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Symmetric Variational Formulation of BIE for Domain Decomposition
Problems in Elasticity – An SGBEM Approach for Nonconforming

Discretizations of Curved Interfaces

R. Vodička1, V. Mantič2 and F. París2

Abstract: An original approach to solve do-
main decomposition problems by the symmetric
Galerkin boundary element method is developed.
The approach, based on a new variational prin-
ciple for such problems, yields a fully symmet-
ric system of equations. A natural property of
the proposed approach is its capability to deal
with nonconforming discretizations along straight
and curved interfaces, allowing in this way an
independent meshing of non-overlapping subdo-
mains to be performed. Weak coupling condi-
tions of equilibrium and compatibility at an in-
terface are obtained from the critical point condi-
tions of the energy functional. Equilibrium is im-
posed through local traction (Neumann) bound-
ary conditions prescribed on a subdomain situ-
ated at one side of the interface, and compatibility
is imposed through local displacement (Dirich-
let) boundary conditions prescribed on the other
subdomain situated at the opposite side of the
interface. No additional unknowns such as La-
grange multipliers are introduced. An SGBEM
code for 2D elastic domain decomposition prob-
lems has been implemented. The effectiveness
of the approach developed is documented by nu-
merical examples involving non-matching linear
boundary element meshes at the interfaces, where
the accuracy is analyzed by comparing the nu-
merical results obtained versus the analytical so-
lutions and by evaluating the convergence rate of
the error in the (discretized) integral L2-norm and
maximum-norm for h-refinements of boundary el-
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ement meshes. Finally, a theoretical analysis of
a problem with an interior and an exterior sub-
domain is introduced to explain the observed be-
haviour of numerical results.
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1 Introduction

In the solution of Boundary Value Problems
(BVPs) of continuum mechanics it is some-
times useful or necessary to split the domain
into two or more subdomains, such a proce-
dure being referred to hereinafter as Domain
Decomposition (DD). DD procedures are usu-
ally employed in solving multi-material and con-
tact BVPs or BVPs including complex struc-
tures, sometimes with independent modeling of
substructures, and in developing algorithms to
solve large-scale BVPs on modern parallel com-
puters. DD procedures are also used in cou-
pling different discretization schemes, e.g. Finite
Element Method (FEM) and Boundary Element
Method (BEM).

The development of numerical techniques for so-
lution of BVPs via DD (DDBVPs) has substan-
tially increased recently. There exist several
ways of mathematical formulation and solution
of DDBVPs [Quarteroni and Valli (1999); Stein-
bach (2003)]. In FEM, special attention is paid
to developing techniques based on the mortar el-
ement concept; for recent works on application
of this approach to elastic and contact problems
see McDevitt and Laursen (2000); Puso (2004)
and further references given therein. One of the
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main problems is to find reliable methods tying
nonconforming meshes along curved interfaces;
in fact most of the works on mortar techniques
have been restricted to straight/planar interfaces.
The capability of a DD approach to deal with such
discretizations represents an important advantage
for engineering applications.

Similar techniques are also under development
in BEM [Blázquez et al. (1998); Hsiao et al.
(2000a); González and Abascal (2000); Vodička
(2000); Blázquez et al. (2002)], only the un-
knowns along the external boundary and along
the interfaces of subdomains being directly com-
puted. The application of DD in BEM is in fact re-
quired when solving multi-material BVPs. Sym-
metric Galerkin BEM (SGBEM) [Sirtori (1979);
Bonnet et al. (1998)] represents a valuable al-
ternative to the classical collocational BEM as
it combines the boundary character of the collo-
cational BEM with the symmetrical and energy
based formulation typical for FEM. Several tech-
niques have been developed by different authors
[Maier et al. (1991); Gray and Paulino (1997);
Ganguly et al. (1999); Vodička (2000); Panzeca
et al. (2002)] for application of SGBEM to DD
and contact BVPs. It is expected that SGBEM
will also enable an easy and straightforward cou-
pling with FEM [Hsiao et al. (2000b); Han and
Atluri (2002); Ganguly et al. (2004); Springhetti
et al. (2004)]. Some other advanced applications
of SGBEM can be found in Aimi et al. (2003);
Qian et al. (2004) and Duddeck (2006).

A natural way to formulate SGBEM is a varia-
tional formulation, which provides SGBEM with
some aspects analogous to FEM, e.g. conditions
of a critical point of an energy functional repre-
sent the final system of equations to be solved
and a convergence of error in energy norms can
be relatively easily shown [Wendland and Hsiao
(2004)]. Thus, it is worth an effort to deduce a
variational formulation of SGBEM for DDBVPs.
This has been done in the present work by gener-
alizing to DDBVPs, through the development of
an original approach, a variational formulation of
one-domain SGBEM due to Bonnet (1995).

A variational formulation of a DDBVP requires
an adequate formulation of the coupling condi-

tions along the interface. In the present work,
it arises from a weak formulation of elastic con-
tact conditions proposed by Blázquez et al. (1998)
(developing an original idea by Schnack (1987)),
here adapted for DDBVP with perfect interfaces.
In fact, the variational principle proposed pro-
duces the weak coupling conditions as a natural
generalization of the classical strong point-wise
coupling conditions, in such a way that the devel-
oped approach shares some ideas with the mortar
approaches used in FEM [McDevitt and Laursen
(2000); Puso (2004)].

An implementation of the above weak formu-
lation of coupling conditions for non-matching
boundary element meshes at curved interfaces has
been included in the SGBEM code developed.
Various methods of data transfer between non-
matching meshes via integrals computing over
the discretized curved surfaces were introduced
in Jiao and Heath (2004), one of these methods
based on the concept of common refinement hav-
ing been used in the present code.

The structure of the present paper is as follows.
Elastic BVP and DDBVP together with the two
basic Boundary Integral Equations (BIEs) are in-
troduced in the preliminary Section 2. In Sec-
tion 3 the main theoretical results are presented.
After introducing the functional of the energy for
DDBVPs, it is shown that its critical point gives
the solution of the original DDBVP. The result-
ing weak formulation of the BIE system, whose
solution corresponds to this critical point, is first
deduced in the integral form. Then, an operator
notation is used to show easily its overall symmet-
rical structure. The discretization of the BIE sys-
tem obtained by SGBEM, using linear continu-
ous boundary elements, is introduced in Section 4.
The accuracy and convergence for h-refinements
of the present approach are documented in Sec-
tion 5 by three numerical examples. In order to
explain some aspects of the observed behaviour
of the numerical results, a theoretical analysis of
a simple DDBVP, with a bounded interior and an
unbounded exterior subdomain, at the discretized
level, is presented in the Appendix, where a re-
duction of the resulting system matrix to its Schur
complement is carried out and the obtained matrix
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operators, which include Galerkin discretizations
of the local Steklov-Poincaré operators for subdo-
mains [Quarteroni and Valli (1999); Hsiao et al.
(2000b); Steinbach (2003)], are discussed.

2 Preliminaries.

2.1 Elastic BVP

Let us consider a linear elastic body defined by
a domain Ω ⊂ R

d (d = 2 or 3) with a bounded
Lipschitz boundary ∂Ω = Γ (i.e. Γ given locally
as graphs of Lipschitz functions in a finite number
of appropriate cartesian coordinate systems, and
Ω being locally on one side of Γ). Note that Γ
may include corners but not cracks and cusps. Let
ΓS ⊂ Γ denote the smooth part of Γ, i.e. excluding
corners, edges, points of curvature jumps, etc. Let
n denote the unit outward normal vector defined at
ΓS.

Let xi (i = 1, . . . ,d) be a fixed cartesian coor-
dinate system at the origin point O. Let u =
(u1, . . . ,ud) be the displacement solution of the
following BVP for the Navier equation with zero
body forces:

ci jkluk,l j(x) = ci jklεkl, j(u(x)) = 0, x ∈ Ω, (1a)

ui(x) = gi(x), x ∈ Γu, (1b)

ti(x) = (Tn(x))i(u(x)) = hi(x), x ∈ Γt , (1c)

with the fourth-order symmetric positively def-
inite tensor of elastic stiffness ci jkl (i, j,k, l =
1, . . .,d), strain tensor εi j, traction operator T n

and the split of the boundary Γ = Γu ∪ Γt ( /0 =
Γu ∩Γt ) in accordance with the boundary condi-
tions.

2.2 Elastic BIEs

The Somigliana displacement identity [Jaswon
and Symm (1977); Baláš et al. (1989); París and
Cañas (1997)] holds for the solution of the above
BVP defined on a bounded homogenous Ω (inte-
rior BVP):

χΩ(x)ui(x) =
∫

Γ
Ui j(x,y)t j(y)dyS

−
∫

Γ
Ti j(x,y)u j(y)dyS,

x ∈ R
d \Γ, i, j = 1, . . .,d,

(2)

where χΩ is the characteristic function of Ω
(χΩ(x) = 1 if x ∈ Ω and χΩ(x) = 0 if x �∈ Ω∪Γ),
Ui j is the fundamental solution in displacements
of the Navier equation and Ti j represents the fun-
damental tractions, obtained from the fundamen-
tal solution via the traction operator: T (x,y) =(
T n(y)U(x,y)

)T
, T denoting the transpose ma-

trix. Note that (2) is also valid for a solution of
an exterior BVP defined on an unbounded Ω with
a bounded Γ [Jaswon and Symm (1977); Baláš et
al. (1989)] if the solution fulfills the well-known
regularity condition at infinity:

ui(x) = Ui j(x,0)b j +O(‖x‖1−d),

‖x‖ → ∞, b j =
∫

Γ
t j(y)dyS.

(3)

Applying the traction operator to (2) the
Somigliana traction identity is obtained:

χΩ(x)ti(x) =
∫

Γ
T ∗

i j(x,y)t j(y)dyS

−
∫

Γ
Si j(x,y)u j(y)dyS,

x ∈ R
d \Γ,

(4)

where T ∗(x,y) = T n(x)U(x,y), S(x,y) =
T n(x)T (x,y) and n(x) is the unit vector normal
to an auxiliary curve passing through the point x
where the traction is to be evaluated.

With reference to the above defined integral ker-
nels, let us recall the following reciprocity rela-
tions [Bonnet et al. (1998)]: U(x,y) = UT (y,x),
T ∗(x,y) = T T (y,x) and S(x,y) = ST (y,x). Addi-
tionally, the fundamental solution is symmetric,
i.e. U(x,y) = UT (x,y), and, according to Mantič
and París (1997a,b), also the hypersingular inte-
gral kernel S is symmetric in 2D, i.e. S(x,y) =
ST (x,y). Additionally, the kernels T ∗(x,y) and
T (x,y) change their sign when evaluated using the
normals defined with respect to the opposite sides
of a curve.

After an asymptotic procedure applied to (2)
and (4) for a boundary point x ∈ ΓS, the following
BIEs, sometimes called u-BIE and t-BIE respec-
tively, are obtained [Baláš et al. (1989); Guiggiani
et al. (1992); Guiggiani (1995); Mantič and París
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(1995); Young (1996); París and Cañas (1997)]:

1
2

ui(x) =
∫

Γ
Ui j(x,y)t j(y)dyS

−−
∫

Γ
Ti j(x,y)u j(y)dyS, (5a)

1
2

ti(x) =−
∫

Γ
T ∗

i j(x,y)t j(y)dyS

− =
∫

Γ
Si j(x,y)u j(y)dyS, (5b)

x ∈ ΓS, i, j = 1, . . . ,d.

the second and first integrals respectively on the
right-hand sides of (5a) and (5b), with a strongly
singular integral kernel, being evaluated in the
sense of Cauchy principal value, and the second
integral on the right-hand side of (5b), with a hy-
persingular integral kernel, being evaluated in the
sense of Hadamard finite part.

Both aforementioned BIEs, (5a) and (5b), will be
used in the following derivation of the SGBEM
formulation for a DDBVP.

2.3 Domain decomposition

A DD approach starts with a split of Ω into sev-
eral subdomains. For the sake of simplicity, a
split into two non-overlapping subdomains ΩA

and ΩB, whose respective boundaries are denoted
as ΓA = ∂ΩA and ΓB = ∂ΩB, will be considered
hereinafter, Figure 1. The common part of ΓA and
ΓB is denoted as Γc = ΓA ∩ΓB. Hence, reconsid-
ering the boundary conditions (1b) and (1c) and
the corresponding split of Γ, we can write Γη =
Γη

u ∪Γη
t ∪Γc, where η = A,B and /0 = Γη

u ∩Γη
t =

Γη
u ∩Γc = Γη

t ∩Γc.

The DDBVP for the Navier equation (1) can be
written in the form:

cη
i jklu

η
k,l j(x) = cη

i jklεkl, j(uη(x)) = 0, (6a)

x ∈ Ωη , η = A,B,

uη
i (x) = gη

i (x), x ∈ Γη
u , (6b)

tη
i (x) = (Tnη (x))i(uη(x)) = hη

i (x), x ∈ Γη
t , (6c)

uA
i (x) = uB

i (x), x ∈ Γc, (6d)

tA
i (x) = −tB

i (x), x ∈ Γc, (6e)

where the coupling conditions between ΩA and
ΩB, equations (6d) and (6e) respectively, enforce

O x1

x2

ΩA ΩB

ΓB
u

ΓA
u

ΓB
t

ΓA
t

Γc

gA

gB

hA

hB

Figure 1: Domain decomposition problem.

compatibility of the displacements uA and uB de-
fined on subdomains ΩA and ΩB and equilibrium
of the tractions tA and tB defined on ΓA and ΓB.
These coupling conditions will be formulated in
a weak form in the variational formulation intro-
duced in the next section.

3 Variational formulation

3.1 Energy functional for a DDBVP and its
variation

Let us introduce an energy functional E(uA,uB) as
a function of displacements uA and uB. The func-
tional E can be expressed in the following form:

E(uA,uB) = EA
p (uA)+EB

p (uB)+Ec(uA,uB), (7)

where the functionals EA
p (uA) and EB

p (uB) rep-
resent the total energy functionals [Hartmann
(1985)] associated to ΩA and ΩB, respectively,
without the parts belonging to Γc. These func-
tionals can be expressed in the form:

Eη
p (uη) =

1
2

∫
Ωη

εi j(uη )cη
i jklεkl(uη )dV

−
∫

Γη
t

hη
i uη

i dS−
∫

Γη
u

tη
i

(
uη

i −gη
i

)
dS,

η =A,B,

(8)

where the fufnctions tη represent the tractions of
the displacement solutions uη calculated via the
traction operator T n, i. e. tη = T nη (uη).

The last term in (7), which defines a form of in-
terface energy associated to coupling conditions
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across Γc, takes the form:

Ec(uA,uB) = −
∫

Γc

tA
i

(
uA

i −uB
i

)
dS, (9)

which indicates that the solution of the DDBVP
will cause this term, called interface constraint
functional, to vanish.
The condition of the critical point of the func-
tional E in (7) means that the first order variation
of E vanishes, which can be written after a rear-
rangement as:

0 = δ E(uA,uB; δ uA,δ uB) (10a)

=
(∫

ΩA
εi j(δ uA)cA

i jklεkl(uA)dV −
∫

ΓA
t

hA
i δ uA

i dS

−
∫

ΓA
u

tA
i δ uA

i dS−
∫

Γc

tA
i δ uA

i dS

) (10b)

+
(∫

ΩB
εi j(δ uB)cB

i jklεkl(uB)dV −
∫

ΓB
t

hB
i δ uB

i dS

−
∫

ΓB
u

tB
i δ uB

i dS−
∫

Γc

tB
i δ uB

i dS

) (10c)

−
(∫

ΓA
u

δ tA
i

(
uA

i −gA
i

)
dS +

∫
ΓB

u

δ tB
i

(
uB

i −gB
i

)
dS

)
(10d)

−
(∫

Γc

δ tA
i

(
uA

i −uB
i

)
dS−

∫
Γc

δ uB
i

(
tA
i + tB

i

)
dS

)
.

(10e)

As will be explained in what follows, relation (10)
implies that the solution of the DDBVP (6) is the
critical point of the functional E. If the volume
integrals in expressions (10b) and (10c) are inte-
grated by parts, giving the volume integrals with
the virtual displacements δuη without derivatives,
these expressions render the Navier equations (6a)
for functions uA and uB and the boundary condi-
tions for tractions (6c). Expressions (10d) van-
ish only if the boundary conditions for displace-
ments (6b) are fulfilled.

Finally, the line (10e) enforces the equilib-
rium (6e) and compatibility (6d) conditions at Γc

in a weak sense: the compatibility is imposed
through the displacement (Dirichlet) boundary
conditions on subdomain ΩA along Γc with ‘pre-
scribed’ displacements uB, and the equilibrium is

imposed through the traction (Neumann) bound-
ary conditions on subdomain ΩB along Γc with
‘prescribed’ tractions tA.

The relations between the functions defined along
the boundary Γc are schematically presented
in Figure 2. An arrow connects two functions
which are equal to each other in the weak sense
due to the relation whose number is written in the
parentheses close to the arrow. We conclude that
finding the critical point of the energy functional
E (7) is equivalent to solving the DDBVP (6).

O x1

x2

ΩA ΩB

ΓB
u

ΓA
u

ΓB
t

ΓA
t

Γc Γc

gA

gB

hA

hB

uB , tB=TnB (uB)

uB

uA, tA=TnA(uA)

tA

(10e)

(10e)

Figure 2: Explanation of the variables in the func-
tional E.

In order to obtain a relation suitable for an
SGBEM approach, equation (10) is modified
integrating by parts the volume integrals, but
now yielding displacements uη without deriva-
tives. Recalling the meaning of δ tη as δ tη =
T nη (δuη), the following relation is obtained:

0 =
(
−
∫

ΩA

∂
∂ xl

(
εi j(δ uA)cA

i jkl

)
uA

k dV

+
∫

ΓA
t

uA
i δ tA

i dS +
∫

ΓA
u

gA
i δ tA

i dS +
∫

Γc

uA
i δ tA

i dS

−
∫

ΓA
t

hA
i δ uA

i dS−
∫

ΓA
u

tA
i δ uA

i dS−
∫

Γc

tA
i δ uA

i dS

)

+
(
−
∫

ΩB

∂
∂ xl

(
εi j(δ uB)cB

i jkl

)
uB

k dV

+
∫

ΓB
t

uB
i δ tB

i dS +
∫

ΓB
u

gB
i δ tB

i dS +
∫

Γc

uB
i δ tB

i dS

−
∫

ΓB
t

hB
i δ uB

i dS−
∫

ΓB
u

tB
i δ uB

i dS−
∫

Γc

tB
i δ uB

i dS

)

−
(∫

Γc

δ tA
i

(
uA

i −uB
i

)
dS−

∫
Γc

δ uB
i

(
tA
i + tB

i

)
dS

)
.

(11)
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3.2 Symmetric variational formulation of BIEs
for a DDBVP

So far, no restrictions on the virtual displacements
δuη have been set. Let us consider only those δuη

which satisfy the Navier equation in Ωη , causing
the volume integrals in (11) to vanish. Then, these
displacements have the following boundary inte-
gral representation:

δuη
i (x) =

∫
Γη

Uη
i j (x,y)ϕη

j (y)dyS

−
∫

Γη
T η

i j (x,y)ψη
j (y)dyS,

x ∈ Ωη ,

(12)

where the functions ϕη and ψη can be considered
to have the form:

ϕη = δ tη −δ t̃η , ψη = δuη −δ ũη . (13)

Note that the representation formula (12) can be
obtained from the Somigliana identity (2) written
for Ωη and for each connected subset of its com-
plement in R

d. In fact, the function δ ũη repre-
sents the trace of a displacement solution of the
Navier equation at each such connected subset,
equipped with the radiation condition (3) if the
pertinent subset is unbounded, and δ t̃η represents
the corresponding tractions. The boundary con-
ditions for these functions can be chosen arbitrar-
ily. They are chosen here satisfying the following
conditions:

ϕη(x) = 0, x ∈ Γη
t , η = A,B,

ϕA(x) = δ tA(x), x ∈ Γc,
(14a)

ψη(x) = 0, x ∈ Γη
u , η = A,B,

ψB(x) = δ uB(x), x ∈ Γc,
(14b)

so that the boundary conditions for δ t̃η and δ ũη

read:

δ t̃η(x) = δ tη(x), x ∈ Γη
t , η = A,B,

δ t̃A(x) = 0, x ∈ Γc,
(15a)

δ ũη(x) = δ uη(x), x ∈ Γη
u , η = A,B,

δ ũB(x) = 0, x ∈ Γc.
(15b)

The integral representation (12) can be written
with this particular choice of the functions ϕη and

ψη in the form:

δ uη
i (x) =

∫
Γη

u

Uη
i j (x,y)ϕη

j (y)dyS

−
∫

Γη
t

T η
i j (x,y)ψη

j (y)dyS

+
∫

Γc

Uη
i j (x,y)ϕη

j (y)dyS

−
∫

Γc

T η
i j (x,y)ψη

j (y)dyS,

x ∈ Ωη ,

(16)

which for the limit x → x′ ∈ Γη (or directly utiliz-
ing the pertinent difference of equations (5a) for
Ωη and the connected subsets of its complement
in R

d) renders the relations:

δ uη
i (x′) =

∫
Γη

u

Uη
i j (x

′,y)ϕη
j (y)dyS

−
∫

Γη
t

T η
i j (x

′,y)ψη
j (y)dyS

+
∫

Γc

Uη
i j (x

′,y)ϕη
j (y)dyS

−
∫

Γc

T η
i j (x

′,y)ψη
j (y)dyS,

x′ ∈ Γη
u ,

(17a)

δ uη
i (x′) =

∫
Γη

u

Uη
i j (x

′,y)ϕη
j (y)dyS

−
(
−1

2
ψη

i (x′)+−
∫

Γη
t

T η
i j (x

′,y)ψη
j (y)dyS

)

+
∫

Γc

Uη
i j (x

′,y)ϕη
j (y)dyS

−
∫

Γc

T η
i j (x

′ ,y)ψη
j (y)dyS,

x′ ∈ (Γη
t )S,

(17b)

δ uη
i (x′) =

∫
Γη

u

Uη
i j (x

′,y)ϕη
j (y)dyS

−
∫

Γη
t

T η
i j (x

′ ,y)ψη
j (y)dyS

+
∫

Γc

Uη
i j (x

′,y)ϕη
j (y)dyS

−
(
−1

2
ψη

i (x′)+−
∫

Γc

T η
i j (x

′,y)ψη
j (y)dyS

)
,

x′ ∈ (Γc)S.

(17c)

Analogously, the boundary integral representation
of the virtual tractions δ tη (see also equation (5b))
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can be obtained:

δ tη
i (x′) =

(
1
2

ϕη
i (x′)+−

∫
Γη

u

T η∗
i j (x′,y)ϕη

j (y)dyS

)

−
∫

Γη
t

Sη
i j(x

′,y)ψη
j (y)dyS

+
∫

Γc

T η∗
i j (x′,y)ϕη

j (y)dyS

−
∫

Γc

Sη
i j(x

′,y)ψη
j (y)dyS,

x′ ∈ (Γη
u )S,

(18a)

δ tη
i (x′) =

∫
Γη

u

T η∗
i j (x′,y)ϕη

j (y)dyS

−=
∫

Γη
t

Sη
i j(x

′,y)ψη
j (y)dyS

+
∫

Γc

T η∗
i j (x′,y)ϕη

j (y)dyS

−
∫

Γc

Sη
i j(x

′,y)ψη
j (y)dyS,

x′ ∈ (Γη
t )S,

(18b)

δ tη
i (x′) =

∫
Γη

u

T η∗
i j (x′,y)ϕη

j (y)dyS

−
∫

Γη
t

Sη
i j(x

′,y)ψη
j (y)dyS

+
(

1
2

ϕη
i (x′)+−

∫
Γc

T η∗
i j (x′,y)ϕη

j (y)dyS

)

−=
∫

Γc

Sη
i j(x

′,y)ψη
j (y)dyS,

x′ ∈ (Γc)S.

(18c)

Let the representations (17) and (18) be substi-
tuted into (11). Recall that the volume integrals
in (11) vanish and the variations δ tA and δuB

along Γc are equal to ϕA and ψB, respectively, due
to (14). Hence,

0 =
∫

ΓA
t

uA
i (x)

(∫
ΓA

u

T A∗
i j (x,y)ϕA

j (y)dyS

−=
∫

ΓA
t

SA
i j(x,y)ψA

j (y)dyS +
∫

Γc

T A∗
i j (x,y)ϕA

j (y)dyS

−
∫

Γc

SA
i j(x,y)ψA

j (y)dyS

)
dxS

+
∫

ΓA
u

gA
i (x)

((
1
2

ϕA
i (x)+−

∫
ΓA

u

T A∗
i j (x,y)ϕA

j (y)dyS

)

−
∫

ΓA
t

SA
i j(x,y)ψA

j (y)dyS +
∫

Γc

T A∗
i j (x,y)ϕA

j (y)dyS

−
∫

Γc

SA
i j(x,y)ψA

j (y)dyS

)
dxS

+
∫

Γc

uA
i (x)

(∫
ΓA

u

T A∗
i j (x,y)ϕA

j (y)dyS

−
∫

ΓA
t

SA
i j(x,y)ψA

j (y)dyS

+
(

1
2

ϕA
i (x)+−

∫
Γc

T A∗
i j (x,y)ϕA

j (y)dyS

)

− =
∫

Γc

SA
i j(x,y)ψA

j (y)dyS

)
dxS

−
∫

ΓA
t

hA
i (x)

(∫
ΓA

u

UA
i j(x,y)ϕA

j (y)dyS

−
(
−1

2
ψA

i (x)+−
∫

ΓA
t

T A
i j (x,y)ψA

j (y)dyS

)

+
∫

Γc

UA
i j(x,y)ϕA

j (y)dyS

−
∫

Γc

T A
i j (x,y)ψA

j (y)dyS

)
dxS

−
∫

ΓA
u

tA
i (x)

(∫
ΓA

u

UA
i j(x,y)ϕA

j (y)dyS

−
∫

ΓA
t

T A
i j (x,y)ψA

j (y)dyS +
∫

Γc

UA
i j(x,y)ϕA

j (y)dyS

−
∫

Γc

T A
i j (x,y)ψA

j (y)dyS

)
dxS

−
∫

Γc

tA
i (x)

(∫
ΓA

u

UA
i j(x,y)ϕA

j (y)dyS

−
∫

ΓA
t

T A
i j (x,y)ψA

j (y)dyS +
∫

Γc

UA
i j(x,y)ϕA

j (y)dyS

−
(
−1

2
ψA

i (x)+−
∫

Γc

T A
i j (x,y)ψA

j (y)dyS

))
dxS

+
∫

ΓB
t

uB
i (x)

(∫
ΓB

u

T B∗
i j (x,y)ϕB

j (y)dyS

−=
∫

ΓB
t

SB
i j(x,y)ψB

j (y)dyS +
∫

Γc

T B∗
i j (x,y)ϕB

j (y)dyS

−
∫

Γc

SB
i j(x,y)ψB

j (y)dyS

)
dxS

+
∫

ΓB
u

gB
i (x)

((
1
2

ϕB
i (x)+−

∫
ΓB

u

T B∗
i j (x,y)ϕB

j (y)dyS

)

−
∫

ΓB
t

SB
i j(x,y)ψB

j (y)dyS +
∫

Γc

T B∗
i j (x,y)ϕB

j (y)dyS

−
∫

Γc

SB
i j(x,y)ψB

j (y)dyS

)
dxS

+
∫

Γc

uB
i (x)

(∫
ΓB

u

T B∗
i j (x,y)ϕB

j (y)dyS

−
∫

ΓB
t

SB
i j(x,y)ψB

j (y)dyS

+
(

1
2

ϕB
i (x)+−

∫
Γc

T B∗
i j (x,y)ϕB

j (y)dyS

)
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−=
∫

Γc

SB
i j(x,y)ψB

j (y)dyS

)
dxS

−
∫

ΓB
t

hB
i (x)

(∫
ΓB

u

UB
i j(x,y)ϕB

j (y)dyS

−
(
−1

2
ψB

i (x)+−
∫

ΓB
t

T B
i j (x,y)ψB

j (y)dyS

)

+
∫

Γc

UB
i j(x,y)ϕB

j (y)dyS

−
∫

Γc

T B
i j (x,y)ψB

j (y)dyS

)
dxS

−
∫

ΓB
u

tB
i (x)

(∫
ΓB

u

UB
i j(x,y)ϕB

j (y)dyS

−
∫

ΓB
t

T B
i j (x,y)ψB

j (y)dyS +
∫

Γc

UB
i j(x,y)ϕB

j (y)dyS

−
∫

Γc

T B
i j (x,y)ψB

j (y)dyS

)
dxS

−
∫

Γc

tB
i (x)

(∫
ΓB

u

UB
i j(x,y)ϕB

j (y)dyS

−
∫

ΓB
t

T B
i j (x,y)ψB

j (y)dyS +
∫

Γc

UB
i j(x,y)ϕB

j (y)dyS

−
(
−1

2
ψB

i (x)+−
∫

Γc

T B
i j (x,y)ψB

j (y)dyS

))
dxS

−
∫

Γc

ϕA
i (y)

(
uA

i (y)−uB
i (y)

)
dyS

+
∫

Γc

ψB
i (y)

(
tA
i (y)+ tB

i (y)
)

dyS.

(19)

Finally, to obtain a variational formulation of the
BIE system for SGBEM solution of DDBVPs,
first the order of the integration in the double inte-
grals is interchanged, and then the terms in the ex-
pression obtained are reordered to gather together
the terms with the same function ϕη or ψη , uti-
lizing the above mentioned reciprocity properties
of the integral operators. The interchangeability
of the order of the Cauchy principal value and
Hadamard finite part integrals with the common
integral has been assumed due to the results of the
analysis presented in Bonnet (1995). Hence,

0 =
∫

ΓA
u

ϕA
j (y)

(
−
∫

ΓA
u

UA
ji(y,x)tA

i (x)dxS

+
∫

ΓA
t

T A
ji (y,x)uA

i (x)dxS−
∫

Γc

UA
ji(y,x)tA

i (x)dxS

+
∫

Γc

T A
ji (y,x)uA

i (x)dxS−
∫

ΓA
t

UA
ji(y,x)hA

i (x)dxS

+
(

1
2

gA
j (y)+−

∫
ΓA

u

T A
ji (y,x)gA

i (x)dxS

))
dyS

+
∫

ΓA
t

ψA
j (y)

(∫
ΓA

u

T A∗
ji (y,x)tA

i (x)dxS

−=
∫

ΓA
t

SA
ji(y,x)uA

i (x)dxS +
∫

Γc

T A∗
ji (y,x)tA

i (x)dxS

−
∫

Γc

SA
ji(y,x)uA

i (x)dxS

+
(
−1

2
hA

j (y)+−
∫

ΓA
t

T A∗
ji (y,x)hA

i (x)dxS

)

−
∫

ΓA
u

SA
ji(y,x)gA

i (x)dxS

)
dyS

+
∫

Γc

ϕA
j (y)

(
uB

j (y)−
∫

ΓA
u

UA
ji(y,x)tA

i (x)dxS

+
∫

ΓA
t

T A
ji (y,x)uA

i (x)dxS−
∫

Γc

UA
ji(y,x)tA

i (x)dxS

+
(
−1

2
uA

j (y)+−
∫

Γc

T A
ji (y,x)uA

i (x)dxS

)

−
∫

ΓA
t

UA
ji(y,x)hA

i (x)dxS +
∫

ΓA
u

T A
ji (y,x)gA

i (x)dxS

)
dyS

+
∫

Γc

ψA
j (y)

(∫
ΓA

u

T A∗
ji (y,x)tA

i (x)dxS

−
∫

ΓA
t

SA
ji(y,x)uA

i (x)dxS

+
(
−1

2
tA

j (y)+−
∫

Γc

T A∗
ji (y,x)tA

i (x)dxS

)

−=
∫

Γc

SA
ji(y,x)uA

i (x)dxS +
∫

ΓA
t

T A∗
ji (y,x)hA

i (x)dxS

−
∫

ΓA
u

SA
ji(y,x)gA

i (x)dxS

)
dyS

+
∫

ΓB
u

ϕB
j (y)

(
−
∫

ΓB
u

UB
ji(y,x)tB

i (x)dxS

+
∫

ΓB
t

T B
ji (y,x)uB

i (x)dxS−
∫

Γc

UB
ji(y,x)tB

i (x)dxS

+
∫

Γc

T B
ji (y,x)uB

i (x)dxS−
∫

ΓB
t

UB
ji(y,x)hB

i (x)dxS

+
(

1
2

gB
j (y)+−

∫
ΓB

u

T B
ji (y,x)gB

i (x)dxS

))
dyS

+
∫

ΓB
t

ψB
j (y)

(∫
ΓB

u

T B∗
ji (y,x)tB

i (x)dxS

−=
∫

ΓB
t

SB
ji(y,x)uB

i (x)dxS +
∫

Γc

T B∗
ji (y,x)tB

i (x)dxS

−
∫

Γc

SB
ji(y,x)uB

i (x)dxS

+
(
−1

2
hB

j (y)+−
∫

ΓB
t

T B∗
ji (y,x)hB

i (x)dxS

)

−
∫

ΓB
u

SB
ji(y,x)gB

i (x)dxS

)
dyS

+
∫

Γc

ϕB
j (y)

(
−
∫

ΓB
u

UB
ji(y,x)tB

i (x)dxS
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+
∫

ΓB
t

T B
ji (y,x)uB

i (x)dxS−
∫

Γc

UB
ji(y,x)tB

i (x)dxS

+
(

1
2

uB
j (y)+−

∫
Γc

T B
ji (y,x)uB

i (x)dxS

)

−
∫

ΓB
t

UB
ji(y,x)hB

i (x)dxS

+
∫

ΓB
u

T B
ji (y,x)gB

i (x)dxS

)
dyS

+
∫

Γc

ψB
j (y)

(
tA

j (y)+
∫

ΓB
u

T B∗
ji (y,x)tB

i (x)dxS

−
∫

ΓB
t

SB
ji(y,x)uB

i (x)dxS

+
(

1
2

tB
j (y)+−

∫
Γc

T B∗
ji (y,x)tB

i (x)dxS

)

−=
∫

Γc

SB
ji(y,x)uB

i (x)dxS +
∫

ΓB
t

T B∗
ji (y,x)hB

i (x)dxS

−
∫

ΓB
u

SB
ji(y,x)gB

i (x)dxS

)
dyS.

(20)

Introducing the following operator notation will
allow us to rewrite the variational formulation of
the BIE system (20) in a compact and transparent
form. Let

ωηT
r Zη

rswη
s =

∫
Γη

r

ωη
j (y)

(∫
Γη

s

Zη
ji(y,x)wη

i (x)dxS

)
dyS,

(21)

where ω stands for ϕ or ψ , w stands for u or t, r
and s stand for u, t or c, and Z stands for U , T ,
T ∗ or S, and where the inner integral can be reg-
ular, weakly singular, Cauchy principal value or
Hadamard finite part integral. Hereinafter, uη

r =
uη |Γη

r
and tη

r = tη |Γη
r

for r = u, t and uη
c = uη |Γc

and tη
c = tη |Γc for η = A,B mean the restrictions

of displacements and tractions on the respective
boundary parts. Then (20) reads:

0 =ϕAT
u

(
−UA

uutA
u +T A

utu
A
t −U A

uct
A
c +T A

ucu
A
c

−UA
uth

A +
(

1
2

IA
uu +T A

uu

)
gA
)

+ψAT
t

(
T A∗

tu tA
u −SA

tt u
A
t +T A∗

tc tA
c −SA

tcuA
c

+
(
−1

2
IA
tt +T A∗

tt

)
hA−SA

uugA
)

+ϕAT
c

(
−UA

cutA
u +T A

ctu
A
t −UA

cct
A
c

+
(
−1

2
IA

cc +T A
cc

)
uA

c

+ IAB
cc uB

c −UA
cth

A +T A
cugA

)

+ψAT
c

(
T A∗

cu tA
u −SA

ctu
A
t +

(
−1

2
IA

cc +T A∗
cc

)
tA
c

−SA
ccuA

c + T A∗
ct hA −SA

cugA
)

+ϕBT
u

(
−UB

uutB
u +T B

ut u
B
t −UB

uctB
c +T B

ucuB
c

−UB
uth

B +
(

1
2

IB
uu +T B

uu

)
gB
)

+ψBT
t

(
T B∗

tu tB
u −SB

ttu
B
t +T B∗

tc tB
c −SB

tcuB
c

+
(
−1

2
IB
tt +T B∗

tt

)
hB −SB

uugB
)

+ϕBT
c

(
−UB

cutB
u +T B

ctu
B
t −UB

cctB
c

+
(

1
2

IB
cc +T B

cc

)
uB

c − UB
cth

B +T B
cugB

)

+ψBT
c

(
T B∗

cu tB
u −SB

ctu
B
t +

(
1
2

IB
cc +T B∗

cc

)
tB
c

−SB
ccuB

c + IBA
cc tA

c +T B∗
ct hB −SB

cugB
)

(22)

or equivalently in matrix-operator form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕA
u

ψA
t

ϕA
c

ψA
c

ϕB
u

ψB
t

ϕB
c

ψB
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(
MAT RIX

I

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tA
u

uA
t

tA
c

uA
c

tB
u

uB
t

tB
c

uB
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕA
u

ψA
t

ϕA
c

ψA
c

ϕB
u

ψB
t

ϕB
c

ψB
c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

(
MAT RIX

II

)⎛⎜⎜⎝
hA

gA

hB

gB

⎞
⎟⎟⎠ ,

(23)
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where(
MAT RIX

I

)
=

⎛
⎜⎜⎜⎜⎜⎝

−UA
uu T A

ut −UA
uc T A

uc 0 0 0 0
T A∗

tu −SA
tt T A∗

tc −SA
tc 0 0 0 0

−UA
cu TA

ct −UA
cc − 1

2 IA
cc+TA

cc 0 0 0 IAB
cc

T A∗
cu −SA

ct − 1
2 IA

cc+TA∗
cc −SA

cc 0 0 0 0

0 0 0 0 −UB
uu T B

ut −UB
uc T B

uc

0 0 0 0 T B∗
tu −SB

tt T B∗
tc −SB

tc

0 0 0 0 −UB
cu T B

ct −UB
cc

1
2 IB

cc+TB
cc

0 0 IBA
cc 0 T B∗

cu −SB
ct

1
2 IB

cc+T B∗
cc −SB

cc

⎞
⎟⎟⎟⎟⎟⎠,

(
MAT RIX

II

)
=

⎛
⎜⎜⎜⎜⎜⎝

UA
ut − 1

2 IA
uu−TA

uu 0 0
1
2 IA

tt −TA∗
tt SA

uu 0 0

UA
ct −TA

cu 0 0
−T A∗

ct SA
cu 0 0

0 0 UB
ut − 1

2 IB
uu−TB

uu

0 0 1
2 IB

tt−T B∗
tt SB

uu

0 0 UB
ct −T B

cu

0 0 −TB∗
ct SB

cu

⎞
⎟⎟⎟⎟⎟⎠.

In the previous relations I denotes the identity op-
erator with the subscripts and superscripts speci-
fying the part of the boundary where it is consid-
ered.

As the functions ψη and ϕη respectively repre-
sent the virtual displacements or tractions and the
system in (23) has to be satisfied for any virtual
function, the columns containing these functions
could be omitted to obtain a symmetric BIE sys-
tem for DDBVP. Nevertheless, for the SGBEM
formulation it is more convenient to keep (23) in
the present form.

4 Discretization

The BIE system (23) will be solved numerically
by SGBEM. To this end, let us introduce an ap-
proximation of the functions appearing there by
continuous linear boundary elements [París and
Cañas (1997)] (allowing discontinuities of the
tractions at the junctions of the elements if re-
quired). Thus, the approximation formulas can be
written in the form:

uη(x) = ∑
k

Nη
ψk(x)uη

k , tη(x) = ∑
k

Nη
ϕk(x)tηk ,

(24)

where Nη
ψk(x) and Nη

ϕk(x), respectively, are ma-
trices containing the shape functions of displace-
ments and tractions associated to node k at Γη ,

and uη
k and tηk , respectively, are vectors contain-

ing the components of the displacement and trac-
tion vector at node k. Let uη , gη , tη and hη ,
respectively, denote the vector containing all un-
known nodal displacements, all prescribed nodal
displacements, all unknown nodal tractions and
all prescribed nodal tractions associated to Γη .
Let the subvectors of the nodal unknowns at the
boundary parts Γη

u , Γη
t and Γc, respectively, be

distinguished by the same subscripts u, t and c.
The set of vectors of virtual functions ψη and ϕη

can be chosen in such a way that they are equal to
shape functions pertinent to each nodal unknown.
Such a choice leads to the square symmetric ma-
trix of the following system of linear algebraic
equations:

(
MAT RIX

III

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tAu
uA

t
tAc
uA

c
tBu
uB

t
tBc
uB

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

MAT RIX
IV

)⎛⎜⎜⎝
hA

gA

hB

gB

⎞
⎟⎟⎠ .

(25)

where(
MAT RIX

III

)
=⎛

⎜⎜⎜⎜⎜⎝

−UA
uu TA

ut −UA
uc TA

uc 0 0 0 0

TAT
tu −SA

tt TAT
tc −SA

tc 0 0 0 0

−UA
cu TA

ct −UA
cc − 1

2 MA
cc+TA

cc 0 0 0 MAB
cc

TAT
cu −SA

ct − 1
2 MAT

cc +TAT
cc −SA

cc 0 0 0 0

0 0 0 0 −UB
uu TB

ut −UB
uc TB

uc

0 0 0 0 TBT
tu −SB

tt TBT
tc −SB

tc

0 0 0 0 −UB
cu TB

ct −UB
cc

1
2 MB

cc+TB
cc

0 0 MBA
cc 0 TBT

cu −SB
ct

1
2 MBT

cc +TBT
cc −SB

cc

⎞
⎟⎟⎟⎟⎟⎠,

(
MAT RIX

IV

)
=⎛

⎜⎜⎜⎜⎜⎜⎜⎝

UA
ut − 1

2 MA
uu−TA

uu 0 0
1
2 MA

tt−TAT
tt SA

uu 0 0

UA
ct −TA

cu 0 0
−TAT

ct SA
cu 0 0

0 0 UB
ut − 1

2 MB
uu−TB

uu

0 0 1
2 MB

tt−TBT
tt SB

uu

0 0 UB
ct −TB

cu

0 0 −TBT
ct SB

cu

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The elements of the submatrices denoted with let-
ters U, T and S are formed by double integrals
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including the integral kernel denoted by the same
letter as is usual in SGBEM. The square subma-
trices of order d, associated to nodes k and l, of
the mass matrices Mη

rr, with r being u, t or c, are
formed by the integrals:

(Mη
uu)kl =

∫
Γη

u

Nη
ϕk(x)Nη

ψ l(x)dxS,

(Mη
tt )kl =

∫
Γη

t

Nη
ψk(x)Nη

ϕ l(x)dxS, (26)

(Mη
cc)kl =

∫
Γc

Nη
ϕk(x)Nη

ψ l(x)dxS.

It has to be stressed that the mass matrices MAB
cc

and MBA
cc do not have to be square, as there is no

requirement on the identity of the meshes used
to approximate displacements and tractions along
both sides of Γc. In fact, the displacements uA

c can
be approximated using a mesh distinct from that
used for the approximation of uB

c , and an anal-
ogous statements holds for tractions tB

c and tA
c .

Recall also that shape functions of displacements
and tractions defined along one side of Γc can be
different as well. In other words, each of the bod-
ies can be meshed independently, obtaining two
nonconforming meshes along Γc. In this situation,
the aforementioned matrices, respectively, are as-
sociated to a discrete L2-projection from the space
of the shape functions (restricted to Γc) of ΩB on
the space of the shape functions (restricted to Γc)
of ΩA and viceversa. The elements of these ma-
trices can be represented by the integrals:

(MAB
cc )kl =

∫
Γc

NA
ϕk(x)NB

ψ l(x)dxS. (27)

In order to obtain a symmetric matrix on the
left-hand side of (25) the following requirement
should hold:

MBA
cc = (MAB

cc )T . (28)

Note that this always holds in the case where the
geometrical approximations of Γc by boundary el-
ement meshes on ΩA and ΩB sides coincide, al-
though nodes and shape functions of these meshes
do not need to coincide. This typically happens
in the case of Γc given by a straight line (in 2-
D) or by a plane surface with a polygonal bound-
ary (in 3-D). If Γc is curved, one possible way

to keep this property is to calculate the integrals
over the common-refinement mesh, see Jiao and
Heath (2004). This approach for calculating the
integral in (28) is sketched at Figure 3. The nodal
shape functions NA

ϕk and NB
ψ l have the common

support over the segments denoted by a, b and
c. Over these portions of the common-refinement
mesh the integral is evaluated considering the ac-
tual values of the shape functions. Due to the cur-
vature of Γc, a piecewise straight boundary ele-
ment approximation of Γc exhibits jumps in the
normal vector. These jumps do not coincide for
the nonconforming meshes along both sides of Γc.
Therefore, the best way to evaluate the vectorial
elastic variables at Γc is to consider their compo-
nents in the global coordinate system xi.

ΩA ΩBΓc Γc

NA
ϕk

NB
ψl

a
b

c

elements of ΓB at Γc
�����

elements of ΓA at Γc

���

common refinement
���

Figure 3: Common-refinement concept.

5 Numerical examples

5.1 Example definitions and discretizations

The following three examples, Figure 4, have
been chosen to study the accuracy and conver-
gence of the proposed approach. A fictitious par-
tition of a homogeneous domain Ω has been per-
formed, originating two subdomains ΩA and ΩB

with the same material parameters, in all these
examples. The Lame constants have been chosen
λ = μ . The three examples have known analytical
solutions, variations of displacements and trac-
tions (expressed in cartesian coordinates) along
the interface Γc being nonlinear in all the cases.
To test the behaviour of the approach developed
for different shapes of Γc, an open straight, an
open curved, and a closed curved interface Γc
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have been considered, respectively, in the first,
second and third examples.

Rectangular plate under exponential load.
Consider a rectangular domain Ω partitioned into
two square subdomains ΩA and ΩB, Figure 4(a).
The solution is given by the Airy stress function:
F(x1,x2) = sin(x1)exp(−x2), the type of bound-
ary conditions being defined as shown in Fig-
ure 4(a). The uniform boundary element meshes
are defined as follows: starting from 2 elements
per edge of a subdomain in the coarsest mesh and
refining them by dividing each element into 2.
Seven progressively refined meshes are used (with
2, 4, 8, 16, 32, 64 and 128 elements along each
edge). For the nonconforming meshes along Γc,
the ‘two-elements per five-elements’ relation is
used, which means 2–5, 4–10, 8–20, 16–40, 32–
80, 64–160 and 128–320 elements at both sides of
Γc. The results are plotted for the points of Γc —
the segment AB, coordinate s being the distance
of the current point from point A.

Ring under circumferential shear. Consider a
ring, subjected to a constant shear stress along the
exterior face and fixed along its inner face. Due to
the antisymmetric character of this problem, the
domain Ω is given by a quarter of the ring. It
is partitioned into ΩA and ΩB as shown in Fig-
ure 4(b). The meshes, which are uniform at each
edge of a subdomain, are defined as follows: start-
ing from 2 elements per straight edge and 3 ele-
ments per circular edge in the coarsest mesh and
refining them by dividing each element into 2. Six
progressively refined meshes are used (with 2(3),
4(6), 8(12), 16(24), 32(48) and 64(96) elements
at a straight (circular) edge). For the noncon-
forming meshes along Γc, the ‘three-elements per
seven-elements’ relation is applied, which means
3–7, 6–14, 12–28, 24–56, 48–112 and 96–224 el-
ements at both sides of Γc. The results are plot-
ted for the points of Γc, the arc AB, coordinate α
being the angle between the radius vector of the
current point and the radius vector OA.

Square plate under uniaxial compression. Con-
sider a square domain Ω, which is subjected
to compression, partitioned into a circular sub-
domain ΩA and its complementary subdomain
ΩB, Figure 4(c). The meshes, which are uni-
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1
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σ = 1
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Figure 4: Examples. (a) Rectangular plate under
exponential load, (b) Ring under circumferential
shear, (c) Square plate under uniaxial compres-
sion.
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form at each edge, are defined as follows: starting
from 8 elements per straight edge and 12 elements
at the circumference and refining them by divid-
ing each element into 2. Four progressively re-
fined meshes are used (with 8(12), 16(24), 32(48)
and 64(96) elements at an edge (the circumfer-
ence)). For the nonconforming meshes along Γc,
the ‘three-elements per seven-elements’ relation
is applied, which means 12–28, 24–56, 48–112
and 96–224 elements at both sides of Γc. The re-
sults are plotted for the points of Γc — the circum-
ference, coordinate α being the angle between the
radius vector of the current point and the radius
vector OA, measured counterclockwise.

5.2 Error evaluation

The present analysis is concerned with the be-
haviour of the numerical solutions obtained along
Γc. Let the numerical solution of a problem (dis-
placement or traction vector defined along Γc) be
denoted generically as zn and the analytical one as
za.

The absolute error, which is simply the differ-
ence zn(x)− za(x) given at a point x ∈ Γc, is pre-
sented first. In the presented plots this error is
approximated linearly between the nodes.

The following two discretized error norms have
been chosen to characterize the covergence be-
haviour of the method along Γc, presenting the
convergence of the error in the integral L2-
norm and in the maximum-norm. The former
is expected to present a regular convergence be-
haviour, whereas the latter is of major interest for
engineers, who are typically interested in max-
imum values of displacements or stresses, re-
spectively, applied in the so-called ‘stiffness’ and
‘strength’ criteria.

Integral L2-norm of error defined as:

‖zn − za‖L2 =

√∫
Γc

2

∑
l=1

(
znl(x)− zal(x)

)2
dxS (29)

is approximated using the Gaussian quadrature
along the discretized Γc as follows (for the sake
of simplicity Γc is considered to be straight in the

formula):

‖zn − za‖L2 ≈
√√√√ Nc

∑
i=1

Ng

∑
k=1

2

∑
l=1

(
znl(xk

i )− zal(xk
i )
)2wk

i ,

(30)

where Nc is the number of elements used in evalu-
ation of zn at Γc, Ng is the number of Gauss points
per element (Ng = 16 has been chosen), xk

i is the
k-th Gauss point of the i-th element and wk

i is the
weight of the k-th Gauss point multiplied by half
of the length of the i-th element. Then, za(xk

i ) is
the value of the analytical solution at xk

i , while
zn(xk

i ) is the value of the linear approximation of
the numerical solution between two nodes of the
i-th element.

Maximum-norm of error is defined as the maxi-
mum of absolute error achieved over all nodes for
a particular mesh:

‖zn − za‖MAX = max
xi−node

max
l=1,2

∣∣znl(xi)− zal(xi)
∣∣.

(31)

Convergence rate for an h refinement is defined
as the number β for which there exists a constant
c such that relation

‖zN
n − za‖ ≈ c ·N−β‖za‖, (32)

holds for a selected error norm, N giving the char-
acteristic number of elements of a mesh and zN

n

giving the numerical solution for this particular
mesh.

5.3 Solution and error distribution.

The present analysis of numerical results starts
with the study of the magnitude, distribution and
smoothness of the solution error. For each partic-
ular example one of the aforementioned meshes
along the exterior boundary Γ is selected, three
discretizations of Γc being considered: NA <NB ,
NA >NB and NA =NB, where NA and NB are the
numbers of elements along Γc on ΓA and ΓB side
respectively. For example the choice 4–10 corre-
sponds to NA = 4, NB = 10 if NA <NB, NA = 10,
NB = 4 if NA >NB and NA =NB =4 if NA =NB .
Each line in the presented plots corresponds to a
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discretization of Γc and either to the coarser or to
the finer mesh, a letter in parentheses indicating
the corresponding subdomain.

In order to deal with comparable values and errors
of displacements and tractions, displacement val-
ues are scaled by factor μ , values u∗ = μu and the
corresponding errors then being presented. Due to
the fact that the tractions tA

c and tB
c have opposite

signs, the latter is plotted with the changed sign.

5.3.1 Rectangular plate under exponential load

Numerical results are presented for meshes 16–
40 along Γc. The displacement errors are plot-
ted at Figure 5. It is easy to observe that results
for one mesh behave differently from the rest of
the meshes, namely the displacements at the finer
mesh in the case NA>NB, i.e. at ΓA side of Γc, os-
cillate more strongly than the other displacement
solutions. Nevertheless, as can be observed, these
oscillations are rather regular. If the node of ΓA

coincides with the node of ΓB, the errors practi-
cally coincide, and also at the nodes of ΓA close
to some nodes of ΓB the error is similar to the er-
ror at the corresponding nodes of ΓB. This rela-
tion between errors is repeated as a pattern corre-
sponding to the repeated pattern 2–5 of this non-
conforming discretization of Γc.
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Figure 5: Rectangular plate under exponential
load. Displacement errors, meshes 16–40.

This behaviour is explained in a simple way
at Figure 6. The meshes along both sides of
Γc represent the above mentioned pattern 2–5.
Square and circle marks, respectively, correspond

to the coarser and finer meshes. If the solution
at the coarser mesh were exact, the square marks
would lie exactly on the curve giving the exact
solution, as indicated. If the nodes of the finer
and coarser meshes coincide, as in our case, at the
end-points of the pattern interval, then the coarse-
mesh and the fine-mesh solution may also coin-
cide at those points. However, the displacement
solutions along Γc, have to satisfy the compat-
ibility condition represented by the first integral
in (10e), which means the fulfillment of this con-
dition at ΓA. Considering NA>NB there are only a
few ‘prescribed boundary data’ represented by uB

c

in (10e), but many linear conditions generated by
δ tA

c . This causes the linearization of the solution
at ΓA, i.e. at the finer mesh. Therefore, instead
of seeking a solution close to the analytical solu-
tion, the numerical procedure looks for the values,
marked by filled circles, lying approximately on
the coarser-mesh solution. This can cause larger
errors than expected at some nodes of the finer
mesh and consequently produce oscillations in the
error distribution, as observed in Figure 5.

exact solution��	

coarser-mesh solution












�

meshes
���

Figure 6: Relation of the mesh pattern and error
patterns.

These strong oscillations of error, however, are
not present in the case NA < NB, Figure 5. This
could lead to a conclusion that the displacements
uB

c represent primary unknowns used for the cal-
culation of uA as secondary unknowns. Actu-
ally, a theoretical analysis, similar to that in-
troduced in Núñez et al. (2003) for a classical
BEM, developed in Appendix for a simple kind
of DDBVP solved by SGBEM, confirms this con-
clusion, see (A23). Thus, when uB

c is defined at
the finer mesh a significant reduction in the er-
ror at this mesh could be observed, as indicated
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by unfilled circles in Figure 6 lying on the ana-
lytic solution, whereas the values of uA

c defined on
the coarser mesh, the filled squares if they were
marked, could also lie close to the analytic so-
lution, almost at the same positions as unfilled
squares.

Nevertheless, it has to be stressed that the mag-
nitude of the nodal errors is relatively small in
all cases, no influence of them being seen on the
plot of displacements in Figure 7, where only dis-
placements obtained at the finer meshes of the
nonconforming discretizations are presented.
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Figure 7: Rectangular plate under exponential
load. Displacement distributions, meshes 16–40.

It is also interesting to compare results obtained
by the conforming and nonconforming discretiza-
tions, Figure 5. The displacements at the con-
forming mesh approximately coincide with the
displacements at the coarser meshes, i.e. displace-
ments along ΓA or ΓB, respectively, coincide with
the displacements at the mesh along ΓA in the case
NA < NB (check the unfilled circle and the filled
square marks for the component u1) or at the mesh
along ΓB in the case NA > NB (the filled circle
marks and the filled triangle marks for the same
component). However, there exists a small gap
between the results from both faces of the inter-
face in the case of the conforming discretization.

When analyzing traction solutions it is instruc-
tive to start comparing tractions obtained by the
nonconforming discretizations. Looking at trac-
tion values obtained at the finer meshes in Fig-
ure 8, oscillations can be observed for the case

NA > NB whereas no oscillations are visible for
the case NA < NB. The enormous difference be-
tween these two cases can be seen in the plots of
the error distribution in Figure 9 (bottom). Nev-
ertheless, repeating patterns of errors, similar to
those observed in displacement solutions but mul-
tiplied in magnitude, can be observed in these
traction solutions as well. This could lead to a
conclusion that displacements are the primary un-
knowns and the tractions are calculated from them
as secondary unknowns. Actually, the theoretical
analysis in Appendix, confirms this conclusion,
see (A22) and (A27). Thus, if displacements ex-
hibit oscillations of errors, the corresponding trac-
tions exhibit them as well and their magnitude is
increased, caused by the integral operator applied.
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Figure 8: Rectangular plate under exponential
load. Traction distributions, finer meshes, meshes
16–40.

Studying distribution of traction errors at other
meshes shown in Figure 9 (top) it is seen that
their magnitudes are comparable with the finer
mesh errors in the case NA < NB. Nevertheless,
the largest oscillations can again be observed in
the coarser mesh solution in the case NA > NB.
There is also another important fact which should
be noted: the strongest oscillations appear near
the end-points of Γc (corners of the adjacent sub-
domains) for all the cases, including the conform-
ing mesh solution. This fact might cause different
values of rate of convergence in the applied norms
of error, Section 5.4.1.



188 Copyright c© 2007 Tech Science Press CMES, vol.17, no.3, pp.173-203, 2007

-4.10-3

-3.10-3

-2.10-3

-1.10-3

0.100

1.10-3

2.10-3

 0  0.2  0.4  0.6  0.8  1
-2.10-3

-1.10-3

0.100

1.10-3

2.10-3

3.10-3

4.10-3
(t

n)
1-

(t
a)

1

(t
n)

2-
(t

a)
2

s

t1

t2

t1  t2
NA<NB (B)
NA<NB (A)
NA>NB (B)
NA=NB (B)

-1.10-2

-5.10-3

0.100

5.10-3

1.10-2

 0  0.2  0.4  0.6  0.8  1
-1.10-2

-5.10-3

0.100

5.10-3

1.10-2

(t
n)

1-
(t

a)
1

(t
n)

2-
(t

a)
2

s

t1  t2
NA<NB (B)
NA>NB (A)

Figure 9: Rectangular plate under exponential
load. Traction errors, meshes 16–40, all meshes
(top), finer meshes (bottom).

As already mentioned, the reasons for the above
observed strong oscillatory behaviour of tractions
at the finer mesh when NA > NB are discussed,
studying a simple DDBVP in more detail and an-
alyzing the numerical procedure of the solution of
the linear equation system, in Appendix and espe-
cially in part Appendix A.3 where an explanation
of these oscillations is given.

5.3.2 Ring under circumferential shear

Numerical results are presented for meshes 12–
28 along Γc. The displacements obtained at the
finer meshes of the nonconforming discretizations
shown in Figure 10 approximate very well the an-
alytic solution. Due to the fact that the displace-
ment components u1 and u2 are mutually sym-
metric with respect to the angle α = π

4 (u1(α) =
u2(π

2 −α)), only results for u1 will be presented
in what follows.
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Figure 10: Ring under circumferential shear. Dis-
placement distributions, finer meshes, meshes 12–
28.

In Figure 11, where displacement errors are plot-
ted, a strong oscillatory behaviour of the error
obtained at the finer mesh in the case NA > NB

is again observed, in contrast with a relatively
smooth distribution of the error at other meshes.
Nevertheless, in much the same way as was al-
ready observed in the previous example, these os-
cillations are rather regular. The pattern of the
nonconforming discretization is 3–7 in the present
case, each third node of the coarser mesh coincid-
ing with each seventh node of the finer mesh. The
same pattern is repeated in the displacement er-
rors as can be seen in Figure 11 looking at the
triangle marks, filled and unfilled. The explana-
tion given in the previous example, see Figure 6,
can be applied here as well.

Let the consistency error, which represents the ac-
curacy of the approximation of the interface con-
ditions by nonconforming discretizations, be de-
fined as the difference of the solutions, or equiva-
lently of their absolute errors, at the adjacent sides
of Γc. It is interesting to observe in Figure 11 that
the consistency error of displacements of a similar
magnitude as in the case NA >NB appears also in
the case NA <NB. Nevertheless, in the latter case
this consistency error is rather smooth in compar-
ison with the former case.

Notice that the maximum value of the absolute
error is achieved at the coarser mesh in the case
NA < NB and that the conforming discretization
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Figure 11: Ring under circumferential shear. Dis-
placement errors, meshes 12–28.

provides substantially smaller errors than the non-
conforming discretizations.

When comparing displacement and traction so-
lutions obtained at the finer meshes of the non-
conforming discretizations, Figures 10 and 12, it
is seen that the oscillatory behaviour of displace-
ments in the case NA >NB is substantially magni-
fied in the case of tractions, whereas traction os-
cillations in the case NA < NB are hardly visible.
The substantial difference between the magnitude
of errors in these two cases is clearly seen in Fig-
ure 13 (bottom), where, due to the above men-
tioned symmetry, only the component t1 is plot-
ted.
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Figure 12: Ring under circumferential shear.
Traction distributions, finer meshes, meshes 12–
28.
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Figure 13: Ring under circumferential shear.
Traction errors, meshes 12–28, all meshes (top),
finer meshes (bottom).

Traction error distributions at all meshes, except
for the finer mesh in the case NA > NB (which
has been omitted due to being out of the applied
scale), shown in Figure 13 (top), have similar
magnitude. All these errors seem to have some
oscillations, the smallest errors being achieved in
the case of the conforming mesh, though close to
the end-points of Γc (corners of the adjacent sub-
domains) there are significant oscillations also in
this case.

The character of the strong oscillations of trac-
tion errors in the case NA >NB is illustrated con-
sidering the finest mesh 96–224, with the pat-
tern 3–7 shown in Figure 14 (top) for the coars-
est case. It should be noted, and it is also vis-
ible in the picture, that there are gaps and over-
lappings along the interface separating the dis-
cretized subdomains. The inner nodes of the pat-
tern are marked by triangles, the end-points be-
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ing marked by circles. Surprisingly smooth lines
in Figure 14 (bottom) represent traction errors ob-
tained at the subsets of the pattern nodes (denoted
by numbers 1 to 6 or letters a or b according to the
top drawing) repeated along Γc, the substantially
smaller errors at the coarser mesh being multi-
plied by an ad-hoc factor of value 100. For ex-
ample, the two lines of circles representing the
end points of the pattern for both the finer and
coarser meshes coincide, the character of the error
at those points being the same but the magnitude
being substantially different.
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Figure 14: Ring under circumferential shear.
Mesh pattern ’3–7’ (top), traction errors in the
case NA >NB, mesh 96–224 (bottom).

5.3.3 Square plate under uniaxial compression

This example differs from the previous ones in
that the curved interface is closed, a possible in-

fluence of the interface end-points on the error be-
haviour thus being eliminated.

The displacements along Γc obtained at the finer
meshes of the nonconforming discretizations are
shown in Figure 15, an excellent approximation of
the analytical solution again being obtained. No-
tice that expressions of u1 and u2 along Γc in terms
of α include, due to the curvature of Γc, trigono-
metric functions.
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Figure 15: Square plate under uniaxial compres-
sion. Displacement distributions, finer meshes,
meshes 24–56.

Figure 16 shows the displacement error distribu-
tions, a strong oscillatory behaviour of the finer
mesh in the case NA>NB following the discretiza-
tion pattern, 3–7 in the present case, being ob-
served as in the previous examples.
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Figure 16: Square plate under uniaxial compres-
sion. Displacement errors, meshes 24–56.
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The behaviour of the displacement errors in Fig-
ure 16 for the rest of the meshes is rather smooth.
A small consistency error appears in the case
NA < NB, the compatibility condition being only
slightly violated. Although the error achieved by
the conforming-mesh is apparently the smoothest
one, the error at the coarser mesh in the case
NA >NB is surprisingly somewhat smaller.

Tractions obtained at finer meshes of the noncon-
forming discretizations, Figure 17, show similar
behaviour to the previous examples, oscillations
being visible in the case NA >NB in t2 and also in
t1 (whose analytic value is zero), though smaller
ones, as could be expected.
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Figure 17: Square plate under uniaxial compres-
sion. Traction distributions, finer meshes, meshes
24–56.

Figure 18 (bottom) shows traction errors at finer
meshes of the nonconforming discretizations, typ-
ically strong oscillations being observed in the
case NA>NB. Oscillations of traction errors in the
case NA <NB, almost invisible in Figure 18 (bot-
tom), can be seen in Figure 18 (top), where the re-
sults for the finer mesh of the case NA >NB have
been omitted, being out of the present scale. The
repeating pattern of the errors is now also observ-
able for the case NA < NB. The absence of end-
points on a smooth Γc yields a very smooth trac-
tion error distribution in the conforming case.

Finally, it should be mentioned that, whereas in
the previous two examples the choice of the sub-
domains ΩA and ΩB was arbitrary, with no rel-
evance to the numerical results, in the present
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Figure 18: Square plate under uniaxial compres-
sion. Traction errors, meshes 24–56, all meshes
(top), finer meshes (bottom).

example subdomain ΩA should be the circle as
shown in Figure 4(c). This is related to the prob-
lem of the invertibility of the SGBEM system for
a single domain BVP with cavities subjected to
traction (Neumann) boundary conditions, studied
in Vodička et al. (2006). To avoid the above re-
striction on the choice of the interior subdomain,
some of the techniques developed in Vodička et
al. (2006) could be used.

5.4 Error convergence

Convergence of displacement and traction errors
along Γc in the discretized L2- and MAX-norms
for h-refinements of boundary element meshes is
studied for all the above examples. Dependence
of an error norm on the number N, defined as the
minimum number of elements along Γc belong-
ing to one of the bodies, i.e. N = min(NA,NB),
is plotted in log-log scale. For each refinement,
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given by N, results for the following three dis-
cretizations are presented: N = NA < NB, NA >

NB = N and N = NA = NB. Each line in the
plot corresponds to a discretization of Γc and ei-
ther to the coarser or to the finer mesh, a letter
in parenthesis indicating the corresponding sub-
domain. The convergence rates β obtained by a
linear regression using the three finest meshes are
given in the key of the plots for each particular
line.

5.4.1 Rectangular plate under exponential load

The displacement error norms computed are pre-
sented in Figure 19, the magnitude of both error
norms in all cases being quite similar. All con-
vergence rates β  2, the expected quadratic con-
vergence of displacements for linear boundary el-
ements thus being verified in both norms.
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Figure 19: Rectangular plate under exponential
load. Convergence rates for displacements in the
L2-norm (top) and MAX-norm (bottom).

Figure 20 presents the traction error norms ob-

tained. Without looking at β values, it is clearly
seen that the worst convergence behaviour corre-
sponds to the finer mesh solution for NA >NB and
the best one corresponds to the coarser mesh solu-
tion for NA<NB, the other three cases having sim-
ilar convergence behaviour to each other. When
comparing rates of convergence in the L2-norm,
the worst case has only the linear convergence
(β  1), whereas the best case is not far from the
quadratic convergence (β  1.85), in the rest of
the cases β  1.5. Convergence in the MAX-norm
is in all cases linear, excepting the coarser mesh
solution for NA < NB where β  1.37. It should
be noticed that in the latter case the convergence
becomes progressively worse with increasing re-
finement. The above differences in the conver-
gence behaviour are related to very large oscil-
lations of the error at the finer mesh in the case
NA > NB and also to an increase in oscillations
close to the end-points of Γc (corners of the adja-
cent subdomains), which happen in all cases, see
Figure 9. This increase in oscillations naturally
has stronger influence in the MAX-norm of error
than in the L2-norm. In particular, the conforming
mesh solution has relatively large errors close to
these corners, causing the rate of convergence in
the MAX-norm to be the lowest one.

5.4.2 Ring under circumferential shear

Figure 21 shows the convergence of the displace-
ment error norms. Convergence rates β  2 for
all cases, the expected quadratic convergence of
displacements again being verified in both norms.
The differences between the L2-norms of the er-
ror obtained in different cases are still relatively
small, although somewhat greater than in the pre-
vious example. These differences are also small
in the MAX-norm except for the conforming mesh
solution, whose MAX-norm of the error is sub-
stantially smaller than in the nonconforming dis-
cretizations.

The convergence of the traction error norms is
plotted in Figure 22, the worst results again being
obtained by the finer mesh for NA >NB. Only lin-
ear convergence is obtained at this mesh in the L2-
norm, whereas for the rest of the meshes β  1.5.
These lower rates of convergence in comparison
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Figure 20: Rectangular plate under exponential
load. Convergence rates for tractions in the L2-
norm (top) and MAX-norm (bottom).

with displacements might be, at least partially, re-
lated to an increase of oscillation in tractions at
all meshes close to the end-points of Γc (corners
of the adjacent subdomains). Actually, the lin-
ear rate of convergence is obtained in the MAX-
norm of the error at all meshes, the greatest error
norm again being obtained at the finer mesh for
NA >NB.

5.4.3 Square plate under uniaxial compression

This example allows us to study whether the ab-
sence of end-points at Γc (corners of the adjacent
subdomains) has an influence on the solution con-
vergence. Convergence of the displacement error
norms is plotted in Figure 23. The quadratic con-
vergence of displacements in the L2-norm is again
verified, as all β  2. Notice that the smallest β
is achieved by the conforming mesh. Neverthe-
less, evaluating β in the MAX-norm, the conform-
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Figure 21: Ring under circumferential shear.
Convergence rates for displacements in the L2-
norm (top) and MAX-norm (bottom).

ing mesh is the best one, with a very high rate of
convergence β  3, the rest of the meshes giving
β  2. It is also interesting that the magnitude
of this error norm for the coarser mesh in the case
NA > NB is comparable with the conforming case,
though its convergence rate is the smallest.

The convergence of the traction error norms is
plotted in Figure 24. The worst and best con-
vergences, approximately linear and quadratic, in
both error norms have been obtained respectively
by the finer mesh solution in the case NA > NB

and the conforming mesh. As can be observed
in Figure 18, the error for the coarser mesh in
the case NA > NB slightly oscillates around the
conforming mesh error, and consequently it could
be expected that the error norms will have sim-
ilar values at the both meshes. Actually, this is
observed in the L2-norm, where β  1.9 for the
coarser mesh in the case NA >NB; whereas in the
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Figure 22: Ring under circumferential shear.
Convergence rates for tractions in the L2-norm
(top) and MAX-norm (bottom).

MAX-norm a decrease in the rate of convergence
is observed in this case, β  1.5, due to the above
mentioned oscillations. Both meshes in the case
NA < NB present similar convergence behaviour,
only slightly worse than in the conforming case,
β  1.6 and β  1.8 in the L2-norm and MAX-
norm respectively.

6 Conclusions

The Symmetric Galerkin BEM approach applied
to a Domain Decomposition BVP has been en-
riched by a possibility to formulate it through
a variational principle, based on a search for a
critical point of an energy functional which re-
sults in a weak formulation of the coupling con-
ditions between the subdomains. An advantage
of the method developed is that no additional un-
knowns, different from the natural variables of the
BEM (displacements and tractions defined on the
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Figure 23: Square plate under uniaxial compres-
sion. Convergence rates for displacements in the
L2-norm (top) and MAX-norm (bottom).

subdomain boundaries), are defined at interfaces.
This method has been tested numerically using
continuous linear boundary elements, very good
results having been obtained for both matching
and non-matching meshes at straight and curved
interfaces. To the authors’ knowledge, this study
is the first to present a convergence study of nu-
merical results obtained by SGBEM applied to
elastic DDBVPs with non-matching meshes along
curved interfaces.

The convergence of the method for h-refinements
has been thoroughly studied by three examples
using the discretized L2 and maximum norms of
the error. The quadratic rate of convergence,
β  2, of displacements has been obtained in
both norms in all the cases, as could be expected
for linear elements. Nevertheless, the conver-
gence rates for tractions have in general been
found a bit lower (somewhere between linear and
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Figure 24: Square plate under uniaxial compres-
sion. Convergence rates for tractions in the L2-
norm (top) and MAX-norm (bottom).

quadratic, 1 � β � 2), and dependent, in the case
of non-matching meshes along the interface, on
the choice of the subdomains, ΩA and ΩB, which
control the tractions and displacements along the
interface respectively. Reliable results in tractions
on both sides of the interface, with β  1.5 in the
L2-norm, have been obtained when the more re-
fined mesh is situated at the interface side control-
ling the displacements, i.e. NA < NB. An explana-
tion for this observation, using a reduction of the
resulting linear system to the Schur complement
system, has been introduced in Appendix A.

In presence of the end-points at the interface (cor-
ners of the adjacent subdomains) the somewhat
worse convergence of traction error norms ob-
served, including the case of conforming meshes,
can be, at least partially, attributed to stronger os-
cillations of computed tractions in the vicinity of
these corners. Note that this phenomenon is usu-

ally present in BEM solutions, and thus is not spe-
cific for the present coupling approach. The solu-
tion of a problem with a smooth closed interface
(without corners of the adjacent subdomains) has
confirmed this explanation, as an improvement of
the convergence has been observed, this improve-
ment being substantial considering the maximum-
norm of traction errors.
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Appendix A Analysis of the SGBEM formu-
lation for a DDBVP with a single
boundary

The aim of this Appendix is to show how the dis-
cretized system (25) reduces to its Schur com-
plement and to analyze the reduced system ob-
tained. Although, for the sake of clarity, a sim-
ple DDBVP with Ω = R2 partitioned to an inte-
rior (bounded) subdomain ΩA and an exterior (un-
bounded) subdomain ΩB separated by a bounded
interface curve, Figure A1(a), is considered, it is
expected that the conclusions deduced from the
following analysis can be extended to other more
complex problems.

ΩA

ΩB

Γc

Ω+

Γ
n+

t

Ω−

Γ

n−

n+

t

(a)

(b)

(c)

Figure A1: (a) A domain decomposition. Interior
(b) and exterior (c) domains and pertinent normal
vectors.
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Appendix A.1 Preliminaries. Steklov-Poincaré
operator.

Let us summarize, first, some of the repre-
sentation formulas of the symmetric Steklov-
Poincaré operator S, known also as the Dirichlet-
Neumann map [Quarteroni and Valli (1999);
Hsiao et al. (2000b); Steinbach (2003)]. In the
case of elasticity, it is a map of boundary displace-
ments u to boundary tractions t. It will be useful
to represent this map by the boundary integral op-
erators which appear in (5a) and (5b). First, let
us rewrite those equations in operator form, using
the notation:

(Zw) j(y) =
∫

Γ
Zji(y,x)wi(x)dxS, (A1)

where w stands for u or t, Z stands for U , T , T ∗

or S and Γ is the boundary of a bounded domain
Ω+, see Figure A1(b) or of an unbounded do-
main Ω−, see Figure A1(c). The integral in (A1)
can be weakly singular, Cauchy principal value
or Hadamard finite part integral. Equations (5a)
and (5b) can respectively be represented by the
following operator equations:

Ut =
(

T± +
1
2

I

)
u and

(
T ∗±− 1

2
I

)
t = Su,

(A2)

where the introduced symbol T± specifies that the
pertinent operator is evaluated with respect to one
of the normals n±, respectively. Thus, for the in-
terior problem the ‘+’ sign is used whereas ‘-’ is
used for the exterior one, see Figure A1(b), (c).
Recall also that the form of these equations is the
same for both interior and exterior problems, pro-
viding the condition at infinity (3) is satisfied.

In what follows it will also be useful to solve the
exterior problem with tractions evaluated with re-
spect to the normal n+. In this case, everything
which depends on this choice changes its sign.
Therefore, t changes to −t and T− is converted
to −T +. Equations (A2) take the form:

Ut =
(

T + − 1
2

I

)
u and

(
T ∗+ +

1
2

I

)
t = Su.

(A3)

A couple of representations of the operator S are
described in the following. Applying the inverse
of the operator U , which exists in 3D always and
in 2D if the problem is suitably scaled [Vodička
and Mantič (2004)], to (A2)1 a nonsymmetric rep-
resentation of S is obtained:

t = U−1
(

T± +
1
2

I

)
u = Su, (A4)

while substituting this representation into (A2)2

leads to its symmetric representation:

t =
((

T ∗±+
1
2

I

)
U−1

(
T± +

1
2

I

)
−S

)
u = Su.

(A5)

There exists one important difference between
the operators S defined for the interior and ex-
terior BVPs. That for the interior BVP is not
invertible, though positive semi-definite, as any
rigid body motion gives zero tractions, while the
other, for the exterior BVP, is invertible and posi-
tive definite (in 2D only if the domain is suitably
scaled [Vodička and Mantič (2004)]). The opera-
tor T + 1

2 I (and its adjoint counterpart as well) also
has a similar property of invertibility: T−+ 1

2 I is
invertible whereas T ++ 1

2 I is not invertible.

Both aforementioned representations of S for
the exterior BVP can be rewritten using the nor-
mal n+, denoting the operator as Sex, so equa-
tion (A3)1 leads to:

t = U−1
(

T +− 1
2

I

)
u = Sexu, (A6)

while substituting this representation into (A3)2

results in its symmetric representation:

t =
(
−
(

T ∗+− 1
2

I

)
U−1

(
T +− 1

2
I

)
+S

)
u

= Sexu.

(A7)

In a similar way the normal n− can be used in
representations of S for the interior BVP.

Appendix A.2 Schur complement

Let the load in a DDBVP defined in Figure A1(a)
be given, for simplicity, by some finite volume



Symmetric Variational Formulation of BIE for Domain Decomposition Problems in Elasticity 199

forces having a bounded support in ΩB. Thus,
the formula (3)1 still holds. The presence of these
volume forces leads to a modification of the right-
hand side in the resulting system of linear equa-
tions, introduced originally in (25) without body
forces. For the problem in Figure A1(a) the vec-
tor representing boundary conditions on the right-
hand side of (25) vanishes, and the only contribu-
tion to the right-hand side of the resulting system
is given by a contribution of volume forces, de-
noted here by vectors hB

f and gB
f . Thus, the result-

ing system of equations for the problem in Fig-
ure A1(a) can be expressed in block form as:

(
MAT RIX

V

)⎛⎜⎜⎝
tA

uA

tB

uB

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
hB

f

hB
f

⎞
⎟⎟⎠ , (A8)

(
MATRIX

V

)
=⎛

⎜⎝
−UA − 1

2 MA+TA 0 MAB

− 1
2 MAT+TAT −SA 0 0

0 0 −UB 1
2 MB+TB

MABT 0 1
2 MBT+TBT −SB

⎞
⎟⎠ ,

where we have omitted the redundant subscript c.

The Schur complement [Quarteroni and Valli
(1999)] of the above system will be deduced in
what follows, to see which unknowns can be elim-
inated in a natural way. The non-eliminated un-
knowns will represent primary unknowns which
can be used to recover the remaining unknowns.

For simplicity in some of the following expres-
sions, we will assume hereinafter that dimen-
sions of the spaces generated by boundary ele-
ment shape functions for diplacements and trac-
tions on one subdomain coincide. Hence, MA and
MB are square matrices. Moreover, let the perti-
nent spaces be such that these matrices have full
rank, thus being invertible.

Performing the block-Gaussian elimination in the
first column in (A8), the left-hand side matrix is
obtained in the form:

(
MAT RIX MAT RIX

VI VII

)
(A9)

where(
MATRIX

V I

)
=

⎛
⎝ IA −UA−1(− 1

2 MA+TA)
0 (− 1

2 MAT+TAT)UA−1(− 1
2 MA+TA)−SA

0 0
0 MABT UA−1(− 1

2 MA+TA)

⎞
⎠ ,

(
MATRIX

VII

)
=

⎛
⎝ 0 −UA−1MAB

0 (− 1
2 MAT+TAT)UA−1MAB

−UB 1
2 MB+TB

1
2 MBT+TBT MABT UA−1MAB−SB

⎞
⎠ .

The term in the first row of the second column
of this matrix is, according to (A6), a Galerkin
discretization of a nonsymmetric representation
of the local Steklov-Poincaré operator for the do-
main exterior to ΩA, denoted hereinafter as:

SA
ex,n = UA−1

(
−1

2
MA+TA

)
. (A10)

Inasmuch as the local Steklov-Poincaré operator
for the exterior BVP is invertible, the matrix SA

ex,n
is assumed to be nonsingular. However, the sym-
metry of the operator SA

ex may not be maintained
at the discretized level. Actually, using concepts
of dual basis of spaces generated by boundary
element shape functions (for tractions and dis-
placements) and generalized L2-projections (de-
fined using Galerkin-Petrov scheme) onto these
finite dimensional spaces [Steinbach (2003)], it
can be shown that the following relation may hold
only approximately:

UA−1
(
−1

2
MA+TA

)
MA−1

 (MAT )−1
(
−1

2
MAT +TAT

)
UA−1,

(A11)

although it holds at the operator level, see Wend-
land and Hsiao (2004):

UA−1
(
−1

2
IA+T A

)
=
(
−1

2
IA+T A∗

)
UA−1.

(A12)

The second diagonal term equals, up to the sign, a
Galerkin discretization of a symmetric represen-
tation of the local Steklov-Poincaré operator for
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the domain exterior to ΩA. Thus, the following
symmetric matrix is assumed to be nonsingular:

SA
ex,s =−

(
−1

2
MAT +TAT

)
UA−1

(
−1

2
MA+TA

)
+ SA. (A13)

Though the matrices SA
ex,s and SA

ex,n represent the
same local Steklov-Poincaré operator, due to the
discretization they may equal each other only
approximately, and moreover the latter may be
nonsymmetric. Applying the notation introduced
in (A10) and (A13) to (A9) results in the the fol-
lowing form of the system:

(
MAT RIX

VIII

)⎛⎜⎜⎝
tA

uA

tB

uB

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
hB

f

gB
f

⎞
⎟⎟⎠ , (A14)

where(
MATRIX

VIII

)
=

⎛
⎜⎝

IA −SA
ex,n 0 −UA−1MAB

0 −SA
ex,s 0 SAT

ex,nMAB

0 0 −UB 1
2 MB+TB

0 MABT S
A
ex,n

1
2 MBT+TBT MABT UA−1MAB−SB

⎞
⎟⎠ .

After eliminating the terms under the diagonal in
the second and third columns of (A14) the follow-
ing system is obtained:

(
MAT RIX

IX

)⎛⎜⎜⎝
tA

uA

tB

uB

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0

−UB−1hB
f

SBT
n hB

f +gB
f

⎞
⎟⎟⎠ , (A15)

with(
MATRIX

IX

)
=⎛

⎜⎜⎝
IA −S

A
ex,n 0 −UA−1MAB

0 IA 0 −S
A−1
ex,s S

AT
ex,nMAB

0 0 IB −S
B
n

0 0 0 SB
s +MABT

(
SA

ex,nS
A−1
ex,s SAT

ex,n+UA−1
)

MAB

⎞
⎟⎟⎠ ,

where the Galerkin discretizations of nonsymmet-
ric and symmetric representations of the local

Steklov-Poincaré operator for ΩB, respectively,
have been denoted as:

SB
n = UB−1

(
1
2

MB+TB

)
, (A16)

SB
s =

(
1
2

MBT +TBT

)
UB−1

(
1
2

MB+TB

)
−SB.

(A17)

Since ΩB is an exterior subdomain, these matrices
are assumed to be nonsingular, the symmetric one
being positive definite.

The last diagonal term in (A15) is the Schur com-
plement matrix. To analyze the meaning of the
expression in parentheses in this term it is useful
to write it in terms of operators:

SA
exS

A−1
ex SA

ex +U A−1 = SA
ex +U A−1

= UA−1
(

T A+− 1
2

IA
)

+U A−1

= UA−1
(

T A+ +
1
2

IA
)

= SA.

(A18)

Therefore, the expression in parentheses corre-
sponds to a discretization of a somewhat more
complicated symmetric representation of SA than
its ‘standard’ symmetric representation:

SA
s =

(
1
2

MAT +TAT
)

UA−1
(

1
2

MA+TA
)
−SA.

(A19)

It will be denoted as:

SA
in,s = SA

ex,nS
A−1
ex,s SAT

ex,n +UA−1. (A20)

Then, the reduced Schur complement system ob-
tained from (A8) in (A15) reads:(
SB

s +MABT SA
in,sM

AB)uB = SBT
n hB

f +gB
f . (A21)

The Schur complement matrix on the left-hand
side of (A15) is a symmetric positive definite ma-
trix, since SB

s is symmetric positive definite and
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SA
in,s is symmetric positive semi-definite. Hence,

vector uB can be found uniquely.

The complete solution of the system (A8) can
be obtained from uB by backward substitution
in (A15) giving:

tB = SB
n uB −UB−1hB

f , (A22)

uA = SA−1
ex,s SAT

ex,nMABuB, (A23)

tA = SA
in,sM

ABuB. (A24)

It has to be stressed that vector uB represents nat-
urally primary unknowns in the reduced Schur
complement system associated to the full sys-
tem (A8). This is associated to the fact that for
non-matching discretizations of Γc the interface
mass matrix MAB appearing in relations (A23-
A24) is in general not a square matrix. Thus, e.g.,
one cannot in general express uB in terms of uA

inverting the relation (A23).

To express tA through uA it is sufficient to substi-
tute MABuB obtained from (A23) into (A24) re-
sulting in:

tA = SA
in,s

(
SAT

ex,n

)−1
SA

ex,su
A. (A25)

With the aid of (A20), (A13) and (A10) in the re-
spective order, relation (A25) can be substantially
simplified:

tA =
(
SA

ex,n +UA−1 (SAT
ex,n

)−1
SA

ex,s

)
uA

=

(
SA

ex,n +
(
−1

2
MAT +TAT

)−1

SA
ex,s

)
uA

=
(
−1

2
MAT +TAT

)−1

SAuA.

(A26)

The matrix in the last term, denoted as SA
in,n,

gives the Galerkin discretization of another non-
symmetric representation of the local Steklov-
Poincaré operator for ΩA, due to (A2)2. Recall
that the matrix −1

2 MAT +TAT is a discretization
of an invertible operator −1

2 I+T + defined on the
boundary of ΩA, see Appendix. Therefore, (A25)
can be written as:

tA = SA
in,nuA. (A27)

Note that the choice of ΩA as an exterior domain
in the present DDBVP (contrary to what has been
done in the above study) would lead to a singu-
lar system matrix in (A8), due to the vanishing
product of any rigid body displacement uA times
the second column of this matrix. In order to ob-
tain a nonsingular system matrix in such a case
some of the techniques introduced in Vodička et
al. (2006) could be applied, as already mentioned
in Section 5.3.3.

Appendix A.3 Influence of the choice of the in-
terface sides A and B on traction
oscillations

Displacement and traction solution computed
along the interface at the finer mesh when this
mesh is placed on the ΩA side presents oscilla-
tions not observed in solutions at other meshes,
see Section 5.3. An explanation of this observa-
tion will be introduced here using the results of
the previous section.

As follows from (A21) and (A22-A24) the nodal
values of uB can be considered as the primary
values in the solution of system (A8). It will
be shown that the matrix operator computing uA

from uB, according to relation (A23), can be con-
sidered as an approximation of a projection from
the space of the displacement nodal values on the
ΩB side of Γc to the displacement nodal values
on the ΩA side. First, let us evaluate the product
of the inverse matrix and the matrix associated to
two different representations of the local Steklov-
Poincaré operator for the domain exterior to ΩA

in (A23):

SA−1
ex,s SAT

ex,n =
(
SAT −1

ex,n SA
ex,s

)−1

=

[
UA
(
−1

2
MAT +TAT

)−1
(
−
(
−1

2
MAT +TAT

)

·UA−1
(
−1

2
MA+TA

)
+SA

)]−1

=

[
−
(
−1

2
MA+TA

)
+UA

(
−1

2
MAT +TAT

)−1

SA

]−1

(A28)
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(A11)∼=
[
−
(
−1

2
MA+TA

)
+MA

(
−1

2
MA+TA

)−1

·UA (MAT )−1
SA

]−1

(A30)∼=
[
−
(
−1

2
MA+TA

)
+MA

(
−1

2
MA+TA

)−1

·
((

−1
2

MA+TA
)

MA−1
(

1
2

MA+TA
))]−1

= MA−1,

(A29)

which may be valid only approximately due to the
two in general only approximately valid equations
used: (A11), which proclaims that the matrix
SA

ex,nMA−1 is symmetric, and

UA (MAT )−1
SA


(
−1

2
MA+TA

)
MA−1

(
1
2

MA+TA
)

, (A30)

which holds at the operator level, see Wendland
and Hsiao (2004):

UASA =
(
−1

2
IA +T A

)(
1
2

IA +T A

)
, (A31)

Thus, equation (A23) can be approximated by the
relation:

uA ∼= MA−1MABuB = QABuB, (A32)

where the matrix QAB is the matrix of the L2-
projection operator of the space of boundary el-
ement shape functions defined on ΓB onto the
one defined on ΓA. Therefore, if the matrix QAB

has more rows than columns, i.e. if NA > NB , a
‘linearization’ of the results may occur as shown
in Figure 6.

The following illustrative examples simulate the
effect of the choice of the interface side where the
finer-coarser mesh is defined. Consider the two
non-matching mesh patterns 2–5 and 3–7 used in
examples of Section 5, see Figures 6 and 14(top).
First, taking NA > NB, let a quadratic function f
be approximated at the coarser meshes, see Fig-
ure A2, by a random perturbation of nodal val-
ues of the piecewise linear interpolation of f .

The projection of these approximations at the
coarser meshes by means of the matrices QAB

onto approximations at the finer meshes are plot-
ted in Figure A2 as well. It can be observed that
the approximations at the finer meshes lie very
close to the piecewise linear approximation given
by the coarser meshes.
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Figure A2: Projection from the coarser mesh to
the finer one.
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Figure A3: Projection from the finer mesh to the
coarser one.

In the opposite situation, with NA <NB, this ‘lin-
earization’ does not happen, but a piecewise lin-
ear smoothing of the possibly oscillating data can
take place, see Figure A3.

The traction nodal values can be evaluated from
the displacement ones using (A22) and (A27).
The matrices which appear in these relations are
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the Galerkin discretizations of some represen-
tations of the local Steklov-Poincaré operators.
Such operators, which actually perform differen-
tiation, decrease solution smoothness. Therefore,
the oscillations in traction errors can be expected
to be much higher than in the case of the corre-
sponding displacements, which has actually been
observed.




