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SUMMARY

The numerical implementation of the Green’s function for an isotropic exponentially graded three
dimensional elastic solid is reported. The formulas for the nonsingular ‘grading term’ in this Green’s
function, originally deduced by Martin et al., Proc. R. Soc. Lond. A, 458, 1931-1947, 2000, are quite
complicated, and a small error in one of the formulas is corrected. The evaluation of the fundamental
solution is tested by employing indirect boundary integral formulation using a Galerkin approximation
to solve several problems having analytic solutions. The numerical results indicate that the Green’s
function formulas, and their evaluation, are correct. Copyright (© 2006 John Wiley & Sons, Ltd.

KEY WORDS: Functionally graded materials, boundary integral equation, boundary element method,
Galerkin approximation.

1. INTRODUCTION

Although a relatively new area of study, Functionally Graded Materials (FGMs) have many
existing and potential applications [1, 2], including bio-medical [3, 4], construction [5], and
geomechanics [6, 7]. This paper is concerned with the numerical solution of three dimensional
elasticity problems in an FGM, based upon the commonly employed exponential grading
model: the shear modulus is assumed to vary in a specified direction (say, z) as

= poe™™, (1)

and the Poisson ratio 0 < v < 0.5, uo and the grading parameter § are assumed constant.
Previous elasticity computations in FGMs have employed the Finite Element Method
(FEM). In particular, special graded elements have been developed by Kim and Paulino [8, 9],
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Naghabadi and Kordheili [10] and Santare et al. [11, 12] to more effectively deal with the
material property variation.

Linear elastic analysis via boundary integral equations [13, 14, 15] can be advantageous,
notably for problems wherein volume re-meshing becomes the principal difficulty with FEM —
e.g., crack propagation, flaw detection, contact, or shape optimization. Moreover, for an FGM
in which p varies rapidly over the volume, a highly refined FEM mesh would be required
to obtain an accurate solution, and a boundary integral approach would again be attractive.
However, a non-homogeneous medium presents a serious problem for a boundary integral
formulation, as a Green’s function (fundamental solution) is required to transform the partial
differential equation. For the Laplace and Helmholtz equations, fundamental solutions have
been developed for a general non-homogeneous medium [16, 17, 18, 19], and closed form,
relatively simple, Green’s functions exist for exponentially graded media [20, 21, 22]. See
also [23] and references therein for work aimed at deriving Green’s functions under more
general conditions.

For an exponentially graded three dimensional isotropic material, the fundamental
displacement tensor U (P, Q) has recently been derived by Martin et al. [24] (the corresponding
two dimensional result can be found in [25]). As yet there has been no numerical
implementation of U, and the primary goal of this work is to begin this development of
boundary integral algorithms for graded elasticity. The displacement tensor U (P, Q) consists
of an exponential prefactor multiplying two terms: the isotropic Kelvin solution, plus a grading
contribution that is expressed in terms of several one- and two-dimensional integrals. The
formulas for the grading term are quite complex, and indeed there is a small error in one
expression in [24] that is corrected in this paper. It therefore seems best to thoroughly check
the implementation of U (P, @), before moving on to consider its derivatives. This development
and testing of the Green’s function is accomplished herein.

The primary means of providing confidence in the correctness of the Green’s function
algorithm will be an indirect boundary integral formulation, wherein the displacements are
expressed as the integral of the Green’s function times a source density. A Boundary Element
Method (BEM) procedure based on a Galerkin approximation of this equation will be employed
to solve Dirichlet problems having known analytic solutions. Each of these topics, namely
Green’s function evaluation, the indirect boundary integral equation, exact FGM solutions
and numerical results, will be discussed in detail below.

2. GRADED GREEN’S FUNCTION

In this section, the Green’s function formulas obtained in [24] are summarized, as briefly as
possible; further details can of course be found in this reference. In addition to defining the
notation necessary for the discussion of the computational work, this will also permit correcting
a small error in this derivation.
The equations of equilibrium in terms of stresses for an exponentially graded solid, neglecting
body forces, are
7ij = 0, (2)

where the linear elastic constitutive law is
0ij(@) = cijre(m)ere(x), (3)
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GRADED GREEN’S FUNCTION 3

€r¢ being the strains expressed through displacements as

1
€t =5 (U, e + ur k), (4)

and the elastic constants satisfying
Cijk;g(w) = Cijkg €2B'$. (5)

Here 3 is the vector defining the direction of the grading, and § = ||3|| governs the exponential
variation. Simplifying to an isotropic solid, the elastic constants can be expressed in terms of
the Lamé parameters

Cijke = Mo0ij0ke + o (85105 + 6ie0j) (6)

and the exponential grading can be expressed in terms of Lamé constants as

A= T = e,
where A/ = Ao /o = 2v/(1—2v), v the (constant) Poisson ratio. Notice, that Young elasticity
modulus F is also exponentially graded:

E = Ege*?" T, (7)

where Ey = 1o (3Xo + 210) / (Ao + 120)-

As derived in [24], the expression of the fundamental solution Gj(Q,P), giving the
fundamental displacement in the j-direction at the point @ due to a point load in the /-
direction at P, can be written in matrix form as:

G(Q,P) =exp{-B-(Q+P)} [G"(Q—P)+G(Q - P)]. (8)

The function G” is the well known Kelvin solution for a homogeneous isotropic material (with
elastic constants pp and v), and therefore available in closed form,

T (3= 4) G+ ryr0). Q

0 _
Gr(@=P) = 167p0(1 — v)

Here 7 = ||Q — P|| and r,; denotes the derivative of  with respect to the j* coordinate of Q.
The contribution G? due to the material nonhomogeneity, to be called the grading term, can

be written as 1

AT por

G(Q—P)=— (1—e77) 80+ Au(Q — P), (10)
where Ay, as discussed below, has a fairly complicated expression in terms of one and two
dimensional integrals. Note that the relatively simple diagonal contribution is continuous at
r = 0, and will not present any problem in the integrations. We further note that both G° and
G? are functions of » = Q — P, the Green’s function departs from this property only through
the exponential pre-factor in (8).

To give the specific form for A;, let us define an orthogonal system of coordinates {n, m, B}
where n and m are orthonormal vectors in the plane perpendicular to 3, ,5’ = (Bl, ﬁg, 33) =
B/5. For example, the components of {n,m} can be chosen as

n = ﬂgl(ﬂ?n Oa _ﬁl)’ m = (650)_1(_61627587 _HQﬁ?))a (11)
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as long as By = (6% + #2)'/2 # 0. For this system we have the corresponding spherical
coordinates for r = Q — P, (r,0,®), with 3 as the polar axis,

r.-n=rsin® cos®, r-m=rsin® sind, 7'-,5327‘008@7 (12)

where 0 < © <7 and 0 < $ < 2.
With these definitions, the (uncorrected) expression for Ajp = Ajo(r, ©, ®) given in [24] is

2 2 w/2
Ajp(Q — P) = — ag >N / RI(®,0) e IFODNv=) 1 (K(©,0)y,(6)) sinddf
0

s=0n=0
2 /2 /2

—a) / RO (0) sin b sinh (¥4(0,6,7)) dndd
s=0 0. (©) Nm (©,0)
2 /2 w/2

+aZ/ R (®,0) sinb sinh (¥,(0,6,7)) cos2ndndf
s=0 0m (©) 1 (©,0)
2 /2 w/2

+aZ/ R (®,6) sinb cosh (¥,(©,0,7)) sinnpdndd,  (13)
s=1 0m (©) 1 (©,0)

where
B

) "

and we now proceed to define the extensive notation introduced in this equation. First, I,,(x)

is the modified first kind Bessel function of order n, and the integration limits 6,,, and n,, are
defined by

0m(©) = |57 — O],
k(6,0)| = K(©,6) sinn,(0,6), (15)

where k(©,60) = Brcosf cos® and K(0,6) = frsinf sin©, and the range of § guarantees
that 7,, is well defined (this function will be discussed further below). The argument of the
hyperbolic functions is

U,(0,0,n) = K(0,0)ys(0) (sinn,(0,0) —sinn), (16)

where, defining

2
q(9):1+1y

sin?(6), (17)

we have ¢(6) > 1 due to 0 < v < 0.5, and the functions y, are given by

Yo=1, y= \/q(é’) TV@PO) -1,y = \/q(9) -V () -1, (18)

1-vy <y <1<y < VY The functions Rﬁ") are

1+vv 1-Vv
ROG) =iMP@©B), s=0,1,2,
R (®,0) = —iMPD(®,0), 5=0,1,2,
R (®,60) =0, (19)
RO(@,0) = — (MO (@,60) + MD(®,60)sgn(k(©,0))), 5 =1,2,
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
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GRADED GREEN’S FUNCTION 5

and M&”), the result of integrations obtained via residue calculations, have the following
definitions:

(n) )
(n) — fn(iys (6>) 5 —
M (@, 0) (1= 5:(0)2) D'(iy:(0))’ 1,2, (20)
for n =0, 2, and
) _ Nlys(0) o) _ filiys(9) e
Ms (@,9) D’(lys(ﬁ))’ Ms (‘I’,G) ,(lys(e))7 1’2 (21)

The last set of expressions needed to define M(")
folz) = 3{8va’ — (2® +1)(22%¢(6) + 1)
+ {8vatsin® 0 + (2% + 1)[z* — (22°¢(#) + 1) cos 9}@6@,
fi(a) = =2 (v — 1) (s;(®)Be — B;50(®)) sin o,
fi(a) = —5i(s;(®)Be + Bjse(®))(22%¢(9) + 1) sin 26, (22)
fa(z) = —3[8va’ — (2 + 1)(22°¢(0) + 1)]{n;(n¢ cos 2@ + m, sin 2®)

+ m;j(ngsin 2® — my cos 2®) } sin? 6,

}(njng + m;my) sin® @

5;(®) =n;cos®+ m;sin P,
D(z) = x* +22%¢(0) +1, D'(x) = 42> + 4aq(h).

Given the lengthy derivation and the complexity of the resulting expression for A;y, it is not
entirely surprising that there might be an error. The existence of an error was indicated by
computational results showing a discontinuity in G, for r # 0, which cannot be correct. For a
specific calculation, the discontinuity appeared in the (1, 3), (3,1), (2,3) and (3, 2) components
of the Green function. As clearly visible in Figure 1, in which As3 is plotted as a function of
@2 and @3 on the plane ;1 = 1.0, the problem occurs between the regions Q3 < 0 and Q3 > 0,
the source P being at the origin and the grading direction 8 = (0,0, 1).

The next section will therefore present the appropriate correction to the Green’s function
formulas.

3. CORRECTION TO M}’

The term that is responsible for the observed discontinuity in G? ,(Q — P) comes from the last
integral expression in (13) for A;, which takes the form:

*QZ/

Let us consider the following term (denoted as 77) from this expression:

/2
M(l) ®,0) + Mg1>(q>,0)sgn(k(®,9))) sme/ cosh (U,(0,6,7)) sinndn db.
Om @) "7m(@’9)

(23)

/2 /2
= —az M (@, 0) sgn(k(O,6))sinb cosh (U4(0,6,n)) sinndndd. (24)
0m (©) nm (©,0)
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Figure 1. The function Ass based upon the original expressions for P = (0,0,0) and Q: = 1.0, and
the elasticity parameters po = 2.0, v = 0.35 and 8 = (0,0,0.1).

T comes from the term denoted as ]\,Zj(é ) in [24] through the following relations:
a /2 2 .
Aje = —5/0 M;e(0) sinfdf, where M;; = Z M;;L) + M;l}). (25)
n=0

]\"4“](1) has to be an odd function of k, and therefore vanishing where sgn(k(©, 6)) changes sign.

However, as will be discussed below, the formula given in [24] for ]\AJJ(; ), used in the present
work to obtain Tj, does not represent an odd function. Consequently, T} in the form (24) is
not correct. These faults will be removed herein.

The initial integral expression for the quantity M;l}), Eq. (5.5) in [24], was:

]\A/.fﬁ) = /_O:O Jgg)) Ji(Kz) e dz. (26)

By noting that Jg((;)) J1(Kx), J; being the usual Bessel function, is an odd function of x, it is

clear that Z\Ajj(l} ) is an odd function of k. However, according to [24], the expression for M (; )

is
J
supposed to be Eq. (5.13) with MY replacing Mgl), namely

2
WP =20 30 R e 1)
s=1
2 TI'/2
+—-H(K - k)/ cosh (ys[k — K sinn)) sin77d77}7 (27)
T

o

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
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GRADED GREEN’S FUNCTION 7

where 79 is defined via
k = K sinn, (28)

and H(z) is the Heaviside function. Replacing the Bessel function I (Ky,) by its integral
representation

/2
2/ sinh (Ky, sinn) sinndn = 711 (Kys). (29)
0

we obtain:

N 2 o /2
Mﬁ) = 42/\/!?){—6_1”“ / sinh (Ky, sinn) sinndn
s=1 0
/2
+H(K — k) /

o

cosh (ys[k — K sinn]) sinndn}. (30)

It can be observed that when k¥ = 0 (and thus ny = 0), ]\N/[;t}) is not necessarily zero, in
contradiction to the fact that this function is odd with respect k.

It is however a simple matter to follow the procedures in [24] to correct the error in (30).
Starting from (26) and replacing the Bessel function J; (Kx) with its integral formulation

Ji(Kz) = i/oﬂ/Q sin (Kx sinn) sinndn, (31)
we first obtain
M) = % /U " (Kasing) sing [ O:O %Eg el dz dn, (32)
and subsequently using sin(z) = e” ;?_iz, we obtain
M) = M, + M-, (33)
where ) ~
M. — i(;i) /O”/ sinn/o; JEE;U; oi#(REK sinm) g g (34)

These two integrals are evaluated by residues. For ]T/f+ the contour is taken in the upper
halfplane, as k 4+ K sinn > 0, resulting in

N 2 __ /2 ,
M, = 22/\/121)6*’“’5 /o e Kvs=sinn gin gy dn. (35)
s=0

For M_, however, (k — K sinn) can change sign if ¥ < K, and thus there are two cases to
consider. First, if £ > K, the residue calculation can be carried out, as above in the upper half
plane, resulting in

2 /2
M_ = —QZMgl)e_kys / efvssinm gin p dy. (36)
s=0 0
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
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8 R. CRIADO, L. J. GRAY, V. MANTIC AND F. PARIS

For 0 < k < K and 79 defined in (28), 0 <1y < %W, the integral for M_ can be rewritten as
M_ _L /770 sin?]/oo fil@) (z) el w(k=Ksinm) gy dp
™ o D(@)

0
. /2 0o f
i . S1(®) ok sinn—k)
+ - / Slnn/ e =) dg dn. (37)
™ 10 —00 D(IE)
For n < ng the contour for the residue calculation lies in the upper halfplane, and in the lower
J1(z)

halfplane when 1 > 1. As D7(2) is an odd function of z, there is a change of sign in the lower

halfplane, and the expression for M_ is

— 2 70 ) /2 )
M_=- QZMgl){e_kys / efvssinn gin p dpy 4 kv / e~ Kyssinn sinndn}
0

s=1

2 __ w/2 )
+ QZMgl){e_kys/ efyssinn sinndn} (38)
s=1 0

2 w/2 i /2
:—22M§1>{e—’%/ effvssinn sinndn—2/ sinh (ys[k — K sinn)) sinndn}.
0 n

(o]

7o

s=1

\ = S
\“‘Q&‘}Q

WY
o : ‘\\ \\\\\\ R
',*g ‘ \\ \ ““‘\‘}Q\‘\‘:“‘
\
“‘

A23
o

N G

Figure 2. The function A2s based upon the new expressions for P
elasticity parameters po = 2.0, v = 0.35 and 3

(0,0, )and Q1 = 1.0, and the
(0,0,0.1).

The first integral is the same as that for £ > K. Thus, for any non negative value of k and
K

2 /2
— . P
Mj(el) = QWZMgl){—e_kys jl(Kys)—;H(K—k)/ sinh (ys[k — K sinn)]) sinndn}, (39)

7o
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GRADED GREEN’S FUNCTION 9

which is Eq. (5.13) in [24], except that the cosh has been replaced by —sinh. With this

)

correction, Z\Al/j(l} is now an odd function with respect to k, and that changes the formula for

T} into:

2 /2 /2
Ty=a) MWD (®,0) sgn(k(@,e))sme/ sinh (¥,(0,0,7)) sinndndf.  (40)
s=1 0m (©) nm (©,0)

To conclude this section, a plot of the same calculation of As3 as shown in Figure 1 now
obtained using (40) is presented in Figure 2.

The expression for the grading term in the Green’s function are clearly quite complicated,
and, as just demonstrated, errors are possible. Numerical implementation and testing is
therefore essential to establish confidence in the correctness of these formulas, and the
remainder of the paper is focused on this goal.

4. COMPUTATIONAL FORM FOR G},

The purpose of this section is to give some further details on how the Green’s function is
computed. First, the Bessel functions in (13) are computed from their integral expressions,

9 /2
L(Kys) = ;/ sinh (Ky; sinn) sinndn, (41)
0
2 7T/2
I, (Ky,) = 77?/0 cosh (Kyssinn) cosnndn, n=0,2. (42)

Second, in addition to the correction of ]\,Zj(; ), it is desirable to alter the formulas for G, so as
to avoid computing with the imaginary unit i. By noting that the polynomials D(x) and D’ (x)
are only evaluated for purely imaginary quantities, it is possible to change their definitions to
D(z) = z* — 22%q + 1,
D'(z) = —4x3 + 4aq, (43)

keeping in mind that we keep the same notation but that now D’(z) is not the derivative of
D(x). The corresponding changes in the functions f; are

fo(z) = {8va? — (—2® + 1)(—22%q + 1)} (njne + mymy) sin® 0
+ {8vztsin® 0 + (—2® + 1)[—2* — (—22%q + 1) cos” 0] } B3, 6,
fulw) = (4w = 1)(s;0 — yse) sin, (14)
fil@) = —3(s;B + Bjse)(—2x%q + 1) sin 26,
fa(z) = —3[8va’ — (—2* + 1)(—22¢ + 1)}{n; (ng cos 2@ + my sin 29)

+ m;(ng sin 2@ — my cos 2®) } sin’ 0,

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
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10 R. CRIADO, L. J. GRAY, V. MANTIC AND F. PARIS

whereas M™ and R(™ become

M = _flys) n=0,2and s =1,2,

RO = — (MS) MW sgn(k(@,e))) . s=1,2.
To summarize, the complete expression of G is:
G(Q, P) =exp{-B-(Q+ P)} {G"(Q - P)+ G (Q - P)}, (47)
where G is the Kelvin solution (9) and the grading term G? is computed using
G9(Q — P) = —(4mpor) ™" (1 —e™7) 60+ Aju(Q — P). (48)
The numerically evaluated term Aj, is composed of 5 integrals:

p g

Aip=— I — To—I3+T4 — T 49
it dmpg(l —v) ! 220 (1 — v) (Z2 3+l ) (49)
where
2 2 /2
L= Y / R () e IFlvs I, (Ky,) sin6 do,
s=0n=0"0
2 /2 /2
L= / RO sing sinh ¥, dny df),
s=0 Om Tim
2 /2 /2
Iy = Z/ Rg) sin 0 sinh ¥ cos 2ndndé,
s=0 Om Tim
2 /2 /2
1, = Z/ Mgl) Siﬂ@/ cosh U sinndndb,
s=1 Om Mm
2 /2 /2
Is = Z/ MW sgn(k) sin sinh ¥, sinndndé. (50)
s=1 Om MNm
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
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GRADED GREEN’S FUNCTION 11

4.1. The function 1,,(0©,0)

The lower limit function 7,,(0,0) presents some complications for the numerical
implementation, and thus this function is discussed in detail below. The arguments take values
in the range © € [0, 7] and 0 € [0, 7/2] (6, defined in (13)), and 7,,(0, 0) is defined via

|1 cos © cos B = Brsin O sin 6 sin 7. (51)

However, as 3 >0, r > 0, sin® > 0 for © € [0, 7], and cosf > 0, sinf > 0 for 6 € [0,,,7/2], it
follows that
Nm = sin~! [sgn(7/2 — ©) cot § cot O] . (52)

This function is plotted in Figure 3 for © € [0, 7] and 6 € [0,,, 7/2].

Note that 7,,(0,7/2) = 0, §n(0,0,,) = /2, 0,, being defined in (15);, and that the
derivative with respect to 8 at this latter point is infinite. This can be seen in Figure 4, where
Nm(© = 7/2 — 0.0001,0) is plotted as a function of §. Thus in the integrations, some care
should be taken due to the rapid variation of 7,,. Fortunately, for #,, = 7/2 the n integral
vanishes.

When © = 7/2, 0, = 0, and n,,,(7/2,0) = 0 except for the indeterminate point § = 0.
By continuity, this value should be set to zero. Also, 7, is likewise undefined for © = 0 or
© = m; however in this case 6, = 7/2 and the 6 interval is zero. However, in the numerical
implementation these extreme points must be avoided.

Figure 3. The function 7,,(0, 6), © € [0,7] and 0 € [0, 7/2].

5. GREEN’S FUNCTION PROPERTIES

It is important to note that the grading term G is bounded at r = 0. Thus, the graded Green’s
function G and the Kelvin solution G° share the same singularity at = 0. Otherwise, however,
the behavior of G can be quite different from G°. In particular, even for a small value of 3,
the presence of the exponential coefficient in (8) means that significant differences appear in
the farfield, Q — #o003. Note that Lamé constants A and 14 g0 to zero in one direction and to
infinity in the other, and thus the grading term must behave very differently than the Kelvin

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
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12 R. CRIADO, L. J. GRAY, V. MANTIC AND F. PARIS

.
0.01 ®=x/2-0.0001

0.008
0.006
0.004

0.002

Figure 4. The function 1., (0 = 7/2 — 0.0001, 0).

solution. As the grading term formulas are quite complex and provide little insight, this section
will illustrate the properties of G, mainly through graphs of function values.

5.1. Symmetry

For any @ and P, a fundamental solution for any elastic material must fulfill the reciprocity
relation (as a consequence of Betti’s theorem of reciprocity of work [26]):

G]f(Q7P) = Géj(Pv Q) (53)

For a homogeneous material the Green’s function is also symmetric (observe that the source
and field points are not interchanged):

G9(Q - P) = GY(Q - P), (54)

and thus it is worth noting that this is not the case when the material is graded.

5.2. Discontinuity at r =0

As noted above, the required divergent behavior of G at » = 0 is contained entirely in the
Kelvin solution. Nevertheless, the behavior of the grading term at r = 0 is not simple. To
illustrate this, assume that the grading is in the z-direction, 8 = (0,0,8), n = (1,0,0) and
= (0,1,0). Take the source point at the origin, P = (0,0, 0), and consider the grading term
component GY, in the plane Q3 = 0. For the Kelvin solution, (9), we have
1
GYs = Toprr(l—v) TAT.3, (55)
and as ;3 =0 for Q3 = P3 =0, GY; = 0.

For the grading term however, G5 # 0, and we now proceed to derive the expression for this
component. Note that with Q3 =0,0=17r B =rcos©, and thus k(0,0) = Brcosf cos© =0
and 7, = 0. Moreover, 31 = 0 forces fo(x) = 0 and as only n; = mg = 1 are nonzero, also
fa(x) = 0; the nonzero contributions are therefore from MVS) and Mgl).

Simplifying even further, consider the value of A;3 for r — 0, in which case K — 0. Then,
Aj3 for small r is approximately

v —1) y? sin? 9
Az~ —cos® ———— = dé. 56
13 COS 27T ‘LLO 1 — V Z/ ( )
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As the coefficient, call it ¢, of cos @ is in general nonzero, A3 is discontinuous at r = 0, taking
on all values in the interval [—c, ¢] arbitrarily close to the source point P.

5.8. Plots in the neighbourhood of r =0

Some of the above discussed properties of the graded Green’s function will be illustrated in
this section by its plots in the neighbourhood of the singular point, here defined at the origin
of coordinates, P = (0,0,0), in two planes, one perpendicular and the other parallel to the
grading direction, here defined by 3 = (0,0, 3). In order to facilitate the understanding of the
following plots, the point load direction, the displacement direction and the grading direction,
respectively, are indicated by marks “F”, “D” and “Bet”, if possible.

The elastic material properties considered are pug = 1, v = 0.3, which implies Ao = 1.5, and
8=0.1

Consider first the plane Q3 = 0 perpendicular to the grading direction. Thus, the elastic
properties are constant in this plane.

The dominant character of the unbounded homogeneous term G over the bounded graded
term GY is clearly seen in Figures 5 - 8, where plotted components G11, Gaz, Gs3, G12 and Go;
show a form similar to the Kelvin fundamental solution. As follows from the considerations
of the symmetries given by the point load direction, plane position and grading direction,
it can be expected that: i) G11 and Gao have the same values changing @ by Qa, i.e.
G11(Q1,Q2,0) = G22(Q2,Q1,0), i) G12(Q1,Q2,0) = G21(Q1,Q2,0), and iii) Gaz has the
rotational symmetry in this plane. These facts have been confirmed by the plotted values of
the Green’s function.

According to the previous analysis, G13 is bounded, and similarly also G31, Go3 and G3o
are bounded in the plane @3 = 0, because the corresponding homogeneous terms vanish there.
Nevertheless, as also follows from this analysis these components of the Green’s function
are discontinuous (more precisely undetermined) at P. The form of this discontinuity is
shown in Figures 9 - 12. Additionally, observing these plots, these components of the Green’s
function verify the following relations: G13(Q1, Qa2, 0) = G31(—Q1, —Qo, O), G23(Q1, QQ,O) =
G32(—Q1,—Q2,0), G13(Q1,Q2,0) = G23(Q2,Q1,0) and G31(Q1,Q2,0) = G32(Q2,Q1,0),
which can be easily deduced taking into account the point load direction, plane position,
grading direction, and reciprocity relation (53).

Consider now the plane Q1 = 0 parallel to the grading direction. Thus, the Lamé constants
vary as functions of Y3 in this plane.

The dominant character of G” over GY is seen in all Figures 13 - 16, where plotted components
G11, Gao, G33 and Ga3 again show a form similar to the Kelvin fundamental solution.
Although, G23(0,Q2,Q3) is in general different from Gs2(0, Q2,Q3), due to the dominance
of the homogenous term, the plots of both components show a form very similar to the Kelvin
fundamental solution, where these components coincide as follows from its symmetry property.
Thus, only Gag is plotted in Figure 16, for the sake of brevity.

Due to the fact that the plane Q1 = 0 is the symmetry plane in the elastic problems given
by the point force acting in the Q- or Qs-directions, G12(0, Q2,Q3) = G13(0,Q2,Q3) = 0.
Using reciprocity relation (53) it holds G21(0, Q2,Q3) = G12(0, —Q2, —Q3) = 0, and similarly
for G371 and G13. Thus, all these components of Green’s function vanish in this plane.
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14 R. CRIADO, L. J. GRAY, V. MANTIC AND F. PARIS

G

Figure 5. G11 in plane Q3 = 0.

G22

Figure 6. G22 in plane Q3 =0

6. INDIRECT BOUNDARY INTEGRAL FORMULATION

The confirmation that the formulas for the Green’s function, and their numerical
implementation, are correct can be accomplished with an ‘indirect’ boundary integral equation
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0.7

0.6

G33

Figure 7. G33 in plane Q3 =0

0.15
G12=G21

0.1

Figure 8. G12 = G21 in plane Q3 =0

employing only the Green’s function. The standard notation in the Boundary Element Method
for the fundamental displacement tensor is U (P, @), and thus at the risk of some confusion,
we switch to this notation. Recall, that in the notation of [24], the ! column of the Green’s
function contains the displacement solution due to a point load in the ¢-direction. Thus, the
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Figure 9. G13 in plane Q3 =0

G31

Figure 10. G371 in plane Q3 =0

indirect boundary integral equation for displacements on the solid boundary ¥ writes as

M@ZLU@PW@NR (57)
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Figure 12. G32 in plane Q3 = 0

where it is set U(Q, P) = G(Q, P). As discussed above, unlike for homogeneous materials,
Ue(Q. P) # Uy (Q, P) in general.

In (57), the displacement u(Q) is assumed to be a linear combination of the Green’s function,
the coefficient ¢(P) being an unknown source density on the boundary ¥. In a standard
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0.7

0.6

G11

Figure 13. G117 in plane @1 =0

G22

Figure 14. G22 in plane Q1 =0

(direct) boundary integral treatment, the function that multiplies U is a physical quantity,
the traction. This is not the case here, there is no direct physical relevance of ¢(P). In general,
there are significant drawbacks to use an indirect first kind equation such as (57) [27], though
indirect second kind equations are somewhat more successful [28]. An effective boundary
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Figure 15. G33 in plane Q1 = 0
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Figure 16. G23 in plane Q1 = 0

integral equation treatment for graded materials will therefore require, at the very least, the
ability to work with the traction kernel 7 (P, Q) involving derivatives of the Green’s function
U(P, Q). However, together with exact solutions of the FGM equations obtained in Section 7,
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the indirect formulation will suffice for our purposes here, testing the evaluation of the Green’s
function U(P, Q). The numerical results will be presented in Section 8.

A Galerkin approximation [14] of (57) will be employed to obtain the source density ¢(P).
The equation to be solved numerically is therefore

/ HQ)u(Q)dQ = /qfk /uQP (P)dPdQ, (58)

where the Galerkin weight functions W (Q) are composed of the shape function employed
to interpolate the boundary and the boundary functions u(Q) and ¢(P). For these
approximations we choose to work with a 3-noded triangular element, defined using an
equilateral triangle parameter space {1,£}, —1 <7 < 1,0 < ¢ < V/3(1 — |5|), Figure 17.
The three linear shape functions ¥;(n, ) are given by

V3(1—n)—¢ V3(1+n) = ¢ Uy(n.6) = &
2\/§ ) 2\/?: 9 9 \/g
The parametric variables for the outer @) integration will be denoted by (7,£), and those for

P by (n*,&"). Thus, for an element defined by nodal points {P; = (z;,y;, 2;)}, the mapping
from parameter space to the approximate boundary surface is

3
P, &) = (2,95, 2) ¥ (0", €). (60)
j=1
° (0,V3)
(0,-1) (0,1)

Figure 17. The equilateral triangle parameter space chosen to implement the linear interpolation.

The numerical implementation of (58) is relatively easy, in that the kernel function U is only
weakly singular, and moreover this singularity is only present in the analytic Kelvin solution
term. The grading term itself is simply discontinuous at @ = P, see Section 5.2, and does not
present a problem. Nevertheless, the methods discussed below for integrating U will also apply
directly to the 7~ kernel involving first order derivatives of U.
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The hybrid analytical /numerical algorithms to be employed for Galerkin singular integration
have been extensively discussed in [29, 30]; thus, the discussion will be limited to the
adjustments needed to handle the graded Green’s function. These modifications are primarily
for handling the exponential factor in (8), and as these are essentially the same as the
procedures employed for FGM thermal analysis [31], the discussion is kept to a minimum.

The singular integration techniques in [29] are based upon employing polar coordinate {p, ¥}
transformations centered at the singular point, and then integrating analytically (the rational
functions of) p. Although the analytic integration for (58) is limited to the Kelvin solution
part of U, it is nevertheless useful to also employ the polar coordinate transformation in the
numerical integration of the grading term: the jacobian p will eliminate the discontinuity in
this function at the singular point. For the analytic integration, the exponential prefactor in (8)
is a minor complication. As discussed in [31], the exponential is easily handled via a Taylor
series in p. Thus, for the coincident integral over an element F,

[ w@ [ u@rerara, (61)
E E

the integrand is split as
U = e P@t) 1y 4 1yo]
— {(efﬁ (Qa+Pa) _ e—z,aczg) UO + B (QstPs) ug} 1 e—26Qa 40,

The two terms inside the braces can be integrated numerically, while the last term can be
integrated analytically with respect to p, Q3 being independent of p. (If desired, the second
analytic integration detailed in [29] can also be carried out, again by employing a Taylor
expansion of @3, which is no longer constant).

The adjacent edge and vertex singular integrations handled in the same manner: a Taylor
expansion is employed to split off a part of the Kelvin term, this is integrated partially
analytically, and the remainder treated numerically.

7. EXACT FGM SOLUTIONS

This section presents a set of analytic solutions for exponentially graded isotropic elastic
solids, whose governing equations are given by (2-6), that can be employed to test the
implementation of U(Q, P). This set is based on the so-called plane stress solutions studied
for three-dimensional homogeneous isotropic elastic solids, for instance, in [32, 33].

In addition to these analytic solutions, we also have the option to solve problems specified
by an exterior concentrated load point. By fixing the source P, exterior to the chosen domain
D, the function U(Q, Py) ‘should be’ a solution inside D. In this case, as discussed further
below, both the boundary conditions and the ‘exact’ solution are computed from U(Q, Pp).

7.1. Plane stress solutions
Let us consider an exponential grading in the z-direction. Let plane stress solutions be

characterized (in a generalized sense) by o;3(x) = o3;(x) =0 (i = 1,2, 3).

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
Prepared using nmeauth.cls



22 R. CRIADO, L. J. GRAY, V. MANTIC AND F. PARIS

Let of;(x), €);(x) and u(x) (i,j = 1,2,3) with o(3 = 03, = 0 represent a classical plane
stress solution in a homogeneous isotropic elastic solid with elastic properties Fy and v. Hence,

o 1+v g v

€ = gy i Efgf’ﬁ&ij»
1
e?j =3 (u?,j + ng) . (62)

A general form and properties of such solutions can be find in [32, 33].
It is an easy matter to check that stresses, strains and displacements defined using the
following ansatz:
oij(x) = ezﬁzggj(m)v
eij(w) = (), (63)

ui(w) = ul (=)

represent an elastic solution in an exponentially graded isotropic solid verifying Eqs. (2-6).
Hence, many analytic solutions of different complexity for three-dimensional graded solids,
which can be used in different numerical tests, can be generated be means of (63). Notice,
that the opposite statement holds as well, thus, any plane stress solution in an exponentially
graded solid can be written using representation (63).

It should also be pointed out that (63), replacing e2”? by a f(z), can also be applied to
generate plane stress solutions in other functionally graded materials defined by any positive
grading function f(z), continuous or discontinuous.

7.1.1. Linear displacements It is interesting to observe that a general linear displacement
field:
a1 +bix+cy+diz
u= | as+box+coy+dsz (64)
as + bsx + c3y + dsz

representing rigid body translations and rotations and constant strain solutions has to verify

B(di+b3) =0,
B (dy +c3) =0, (65)
B (2pods + Ao (b1 + c2 +d3)) =0,

which means that for 8 # 0 it corresponds to a plane stress solution discussed above.

7.1.2. Quadratic displacements Let us consider the classical three-dimensional solution for
bending of an elastic isotropic homogeneous beam by a pair of moments about the y axis
applied at its ends (the z-axis coinciding with the central line of the beam, the y- and z-
axes being the principal axes of inertia of the cross section), see [34]. By substituting this
solution into (63) the following solution with quadratic displacements in an exponentially
graded material is obtained: o;; = 0 except 011 = Ege??*2 = E(2)z, and

xz
u= —vyz . (66)
=3 (@ +v{z"—y’})
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7.2. Exterior Point Source

In addition to the above simple analytic solutions, a good ‘self-consistency’ check of U(Q, P)
can be carried out by using an exterior point source. If the point P, is exterior to the chosen
domain D, then the columns of U(Q, Py) ‘should be’ a valid displacement solution inside D.
We can therefore take this displacement u;(Q) = U;r(Q, Po) as boundary conditions and solve
for the ¢(P). With this density, interior values of displacement can be computed from

w(Qr) = /E U (Qr, P)bi(P) AP, (67)

and compared to the expected value, namely U (Qr, Py). Strictly speaking this is not an
analytic solution, in that both the boundary conditions and the ‘exact’ solution are computed
from the function being tested, U(Q, P). The agreement of interior displacements would only
confirm that U is reproduced by its boundary values. Nevertheless, these tests may in fact be
the most convincing. By putting the point load reasonably close to the boundary, and selecting
a large value for the grading parameter 3, the displacement boundary values and the source
density will not be simple functions, and they will be strongly dependent upon the grading
term in the fundamental solution expression (8).

8. NUMERICAL RESULTS

The problems discussed in the previous section will be solved numerically using the indirect
integral equation (58). The chosen geometry, a graded sphere of radius 1 centered at the origin,
is, for the most part, a matter of convenience. We are however restricted to domains with a
smooth boundary surface X, as corners and edges in general present significant difficulties for
the indirect approach [27].

In all of the tests, the elastic parameters were chosen as o = 1/2 and v = 1/3. Hence,
Mo = 1 and Ey = 4/3. For small values of the grading parameter 5 the Kelvin solution will be
the dominant contribution to U, and thus to test the evaluation of the grading term, § > 0.1.
Thus, the variation in shear modulus over the volume of the sphere will be about 50% or more,
and the grading term will contribute significantly.

The test procedure is as follows: the known exact solutions will provide displacement
boundary conditions for (58), permitting the solution of the surface density ¢(P). The exact
displacements at points Q) interior to the sphere can then be compared with those computed
using ¢(P) and (57), providing a test that U satisfies the graded elasticity equations (2-6).
For the exterior point load examples, however, the interior displacement is known only by
evaluating U(Qr, Py), and thus this is only a self-consistency check. However, as noted above,
agreement in these examples would be strong evidence of the correctness of the implementation.

The first simple numerical test considers the following linear displacement field u =
(z,0,—v'2), with v/ = %, as a particular case of (64-65), representing in fact a plane strain
solution with respect to the y-direction. The corresponding stress field is 17 = E(’)ewz and
099 = vE)e?P* with Ey = Ey/(1 — v?) and 8 = 0.1, and the remaining stress components
vanish. Using the above solution as displacement boundary conditions on the unit sphere
(discretized with 512 elements), the corresponding surface density was computed. With this
solution, interior displacement values can then be computed, and the exact and computed
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values along the z- and z-axes are presented in Tables I and II, exhibiting excellent agreement.
Recall that the exact solution in displacements is independent of 3, and the calculation has
successfully “washed-out” the contributions of 3 to the Green’s function.

Table I. The values of the displacement component u, at interior points (z,0,0) for the linear
displacement solution.

Point Exact  Computed
(0.0, 0.0, 0.0) 0.0 0.000000013
(0.1, 0.0, 0.0) 0.1 0.099873647
(0.2, 0.0, 0.0) 0.2 0.199750287
(0.3, 0.0, 0.0) 0.3 0.299634085
(0.4, 0.0, 0.0) 0.4 0.399531052
(0.5, 0.0, 0.0) 0.5 0.499449047
( )
( )
( )
( )

0.6, 0.0, 0.0 0.6 0.599398488
0.7, 0.0, 0.0 0.7 0.699402010
0.8, 0.0, 0.0 0.8 0.799502375
0.9, 0.0, 0.0 0.9 0.899365376

Table II. The values of the displacement component wu. at interior points (0,0,z) for the linear
displacement solution.

Point Exact Computed
(0.0, .0) 0.0 0.000149778
(0.0, 1) -0.05  -0.049809248
(0. ) -0.1 -0.099769404
(0.0, .3) -0.15  -0.149733148
(0.0, 0 0 0. 4) -0.2 -0.199703921
(0.0, 0.0, 0.5) -0.25  -0.249684715
(0.0, 6)
(0. )
(0.0, 8)
(0.0, 9)

OOO 02

-0.3 -0.299676489
-0.35  -0.349682090
-0.4 -0.399714849
-0.45  -0.449736673

OOO 07

For the problem with quadratic displacements (66), the grading parameter was 5 = 0.1,
and the sphere was discretized with 512 elements again. Figure 18 displays the computed and
exact interior displacements along the line = y = z, the results agreeing very well with the
exact solution.

For the first exterior point load problem, the load point was (0,v/2,v/2), the force in
the z-direction, 0 = 0.1, and the sphere was discretrized with 896 elements. The interior
displacements u, and u, along the line y = z = 0, 0 < 2 < 1 are shown in Figure 19.
As discussed above, the values computed from (57) are compared with the displacements
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Figure 18. Interior displacement values at points (x,z,z) for = 0.1 and quadratic displacements.

computed directly from the Green’s function. The displacements u, are almost constant, and
thus the corresponding values are listed in Table III.

0
-0.001— —
6—o Uy - calculated
r s—a Uz-cdculated b
0002 o Uy - Green sfunct_|on N
- == Uz - Green’sfunction
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R | | | |
O'0070 0.2 0.4 0.6 0.8 1
X

Figure 19. Interior displacement values at points (x,0,0) for 8 = 0.1 and point load boundary
conditions.

To make the point load test more challenging, the source was moved closer to the sphere,
at (0, 2v/2/3, 2v/2/3), the load direction was changed to the grading direction z, and the
strength of the grading was increased to 3 = 0.2. For these calculations, the sphere was again
discretized with 896 elements. The interior displacements u, and u, were computed along the
linesz=2=0,0 <y <1, Figure 20, and = = 0, y = z, Figure 21. The u, component is along
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Table ITI. The values for the displacement component u, for a point load located at (0,+/2,/2), load
in the z-direction, 8 = 0.1. The first column is computed directly from U, the second from (57) after
solving (58).

Point Green’s Function ~ Computed
0.0, 0.0, 0.0 0.034140174 0.034019747
0.1, 0.0, 0.0 0.034151290 0.034032359
0.2, 0.0, 0.0 0.034182977 0.034068511
0.3, 0.0, 0.0 0.034230434 0.034123339

0.034286259
0.034341229

0.034189314
0.034256997

0.6, 0.0, 0.0 0.034385224 0.034315891
0.7, 0.0, 0.0 0.034408145 0.034355350
0.8, 0.0, 0.0 0.034400717 0.034365329

( )
( )
( )
( )
(0.4, 0.0, 0.0)
(0.5, 0.0, 0.0)
( )
( )
( )
( )

0.9, 0.0, 0.0

0.034355111

0.034333302

these lines equal to zero, according to the Green’s function values and in agreement with the
fact that the plane x = 0 is a symmetry plane of the above defined point load problem. The
computed values of u, had a high accuracy, having been less than 4.3F(—7) along the first
line and less than 4.6 E(—6) along the second.

0.12
0.09— —
5 L |
g
o] calculated
& &—& Uz - calculated |
A 0.06 Uy - exact
5 =—= Uz - exact
2] L i
£
0.03— —
0 L | L | L | L |
0 0.2 0.4 0.6 0.8 1

Figure 20. Interior displacement values at points (0,y,0) for S = 0.2 and point load boundary
conditions.

Finally, this last calculation was repeated with § = 1.0, so that the shear modulus now
varies e* = 54.6 times through the sphere. The results are plotted in Figure 22 and, despite
the strong variation in u, the agreement remains excellent.
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Figure 21. Interior displacement values at points (0,y,y) for 3 = 0.2 and point load boundary

conditions.
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Figure 22. Interior displacement values at points (0,y,y) for 5 = 1.0 and point load boundary
conditions.

9. CONCLUSIONS

The numerical tests in this paper have established that, with one alteration, the Green’s
function derived in [24] is correct. Moreover, the implementation of this fundamental solution
in a Galerkin boundary integral analysis is straightforward, in that the treatment of the singular
integrals can be based upon existing techniques [29]. The analytical integrations can be limited
to just the Kelvin solution component of the Green’s function, and thus there is little difference

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 0:0-0
Prepared using nmeauth.cls



28 R. CRIADO, L. J. GRAY, V. MANTIC AND F. PARIS

between this part of the analysis and that for homogeneous isotropic elasticity.

Due to inherent problems with an indirect method applied to solids with non-smooth
boundaries, efficient and general boundary integral modeling of FGMs will require a direct
boundary integral formulation involving the 7~ kernel (a possible exception: a better alternative
to the indirect formulation, but similar in that it only relies on the Green’s function, would
be to use the Method of Fundamental Solutions [35]). Preliminary work has shown that the
computation and implementation of the 7°(Q, P) kernel function proceeds along the same lines
as discussed herein, and this work will be reported elsewhere.

The key remaining problem for FGM analysis via boundary integral equations is
computation time: at present, it is not practical, as the evaluation of the Green’s function
is simply too time consuming. A detailed study of the individual integrals comprising the
grading term would hopefully lead to reductions in computational cost, and also possibly
indicate which integrals are the most expensive. For these contributions, or maybe in fact
entire grading term, it should be possible to employ the scheme proposed by Wilson and Cruse
for the anisotropic Green’s function [36], namely storing pre-computed values in a table and
then interpolating from this table. Another possible option would be to employ a fast method,
e.g., fast multipole [37, 38] or fast spectral [39, 40], which requires many fewer Green’s function
evaluations; combining these two techniques might be very effective. It is therefore expected
that, with further work, the computational cost of working with the FGM Green’s function
can be reduced to a reasonable level. Now that it is known that ‘brute force’ evaluation is
successful, this work can begin.
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