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Abstract. The ability of tissue P systems with 2-division for solving
NP problems in polynomial time is well-known and many solutions can
be found in the literature to several of such problems. Nonetheless, there
are very few papers devoted to the Bin-packing problem. The reason may
be the difficulties for dealing with different number of bins, capacity and
number of objects by using exclusively division rules that produce two
offsprings in each application. In this paper we present the design of a
family of tissue P systems with 2 division which solves the Bin-packing
problem in polynomial time by combining design techniques which can
be useful for further research.

1 Introduction

Membrane computing was born from the assumption that the processes taking 
place within the compartmental structure of a living cell can be interpreted 
as computations [26]. From the beginning, the computational complexity of the 
membrane algorithms has been a vivid research area [25]. In particular, there is a 
large amount of papers dealing with the P versus NP problem in the framework 
of membrane computing [22]. The P versus NP problem is one of the most 
important unsolved problem in computer science and it was chosen as one of the 
seven Millennium Prize Problems [11]. The precise statement of the problem was 
introduced in 1971 by Stephen Cook [1], although it was essentially mentioned 
in a personal communication between Gödel and von Neumann [10].

The problem of deciding whether P and NP complexity classes are same 
or not is not yet solved but the efforts for solving it have contributed to the 
development of new research areas full of interesting open questions. One of 
them is the research of frontiers of tractability, i.e., to identify some features of 
the computational models such that the corresponding device is able to solve 
NP problems or not depending on the endowment of such features.

In membrane computing there exists an extensive literature devoted to this 
type of problem (see [22] and the references therein) and the present paper is a 
novel contribution in such research line. We consider here a variant of one of the



most popular P systems architectures: tissue P systems. Such model was firstly
presented in [16,17] by placing the cells in a general graph instead of a tree-like
graph as in the cell-like model. Under the hypothesis P�=NP, Zandron et al.
[33] established the limitations of P systems that do not use membrane division
concerning the efficient solution of NP-complete problems.

From this premise, Păun et al. presented in [28] the model of tissue P sys-
tems endowed with cell division, which can solve NP-problems. Since then, many
other variants have been presented, e.g., [6,12,13,18,19]. In this way, all solu-
tions of NP-complete problems in membrane computing rely on the possibility
of P systems to obtain exponential space in polynomial time1. Besides creating
an exponential amount of cells in polynomial time, to solve NP-complete prob-
lems, we need to be able to effectively use that workspace, by making objects
interact. For instance, it is known that, even with membrane division, without
polarizations and without dissolution only problems in P may be solved [9].

The cell division proposed in [28] was inspired in the mitosis of alive cells and
consists on the division of one cell into two offsprings. The most extended use of
this type of rules is obtaining an exponential amount of cells in linear time, since
2n cells can be obtained from an initial one after n steps. The ability of tissue P
systems with 2-division for solving NP problems is well known [19], nonetheless,
the study of new problems requires the effort of solving specific designs which,
on the one hand, makes stronger the theory and on the other hand, can provide
new ideas for unsolved problems in membrane computing.

In particular, the design of a solution for the Bin-packing problem by using 2-
division presents important subproblems whose solution can be useful for further
development of the theory. The intrinsic difficulty of this problem explains that
there are very few papers [23,24] devoted to this problem in the vast literature
of solutions for NP problems in membrane computing.

The problem can be stated as follows: Given a set A = {s1, . . . , sn}, a weight
function ω : A → N and two constants b ∈ N, c ∈ N decide whether or not there
exists a partition of A into b subsets such that their weights do not exceed c. The
traditional strategy for designing a solution of an NP-problem has a first stage
where an exponential amount of cells is created and each feasible candidate to
be a solution is placed into one of the exponential amount of available cells.
In the Bin-packing problem, this generation of feasible candidates consists on
considering all the possibilities for distributing the n objects among the b bins.
This means that bn feasible candidates should be encoded in the corresponding
multisets and placed into bn different cells.

The 2-division proposed in [28] fits perfectly when the exponential growth of
the number of candidates is on basis 2, as in the SAT problem (e.g., [2,7]) or
the Partition problem [5,8] or even on basis 3 by performing a new division on

1 Such solutions are technically correct, but, of course, the exponential generation of
new working space has evident limits from a practical point of view. Any practical
implementation of P systems solving NP-problems with physical support only could
solve small instances of the problem.



one of the offsprings, as in the 3-COL problem [4]. In our case, the problem is
different, since the number of necessary membranes depends on the parameter b.
In this way, the designed family of tissue P systems must be able to build bn

membranes in polynomial time on b and n for each b and n by using 2-division.
This leads us to solve two subproblems: The first one is place each of the n

objects in one of the b bins (if the distribution condition of objects is satisfied).
This means that we need to represent each of the symbols in {0, . . . , b−1} with a
2-division process for each object si with i ∈ {1, . . . , n}. And the second problem
is to implement such distribution of n objects, one for each object in the set A.
In the next sections, we explain the details of the corresponding solutions.

The paper is organized as follows. In Sect. 2, the formal description of the used
model of P systems is recalled. Section 3 is devoted to the main ideas related to
recognizer P systems, the framework for solving decision problems. Our solution
is presented in Sect. 4 and the paper ends with some conclusions and hints for
future work.

2 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [16,17] the membrane
structure did not change along with the computation. Based on the biological
mitosis, Păun et al. presented in [28] a tissue P system model endowed with
2-division is one of the most used and well-known P system models nowadays.
We briefly recall their syntax and semantics.

Formally2, a tissue P system with cell division of degree q ≥ 1 is a tuple of
the form

Π = (Γ, E , Σ,w1, . . . , wq,R, iin, iout),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. E ⊆ Γ is the alphabet of the environment.
3. Σ ⊂ Γ is the input alphabet.
4. w1, . . . , wq are strings over Γ .
5. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈{0, 1, 2, . . . , q}, i �= j, u, v∈Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

6. iin, iout ∈ {0, 1, 2, . . . , q} are the input and output labels, respectively.

A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q
cells (each one consisting of an elementary membrane) labelled by 1, 2, . . . , q. We
shall use 0 as the label of the environment, and iin and iout denote, respectively,
the input and output regions (which can be a region inside a membrane or the
environment).

2 The reader is supposed to be familiar with the basic concepts of membrane comput-
ing. See [29] for details.



The communication rules determine an implicit net of channels, where the
nodes are the cells and the edges indicate if it is possible for pairs of cells to
communicate directly. This is a dynamic graph, in which new nodes can be
produced by the application of division rules. Note also that the connections
only depend on the label of the cell, and thus when a cell is divided, the two new
cells will have identical connections. Nevertheless, this graph is just an intuition,
we shall not handle it explicitly along the computations.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same
label. All the objects in the original cell are replicated and copied in each of the
new cells, with the exception of the object a, which is replaced by the object b
in the first new cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way. In one step, each object in a membrane can only be used
for one rule (non-deterministically chosen when there are several possibilities),
but any object which can participate in a rule of any form must do it, i.e., in
each step we apply a maximal set of rules. This way of applying rules has only
one restriction when a cell is divided, the division rule is the only one which is
applied for that cell in that step; the objects inside that cell do not evolve in
that step.

3 Recognizer P Systems

The notion of recognizer P system is general enough to cover many P system
variants. Such P systems are a well-known model of P systems which are basic
for the study of complexity aspects in membrane computing. Roughly speaking,
a recognizer P system is a P system which takes some information as input and
outputs a distinguished object which can be considered as a decision on the
input. Of course, some other conditions are imposed, but the general framework
does not depend on the type of rules or the membrane structure of the P system.

Next, we briefly recall some basic ideas related to them. A detailed descrip-
tion, is given in [21,22]. In recognizer P systems all computations halt; there
are two distinguished objects traditionally called yes and no (used to signal the
result of the computation), and exactly one of these objects is sent out to the
environment (only) in the last computation step.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (the elements are called instances) and θX is
a predicate (a total Boolean function) over IX . Let X = (IX , θX) be a deci-
sion problem. A polynomial encoding of X is a pair (cod, s) of polynomial time



computable functions over IX such that for each instance w ∈ IX , s(w) is a
natural number representing the size of the instance and cod(w) is a multiset
representing an encoding of the instance. Polynomial encodings are stable under
polynomial time reductions.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by a
family Π = (Π(n))n∈N of P systems from R – we denote this by X ∈ PMCR –
if the family Π is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding (cod, s) from IX to Π such that the family Π is polynomi-
ally bounded with regard to (X, cod, s); this means that there exists a polynomial
function p such that for each u ∈ IX every computation of Π(s(u)) with input
cod(u) is halting and, moreover, it performs at most p(|u|) steps; the family Π
is sound and complete with regard to (X, cod, s).

4 The Solution to Bin Packing Problem

In this section we provide a family of tissue P systems with 2-division which
solves the Bin-packing problem in polynomial time. Before giving the formal
description of the P system, we provide some hints about how the problem has
been solved.

As pointed out in the Introduction, each of the n objects can potentially be
placed on one of the b bins. In such way, bn candidates (and hence bn cells) should
be built in polynomial time by using 2-division. The solution needs the pre-
process of the parameter m, where m is the least integer which satisfies b ≤ 2m,
i.e., m = 	log2 b
. In the same way, by generating 2m cells with m 2-division
steps we can assure that at least b cells are generated. The idea of considering
a number of logarthmic steps is not new in the design of membrane computing
solutions (see, e.g., [3]). Nevertheless, the mere generation of b (or more) cells are
not enough. Each object si of the set A = {s1, . . . , sn} must be placed in one of
the bins {0, . . . , b − 1}, where each membrane encoding a different bin has been
generated by 2-division. In this way, the natural encoding of each number in
{0, . . . , b − 1} is performed by a binary representation Cm−1Cm−2 . . . C0 where3

Ci ∈ {Ti, Fi} for i ∈ {0, . . . , b − 1}. In this way, each 2-division will produce
an object Ti or Fi in each offspring and the value i will control the number of
the division in the iterative process of building 2m cells. This process will be
controlled by the set of rules R1 (see below).

From the 2m generated cells, only b of them are necessary in our solution.
The remaining 2m−b cells (if any) will remain inactive. This means that we only
need rules for control b different values {0, . . . , b − 1}. Such values are originally
represented via a binary representation by using m objects. Nonetheless, for the
sake of readability, in our solution we propose to take a decimal representation
by a unique symbol object bj with j ∈ {0, . . . , b − 1}. The trick for recovering
such notation is controlled by the set of rules R2 (see below).
3 Ti and Fi stand for True and False in the i− th position and, as usual, represents

1 and 0 in a binary representation.



The key idea of such set of rules consists of keeping in each cell of label
1 an object bk which acts as an accumulator in the index i (with b0 at the
beginning). The different values of the binary representation Cm−1Cm−2 . . . C0

with Ci ∈ {Ti, Fi} arrive sequentially to the cell:

– If the object Ti arrives and k + 2i does not exceed the value b − 1 then,
the objects Ti and bk are traded against a new object bk+2i . If k + 2i ≥ b,
then the corresponding membrane does not encode one of the possible bins
(enumerated from 0 to b − 1) and it stays inactive during the remaining
computation steps.

– If the object Fi arrives, nothing is added to the accumulator and the object
bk does not change.

Bearing in mind these considerations, the proposed solution can be split in to
the following stages:

– Generation and Calculation stage: In this stage the bn candidates for solution
are generated (each of the n objects in A = {s1, . . . , sn} can go to one of the
b bins). For each si, 2m + 3 steps are performed and the number of steps in
this stage is O(m · n).
During the generation stage, the process of assigning an object si to a bin
is performed n times. After each assignment, the free capacity of the corre-
sponding bin (represented by objects pj) is decreased in an amount equal to
the weight w(si) if it is possible. This decrement is performed by the set of
rules R4 which send pairs of objects representing unit of weights and units
of free capacity to the environment. If there is no free capacity enough for
such assignment, some objects representing weights will not be sent to the
environment.

– Checking stage: This stage is performed in parallel in the all bn cells which
represent candidates (let us recall that the 2m−b cells extra generated in each
construction process keep inactive). This stage consists on checking if all the
objects representing weights have been sent to the environment. If there is
no such objects in the corresponding cell, then the candidate placed in such
membrane represents a solution to the Bin-packing problem. Otherwise, if
there is one or more object in the cell, then the assignment of objects to cells
does not satisfy the restriction and it is not a solution to the problem.

– Output stage: Finally, the output stage controls that only one object yes or
only one object no is sent to the output cell in the last step of computation.

Each instance of the Bin-packing Problem is stated by a set of n objects,
A = {s1, . . . , sn}, a set of weights ω(A) = {ω(s1), . . . , ω(sn)} and two constants
b ∈ N (the number of bins) and c ∈ N (the capacity). We propose a family of
tissue P systems with 2-division which solves the Bin-packing Problem where
each tissue P system of the family depends on the parameters n, b and c. For the
sake of simplicity, we will consider a pre-computed extra parameter m = 	log2 b

which only depends on b. Let us notice that the set of objects A = {s1, . . . , sn}
is encoded as the multiset s

w(s1)
1 , . . . , s

wsn
n , i.e., the weight of the object si is



represented in its multiplicity. Such multiset is placed in the input cell in the
initial configuration and the computation starts.

Each tissue P system of the family is of the following form4:

Π(n, b, c,m) = (Γ, E , Σ,w1, w2, R, iin, inout)

where:

– Γ is the alphabet of objects used in the computation

Γ = E ∪ Σ ∪ {A0, b0, d1, z1, x0} ∪ {pi : i ∈ {0, . . . , b − 1}}
– E is the set of objects initially placed in the environment.

E = {yes, no, g, f0, f1, y0, y1,#}
∪ {Ti, ki ki, ri : i ∈ {0, . . . , m − 1}}
∪ {Ai : i ∈ {0, . . . , m}}
∪ {bi : i ∈ {0, . . . , b − 1}}
∪ {qi, hi : i ∈ {0, . . . , b − 1}}
∪ {zi, di : i ∈ {2, . . . , n}}
∪ {xi : i ∈ {1, . . . , n ∗ (2m + 3) + 1}
∪ {ki,j : i ∈ {0, . . . , b − 1} j ∈ {0, 1}}

– Σ = {si : i ∈ {1, . . . , n}} is the input alphabet.
– Initially, the initial configuration has only two cells. The initial multisets are

w1 = A0 b0 d1 zc1 pc0 . . . pcb−1 and w2 = x0,1

– The following are the set of rules R :
R1. [Ai]1 → [Ti]1[Fi]1 : 0 ≤ i ≤ m − 1
These rules control the generation of new membranes by division. Since
b ≤ 2m, it is guaranteed that after m applications of 2-division rules, the
number of membranes is enough for encoding b bins. Each of the offsprings
has an object Ti or Fi of the corresponding number in binary encoding.
Cm−1Cm−2 . . . C0 with Ci ∈ {Ti, Fi}.

R2. (1, Ti bk−2i/bk Ai+1, 0) : 0 ≤ i ≤ m − 1, 0 ≤ k ≤ min{b − 2i, 2i} − 1
(1, Fi/Ai+1, 0) : 0 ≤ i ≤ m − 1

As pointed out above, the binary number Cm−1Cm−2 . . . C0 with Ci ∈ {Ti, Fi}
is not stored in such form in the cells. Each cell with label 1 has an object
bk (initially b0) which can be considered as an accumulator for the decimal
representation of the number Cm−1Cm−2 . . . C0 with Ci ∈ {Ti, Fi}. If a new
object Ti arrives to the cell by the application of a division rule, then Ti and
bk are traded against one object bk+2i if bk+2i is the index of one of the bins,

4 As usual, we omit the parameters in the description for the sake of readability.



i.e., if it belongs to {0, . . . , b − 1}. Let us remark that the application of the
rule also brings an object Ai+1 and the cell is prepared for a new division. If
k + 2i ≥ b, then the rule is not applied, the object Ai+1 is not brought into
the cell and the cell remains inactive. If an object Fi arrives, the accumulator
bk is not modified.

R3. (1, Am br/qcr kr,0) : r ∈ {0, . . . , b − 1}
When the object Am arrives to a cell 1, the calculus of br has finished. This
means that the corresponding object si from A = {s1, . . . , sn} is placed on
the r − th bin. In order to help in the subtraction of the weight of the object
si from the free capacity of the bin r, c objects qr are brought into the cell.
An object kr,0 is also brought for technical reasons.

R4. (1, zi si qr pr/#) : i ∈ {1, . . . , n} r ∈ {0, . . . , b − 1}
This set of rules is the key in the calculus of the total weigh associated to
each bin. Its usage exploits the massive parallelism of P systems and the
maximal application of the rules. Let us notice that in each application of
the rule only one object of the four kind zi, si, qr and pr is sent out of the
cell, so the number of applications correspond to the minimum of amounts of
these objects. Since there are exactly c objects of type zi and qr, the number
of applications corresponds to the minimum between the multiplicities of si
and pr. Let us remark that if the weight of the object si (encoded in their
multiplicity) is greater than the free capacity of the r-th bin (encoded in the
multiplicity of objects pr) then at least one object si will remain in the cell
after the application of these rules.

R5. (1, kr,0/hc
r, kr,1, 0)

(1, hr qr/#, 0)

}
for r ∈ {0, . . . , b − 1}.

These rules can be considered as cleaning rules. After the subtraction per-
formed by the set of rules R4, the leftovers objects qr (if any) must be sent
out of the cells with label 1 in order to avoid undesired interactions. This is
the technical reason of the objects kr,0 and kr,1.

R6. (1, kr,1 di/A0 b0 zci+1 di+1, 0) : i ∈ {1, . . . , n − 1} r ∈ {0, . . . , b − 1}
(1, kr,1 dn/f0 g, 0) : r ∈ {0, . . . , b − 1}

When the object kr,1 appears in a cell with label 1, the cleaning process
performed by the set of rules R5 has finished and the cell is prepared for
starting the process of a new object si+1 This set of rules R6 brings the
objects A0 and b0 for starting newly the division together with the objects
zi+1 and di+1. When all the objects si, i ∈ {1, . . . , n} are processed, the
objects f0 and g are brought into the cells 1 which remain active.

R7. (2, xi/xi+1, 0) : 0 ≤ i ≤ n ∗ (2m + 3) − 1
(2, xn∗(2m+3)/xn∗(2m+3)+1, y0, 0)

The objects xi in the cell 2 act as a counter. When it reaches xn∗(2m+3)+1, a
new object y0 is also brought into the cell 2 for controlling the output process.



R10. (1, g si/#, 0) : i ∈ {1, . . . , n}
(1, f0/f1, 0)
(1, f1 g/xn∗(2m+3)+1, 2)
(2, y0/y1, 0)
(2, g, y1/yes, 0)
(2, xn∗(2m+3)+1 no, 0)

These rules control the output process. Two cases must be considered:
• Case 1: In all the active cells with label 1, there is at least one object si.

This means that all the possible assignment of objects to bins exceed the
capacity. In this case, a rule (1, g si/#, 0) is applied in such membranes
and g is sent out to the environment, the rule (1, f1 g/xn∗(2m+3)+1, 2) is
not applied and finally, the rule (2, xn∗(2m+3)+1 no, 0) sends an object no
to the cell with label 2.

• Case 2: There is at least one of the cells with label 1, where there are no
objects si. This means that all the assignment of objects encoded in such
membrane does not exceed the capacity and it represents a solution for the
problem. In this case, a rule (1, g si/#, 0) is not applied in such membrane
and, in the next step of computation, the rule (1, f1 g/xn∗(2m+3)+1, 2)
is applied, the object g is sent to the cell with label 2 and finally, the
application of (2, g, y1/yes, 0) sends an object yes to the output cell.

– Finally, the input cell has label 1, iin = 1 and the output cell has label 2,
iout = 2.

4.1 A Short Overview

Next, we provide some hints on the computation. The initial configuration C0

contains an object A0 which starts the division process, an object b0 which works
as an accumulator initially set to 0 and objects d1 and z1, where the index a
denotes that the first object in the set A = {s1, . . . , sn} will be process at the
beginning. According to the process described above, the cells with label 1 are
divided and, in parallel, the counted br is increased. The configuration C2m

contains an object Am and an object br encoding that the first object of the set
A is placed into the r-th bin. In the next three steps, rules from the sets R3, R4
and R5 perform the subtraction between the weight of the processed object and
the free capacity of the r-th bin (represented by the multiplicity of the object
pr). The first set of rules from R6 is also applied and in C2m+3 the corresponding
cells 1 contain new objects A0 and b0 and objects d2 and z2, denoting that the
second object of the set A will be processed.

This sequence of 2m + 3 steps is repeated n times (as many times as objects
in A). In the configuration Cn∗(2m+3) all the objects in A have been processed
and the objects f0 and g appear. Only three steps later, in output stage with two
possible cases described above, the halting configuration Cn∗(2m+3)+3 is reached.

4.2 Computational Resources

Each tissue P system of the family described above depends on three parameters:
n, the number of object to distribute among the bins; c, the capacity of the bins;



and b the number of the bins. For the sake of simplicity, the description also
includes a forth parameter m, which only depends on the parameter b, m =
	log2 b
. Each P system Π(n, b, c,m) processes all the input set A = {s1, . . . , sn}
regardless the weight function ω : A → N.

Initially, the P system has only two membranes and the number of objects of
the alphabet is O(nm + b). The set of rules is O(nb) and the number of steps of
the computation is O(nm). Let us remark the special case of rules of the set R2.
In spite of a potential exponential number of cells can be built, not all of them
encode an object br with r ∈ {0, . . . , 2m−1}, which would lead to an exponential
amount of initial resources. In our solution, we only deal with objects bi with
i ∈ {0, . . . , b − 1}, so the initial amount of resources are polynomial function on
the input parameters.

5 Conclusions

The complexity theory of membrane computing is full of interesting open prob-
lems. The most important is the Păun conjecture [14,20,27] which ask if a con-
crete P system model is able to solve or not NP-problems in polynomial time.
The question has been open for more than ten years and even today nobody
knows the answer. If the answer is that NP-problems can be solved in the such
model, a simple way to prove is by providing the design of a family which effec-
tively solves an NP-complete problem. In this way, or it is impossible to find such
design or we need to make new efforts and finding new techniques for designing
solutions to NP-problems which allow us to get the skills for solving the conjec-
ture. In this research line, the design presented in this paper can help to make
the theory stronger and provide new ideas for dealing with open questions.

Finally, let us remark the important role of the definition for recognizer P
systems we have used in this paper. On the one hand, this definition is quite
restrictive, since only one object yes or no is sent to the environment in any
computation. In the literature one can find other definitions of recognizer P
systems and therefore other definitions of what it means to solve a problem in the
framework of Membrane Computing. On the second hand, the synchronization of
the processes in the different membranes plays a key role in the design presented
in this paper, but in the literature one can find some solutions to NP-problems
in time free membrane computing models (e.g., [15,30–32]). The study of the
complexity classes in membrane computing deserves a deep revision under these
new definitions.
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classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–
285 (2003)
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