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ABSTRACT 

Good water barrier properties and biocompatibility of long-chain biopolyesters like 

cutin and suberin have potentiated the design of synthetic mimetic materials. Most of 

these biopolymers are made out esterified mid-chain functionalized ω-long chain 

hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is one of those 

polyhydroxylated fatty acids and it is also the major constituent of natural lac resin, a 

relatively abundant and renewable resource. Insoluble and thermostable films have been 

prepared from aleuritic acid by melt-condensation polymerization in air without using 

catalysts, an easy and attractive procedure for large scale production. Intended to be 

used as a protective coating, the barrier performances are expected to be conditioned by 

the physical and chemical modifications induced by oxygen on the air exposed side. 

Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, 

chemical resistance and biodegradation of the film surface have been studied by 

Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), 

Atomic Force Microscopy (AFM), Nanoindentation and Water Contac Angle (WCA). It 

has been demonstrated that the occurrence of side oxidation reactions conditioned the 

surface physical and chemical properties of these polyhydroxyester films. Additionally, 

the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups 

was found to have a strong influence in these parameters.    

 

Keywords: renewable polyesters, biodegradable long-chain polyesters, films and 

coatings, polymer surface characterization. 

  



3 
 

1. Introduction 

Among renewable polyesters, most of the interest has concentrated on short chain 

poly(lactic acid) (PLA) and polyhydroxybutyrates (PHBs). Nevertheless, much less 

attention has been paid to long chain (>C16) homologues, mostly because of the lack of 

effective and practical routes for monomer obtaining and the difficulties of preparing 

high molecular weight polyesters by polycondensation. However, long chain 

biopolyesters like cutin and suberin are widespread in higher plant as protective 

hydrophobic tissues [1]. The biocompatibility and good barrier properties and of these 

biopolymers [2] have potentiated the interest in developing mimetic materials, 

particularly, from the abundant and renewable natural cutin and suberin stock 

[3,4,5,6,7]. For instance, the ex situ reconstruction of waterproof and antimicrobial films 

from suberin using ionic liquid and the formation of free-standing films from cutin 

polyhydroxyacids, have been recently reported [8,9]. 

Cutin, for instance, is an amorphous, insoluble and infusible fatty polyester mostly 

made out of inter-esterified C16 and C18 polyhydroxyacids [10,11]. Among them, the 

midchain hydroxylated ω-hydroxyacids are the most abundant, but there are monomers 

with other functionalities like unsaturations, epoxy and vicinal diols. This later type of 

hydroxyacid is of particular interest because it is also present in shellac, a derivate of 

natural lac resin with applications as non-toxic coatings for wood, pharmaceuticals and 

food [12]. The major component of shellac is the 9,10,16-trihydroxy palmitic (aleuritic) 

acid, and, with a global shellac production of about 5000 tons per year and a potential 

capacity of 50000 tons/year [13], aleuritic acid becomes a non-negligible, accessible 

and renewable feedstock for synthetic long-chain polyhydroxyesters. 
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On the other side, the non-toxicity and biodegradability of these biopolymers have 

driven the applicability of synthetic long chain polyhydroxesters as films and coatings 

for food packaging, particularly considering the toxicity associated to bisphenol A and 

phthalates additives. Thus, and to preserve innocuousness, to reduce pollutants and to 

make the process attractive for large scale production, we have avoided the use 

organometallic catalysts, aromatic hydrophilic compounds or organic solvents in the 

synthesis and we have explored the potential of the direct fabrication by melt-

condensation polymerization in air without using catalysts [14,15]. 

In the aleuritic acid molecule the –OH/-COOH ratio is 3 and hence, polyesters 

derived from this monomer are expected to contain free hydroxyls. Though such 

hydroxyl phase may compromise the hydrophobicity and the water barrier 

performances, it may also act as a secondary hydrogen bonded network reinforcing the 

polymer structure. Thus, aleuritic acid becomes a suitable molecule to investigate these 

issues as well as the reactivity of the diol moiety under an oxidative atmosphere as the 

one used in our preparation conditions. In a previous work, we studied polyesters films 

synthesized from aleuritic and palmitic acid mixtures and we observed that the 

regulation of the -OH/-COOH imbalance had a strong influence on many bulk 

properties [15]. However, if conceived as a few microns thick coating layer, as the one 

used as the internal varnish of food metal containers, the physicochemical properties of 

the resulting external surface are of key importance since it may condition the barrier 

performances of the whole coating. For this reason, this article focusses on the 

physicochemical characterization of the air exposed side of polyhydroxyester films 

formed by the melt-polycondensation of aleuritic (ALE) and palmitic (PAL) acid 

mixtures in air without using catalysts. 

1. Methods and materials 
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1.1. Materials 

 Aleuritic (ALE) (DL-threo-9,10,16-trihydroxypalmitic, C16H32O5) acid (93.8% 

by titration) and palmitic (PAL) (C16H32O2) acid ( ≥ 99%) were purchased from Fluka. 

Aleuritic acid was purified by washing with cold deionized water. 

1.2. Film preparation 

 Polyhydroxyester films from aleuritic and palmitic acid mixtures (ALE/PAL = 

10/0, 9/1, 8/2, 7/3, 6/4 and 5/5, mol/mol) were prepared by heating the mixture at 150°C 

in an air convection oven and using an open carbon doped Teflon mold (30 mm x 10 

mm and 1 mm deep). Thermogravimetry measurements revealed a significant thermal 

loss of the palmitic fraction along the synthesis. The weight of the mixture used was 

then selected to account for such loss and to obtain uniform films thickness of about 

(350±50) µm. Final products were yellow to light brown and rubbery solid films that 

were easily removed from the molds. Samples were infusible and quite insoluble in 

solvents such as chloroform, light alcohols, toluene, tetrahydrofuran, 

dimethylformamide and dimethyl sulfoxide. Insoluble fractions were determined from 

sample weight after treating them with dimethyl sulfoxide at 100°C for 24 h. 

1.3. Chemical characterization 

1
H and 

13
C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance 

Spectroscopy (CP-MAS NMR) spectra of solid samples were recorded on a Bruker 

Avance III WB 600 MHz spectrometer with 4 mm zirconia rotors spun at magic angle 

at 10 KHz. Spectra were acquired using a 4.1 μs proton 90º pulse, 2 ms contact time and 

2.5 s repetition time. Chemical shifts are referred to tetramethylsilane (TMS). 
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The chemical composition of the near surface region of films was investigated by 

Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

using a single reflection ATR accessory (MIRacle ATR, PIKE Technologies) with a 

diamond crystal. The accessory is mounted on a FTIR spectrometer (JASCO, FT/IR-

6200) equipped with a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) 

detector. Spectra were recorded in the 4000 to 600 cm
-1

 range at 4 cm
-1

 resolution and 

50 scans were accumulated. They were processed to account for the penetration depth 

dependence on the wavelength of the IR beam in ATR. Considering the experimental 

setup and assuming a sample refractive index (n
2
) of 1.5, the effective penetration (de) 

of the IR beam in the single reflection measurement is calculated to about 2.5 m at λ = 

1730 cm
-1

. For depth profile analysis, a motorized ATR variable angle accessory 

(Veemax II, PIKE Technologies) with a ZnSe window was used. Incident radiation was 

polarized perpendicularly to the surface of the sample (p polarization). Effective 

penetration depth (de) achieved with this experimental setup ranged from 1.7 to 32 m 

as calculated from Eq. (1) at λ = 1730 cm
-1

 (carbonyl peak) and n
1
 = 2.4 (ZnSe crystal) 

and n
2
 = 1.5 (sample). 

𝑑𝑒 ⊥=  
𝑛1

2𝑛2 cos 𝜃

(𝑛1
2−𝑛2

2)
 

𝜆

𝜋√𝑛1
2 sin2 𝜃−𝑛2

2
       (1) 

1.4. Physical characterization 

Mechanical properties at the near surface region were analyzed using a nanoindenter 

NanoTest automatic platform (Micro Materials Ltd.) equipped with a diamond indenter 

with a Berkovich pyramidal tip (100 nm diameter) and inside a cabinet with controlled 

humidity around 40%. 10x10 indentations experiments were performed at 0.5, 1 and 1.5 

mN loads with a loading rate of 10 μmN/s and a holding (dwell) time of 30 s at 
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maximum load that allowed material stabilization prior to unloading. The load-depth 

curves series show a very good reproducibility, yielding mechanical parameter values 

with standard deviations below 0.1 % and indicating a high homogeneity down to the 

micron scale of the polymeric matrices. The relative Young’s modulus (Er) and the 

hardness (H), were obtained according to the Oliver-Pharr method [16]. The initial slope 

on the unloading branch (stiffness, S) is related to Er by 

                          
c

r

h=h A

Eπ
=

dh

dP
=S

2

max









      (2) 

where Ac is the area imprinted on the sample. Given the huge Young’s modulus 

difference between the indenter and the sample, and the small values of Poisson’s ratio, 

relative elastic modulus (Er) can be considered as the elastic modulus (Er = E). The 

hardness was calculated as the ratio H = Pmax/Ac, where Pmax is the maximum indentation 

load. Finally, the elastic recovery, that is, the ratio of recovered depth to the maximum 

indented depth was also estimated. Indentation depths are selected to be within the 

effective penetration range of the IR beam to allow a consistent correlation of data 

provided by both techniques. To prevent artifacts due to non-ideal tip shape and 

indentation size effects, tip area was carefully calibrated, and different sources of depth-

dependence of mechanical properties were taken into consideration [17,18]. 

The surface texture of samples have been characterized by Atomic Force 

Microscopy (AFM) (Cervantes, Nanotec Electrónica) using a 10x10 m
2 
scanner and 

operated in non-contact dynamic mode at the free lever resonance frequency. Images 

were obtained at room conditions (20-25 °C and 40-50% RH) and processed using the 

WSxM software [19]. Si3N4 rectangular cantilevers with nominal force constant of 2.8 

Nm
-1

 and resonance frequency around 80 kHz were used. Parameters such as the 
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cantilever driving oscillation frequency and amplitude and set point have been carefully 

selected to operate in the long-range attractive van der Waals forces regime, thus 

ensuring the minimum perturbation of the sample by the probe. The scanner has been 

calibrated using a NT-MDT TGT01 silicon grating (2.12 µm pitch) for the X and Y 

directions, and a Nanosensor H8 certified grating with 7.0 nm step height for the Z 

direction. Several regions (3-4 per sample) have been analyzed using the maximum 

scanner range and surface roughness is determined from reproducible areas. 

Surface hydrophobicity was analysed by static Water Contact Angle (WCA) 

measurements at room conditions using an Attension TL100 Optical Tensiometer by the 

sessile drop method and image profile analysis. A 3 L Milli-Q grade water drop was 

deposited in at least 5 different points of every sample and the drop contour was 

checked for 10 s. In that period, volume losses were less than 1% (evaporation) and 

contact angle diminished less than 0.7%. WCA values reported correspond to the 

average of about 20 stable measurements within the first 2 seconds of contact. For 

surface hydrolysis measurements, the same tensiometer was used and the contour of 

4µL drops of pure water and NaOH 1M were compared. In these cases, contour analysis 

was extended up to 1200 s. 

For water permeation experiments, films were mounted in transpiration chambers 

sealing and contacting the water inside a reservoir. Chambers were introduced in a dry 

silica desiccator at 22°C and the amount of water transpired was obtained by weighting 

at regular time intervals. Permeability (Pwv) was calculated from the formula: 

  𝑃𝑤𝑣  =  
𝐽  𝑙

𝑆 𝜌 (𝑎𝑤−𝑎𝑎𝑖𝑟)
   (3) 

Where (J) is the transpiration rate obtained from the slope of the linear section of the 

weight vs time curves, (l) is the film thickness, (S) is the film cross-section in contact 
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with water, (ρ) is the density of the water vapour in saturated air at 22°C and (aw) and 

(aair) the water activity at both sides of the film. At least three specimen of each 

ALE/PAL sample was measured and values averaged. Standard deviations obtained are 

about ±15%. 

For biodegradation tests, polyester films were introduced in nylon net bags and 

buried in a seed box (250 cm
3
) containing standard garden soil (pH=5.5-6.5). Soil 

moisture was kept constant resembling local pluviometric conditions of 535 mm/year. 

Sampling times were 20, 40, 60, 90, 120 and 180 days. After that, films were removed 

and cleaned by sonication in a solution containing 0.25% sodium hypochlorate and 

0.1% Tween-85, rinsed with distilled water and dried at room temperature to constant 

weight. Three replicates per specimen were essayed and degradation rates were obtained 

from the weight losses observed. 

2.  Results and discussion 

2.1. Bulk chemical characterization 

Though this article focuses on the surface characterization of ALE/PAL polyester 

films prepared by melt-polycondensation in air without using catalysts, for reference 

purposes, it is necessary to address the chemical characterization of the bulk. Thus, 

esterification and palmitic incorporation in ALE/PAL polyesters have been studied by 

1
H and 

13
C CP-MAS NMR and spectra are plotted in figure 1. Briefly, the presence of 

palmitic units is indicated by green areas (terminal –CH3 and adjacent –CH2- groups). 

The formation of the ester is evidenced by signals marked in red while the associated 

elimination of hydroxyls is highlighted by regions in blue. The most important 

observations within the series are: (i) most of primary hydroxyls are esterified (peak 

~65 ppm) [20,21] and (ii) free secondary hydroxyls (~75 ppm) [22] are progressively 



10 
 

eliminated upon palmitic acid addition. Based on these and on previous NMR and IR 

results [15] we propose several reactions contributing to such secondary hydroxyl 

reduction: (i) esterification, caused by the increment of the –COOH/-OH ratio, (ii) 

dehydration, which is favored in secondary alcohols and (iii) oxidative diol cleavage to 

form acid groups, figure 2A. 

 

Figure 1. Solid state 
1
H (A) and 

13
C (B) CP-MAS NMR spectra of ALE/PAL polyesters. Color code: 

(green) palmitic incorporation, (blue) esterification reactants and (red) esterification products. 

2.2. Reaction kinetics at the near surface region 

At the air exposed side of films, esterification can be monitored by the 

transformation of the carbonyl stretching ν(C=O)  of the acid at 1699 cm
-1

 into the one 

at 1730 cm
-1

 corresponding to an ester, figure 2B (black traces). It is also confirmed by 

the development of other characteristic ester bands at 1172 cm
-1

 and 1245 cm
-1

 assigned 

to (OC-O-C) groups [23] (Supporting Information, figure SI1). The main carbonyl ester 

peak is accompanied by a shoulder around 1710-1717 cm
-1

, which is due to a series of 

species comprising hydrogen bonded ester carbonyls (1715 cm
-1

) [24,25] and –COOH 

weakly interacting by hydrogen bonding (1710 cm
-1

) [26,27]. Following this initial 
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esterification stage, both an increase of the intensity of the carbonyl band (blue traces) 

and the development of new bands around 1770 cm
-1

, 1800 cm
-1

 and 1630 cm
-1

 (red 

traces) are observed. The later one is due to the formation of (C=C) bonds resulting 

from the alcohol dehydration while those at 1770 cm
-1

 and 1800 cm
-1

 are associated to 

oxidized species such as acyl peroxides and peroxyesters [28,29,30]. 

 

Figure 2. (A) Schematics of reactions detected and (B) νC=O ATR-FTIR spectra monitoring the 

esterification reaction at the air exposed side of films obtained from the indicated aleuritic and palmitic 

acid mixtures at 150°C. Reaction times are (down to up): 0 (pure acids), 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 

10, 12 and 24 hours. Color code is: (black) esterification stage, (blue) onset of the oxidative diol cleavage 

and (red) side oxidations and dehydration reactions. 

The carbonyl band magnification is better analyzed when areas are calculated and 

normalized to the νCH peak of the aliphatic chains, figure 3. The initial flat region of the 

(AνCO/AνCH) vs reaction time plots characterizes the esterification process itself in 

which acid groups (–COOH) are transformed into esters (-CO-O-) with no carbonyl 

population modification. At higher reaction times, the (AνCO/AνCH) ratio increases very 
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noticeably and reaches a saturation value around 1.3-1.4 (saturation is an artifact caused 

by the limited depth analysis of the single reflection ATR-FTIR technique). Such 

(AνCO/AνCH) increment is not detected when analyzing the mold facing side of the film 

(open circles in figure 3 and figure SI2 in Supporting Info) and, consequently, the 

observed trend is associated with the occurrence of side oxidation reactions when 

exposed to air. The reaction proposed is the oxidative vicinal diol cleavage and further 

esterification of the –COOH groups formed. This second esterification stage is 

consistent with the simultaneous reduction of the hydroxyl population (broad νOH band 

around 3400 cm
-1

 in Supporting Info Figure SI1). 

 

Figure 3. (left) Progression of the normalized ν(C=O) ATR-FTIR band vs reaction time at the air exposed 

side of ALE/PAL polyester films (filled circles). As a reference, open circles (dotted line) correspond to 

the film side in contact with the mold. (bottom-right) Direct relationship between the vicinal diol cleavage 

progression (AνC=O/AνCH) and the production of oxygenated (red) and dehydrated (green) species. (top- 

right) Schematics of the structural modification induced by the oxidative diol cleavage and further 

esterification in the 10/0 and 5/5 ALE/PAL network. Color intensity represents the extent of the oxidative 

processes.  

2.3. The effect of palmitic acid addition 

The addition of palmitic acid has a strong effect on these chemical processes. As 

indicated by ATR-FTIR data, esterification, diol cleavage, oxidation and dehydration 

are evidenced at progressively shorter reaction times. On the other side, dehydration and 

oxidation processes seem to be associated with the oxidative vicinal diol cleavage 
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reaction as deduced from the parallelism between the (Aν(CO)ox/AνCH) and (AνC=C/AνCH) 

vs (AνCO/AνCH) plots, figure 3. These three chemical reactions, i.e. oxidative cleavage, 

dehydration and carbonyl oxidation, share no common mechanism explaining their 

observed interdependence so we propose the diffusion of reactive species or products as 

the rate limiting step. 

2.4. Depth Analysis 

To support this hypothesis variable depth ATR-FTIR measurements have been 

carried out and normalized band areas corresponding to oxidative cleavage, oxidation 

and dehydration are shown in figure 4 (ATR-FTIR spectra can be seen in Supporting 

Information figure SI3). As expected, profiles show that side reactions are more intense 

at the near surface regions and progressively diminish towards the bulk. Also, the air 

exposed side of the film (figure 4A) is more altered than the face in contact with the 

mold (figure 4B), particularly by processes requesting oxygen. However, dehydration 

levels in both sides are similar. These results indicate that the mold behave as a pressure 

valve allowing the release of water molecules from the bulk but impeding the access of 

oxygen to the surface. When comparing the ALE/PAL 10/0 and 5/5 samples, it becomes 

evident that the addition of palmitic acid favors both oxidative and dehydration 

reactions. Under the preparation conditions used the altered crust is estimated to be 

about 5µm thick. 

2.5.Mechanical characterization 

Near surface mechanical characterization has been performed by indentation at 

several depths within the altered layer of the ALE/PAL 10/0 and 5/5 samples, figure 5. 

The different mechanical performance of both films is apparent from the load-depth 

curves and elastic modulus, elastic recovery and hardness values. As observed, the 
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external layer (below 6 µm) of the ALE/PAL 5/5 sample is stiffer than the ALE/PAL 

10/0 one. In both cases, mechanical parameters decay with indentation depth and evolve 

towards bulk values (table 1) considering that values obtained by the Oliver-Pharr 

method can be several times higher than those obtained by tensile experiments due 

viscoelastic and pileup effects in the indentation [31]. 

 

Figure 4. Variable angle ATR-FTIR data showing the concentration depth profiles of species generated 

in the oxidative diol cleavage (blue), oxidation and peroxidation (red) and dehydration (green) reactions 

for the 10/0 and 5/5 ALE/PAL polyesters. Profiles are represented from the air exposed side (A) and the 

mold facing side (B) towards the bulk. The graphical representation of the variable angle ATR-FTIR 

experiment is inserted. 

Though the dependence of the mechanical parameters on the indentation size in 

polymers it is a well-known phenomenon, physical contributions like adhesion, pressure 

dependence behavior, higher order displacement effects and confined molecular motion 

in the interfacial region are reported to be relevant mostly at the submicron range 
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[18,32]. In our case, these contributions can be neglected considering both the 

indentation depth achieved and the magnitude of the modifications observed. 

 

Figure 5. Typical load-depth indentation curves and mechanical parameters obtained as a function of the 

indentation depth for the air exposed side of the10/0 and the 5/5 ALE/PAL polyesters. 

2.6. Textural analysis 

Surface texture of the air exposed side of the films has been analyzed by SEM and 

images obtained (Supporting Info Figure SI4) revealed quite smooth surfaces. The 

textural analysis was completed by AFM (figure 6) and surface roughness values are 

quite low (RMS from 0.4 nm to 1.3 nm), but they show a growing trend with the 

palmitic acid addition. 

AFM analysis has been complemented with N2 adsorption isotherms. SBET values 

obtained (table in figure 6) are very low, as reported for non-porous polymers [33] and 

prevents the definition of a clear trend. Further microporosity analysis using CO2 

adsorption at 274 K has been unfruitful because of the very low surface affinity for 
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CO2. Thus, and based mostly on AFM results, the overall conclusion is that the addition 

of palmitic acid causes an increment of the accessible area. 

 

Figure 6. Appearance and textural AFM images of the air exposed side of poly ALE/PAL films. Surface 

RMS roughness is correlated with the PAL content. 

2.7. Surface hydrophobicity and water permeability 

Surface affinity for water of the air exposed side of ALE/PAL polyester films has 

been evaluated by means of static water contact angle measurements (WCA), figure 7A. 

Two situations have been considered: before and after severe oxidation and diol 

cleavage conditions (after 8h and 24h reaction, blue and red dots, respectively). In the 

absence of oxidation, the high WCA values observed (105-102°) show the hydrophobic 

character of these polyesters. Nevertheless, one may expect the WCA to increase with 

the PAL content as the result of both: (i) the progressive hydroxyl diminishment and (ii) 

the increment of surface roughness, however, a decreasing trend is detected. On the 

other side, it can be observed that hydrophobicity decreases in the same sense as the 
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oxidative diol cleavage reaction is enhanced, i.e. at higher palmitic content and longer 

reaction time. To investigate such relationship and to highlight the surface chemical 

modifications involved, the ATR-FTIR spectrum corresponding to a pristine polyester 

(this is, the one obtained for the 10/0 sample after 8h reaction) has been subtracted from 

those of the 8h and 24h series. Results are included in figure 7B. As observed, the 

generation of oxidized, and particularly –COOH, species can be correlated with the 

WCA decrease. Thus, we conclude that these new species may act as hydrophilic 

moieties increasing the surface water affinity of ALE/PAL polyesters prepared at longer 

reaction times and higher PAL content. 

On the other side, water permeability values (Pwv) show no modification with the 

PAL content (table 1) and values are similar to those of synthetic polymers like 

ethylcellulose (EC) and cellulose acetate (CA) [34]. 

 

Figure 7. (A) Static water contact angle (WCA) values for the air exposed side of ALE/PAL polyesters 

prepared before (8h, blue) and after oxidation (24h, red). (B) ATR-FTIR difference spectra remarking the 

near surface chemical modifications in both series. 

2.8. Surface resistance to hydrolysis. 
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The chemical resistance of the surface of ALE/PAL polyesters towards alkaline 

hydrolysis has been qualitative determined by placing a drop of a 1M NaOH solution 

and monitoring the penetration rate, figure 8. To isolate the chemical process from 

physical contributions like absorption and evaporation of the solvent, the drop volume 

modification is compared to the one observed for pure water. In these conditions, the 

relative volume modification of the drop is related to ester linkage hydrolysis and 

monomer/oligomer migration towards the liquid phase. As observed in figure 8, the 

volume loss is more intense as the amount of palmitic added is higher. The slopes of the 

curves at the straight initial regions are compiled in table 1, and, if considered as 

representative for the reaction rate, it is concluded that surface alkaline hydrolysis is 

proportional to the palmitic content. 

 

Figure 8. Evolution of water and NaOH solution drops on the surface of the air exposed side of 

ALE/PAL polyesters. Curves represent the volume difference between the NaOH 1M and the water drops 

as a function of contact time. 
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2.9. Biodegradation. 

The degradation of ALE/PAL polyesters in contact with soil has been studied for up 

to 180 days. The weight losses observed are proportional to the contact time and the 

calculated degradation rates are listed in table 1. As observed, the addition of palmitic 

acid slows down the process to the point that the time required for a 50% weight loss 

(t1/2) is almost 60 times higher for the 5/5 ALE/PAL film when compared to the 10/0 

ALE/PAL. SEM images also reveal important differences, figure 9. The mold side of 

the films shows a much higher degradation and proliferation of microorganisms than the 

air exposed side. Fungi hifes and bacteria are clearly visible and, particularly, 

Penicillium simplicissimum and Fusarium solani have been isolated and identified as 

the main microorganisms involved in the biodegradation of these polymers. In both 

sides, proliferation is reduced as palmitic content is increased. ATR-FTIR spectra reveal 

the presence of carboxylate species (1644 and 1548 cm
-1

) resulting from the ester bond 

cleavage. 

 

Figure 9. SEM images of both sides of 10/0 and 5/5 ALE/PAL films after degradation in contact with 

soil for 40 days. νC=O ATR-FTIR spectra are included. 
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3. Discussion 

To prevent side reactions affecting their structure and properties, polyesters are 

generally synthesized under an inert atmosphere. It is also very common the use of a 

reduced pressure to favor the release of the water molecule and to improve the reaction 

yield. In the presence of oxygen, the melt-polycondensation reaction becomes 

uncontrollable and low molecular weight polymers with unsatisfactory properties are 

usually obtained. One of the most evident signs of oxidation is the yellowing of the 

polyester which may be considered artistically unpleasant. ALE/PAL polyesters 

prepared here display such yellow to light brown coloring. However, when applied as a 

few microns thick coating, the result is a nice golden finish comparable to those 

observed in commercial food cans. On the other side, the advantages of a direct 

synthesis, as the one reported here, in terms of simplicity and cost reduction is worth 

being considered. Additionally, partial oxidation can be envisaged as a tool to 

intentionally modify the structure of polymers. Thus, the oxidative degradation has been 

proposed as a feasible method to transform microbial polyesters into copolymers 

without any additional agents such as solvents or catalysts [35]. Analogously, the 

following paragraphs will discuss and evaluate the role of oxygen in inducing side 

reaction and in positively modifying the properties of the near surface region of the 

ALE/PAL polyesters. 

1
H and 

13
C CP-MAS NMR results show that the esterification of aleuritic acid in 

these experimental conditions mainly involve primary hydroxyls. The structure of the 

ALE polyester can then be described as mostly linear; with some degree of branching 

due to the partial esterification of secondary hydroxyls. This primary skeleton is 

completed with a secondary network of hydrogen bonded hydroxyls, scheme in figure 

3. Blocking of primary and secondary hydroxyls upon palmitic acid (PAL) addition 
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reduces chain propagation, branching and hydrogen bonding. Such chain size 

diminution is likely the cause of the decrease of the bulk tensile parameters and the 

insoluble fraction, as well as the increment of the hydrolysis rate, table 1. However, no 

cross-linking by ester bonding is formally possible in any of the ALE/PAL formulations 

because there is only one –COOH group per monomer. 

ATR-FTIR data have shown the occurrence of side reactions caused by oxygen 

along the synthesis of the polyester, particularly the oxidative cleavage of vicinal 

hydroxyl groups. The subsequent esterification of the new –COOH groups formed has a 

direct effect in the architecture of the polymer. Thus, the creation of two ester bonds per 

broken C-C linkage results in chain crosslinking and in the reinforcement of the 

structure (scheme in figure 3). In this mechanism, crosslinking requests both the access 

of oxygen to initiate the oxidative cleavage and the release of water resulting from intra-

esterification. ATR-FTIR depth analysis has stated that the addition of palmitic acid 

enhances oxygen and water diffusion across the polymer matrix reaching deeper regions 

in a shorter time. Such enhancement of O2 and H2O diffusion at the near surface region 

is likely caused by both the increment of the accessible surface area and the definition 

of more effective pathways through the ALE/PAL network. Consequently, crosslinking 

is expected to be incremented at the near surface regions of the palmitic added samples. 

Indentation results corroborate these hypotheses. Data suggest a more reduced 

alteration layer in the ALE/PAL 10/0 specimen as values stabilize below 5-6 m while 

no such stabilization is observed for the ALE/PAL 5/5 sample. Compared to the 

ALE/PAL 10/0, the higher elastic modulus and lower elastic recovery of the ALE/PAL 

5/5 sample is consistent with a more crosslinked surface region [36]. On the other side, 

the higher hardness decrease in the ALE/PAL 5/5 sample is related to the diminution of 
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the secondary hydrogen bonded hydroxyl network and implies a lower capacity of 

resistance to permanent plastic deformation. 

Cross-linking also influences the surface degradation by alkaline hydrolysis of 

ALE/PAL films. If such degradability is related to the possibility of scission of 

monomers or oligomers from the polymer network, the reduction of chain size caused 

by PAL addition accounts for the fast growing of bulk hydrolysis rates (table 1). 

However, if the ALE/PAL structure at the surface is reinforced by additional ester 

bonds, the probability of scission decreases and justifies the smoother hydrolysis rate 

trends observed at the surface of films when compared to those of bulk. 

Affinity for water of bulk ALE/PAL polyesters is found to depend on the 

availability of free hydroxyl groups (table 1). For this reason, both the reduction of the 

ALE fraction and the hydroxyl consumption in the oxidative cleavage were expected to 

cause an increment of surface hydrophobicity upon PAL addition. However, 

experimental results showed the opposite behavior. Meanwhile, ATR-FTIR revealed the 

development of a residual free –COOH surface phase, figure 7. The growing 

concentration of such acid phase in PAL rich specimen is likely due to the combination 

of two interconnected factors: (i) the enhancement of the oxidative cleavage originated 

by a better diffusion of oxygen and (ii) the reduction of the probability of ester 

formation by the associated fast hydroxyl depletion. Thus, the reduction of WCA values 

is caused by the presence of surface hydrophilic –COOH centers surpassing the effect of 

both the reduction of hydroxyls and the increment of surface roughness. Despite this 

unfavorable result, still WCA values obtained are similar to those of common packaging 

materials like PET, PVDC, PVC and PS. Conversely, water permeability of ALE/PAL 

polyesters is two to three orders of magnitude higher [33,37]. In any case, ALE/PAL 

polyesters show an acceptable water barrier capacity.   



23 
 

Finally, when biodegradation in contact with soil and alkaline hydrolysis data are 

compared, opposite trends are observed, table 1. This is an indication that in ALE/PAL 

polyesters, biodegradation is mostly carried out by the action of microorganism rather 

than to a mere hydrolysis chemical reaction with soil. Microorganism fixation and 

activity on the surface of a film are conditioned by many factors such as texture, 

chemical composition and wettability. Though, surface roughness and hydrophilicity 

increases by the addition of palmitic acid in ALE/PAL polyesters, microorganism 

proliferation diminishes, figure 9. Consequently, fungal activity is mainly related to the 

chemical modification induced by the additive and the preparation method. The 

formation of the oxidized surface layer reduces biodegradation and becomes a variable 

to adjust the antimicrobial activity of these polyesters. 

Biodegradation of polyhydroxyalkanoates in contact with soil strongly depend on 

conditions facilitating the proliferation of microorganisms such as the substrate 

chemical composition, temperature, humidity and availability of oxygen [38,39,40]. 

This complicates result comparison from different sources, but, as a reference, half-life 

times obtained here are very similar or even shorter than those reported for PHB and 

PHV copolymers in wet fertilized substrates (t1/2 = 15-105 days). 

4. Conclusions 

Bulk and surface physical and chemical properties of aleuritic/palmitic (ALE/PAL) 

polyesters films prepared by melt-polycondensation in air at 150°C without using 

catalysts are found to differ. While bulk parameters are controlled by the reduction of 

both chain size and free hydroxyls availability upon palmitic acid addition, surface 

behavior is conditioned by chemical and structural modifications caused by a series of 

oxidative processes. The most important is the oxidative diol cleavage and further 



24 
 

esterification of aleuritic units that give rise to chain cross-linking. Such cross-linking 

improves both the surface mechanical performance and the resistance to alkaline 

hydrolysis when compared to bulk. Though the chemical modification caused by such 

oxidative cleavage significantly reduces an important feature like surface 

hydrophobicity, it is also responsible for the enhanced antimicrobial activity of 

ALE/PAL polyesters. Therefore, the characterization of surface parameters is of key 

importance in the application of such polyesters as barrier films or coatings if prepared 

directly in air by melt-polycondensation. 
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Table 1. Physical and chemical parameters of ALE/PAL polyesters 

ALE/PAL 

(mol/mol) 

 

XP
a
 Insoluble 

fraction
b
 

(%) 

Young´s 

Modulus 

(MPa) 

UTS 

 

(MPa) 

Specific water 

uptake
c
 

(mol g
-1

 x10
4
) 

Water 

permeability 

(m
2
 s

-1
 x10

8
) 

Hydrolysis rate 

(bulk)
d
 

(%w/w h
-1

) 

Hydrolysis rate
 

(surface)
e
 

(µL s
-1

 x10
4
) 

Biodegradation 

rate 

(%w/w d
-1

) 

Biodegradation 

half-life time (t1/2) 

(days) 

10/0 0 94 3.9 1.2 2.07 6.2 0.4 2.1 0.70 72 

9/1 0.10 90 2.8 0.9 1.60 6.0 0.5 3.9 0.48 104 

8/2 0.15 82 3.3 1.1 1.38 7.2 0.7 5.6 0.35 143 

7/3 0.20 82 3.0 0.8 1.04 6.4 0.9 7.3 0.24 211 

6/4 0.23 82 3.3 0.9 0.97 6.0 1.5 9.2 0.11 467 

5/5 0.27 70 1.4 0.2 0.57 7.1 3.6 10.1 0.01 4167 

a
 From quantitative 

13
C NMR 

b
 In DMSO at 100°C for 24h 

c
 From DSC after 48h at 50% RH 

d
 Gravimetrically at RT in NaOH 0.25M 

e
 Tensiometer, 4µL NaOH 1M drop at RT



26 
 

References 

                                                             

[1] Kolattukudy P E 2001 Advances in Biochemical Engineering/Biotechnology 

Biopolyesters (Berlin Heidelberg: Springer-Verlag) 71 1-49 

[2] Schreiber L 2010 Trends Plant Sci. 15 546-553 

[3] Gandini A, Pascoal Neto C and Silvestre A J D 2006 Prog. Polym. Sci. 31 878-892 

[4] Olsson A, Lindstrom M and Iversen T 2007 Biomacromolecules 8 757-760 

[5] Heredia-Guerrero J A, Heredia A, García-Segura R and Benítez J J 2009 Polymer 50 

5633-5637 

[6] Sousa et al 2011 J. Polym. Sci. Part A: Polym. Chem. 49 2281-2291 

[7] Gómez-Patiño M B et al 2015 Frontiers in Materials 2 67  

[8] Garcia H et al 2014 Biomacromolecules 15 1806-1813 

[9] Benítez J J et al 2015 Frontiers in Materials 2 59 

[10] Baker E A and Holloway P J 1970 Phytochemistry 9 1557-1562 

[11] Walton T J and Kolattukudy P E 1972 Biochemistry 11 1885-1897 

[12] Santos S A, Cotter J F and McWeeney M M 202 US Patent 6,348,217 

[13] Berger S and Sicker D 2009 Isolation and Structure Elucidation of Natural 

Products Classics in Spectroscopy (Weinheim: Wiley-VCH Verlag GmbH & Co) 519-

538 

[14] Benítez J J et al 2015 J. Appl. Polym. Sci. 132 41328 

[15] Benítez J J et al 2015 Soft Materials 13 5-11 



27 
 

                                                                                                                                                                                   

[16] Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564-1583 

[17]  Briscoe B, Fiori L and Pelillo E 1998 J. Phys D: Appl Phys 31 2395-2405 

[18] Alisafaei F and Han C 2015 Adv Condens Mat Phys 391579 1-20 

[19] Horcas I et al 2007 Rev. Sci. Instrum. 78 013705 

[20] Liu C et al 2011 Biomacromolecules 12 3291-3298 

[21] Deshmukh A P, Simpson A J and Hatcher P G 2003 Phytochemistry 64 1163-1170 

[22] Pandey A K, Nande S S, Selukar B S and Garnaik B 2010 e-Polymers 131 1-12 

[23] Bellamy L J 1975 The Infrared Spectra of Complex Molecules, vol. 1 (London: 

Chapman and Hall) 203-205 

[24] Ramirez F J, Luque P, Heredia A and Bukovac M J 1992 Biopolymers 32 1425-

1429 

[25] Heredia-Guerrero J A et al 2014 Frontiers in Plant Sci. 5 1-14 

[26] Maréchal Y and Chamel A 1996 J. Phys. Chem. 100 8551-8555 

[27] Dong J, Ozaki Y and Nakashima K 1997 Macromolecules 30 1111-1117 

[28] Davison W H T 1951 J. Chem. Soc. 2456-2461 

[29] Yin H., Hachey D L and Porter N A 2001 J. Am. Soc. Mass Spectrom. 12 449-455 

[30] Peng H, Alemany L B, Margrave J. L and Khabashesku V N 2003 J. Am. Chem. 

Soc. 125 15174-15182 

[31] Tranchida D, Piccarolo S, Loos J and Alexeev A 2006 Appl. Phys. Lett. 89 171905 



28 
 

                                                                                                                                                                                   

[32] Tweedie C et al 2007 Adv. Mater. 19 2540-2546 

[33] Zaleski R, Stefaniak W, Maciejewska M and Goworek J 2009 J. Porous Mater. 16 

691-698 

[34]  Schreiber L and Schönherr J 2009 Water and Solute Permeability of Plant Cuticles 

(Berlin Heidelberg: Springer-Verlag) 63  

[35] Michalak M, Kwiecien M, Kawalec M and Kurcok P 2016 RSC Adv. 6 12809 

[36] Jiang C et al 2007 Adv. Funct. Mater. 17 2229–2237 

[37] Lange J and Wyser Y 2003 Packag. Technol. Sci. 16 149-158 

[38] Nishide H, Toyota K and Kimura M 1999 Soil Sci. Plant Nutrition 45 963-972 

[39] Matavulj M and Molitoris H P 2000 Hoppea, Denkschr. Regensb. Bot. Ges. 61 

735-749  

[40] Shogren R L et al 2003 Polym. Degrad. Stab. 79 405-411 


