�

e
33

A Analytical solution 0.0000000 0.0000000 1.0000000 1.0000000
(0, 0, 10a) Present solution 0.0000000 0.0000000 1.0000091 1.0000091

Solution using [34] 0.0000000 0.0000000 1.0000091 1.0000091
B Analytical solution −0.0170732 0.0000000 1.0000000 1.0000000
(a, 0, 10a) Present solution −0.0170740 0.0000000 1.0000094 1.0000094

Solution using [34] −0.0170740 0.0000000 1.0000094 1.0000094
C Analytical solution 0.0000000 −0.0670588 1.0000000 1.0000000
(0, 1.5a, 10a) Present solution 0.0000000 −0.0670600 1.0000008 1.0000008

Solution using [34] 0.0000000 −0.0670600 1.0000008 1.0000008
D Analytical solution −0.0164706 −0.0670588 1.0000000 1.0000000
(a, 1.5a, 10a) Present solution −0.0164714 −0.0670579 0.9999987 0.9999987

Solution using [34] −0.0164714 −0.0670579 0.9999987 0.9999987
E Analytical solution −0.0318182 −0.1295455 1.0000000 1.0000000
(a, 1.5a, 5a) Present solution −0.0318332 −0.1295392 1.0000002 1.0000002

Solution using [34] −0.0318332 −0.1295392 1.0000002 1.0000002
Centre Analytical solution 0.0000000 0.0000000 1.0000000 1.0000000
(0, 0, 5a) Present solution 0.0000000 0.0000000 1.0000107 1.0000107

Solution using [34] 0.0000000 0.0000000 1.0000107 1.0000107

are coincident up to all 8 digits presented. The maximum relative errors defined by1

err(�33) = �n33(x) − �a33
�a33

, err(ui ) = uni (x) − uai (x)

uai (x)
(40)

where the superscripts a and n refer to analytical and numerical results, respectively, are 0.000043
in stresses and 0.0004 in displacements.
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Table VI. Results of Example 3, transversely isotropic rod under tangential stress.

Point Result u1/u
e
3 u2/u

e
3 u3/u

e
3

A Analytical solution 0.0990792 −0.1503137 1.0000000
(−0.5a, −2.5a, 3a) Present solution 0.0990123 −0.1504005 1.0000161

Solution using [34] 0.0990123 −0.1504005 1.0000161
B Analytical solution −0.5089075 −0.4758082 1.0000000
(0.5a, 0, 3a) Present solution −0.5084558 −0.4762378 1.0002009

Solution using [34] −0.5084558 −0.4762378 1.0002009
C Analytical solution 0.1100334 −0.1669323 1.0000000
(0.5a, 2.5a, 3a) Present solution 0.1101208 −0.1668616 0.9999395

Solution using [34] 0.1101208 −0.1668616 0.9999395
D Analytical solution 0.0679538 −0.1937795 1.0000000
(0.5a, −2.5a, 1.5a) Present solution 0.0679590 −0.1937762 1.0000484

Solution using [34] 0.0679590 −0.1937762 1.0000484
E Analytical solution 0.0717356 −0.2045640 1.0000000
(−0.5a, 2.5a, 1.5a) Present solution 0.0717414 −0.2045603 1.0000571

Solution using [34] 0.0717414 −0.2045603 1.0000571

6.3. Example 31

A transversely isotropic rectangular parallelepiped, with elastic properties defined by (39), subjected
to a shear load is considered, see Figure 2(b). The orientation of the coordinate system associated3
with the material is defined by the transformation matrix [34]

Q=
⎛⎜⎝

+0.7500 +0.4330 +0.5000

−0.2403 +0.8827 −0.4040

−0.6162 +0.1828 +0.7660

⎞⎟⎠ (41)

5

A BEM model of 10 elements, two at each lateral side and one at each extreme section, is applied.
Due to the lack of symmetry and in order to avoid rigid body movements, displacements are7
prescribed at central points of each side except for the front (x1 =−a/2) and back (x1 = a/2)
sides. Results in displacements at the points indicated in Figure 2(b) are presented in Table VI.9
Both numerical solutions are coincident up to all 8 digits shown, the maximum relative error, see
definition in (40), being 0.0009, which confirms the correctness of the theoretical formulas used.11

7. CONCLUSIONS

The present work deals with the closed-form expressions of the integral kernels Uik(x) and Tik(x)13
appearing in the Somigliana displacement identity for transversely isotropic elastic materials, and
also of the related integral kernels Uik, j (x) and �i jk(x). The novel approach developed recently by15
Ting and Lee [10] yielded a closed-form expression of Uik(x) with the following unique features:
(i) completely general and unique expressions valid for all possible configurations of material17
and relative positions of the source and field points; (ii) given by means of real functions (no
difficulties with using complex functions with complex arguments which may require keeping19
values in the same branch when multivaluedness arises as in the expressions obtained from the
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potential theory [31, 34] in the case �<0, see (3)); (iii) continuous transition with respect to a1
variation of material properties (the expressions obtained from the potential theory approach [31, 34]
require two distinct expressions for the cases � �= 0 and � = 0); (iv) continuous transition with3
respect to relative positions of the source and field points (the sign function was introduced in the
Uik(x) expression obtained from the potential theory [34] to cover both cases where �→ 0 or �);5
and (v) a straightforward and an efficient implementation in a BEM code.

These features have been upheld by the new closed-form expressions of Uik, j (x), �i jk(x) and7
Tik(x) obtained in the present work, working from the expression of Uik(x) due to Ting and
Lee [10], after a revision of their final formula.9

These expressions of Uik(x) and Tik(x) have been implemented in a 3D collocational BEM code
and verified numerically by solving several examples with known analytical solution, obtaining11
high-accuracy results in all cases. All three cases with positive, zero and negative � have been
solved, previous BEM results by other authors for the case �<0 not being known in the literature.13
This work also represents, to our knowledge the first numerical verification of the correctness of
the novel expression of Uik due to Ting and Lee [10].15

A proposal for an efficient numerical evaluation of the free-term coefficient tensor Cik in the
Somigliana displacement identity has also been given.17

It should also be pointed out that the new closed-form expression for the tractions originated by
a unit point force in the infinite transversal isotropic space, Tik , can also be used in the context of19
the theory of dislocations [26, 38, 41, 42], where Tik has a work-conjugated interpretation of the
displacements originated by a unit infinitesimal dislocation loop in this space.21

Finally, the present work is considered a starting point for deducing a new closed-form expression
of the hypersingular kernel in the Somigliana stress identity, which could uphold the above-23
mentioned advantageous features of the expressions of Uik , Uik, j (x), �i jk(x) and Tik(x) studied
and which will be the topic of a forthcoming work.25

APPENDIX: EXPRESSIONS OF Hik(x), Ûik, j (x) AND �̂i jk(x)

In this section, the expressions corresponding to (20), (24) and (32), suitable for a direct and27
efficient implementation in three-dimensional BEM codes are introduced.

For the sake of simplicity of the expressions presented below, the following notation conventions29
will be used: the quantities on the left-hand side are evaluated at point x and the quantities on the
right-hand side at point x̂, the symbols x and x̂ being omitted, and C = cos(
) and S = sin(
).31

Then, Hik(x) can be expressed in terms of Hik( x̂ ) as follows:

H11 = H11C2 + H22S2

H12 = (H11 − H22)CS

H13 = H13C

H22 = H22C2 − H11S2

H23 = H13S

H33 = H33

(A1)

33
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Ûik, j (x) can be expressed in terms of Ûik, j ( x̂ ) as follows:1

Û11,1 = {Û11,1C2 + (2Û12,2 + Û22,1)S2}C
Û11,2 = {(Û11,1 − 2Û12,2)C2 + Û22,1S2}S
Û11,3 = Û11,3C2 + Û22,3S2

Û12,1 = {Û12,2S2 + (Û11,1 − Û12,2 − Û22,1)C2}S
Û12,2 = {Û12,2C2 + (Û11,1 − Û12,2 − Û22,1)S2}C
Û12,3 = (Û11,3 − Û22,3)CS

Û13,1 = Û13,1C2 + Û23,2S2

Û13,2 = (Û13,1 − Û23,2)CS

Û13,3 = Û13,3C

Û22,1 = {(Û11,1 − 2Û12,2)S2 + Û22,1C2}C
Û22,2 = {Û11,1S2 + (2Û12,2 + Û22,1)C2}S
Û22,3 = Û11,3S2 + Û22,3C2

Û23,1 = (Û13,1 − Û23,2)CS

Û23,2 = Û13,1S2 + Û23,2C2

Û23,3 = Û13,3S

Û33,1 = Û33,1C

Û33,2 = Û33,1S

Û33,3 = Û33,3

(A2)

�̂i jk(x) can be expressed in terms of �̂i jk( x̂ ) as follows:3

�̂111 = {�̂111C2 + (2�̂122 + �̂221)S2}C
�̂112 = {(�̂111 − 2�̂122)C2 + �̂221S2}S
�̂113 = �̂113C2 + �̂223S2

�̂121 = {�̂122S2 + (�̂111 − �̂122 − �̂221)C2}S
�̂122 = {�̂122C2 + (�̂111 − �̂122 − �̂221)S2}C
�̂123 = (�̂113 − �̂223)CS
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�̂131 = �̂131C
2 + �̂232S

2

�̂132 = (�̂131 − �̂232)CS

�̂133 = �̂133C (A3)

�̂221 = {(�̂111 − 2�̂122)S
2 + �̂221C

2}C
�̂222 = {�̂111S

2 + (2�̂122 + �̂221)C
2}S

�̂223 = �̂113S
2 + �̂223C

2

�̂231 = (�̂131 − �̂232)CS

�̂232 = �̂131S
2 + �̂232C

2

�̂233 = �̂133S

�̂331 = �̂331C

�̂332 = �̂331S

�̂333 = �̂333

1
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2. Parı́s F, Cañas J. Boundary Element Method, Fundamentals and Applications. Oxford University Press: Oxford,5

1997.
3. Aliabadi MH. The Boundary Element Method, Volume 2, Applications in Solids and Structures. Wiley: Chichester,7

2002.
4. Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems.9

Advances in Computational Mathematics 1998; 9:69–95.
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