
 1 

Ru-Ni CATALYST IN THE COMBINED DRY-STEAM REFORMING OF METHANE: THE 

IMPORTANCE IN THE METAL ORDER ADDITION. 

 

Andrea Álvarez M, Miguel Ángel Centeno, José Antonio Odriozola. 

Instituto de Ciencia de Materiales de Sevilla. Centro Mixto Universidad de Sevilla-CSIC. Avenida 

Americo Vespucio 49. 41092. Sevilla, ESPAÑA 

 

Abstract 

Biogas is one of the main biomass-energy resources. Its use for syngas production with a H2/CO ratio 

close to 2 would have huge environmental, social and economic impact in the actual energetic scenario. 

However, the use of dry reforming, where the two main components are transformed into syngas, does 

not allow the desired H2/CO ratio. For this reason, the addition of water is proposed. 

The process was performed with two Ru-Ni catalysts where the metal order in the impregnation process 

was varied.  

The catalysts were prepared either by simultaneous or consecutive impregnation of the active phases and 

its catalytic performance in the combined dry-steam reforming of methane was tested. The catalysts were 

characterized by FRX, XRD, SBET, TPR-H2 and Raman spectroscopy. The existence of a strong Ni-Ru 

interaction is evidenced by Raman spectroscopy and TPR-H2 in the sample synthesized by the 

simultaneous impregnation. Concerning the catalytic activity, this sample presents the higher CH4 and 

CO2 conversion values in the entire composition rate and the lowest amount of carbon deposits after 

reaction. After pulse, and reactivity tests it was concluded that the higher Ni-Ru interaction displayed by 

the catalyst synthesized by the simultaneous impregnation, enhances the carbon gasification. 
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1. Introduction 

The continuous use of fossil fuels as primary energy source has led to numerous social and 

environmental problems in our planet. Humanity has reached a breaking point where the search of new, 
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renewable and environmental friendly energy suppliers, is an essential task in order to ensure the 

energetic sustainability of our planet [1, 2]. 

Although hydrogen as energetic vector is one of the most promising technologies towards a clean and 

sustainable energetic future [3,4], its infrastructure of production and distribution is not currently 

available. For this reason, a “bridge” technology, like synthetic fuels produced by Fischer-Tropsch (FT) 

technology, is a very good option to overcome the actual petroleum scarcity [5].  

  The first step in the manufacture of synthetic fuels via FT reaction is the production of syngas 

with a H2/CO ratio close to 2. This part of the process accounts 60% of the total economic investment, 

which means, that finding viable, and cheap ways to obtain syngas with a H2/CO ratio of 2 could increase 

the profitability of the FT process. 

Among the different available methods for syngas production, we can find pyrolysis, partial 

oxidation, autothermal reforming, dry and steam reforming [6-10]. Nevertheless, besides the chosen 

method, the selection of the syngas source can determine the viability of the process. The renewable 

energy sources, such as biomass, are considered highly advantageous regarding the environmental, social 

and economic legislations.  

Biogas, product of the anaerobic digestion of organic matter seems a very good option since its 

transformation to syngas could give a huge aggregate value to wastes. However in order to use biogas to 

produce syngas with the desired H2/CO ratio some issues have to be considered. Dry methane reforming 

[11-16], where these two mayor greenhouse gases (CO2 around 40% and CH4 around 60%) are 

transformed, is the perfect reaction to transform biogas into syngas, however, is a very endothermic 

reaction and requires high operating temperatures (800-1000ºC) to reach high conversions. These very 

high operating temperatures result in the deactivation by coke deposition mainly due to he deep cracking 

of methane, which is thermodynamically favored at high temperatures [17]. Furthermore, the syngas 

produced has always a H2/CO ratio lower than 1, which makes this process unusable for the production of 

syngas for the FT process. However, these problems can be solved adding water to feed [18-20] . The 

carbon formation problem is reduced due to the presence of water and the desirable H2/CO ratio can be 

adjusted by optimizing the CH4:H2O:CO2 molar ratio. Koo et al. [21, 22] investigated the combination of 

both reforming processes. They determined that a H2/CO of 2 could be achieved by a feed ratio of 

CH4:H2O:CO2 of 1:0.8:0.4. Choudhary et al. [23] report the complete conversion of methane towards 

syngas by the combined dry-steam reforming at 850ºC. Gangadharan et al. [24] evaluated the economic 
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and environmental impact of the combination of dry and steam reforming. A simulation procedure was 

carried out using the Aspen Plus® software. Their carbon footprint calculations showed that the 

combination of both processes implied a less environmental impact. Furthermore, the employment of this 

combined dry-steam reforming, could be also used to produce syngas from unconventional gas sources 

(tight gas, shale gas and coalbed methane) that in some cases could reach a CO2 content of about 40% 

[25-28]. 

Catalysts used for reforming processes are usually based on Ni. This metal has an excellent 

activity/price ratio, so high metal loading (~15%) are feasible [18] in order to achieve high catalytic 

activities. Nevertheless, besides some sintering problems, Ni gets easily deactivated owed to carbon 

deposits in the surface. In order to avoid this type of deactivation, the modification of the support and the 

addition of other metals are common strategies to increase the stability of Ni catalysts.  

Owing to the fact that the formation of coke in oxide supports is the result of the acid-catalyzed 

cracking and polymerization reactions between the coke precursors [29], the modifications of the acid-

base properties of the support is fundamental. Wang at al. [30] report that the addition of basic elements 

as Na or Mg reduce the carbon formation in a 13.4%. Horiuchi et al. [31] report that  the addition of Na, 

K, and Mg decreases the carbon formation owed to the lower catalyst capacity to adsorb dissociatively 

CH4. Penkova et al. [32-34] established an optimum quantity of MgO in 10%, that allowed the 

modification of the support acidity and improved the Ni dispersion. In regards with the active phase 

modification, Trimm et al. [35-37] proposed the formation of Ni-M (M= Sn, Ge…) alloys, where the 3d 

Ni electrons are interacting with the 2p electrons of the other metal, avoiding in this way, the formation of 

the coke precursor, nickel carbide. Noble metals, like Pt and Ru also improve Ni stability [38-40]. 

According to the studies for the CH4 dry reforming over Ni-Ru bimetallic catalyst, the strong 

improvements in the activity and the stability observed on silica supported Ni-Ru catalyst can be 

attributed to the formation of Ni-Ru bimetallic clusters with surface mainly covered by Ni, leading to an 

increase in the metallic dispersion of Ni and favoring the formation of more reactive intermediate 

carbonaceous species [39-41].  

Although the support and active phase modification plays an important role in the stability and 

activity of the final catalyst, the preparation method, precisely, the metal impregnation order, plays an 

important role in the final catalytic activity. Mukainakano et al. [42-45] reported that the structure of the 

bimetallic particles can be influenced according to the preparation method. 
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Thereby, the present research attempts the synthesis of a modified Ni/Al2O3 catalyst though the 

modification of the support with MgO and the addition of Ru along with Ni, in order to make it more 

resistant towards coke deposition. Apart from the study of the influence of metal order addition in the 

catalytic activity, the addition of different amounts of water to a model biogas with a CO2/CH4 of 0.4 is 

performed, in order to find the optimum conditions for the syngas production with a H2/CO ratio of 2. 

 

2. Experimental 

2.1 Catalyst preparation 

The support was synthesized by impregnation of Mg(NO3)2·6H2O (Aldrich) on γ-Alumina 

powder (Sasol) in order to obtain a 10 wt % of MgO. This support, named “MAlu” is calcined at 850ºC 

for 12h. 

For the impregnation of the active phases, two routes where chosen. A simultaneous 

impregnation, where a mixed solution of dissolved Ni(NO3)2·6H2O (Aldrich) and Ru(NO)(NO3)3 

(Johnson Matthey) was added to the support MAlu, and a consecutive impregnation, where the support is 

first impregnated with Ni(NO3)2·6H2O, dried, calcined at 500ºC for 3h, and afterwards, was impregnated 

with a solution of Ru(NO)(NO3)3. Both solids have a final calcination at 500ºC for 3h. In all cases the 

wt% of Ni is calculated to be 15%, and Ru wt% load is calculated to be 0.5%. The nomenclature of the 

samples follows the form, X_aRu, where X indicated the impregnation route (S= Simultaneous  or 

C=Consecutive) and “a” indicates the Ru wt% load (0.5).  

Supported monometallic catalysts were prepared likewise. The sample “Ni/MAlu” refers to the 

sample impregnated with only 15% Ni into the support MAlu and the sample “0.5Ru/MAlu” refers to the 

sample with only 0.5%Ru into the support MAlu.  

 

2.2 Catalyst Characterization 

The chemical composition of the samples was determined by X-ray fluorescence spectrometry (XRF) 

in a PANalytical AXIOS PW440 sequential spectrophotometer with a rhodium tube as source of 

radiation.  

The textural properties were studied by N2 adsorption measurements at liquid nitrogen temperature. 

The experiences were carried out by means of Micromeritics ASAP 2010 equipment. Before analysis, the 

samples were degassed for 2 h at 250 ºC in vacuum.  
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X-ray diffraction (XRD) analysis was performed on an X’Pert Pro PANalytical Diffractometer. 

Diffraction patterns were recorded with Cu Kα radiation (40 mA, 45 kV) over a 2θ-range of 10 to 80° and 

a position-sensitive detector using a step size of 0.05° and a step time of 1s. 

The Raman spectra were recorded on a dispersive Horiba Jobin Yvon LabRam HR800 microscope 

with a 20 mW He-Ne green laser (532.1 nm) without filter and with a 600 g mm
-1

 grating. The 

microscope used a 50x objective with a confocal pinhole of 1000 μm. 

H2-TPRs were carried out in a Micromeritics AutoChem II 2920 equipment with a TCD detector. 

The analyses were performed on 200 mg of fresh catalyst under 50 ml/min
 
of a 10% H2/Ar mixture. The 

temperature was increased from room temperature to 850°C at rate of 10 °C/min
 
and left at 850ºC for 3 

hours.  

TPO post reaction experiments were carried out on 15 mg of spent catalysts using 100 mL min
-1

 of 

5% O2 diluted in He. The temperature was increased at 10 °C min
−1

 from room temperature to 900°C. 

The gas composition at the outlet was analyzed by mass spectroscopy in a PFEIFFER mass spectrum 

Vacuum Prisma Plus controlled by the Quadera® program. The m/z = 12, 16, 18, 28, 32, 44 and 22 

signals were registered.  

 

2.3 Catalytic activity measurement 

2.3.1 Combined dry-steam reforming of methane. 

 The reaction was performed in a computerized commercial Microactivity Reference catalytic 

reactor (PID Eng&Tech), employing a Hastelloy C-276 tubular reactor (Autoclave Engineers) with 9 mm 

internal diameter. At the reactor outlet a gas–liquid separator was fitted allowing the analysis of gas and 

liquid phase products. To avoid flow misdistribution profiles within the reactor, the catalyst powders 

(100≤φ≤200 μm) were diluted with the same amount of crushed quartz sieved to the same particle size 

range.  

A biogas model stream with a CO2/CH4 ratio of 0.4 was used in order to perform the catalytic 

test. Variable amounts of water were added to the system in order to achieve the desired H2/CO ratio of 2. 

The molar ratios where changed as shown in Table 1. Flows where set in order to achieve a space velocity 

of WHSV=120.000 mL/g.h.  
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Table 1. Molar CH4:H2O:CO2 ratio of the reaction conditions. 

Molar ratio 

CH4:H2O:CO2 
1: 0.14 : 0.4 1: 0.21 : 0.4 1: 0.36 : 0.4 1: 0.56 : 0.4 

Water % 9 13 20 28 

 

Gas products were analyzed on line using a MicroGC (Varian 4900) equipped with Porapak Q 

and MS-5A columns. Prior to reaction, the catalyst was reduced at 850ºC in 100 mL/min
 
H2 (50%, v/v in 

inert) for 3 h. The CH4 and CO2 conversion was calculated according to Eq. (1) and (2) respectively 

where CH4 in/CO2 in is the concentration in the inlet and CH4 out/CO2 out is the one at the outlet. 

CH4 conversion(%) =
CH4 in-CH 4 out

CH4 in

´100       (1) 

CO2 conversion(%) =
CO2 in-CO2 out

CO2 in

´100         (2) 

The stability of the samples was tested during 96h varying the amount of water from 20% to 

13% then 28% and finally 9%. Each reaction was carried for 24h after which the solid was purged during 

30min with N2, and continued the reaction with the water amount changed. 

 

2.3.2 CO pulses and CH4-CO2 alternate pulses. 

CO and CH4-CO2 pulses were carried out in a PID Eng&Tech equipment. A conventional U quartz 

reactor was used with approximately 50mg of sample. The gas composition at the outlet was analyzed by 

mass spectroscopy in a PFEIFFER mass spectrum Vacuum Prisma Plus controlled by the Quadera® 

program. The sample is first reduced with 50 ml/min of a 10% H2/Ar mixture. The temperature was 

increased from room temperature to 850°C at a rate of 10 °C/min and left at 850ºC for 3 hours. Then, an 

Ar stream cleaned the sample while decreasing the temperature to 750ºC (reaction temperature). After 

cleaning during 30 minutes, 10 equivalent CO pulses of 1mL where added, after which the sample is 

again cleaned during 1h with a stream of 50 ml/min
 
of Ar. After this second cleaning, 10 alternate pulses 

of CH4-CO2 where applied.  

 

2.3.3 Catalytic activity in water gas shift (WGS) reaction at high temperature. 

The study of the high-temperature WGS reaction was carried out at 750ºC and atmospheric pressure 

in a stainless steel fixed bed reactor at 15400 mL/g.h. Prior to reaction the sample was reduced under 

100ml/min of a 50% H2-N2 flow at 850ºC for 3h. Four H2O/CO ratios were tested, maintaining always the 
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amount of water and varying the amount of CO. Products and reactants were analyzed by on-line URAS 

2G CO, CO2 gas analyzer (ABB A02020). The CO conversion was calculated according to Eq. (3) where 

COin is the concentration in the inlet and CO out is the one at the outlet. 

CO conversion(%) =
COin -COout

COin

´100     (3) 

 

3. Results and Discussion 

 

3.1 Chemical composition and textural properties 

Table 2 presents the chemical compositions of the sample and their textural properties. The XRF 

results show a quiet similar incorporation of the metals in both methods, achieving the desired values of 

metal phase. The Mg/Al ratio did not change after the impregnation, which implies that the support 

wasn’t modified in the metal impregnation process. A value of Mg/Al=0.12 was maintained, which 

correspond to a 9.6% of MgO in all the samples. N2 adsorption and desorption isotherms (not shown) are 

type IV, which are typical for mesoporous solids. Their hysteresis loops are H1 type, which indicates a 

cylindrical-interconnected type of pores [46, 47]. The addition of Ni and Ru barely changes the textural 

properties of the modified alumina used as support. 

Table 2. Chemical compositions and textural properties 

Sample 
Weight % 

Mg/Al 
SBET 

(m
2
/g) 

Pore volume 

(cm
3
/g) %Ni %Ru 

MAlu - - 0.12 123 0.37 

Ni/MAlu 17.2 - 0.12 110 0.32 

0.5Ru/MAlu - 0.41 0.12 118 0.35 

S_0.5Ru 15.2 0.40 0.12 106 0.31 

C_0.5Ru 16.7 0.45 0.12 108 0.32 

 

3.2 X-ray diffraction 

Figure 1 shows the diffraction patterns of the different samples. Figure 1_A correspond to the 

calcined samples. Since before the reaction a reductive treatment is performed in the samples, the reduced 

samples are also studied. Figure 1_B correspond to the samples after the activation treatment. The support 

MAlu presents the typical diffraction lines corresponding to the Mg-Al spinel  (MgAl2O4) at 31.2, 45.8, 

59.3 and 66.2 º2θ (JCPDS 00-050-0741). There are no peaks corresponding to MgO, which implies the 

total insertion of Mg into the Al2O3 lattice forming the MgAl2O4 spinel.  
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Figure 1. Diffraction patterns. (A) Calcined samples (B) Reduced samples. 

 

Although all the XRD patterns are dominated by the support peaks, in the calcined samples 

(Figure 1_A) Ni is detected as NiO (JCPDS 00-047-1049) and Ru as RuO2 (JCPDS 01-070-2662). All 

crystallite sizes corresponding to NiO and RuO2 are calculated with Scherrer equation and posted in 

Table 3. NiO crystallite size is around 6 nm and RuO2 one is around 36 nm except in the sample S_0.5Ru 

where no presence of RuO2 was found. This could be owed to a better dispersion of RuO2, to the 

formation of a mixed-oxide Ni-Ru, or even to a possible inclusion of Ru
+4

 in the support lattice.  

On the other hand, reduced samples (Figure 1_B) show the peaks of the corresponding metal 

phases Ni
0
 (JCPDS 00-004-0850) and Ru

0
 (JCPDS 00-006-0663). Crystallite size is around 6 nm for Ni 

and 20 nm for Ru according to Scherrer equation. As observed in the calcined samples, no evidence of 

any ruthenium species was found in the S_0.5Ru sample, implying a better dispersion of Ru
0
 or a possible 

Ni-Ru solid solution. According to the phase diagram of the Ni-Ru system [48], the solid solution, where 

Ni
0
 is enriched with Ru

0
 is possible at the used reduction temperature (850ºC). Nevertheless, Shiraga et 

al., and Rynkowski et al. [49, 50] reported a clear shift towards lower angles in the Niº peaks which 

implied the insertion of Ru
0
 in the Ni

0
 lattice, however, in the present samples, no shift was observed. 

Table 3. Crystallite size, reducibility and dispersion data of the samples. 

Sample 
Calcined samples Reduced samples Reducibility 

% NiO (nm) RuO2 (nm) Niº(nm) Ruº(nm) 

Ni/MAlu 6.0 - 6.0 - 74 

0.5Ru/MAlu - 35 - 25 82 

C_0.5Ru 6.3 38 6.0 20 79 

S_0.5Ru 5.3 * 5.0 * 83 

*= Not observed 
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[440][511][400][311][220]
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Ruº
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RuºRuº Niº

MAlu
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3.3 Raman spectroscopy 

Raman spectra of the synthesized solids are represented in Figure 2. For clarity, reference solids 

(RuO2 and NiO) are also included. The support MAlu shows a Raman spectrum where three bands can be 

noticed at 310, 410 and 720 cm
-1

. As evidenced by XRD the support MAlu is formed by the spinel 

MgAl2O4. This type of structure has a spatial group Fd3m, which includes 5 active Raman modes [51, 52] 

(A1g + Eg + 3T2g). O’Horo et al. [51] assign the Eg mode to the band towards 410 cm
-1

, the A1g mode to a 

band located towards 772 cm
-1

 and the  3T2g modes are reported to be found at 311, 492, and 671 cm
-1

. In 

the current case, the first T2g mode, and the Eg mode are clearly observed, nevertheless, the last wide band 

towards 720 cm
-1

 could represent the overlapping of the A1g and T2g mode. In regards with the reference 

samples, the NiO Raman spectra shows a wide band towards 500 cm
-1

 that could be assigned to the two 

overlapping bands (360 and 527 cm
-1

) that are attributed to first order transverse optical (TO) and 

longitudinal (LO) phonon modes [53-55] of NiO. The Ni/MAlu sample shows the same spectra profile as 

NiO but shifted towards higher values. This shift could be attributed to the difference in crystallite size as 

detected by XRD (Figure 1_A). 

 

Figure 2. Raman spectra of the samples. 

 

Pure RuO2 has three active Raman modes, corresponding to Eg, A1g, and B1g at 510, 625 and 700 

cm
-1

 as reported in literature [56-59]. The same bands and relative intensities are found in the sample 

300 400 500 600 700 800 900

LOTO

Raman Shift (cm
-1
)

Eg A1g B2g

Ni/MAlu

0.5Ru/MAlu
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RuO
2

NiO

MAlu
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0.5Ru/MAlu and can be distinguished in the C_0.5Ru sample. Nevertheless, the sample S_0.5Ru has a 

different band distribution; the B2g mode is blue shifted and the intensity ratio of the bands is changed. 

Although the difference could be attributed to the different crystallite size, this different band distribution 

could also be attributed to a possible interaction between Ni
+2

 and the RuO2, which disrupts the RuO2 

lattice. 

3.4 TPR-H2. 

Figure 3 shows the TPR-H2 of the synthesized samples.  A first reduction peak around 168ºC is 

observed on the Ru containing ones. This H2 consumption can be ascribed to the reduction of Ru
4+

 to Ru
0
. 

Koopman et al. [60] describe the reduction of Ru over SiO2 and report a total reduction of Ru around 

275ºC. Nevertheless, they report an hydrogen consumption around 177ºC that they attributed to finely 

dispersed RuO2. Balin et al. [61] describe the reduction of RuO2 over alumina and reported two reduction 

peaks. The first one, at 184ºC, was attributed to the reduction of small RuO2 particles while the second 

one, at 253ºC was ascribed to RuO2 agglomerates.  

 

Figure 3. TPR-H2 of the synthesized samples. 

 

The solids containing Ni present the peak of maximum reduction around 574ºC that correspond 

to the reduction of NiO [62]. Nevertheless, a shoulder around 796ºC is observed. This H2 consumption 

can be attributed to the reduction of Ni in strong interaction with the support. Considering that the amount 

of MgO added to the initial γ-Al2O3 support was of 10% and that the total available tetrahedral sites 

available in the γ-Al2O3 accounts for 28%, there are still tetrahedral sites available for Ni where it can 

interact and form the Ni-Al spinel (NiAl2O4). The Ni reduction in the NiAl2O4 spinel has been widely 
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studied [63-65] and has been reported to present Ni reduction peaks around 800ºC. On the other hand, is 

worth to notice the difference in profile shape between 400-600ºC. The sample S_0.5Ru has higher 

reduction around lower temperatures (464ºC) than the sample C_0.5Ru. This profile difference stand for 

the stronger Ni-Ru interaction stated before in the Raman and XRD analysis.  

The reducibility values calculated for all the samples are shown in Table 3. As shown, the 

addition of Ru increased the reducibility of the samples. Enger et al. [66] describe that noble metals are 

able to promote the reduction of Ni owed to the electronics effects and spillover phenomenon. Enger 

indicates that an intimate contact between the metals should exist in order to observe this phenomenon.  

 

4. Catalytic activity 

 

4.1 Combined dry-steam reforming of methane. 

The CH4 and CO2 conversions are shown in Figure 4. As seen en Figure 4_A, at low water 

values, CH4 conversion does not exceed the 25%, owed mainly to the low CH4/CO2+H2O ratio (Table 1), 

which implies that CO2 and H2O act as limiting reagents. The CH4 conversion increases with the amount 

of water in the feed, owed mainly to the increasing participation of the steam reforming reaction.  

However, the increase of water towards 13% raised the CO2 conversion in the S_0.5Ru sample, 

although for the other two samples no great difference was found. Further water addition decrease the 

CO2 conversion owed mainly to the participation of the RWGS reaction. As expected, the addition of 

water to the CO2-CH4 mixture, increased the H2/CO ratio owed mainly to higher amount of H2 produced 

by the RWGS reaction, achieving the desired value of H2/CO=2 when adding a 28% of water in the 

model biogas stream. 
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Figure 4. (A) CH4 conversion. (B) CO2 conversion. (C) H2/CO in the dry-steam reforming of 

methane changing the water % in the feed at 750ºC. 

 

The CH4 and CO2 conversions and H2/CO ratio obtained from the stability test are shown in 

Figure 5. The results of activity each 24h are maintained and match the ones obtained previously (Figure 

4), indicating the reproducibility of the reaction.  

 

Figure 5. () CH4 conversion. (Δ Δ Δ) CO2 conversion. (O) H2/CO in the dry-steam of methane during 

96h at 750ºC. 
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As seen in Figure 5, there is no evidence of a clear deactivation process. However, the analysis 

of the post-reacted samples by TPO (Figure 6) showed clear differences. All samples show an increase in 

the CO2 signal (Figure 6_A) towards 604ºC which can be attributed to the presence of amorphous carbon 

in the sample [67] although the sample Ni/MAlu showed a signal towards higher temperature, which can 

be owed to the presence of more structured carbon. Nevertheless, is worth to mention, that the sample 

S_0.5Ru showed the lowest amount of CO2, which can be related to the lowest amount of carbon deposits 

in the sample.  

 

 

Figure 6. TPO analysis of the post-reacted samples. (A) CO2 signal. (B) O2 signal and (C) CO signal. 

 

On the other hand, an interesting fact occurred to the samples C_0.5Ru and Ni/MAlu. Around 

623ºC the O2 is totally consumed by the sample (Figure 6_B) and the carbon present in the sample starts 

to be gasified by the CO2 by Boudouard reaction, giving the signal of CO represented in Figure 6_C. This 

behavior can be related to the elevated amount of carbon in the sample, and is worth to mention that the 

sample C_0.5Ru presents a higher signal of CO2 and a higher production of CO, which can confirm that 

this sample, even with the Ru presence, has the higher amount of carbon.  

 

4.2 CO pulses and CH4-CO2 alternate pulses. 

Two of the main responsible reactions of the coke formation in Ni catalyst are the Boudouard 

reaction and the CH4 decomposition. Thus, in order to evaluate the difference of the samples in these 

reactions, some experiment of CO pulses and CH4-CO2 alternate pulses were performed. 

Figure 7 shows the CO2 signal after each CO pulse. As seen, all samples present a CO2 signal, 

which means that all are active in the Boudouard reaction. However, there is a big difference; the samples 

with 0.5%Ru show almost the same CO2 profile, whereas the Ni/MAlu sample shows lower CO2 signal, 

implying that, in the tested catalysts, Ru is the main responsible of the CO disproportionation [68-70].  
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Figure 7. CO2 signal after each CO pulse. 

 

Regarding the alternate CH4-CO2 pulses, the H2 and CO signals after each pulse are represented 

in Figure 8. The increase in the amount of H2 after de first CH4 pulse in the samples containing Ni 

indicates that this metal is the one responsible of the CH4 decomposition as reported in literature [12, 70]. 

Although Ru has been also responsible for CH4 cracking [18, 71], there was no evidence of this behavior 

under these conditions.  

 

Figure 8. H2 and CO signals after the CH4 and CO2 pulses. 
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4.3 Catalytic activity in water gas shift (WGS) reaction at high temperature. 

Since after the pulse experiments no clear conclusions about the difference of the amount of 

carbon deposits evidenced in Figure 6 were obtained, a WGS experiment was performed in order to 

evaluate the activity of the catalyst when reacting CO and H2O. Figure 9 shows the CO conversion at 

750ºC at different H2/CO ratios. The sample Ni/MAlu presents the lowest activity and remained under the 

WGS equilibrium curve. However, the sample C_0.5Ru shows higher activity, and overcome the WGS 

equilibrium curve, which can be explained by the gasification of carbon from the Boudouard reaction 

when CO gets to the catalyst surface. Nevertheless, the catalyst S_0.5Ru has a conversion higher than 

90% when working with lower contents of water, and increase towards complete CO conversion when 

raising the amount of water. This high capacity of carbon gasification could explain the big difference in 

the amount of carbon deposits evidenced in Figure 6. 

 

 

 Figure 9. CO conversion at 750ºC at different H2O/CO ratios. 

  

As observed in Figure 4, the catalyst S_0.5Ru presents the high catalytic activity in all the water % 

range and also, is the sample that presents the less amount of carbon deposited in the sample after 

reaction. The better Ru dispersion which implies a better Ru-Ni interaction, evidenced by Raman and 

TRP could explain the better catalytic performance of the sample, implying that, in this kind of systems 

the metal order addition is critical. 
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Two Ru-Ni catalysts where prepared using a modified Al2O3 as support. For the active phase 

impregnation, two methods were employed. A simultaneous method were the two metals were 

impregnated at the same time, and a consecutive method, were the support is first impregnated with 

Ni, calcined, and then impregnated with Ru. 

The physicochemical characterization show that the extent of incorporation of Ni and Ru was 

similar in both routes and the desired metal values were achieved. There were no significant 

differences in the textural properties of the support after the metal impregnation. However, XRD, 

Raman and TPR-H2 analysis showed clear differences in the samples depending on the metal 

impregnation order. There was no evidence of Ru species in the XRD analysis of the sample 

S_0.5Ru indicating a higher Ru dispersion. Moreover, Raman and TPR-H2 analysis showed that the 

Ni-Ru interaction in this sample is bigger than in the C_0.5Ru.  

Concerning the catalytic activity, the desired H2/CO ratio of 2 was achieved thought the addition 

of water to a model biogas with a CO2/CH4 ratio of 0.4, using a molar CH4:H2O:CO2 ratio of 

1:0.56:0.4 and a temperature of 750ºC. The sample S_0.5Ru exhibit the highest catalytic activity and 

lowest tendency to coke depositions owed to the fact that the good Ru-Ni interaction makes it the 

most active sample in the gasification of carbon deposits 
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