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Abstract 
 
The present work deals with the recovery of the in-boundary stress on smooth boundary parts in 
Boundary Element Method (BEM) in two dimensions. First, two Boundary Integral 
Representations (BIRs) of tangential derivative of boundary displacements, whose integral kernels 
multiplying either tangential derivative of displacements or displacements are smooth and bounded, 
are presented. Two procedures for an in-boundary stress recovery based on these BIRs are 
developed and analyzed. The first procedure, which directly uses the results obtained from a BEM 
analysis, displacements and tractions, requires to perform integrations involved in these BIRs either 
over the real boundary of the solid or over a smooth approximation of the boundary part where the 
evaluation point is placed. The second procedure, which can be applied on a non-smooth (e.g. 
polygonal) approximation of the boundary, requires to use in the first BIR introduced here an 
integral density which is previously smoothed by a local smoothing procedure. The third recovery 
procedure considered in this work is directly given by a local smoothing procedure of this kind. 
Results obtained by these three recovery procedures are compared in a series of numerical tests, the 
best results being obtained by the first procedure developed in this work. 
 
 
1 INTRODUCTION 
 
An accurate evaluation of the complete stress tensor at a boundary of a body is an important issue 
for engineering practice considering that maxima of different failure criteria are typically achieved 
on or near this boundary. Usually, a Boundary Integral Equation (BIE) formulation of an elastic 
problem directly involves boundary displacements and tractions as variables (París and Cañas, 
1997), but not the so-called in-boundary stress.  

The present work is dedicated to the evaluation of the in-boundary stress at boundary points 
placed at smooth boundary parts and where additionally the stress tensor is continuous. Corners and 
points with a sudden change of boundary conditions are consequently excluded from the scope of 
the present work. 

Two new Boundary Integral Representations (BIRs) of the tangential derivative of boundary 
displacements for isotropic elastic solids deduced by Mantič et al. (2002), applying a novel idea 
introduced recently by Wu (2000) in the framework of anisotropic elasticity, are briefly presented 
in Section 2. These BIRs are in some sense equivalent each other, as the second one is obtained by 
integration by parts of the first one. An advantage of the direct application of these BIRs, denoted 
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here as LS approach (because of an application of the Barnett and Lothe tensors L and S in their 
deduction), is that the integrals involving the tangential derivative of boundary displacements (or 
directly the boundary displacements) are non-singular on smooth boundary parts. This non-singular 
character avoids the necessity to fulfill very demanding continuity requirements on the boundary 
element approximation of tangential derivative of displacements (or displacements) that hold for 
the usually used strongly singular (or hypersingular) BIRs (Krishnasamy et al., 1992; Guiggiani et 
al., 1992; Gray and Manne, 1993; Graciani et al., 2000). When these continuity requirements are 
not fulfilled at element junctions, a slow convergence of the in-boundary stress can be observed. 
Avila et al. (1997) observed such a slow convergence for an h-refinement evaluating the in-
boundary stress at the center of continuous linear elements by the hypersingular BIR. 

Section 3 presents a local smoothing technique for evaluation of a continuous piecewise linear 
approximation of displacement gradient, denoted here as DSC approach, using displacements and 
tractions obtained from a BEM analysis. This technique is a generalization of an analogous 
smoothing technique applied with very encouraging results to BEM for potential theory by Mantič 
et al. (1999) and Graciani et al. (2000).  

The continuous approximation of displacement gradient obtained by DSC can be applied as an 
integral density either in the conventional strongly singular BIR of displacements gradient or in the 
first ‘non-singular’ BIR of tangential derivative of boundary displacements presented in this work, 
in a similar way as used in Mantič et al. (1999) and Graciani et al. (2000). In this paper, this second 
option is used and is denoted as SSC approach. An advantage of this approach is that it can be 
applied in a coherent way at corners of a polygonal approximation of the boundary, i.e. at boundary 
element junctions on originally curved boundary parts. 

Results of a comparative numerical study are presented in Section 5. In-boundary stress is 
evaluated at nodes in the post-processing phase using the following three approaches: LS, DSC, 
and SSC. The numerical comparative study performed has shown a superior accuracy of the novel 
LS approach in comparison with the other two approaches. Nevertheless, in several cases, the 
accuracy obtained by DSC has been very similar to that of LS approach. This fact is very important 
if the simplicity of implementation of DSC approach in a BEM code and its efficiency, in terms of 
computational costs, are taken into account. 
 
 
2 NOVEL BIRs FOR ISOTROPIC ELASTICITY 
 
Consider an isotropic elastic body, defined by a plane section domain 2R⊂Ω  with a bounded 
piecewise smooth Lipschitz boundary Γ , subjected to a plane strain state. Let  and G ν  
respectively denote the shear modulus and Poisson ratio. Let Γ⊂ΓS  denote the smooth part of Γ , 
for simplicity, C  will be assumed.  ∞

Let  and n  ()(xs )(x 2R∈x ) be unit vectors perpendicular each other and related by . 

When 
jiji sn ε=

SΓ∈x ,  and  are considered to be the unit tangential and outward normal vectors 
to the boundary 

)x(s )(xn
Γ . 

Wu et al. (1992) introduced a pair of strongly singular BIEs, for tangential derivatives of 
displacements  and tractions t  (associated to  and n  respectively), which can be 
written for any 

us∂ )(xs )(x
2R∈x  except for boundary corners as follows: 
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WU,  and  being imaginary parts of the following  complex matrix functions representing 
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where ,  is the imaginary unit, I  is the  identity matrix. The free 
term coefficient in (1) fulfills,  for , 

)()( 2211 yxiyxz −+−= i
C

22×
1)( =x Ω∈x 2

1) =C(x  for SΓ∈x , and  for 0)( =xC
Γ∪Ω∉x . In (1) it is supposed that displacement derivatives are locally Hölder continuous at 
Γ∪ ()(, 0C1 ≤α<∈ α xuΩ∈x , . The Cauchy principal value integral in (1) for )1 SΓ∈x  is 

denoted by p.v.  
Let L  and  denote  Barnett-Lothe tensors (Ting, 1996) defined as: S 22×

,
)(

, ijijijij 12
21S

1
GL ε

ν−
ν−−=δ

ν−
=                                                     (3) 

where ijδ  is the Kronecker delta and ijε  is the permutation symbol ( 0,1 22112112 ===−= εεεε ). 
Then, applying a procedure introduced by Wu (2000) for anisotropic materials, and developed 

by Mantič et al. (2002) for isotropic materials, the following novel BIE is obtained when BIEs (1) 
are added multiplying from the left the first one by  and the second one by − : L TS
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Explicit expressions of the above integral kernels in a real variable formulation can be written as: 
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where ,  and . Taking yxr −= || r=r rrr ii /, = SΓ∈x

S

, it can be shown from (5)1 that the integral 

kernel  is a smooth function of xs∂/∂ ∗ ),( yxV Γ∈y  and a bounded function for all Γ∈y , which 
implies that the first integral of the right-hand side in (4) is regular. 

Considering SΓ∈x , the following BIR of  can be obtained from (4):  us∂
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Consider that approximations of u  and  obtained directly from a BEM analysis are applied in 
the right-hand side of (6). Then, an important advantage of BIR (6) is the fact that errors originated 
by a differentiation of an approximation of u  in the last integral of (6) are smoothened by the 
smooth and bounded character of the integral kernel . In fact, an approximation of 

 in the last integral of (6) does not have to fulfil any continuity requirements along 

t

xs∂∂ ∗ /),( yxV
us∂ Γ . 
Taking into account the fact that the usual result of a BEM analysis are displacements u  

instead of their tangential derivative , the following BIR of , obtained by an integration by 
parts of the second integral in (6) for 

us∂ us∂

SΓ∈x  (Mantič et al., 2002), could be considered even more 
suitable for applications: 
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An explicit expression of  can be written as: xy ss ∂∂∂ ∗ /),(2 yxV
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It has to be stressed that for a fixed SΓ∈x  this kernel has been obtained as a tangential 
derivative of a smooth function of SΓ∈y . Therefore, the integral kernel  is 

hypersingular only apparently, being in fact a smooth function for 
xy ss ∂∂∂ ∗ /),(2 yxV

SΓ∈y  and bounded for all 
Γ∈y , considering a fixed SΓ∈x . Consequently, a BEM approximation of u  applied on the right-

hand side of (7) is not required to be smooth at boundary element junctions (it could be even 
discontinuous) in order to obtain a continuous approximation of  on the left-hand side in (7).  us∂

For SΓ∈x , in-boundary stress  can be evaluated applying Hooke´s law in terms of the 
normal stress on boundary , obtained as a direct result of a BEM analysis, and in-
boundary strain , obtained applying either BIR (6) or (7), as follows: 

)(xssσ
)(xnnσ)(xnt =

)(x)(x ue sss ∂=

.ss2nss u
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Et
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ν=σ                                                    (9) 

It can be expected that the accuracy of  evaluated in this way will be similar to that of direct 
results of a BEM analysis: displacements and tractions. The above-described procedure will be 
referred to as LS approach. 

ssσ

Finally it has to be pointed out that in a BEM application of LS approach, integrations in (6) or 
(7) could also be performed over a smooth approximation of a curved SΓ  (e.g. by splines) instead 
of over the real boundary. 

 
 
3 LOCAL SMOOTHING PROCEDURE 
 
A simple local smoothing procedure for evaluation of displacement gradient u  using 
continuous linear boundary elements can be developed by a generalization of a procedure of this 
kind for potential problems introduced by Mantič et al. (1999) and Graciani et al. (2000).  

)(, xji

Consider a smooth segment of Γ  approximated by two linear elements eΓ , , defined by 
three consecutive nodes  and 

21e ,=

,,)( xx 1 Γ∈)(2x . Let n  and  respectively be the unit outward )(e )(es
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normal and tangential vectors to )(eΓ . Let xx −= )(e
eh  and )()( 21

12h xx −= . Let n  and 

 denote some approximations (or exact values if available) of the unit outward normal and 
tangential vectors to 
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Let  and  respectively denote nodal values of tractions and displacements obtained 
directly from a BEM analysis. Then the following approximation of the value of  can be 
obtained using Hooke´s law (Wu et al., 1992): 
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and  is an approximation of the tangential derivative of displacements. It can be defined, 
for example, as: 
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When  is placed at a corner of x Γ ,  can be approximated by )(, xjiu

ijhhije εω+= )()()()(( xxx ,                                                (14) 
where first, an approximation of the strain tensor (  is obtained using Hooke’s law from an 
approximation of the stress tensor , solution (by the least square method) of the following 

linear system: (  ) , corresponding to Cauchy lemma applied at 

)() xhije
)(x

x 1=e()) )(e
hiij tn =σ 2, )(eΓ . 

Second, an approximation of the infinitesimal rotation )(xhω  is obtained by a solution (by the least 
square method) of the following linear system:  ( .  )()( )()() e

jijh
e

jhij sseu εω xx +)()( / ee
i s =∂ (∂ )2

Let hΓ  denote an approximation of the real boundary Γ  by linear boundary elements, h  being 
a characteristic element size in the mesh. Then, a continuous and piecewise linear approximation of 
displacement gradient, denoted hereinafter as , over hjiu )( , hΓ  (which obviously defines a 
continuous and piecewise linear approximation  of stress tensor on hij )(σ hΓ ) is defined by its 
nodal values given by means of (11) or (14). This procedure is referred to as DSC approach. 
 
 
4 APPLICATION OF SMOOTHENED DENSITY IN A BIR 
 
Consider a fixed point Γ  and a fixed unit vector . Then using a standard asymptotic 
analysis (see Guiggiani et al. 1992, Mantič and París, 1995), which starts considering BIE (4) for 
the domain  with an excluded circular vanishing zone 

)(xs

(\ εΩ B ,{)( −∈=ε yx 2RyB , the 
following general boundary form of BIE (4) can be obtained (Calzado, 2001): 
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Somewhat complicated explicit expressions, in a real variable formulation, of the coefficient 
tensors  and of the free terms in (15) have been deduced by Calzado (2001) and are 
omitted here for the sake of brevity. Note that in the particular cases when either  is at a corner or 

 does not coincide with the tangential vector to 

)(xC us∂ )(xCt

x
)(xs Γ  at , the integral kernel  in 

(15) is actually strongly singular. 
x xs∂∗ /),( yxV∂

Consider BIE (15) rearranged into a form similar to BIR (6). An advantage of the BIR of  
obtained in this way is that it can be applied directly on 

us∂

hΓ , in the same way as was done in the 
original SSC procedure for potential gradient representation in Mantič et al (1999) and Graciani et 
al. (2000). In this procedure, vector  used in BIE (15) is defined for a point )(xs hΓ∈x , which 
corresponds to a point SΓ∈′x , by an approximation of the actual tangent vector to Γ  at , see 
e.g. (10). Note that points  and  coincide at nodes of 

x′
x x′ hΓ  and at straight parts of Γ . Then, 

continuous and piecewise linear DSC approximations , and  on hj )iu( , hij )(σ hΓ  (see Section 3) are 

used to define the integral densities,  and , on the right-hand side of (15), by taking the 
actual tangent and outward normal vectors to each boundary element of 

)(yus∂ )(yt

hΓ . In this way the 
continuity requirements in order to obtain a reliable BIR of  from (15) are fulfilled and 
neither spurious logarithmic singularities nor scale dependency at element junctions appear. The 
above-described procedure will be also referred to as SSC approach in the framework of elasticity 
theory. 

)(xus∂

 
 
5 NUMERICAL STUDY 
 
A series of three examples is presented to illustrate the performance of LS, DSC and SSC 
approaches in recovering in-boundary stress  at nodes. Continuous linear boundary elements 
and collocations at nodes of the boundary discretization of the Somigliana displacement identity 
with analytical integrations have been applied in the BEM analysis (París and Cañas, 1997). All 
boundary conditions are given by tractions, removing of rigid body motions being performed by a 
procedure developed in Blázquez et al. (1996).  

ssσ

First, two examples motivated by bending of beams problems with exclusively straight 
boundary parts, beam in pure bending and simply supported beam under a uniform load, are solved. 
Dimensions of domains are HL × , Then, an infinite plate with a circular hole 
of radius  subjected to a uniaxial tension at infinity is solved. Uniform meshes obtained by 
an h-refinement, starting from a basic mesh (with 12 and 8 elements respectively in case of beams 
and plate with a hole) and partitioning successively each element to three equally large smaller 
elements, are applied to each problem in order to study solution convergence. Note that in the LS 
approach the integrals are evaluated over the real boundary (i.e., in case of the circular hole over 
the circle). Results for several meshes and all approaches studied are presented for each problem. 
Convergences of characteristic (e.g. maximum) values of in-boundary stresses evaluated by the 
three approaches studied are compared in log-log scales for each problem solved.  

1cm.cm2 == H,L
1cm=R

Material properties in all examples have been defined as Young modulus MPa and 
Posisson ratio 

200=E
25.0=ν . Characteristic load value in all examples is MPa. Analytic solutions 

of the problems analyzed are given in Timoshenko and Goodier (1970).  
1=p
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5.1 Results for beams in bending 
 

Results obtained in the recovery of  are shown in Figs. 1 and 2, the basic mesh and a simple 
sketch of the problems solved being attached. 

ssσ

As can be seen in Fig.1 the best results in pure bending problem have been obtained by LS and 
the worst by SSC approach. Note that the difference between these two approaches, both based on 
the same BIR (6), are the integral densities used. In this particular case of straight boundaries the 
difference consists only in the approximations of  applied on the right-hand side of (6). In 
the LS approach the approximation of  applied is piecewise constant and thus 
discontinuous, whereas in SSC approach is piecewise linear and continuous (with obvious 
exception at corner points). As has been mentioned in Graciani et al. (2000) an explanation of the 
worse results by SSC can be related to the fact that the condition of vanishing of the integral of 

 over the whole boundary is not exactly fulfilled by  in SSC, whereas it is obviously 
exactly fulfilled by the approximation of in LS. 

)(yus∂
)(yus∂

)y
us∂ )(yus∂

(us∂
In Fig. 1b an increase of errors near corners can be observed, the lowest errors being provided 

by LS approach. It appears that this increase is related with an increase of the error in 
displacements obtained directly in BEM analysis (Calzado, 2001). A stable quadratic convergence 

 (or equivalently O , N being the number of nodes in each mesh) of errors obtained by 
all recovery procedures has been observed for all nodes (except for corners) of the basic mesh. Fig. 
1c shows a typical convergence behaviour for the centre of the bottom side. 

)( 2hO )( 2−N

When a more complicated problem, simply supported beam under a uniform load, whose 
solution in displacement is a polynomial of fourth order, is considered, the relative performance of 
the three approaches studied is different in comparison with the previous problem. Note that a local 
maximum in  is situated at the centre of the horizontal sides. Although, as can be seen in Fig. 2, 
LS is again the best approach, the difference between DSC and SSC is not so clear, SSC being 
better on horizontal sides and DSC on vertical sides. Typical increase of error near corners is also 
present here, although another increase of error takes place at local stress maximum as well, as 
could be expected. A stable O  convergence of all approaches has been obtained for all nodes 
of the basic mesh, and it is shown for the local stress maximum values in Fig. 2c. 

ssσ

)( 2h

 
5.2 Results for plate with a circular hole in tension 

 
The problem of a plate with a circular hole in a uniaxial tension has been solved in BEM analysis 
as an external problem using a standard superposition procedure (París and Cañas, 1997). As can be 
seen in Fig. 3, excellent results in the evaluation of hoop stress have been obtained by the LS 
approach. Recall that in this approach integrations in BIR (6) have been performed over the real 
circular boundary with a piecewise linear approximation of  and a piecewise constant 
approximation of ∂ . On the contrary, in SSC they have been performed over a polygonal 
boundary element approximation of circle. An expected increase of error has been obtained at both 
local stress maxima, higher errors being obtained at stress concentration point. O  convergence 
has been observed at all nodes of the basic mesh, Fig. 3c showing this convergence at local stress 
maxima. 

)(yt
)(yus

)( 2h
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Figure 1: Pure bending problem. Linear boundary elements. a) In-boundary stress evaluated at 
nodes. Meshes of 12 and 36 elements. b) Absolute errors of the in-boundary stress evaluated at 
nodes. Mesh of 36 elements. c) Convergence of the absolute error of the in-boundary stress 
evaluated at the center of the bottom side. 
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Figure 2: Simply supported beam under uniform load. Linear boundary elements. a) In-boundary 
stress evaluated at nodes. Meshes of 12 and 36 elements. b) Absolute errors of the in-boundary 
stress evaluated at nodes. Mesh of 36 elements. c) Convergence of the absolute error of the in-
boundary stress evaluated at the center of the bottom side. 
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Figure 3: Plate with a circular hole in tension. Linear boundary elements. a) Hoop stress evaluated 
at nodes. Meshes of 8 and 24 elements. b) Absolute errors in the hoop stress evaluated at nodes. 
Mesh of 24 elements. c) Convergence of the absolute error in the hoop stress evaluated at θ=0o, 
90o. 
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6 CONCLUSIONS 
 
A novel approach, denoted as LS in this paper, for recovery of the in-boundary stress ssσ  in BEM 
has been developed applying one of two new BIRs of ∂  introduced in the present work. These 
BIRs are equivalent to one BIE from a system of BIEs of the second kind recently deduced by Wu 
(2000) and Mantič et al. (2002). A basic advantage of this LS approach is the fact that, when 
integrations in these BIRs are performed over the smooth, either real or approximated, parts of the 
boundary, no demanding continuity requirements have to be fulfilled by an approximation of 
tangential derivative of displacements (or displacements) used as the integral density. This is due to 
the smooth and bounded character of the integral kernels which multiply these tangential derivative 
of displacements (or displacements) in the new BIRs. 

us

Two other approaches for recovery of ssσ , namely DSC and SSC, have been developed 
generalizing analogous approaches for recovery of potential gradient developed recently by Mantič 
et al. (1999) and Graciani et al. (2000).  

Numerical tests of recovering ssσ  at nodes of continuous linear boundary element meshes have 
shown an excellent performance of the LS approach when compared with the DSC and SSC 
approaches. A stable quadratic convergence of nodal values of ssσ , the same as that of direct 
results of a BEM analysis, u  and , has been obtained by all recovery approaches tested. t
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