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Abstract

A mechanochemical procedure is proposed for an easy preparation of a BaTiO3-Ni

composite in a single steep. BaTiO3 and Ni powders available in the market are mixed 

by dry ball milling producing a decrease of particle size and an evenly distribution of 

both phases. In the sintered pellets the nickel particles are homogeneously distributed 

into the BaTiO3 matrix and isolated from others Ni particles. The dielectric constant of 

the composite is considerably higher than that of the barium titanate. Moreover, the 

temperature of the ferroelectric ↔ paraelectric transition of the BaTiO3-Ni composite 

here prepared is much lower than the one of the pure BaTiO3 single phase.
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Introduction

Ferroelectric ceramics are widely used in a broad range of applications, 

especially in the design of electronic devices such as capacitors, dielectrics or 

electroactive materials [1-3]. Barium titanate (BaTiO3) is one of the most used 

ferroelectric ceramic in electronics due to its high dielectric constant, which makes it a 

very attractive material to use in capacitors such as boundary layer capacitors (BLC) 

and multilayer ceramic capacitors (MLCC) [3-5]. Because of its extensive use, it has 

been widely studied and several methods have been proposed to enhance its dielectric 

constant. Thus, it has been observed that the homogeneous dispersion of an electrically 

conductive filler, such as small metal particles, into an insulating matrix leads to an

increase in the dielectric constant of the composite [3, 6]. This raise reaches its 

maximum in the neighbourhood of the percolation threshold, where the dielectric 

constant experiments an abrupt increase [7-9]. As the metal content grows over the 

percolation threshold, an insulator-conductor transition is recorded and both 

conductivity and permittivity increase [10, 11]. This phenomenon may be explained by 

the isolation of the metal particles by thin dielectric layers near the percolation 

threshold. Hence the composite turns into a capacitor with good charge storage

properties. This behaviour is well known and it has been explained by the percolation 

theory [12]. Moreover, it has been observed that the incorporation of metal particles 

improve the sintering process, because metal particles undergo plastic deformation and 

thereby relax the internal stresses induced during the sintering [3, 13-17].

These kind of insulator/conductor composites have been intensely investigated 

in the last years [3, 18-21] and present a great scientific and engineering interest. 

Recently, Pecharroman et al [22] have designed a BaTiO3-Ni composite with an
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extremely high dielectric constant. In a similar way, Chen et al [3] reported the 

enhancement of the dielectric properties of X7R barium titanate ceramic by addition of 

nickel nanoparticles, while Qiao and Bi  observed an improvement in the dielectric 

behaviour of BaTiO3-Ni composite ferroic film. Lin et al [23] registered an analogue 

behaviour when incorporating silver particles to an NBT ceramic matrix, Panteny et al

in barium titanate-silver composite [11] and George et al in barium samarium titanate-

silver composite [10].

The most common method of preparing these metal-ceramic composites is 

colloidal processing, which implies using nanoparticles of both constituents and high 

volumes of water [7, 22]. Other methods involves using co-sputtering methods[24] or 

wet grinding [10]. In this work we propose the preparation BaTiO3-Ni nanocomposites

by dry grinding stating form conventional powders. Additionally, the dielectric 

behaviour of BaTiO3-Ni nanocomposite prepared are investigated.

Experimental

The composites were prepared from commercial Ni (Sigma-Aldrich 266981-

500G, 3μm, 99.7 % in purity) and BaTiO3 (Aldrich 12047-27-7, 2μm, 99.9 % in purity)

samples. Powder mixtures containing 28 vol % nickel and 72 vol % BaTiO3 were 

placed in a agate jar (300 cc volumen) with 12  agate balls 20 mm in diameter and 

milled using a centrifuge mill (model Fritsch Pulverisette) at 730 r.p.m. Different 

milling times were used for comparison. The surface areas of all powders were 

determined with a surface area analyzer (model FlowSorb III 2310, Micrometrics 

Instruments), using N2 as an adsorbate at the liquid nitrogen temperature. Size 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4

measurements were also made by light scattering procedure by means of a particle size 

analyzer (model Matersizer, Malvern)

Ball milled powders were pressed into discs of 13 mm in diameter and 1 mm in 

thickness by uniaxial pressing at 860 MPa. Then, the discs were sinterized at 1300ºC 

under N2 atmosphere for 2 hours using a Carbolite 1500ºC horizontal tube furnace. The 

densities of all discs were determined both before and after sintering using the 

Archimedes method.

Dilatometric curves for pure BaTiO3 and for BaTiO3-Ni composite under 

nitrogen atmosphere were obtained with a home-made dilatometer that measures the 

thickness change with temperature during the sintering process. 

The microstructures of both powders and sintered discs were studied by 

scanning electron microscopy (SEM)) in a Jeol instrument equipped with energy 

dispersive x-ray spectrometer (EDX). 

X-ray powder diffraction patterns were obtained with a Siemens D501 

instrument using CuK radiation and a graphite monochromator. The full-width of the 

half-maximum (FWHM) of (111) diffraction peak was used for calculating the 

coherently diffracting domain for both Nickel and BaTiO3 particles, according to the 

Scherrer equation.  

The sintered discs were placed between two platinum electrodes for measuring 

their dielectric constant and the dielectriuc loss by means of a LCR meter (IET, model 

IMF 600A). The two parallel surfaces of the sintered discs where covered with gold by 

means of a sputtering device for improving the electrical contact with the platinum 

electrodes.. The temperature dependences of the dielectric constant and dielectric loss 

were measured at temperatures ranging from 25ºC to 200ºC at 1 KHz. 
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Results and discussion

Fig. 1 shows the XRD patterns corresponding to a starting barium titanate and 

nickel mixture before milling (Fig. 1a) and to a BaTiO3-Ni powder milled for one (Fig. 

1b), four (Fig. 1c) and eight hours (Fig. 1d). Both phases, Ni and BaTiO3, remain 

crystalline after grinding treatment, but diffraction peaks becomes broader with the 

treatment due to a decrease in crystallite size. Thus, the crystallite size decreases for the 

starting powders from 117.0 and 136.3 nm for the BaTiO3 and Ni, respectively, to about 

45.5 and 63.8 nm for the BaTiO3 and Ni, respectively, after grinding for one hour

(Table 1). As grinding time proceeds, crystalline sizes decrease, yielding a minimum 

value of 28.4 and 30.3 nm for the BaTiO3 and Ni, respectively, after eight hours 

treatment. The BET specific surface values obtained for the different milled samples are 

presented in Fig. 2. The specific surface value quickly rises with the grinding time, from 

about 1.2 m2 g-1 for the unmilled sample to a maximum value of 11.6 m2 g-1 for the 

sample ground for four hours. After 4 hours of milling, the specific surface start to 

decrease until reaching a stade state value of 7.4 m2 g-1 from 8 hours of treatment. Thus, 

these results indicate that although the crystallite size decreases with the grinding time 

in entire studied range, surface area reaches a maximum at a 4-hour of milling time, and 

starts decreasing thereafter, probably due to aggregation produced by the grinding 

procedure.

Fig. 3 shows the scanning electron micrographs of starting nickel and barium 

titanate powders (Figs. 1a and 1b, respectively) and BaTiO3-Ni powder milled for 4

hours (Fig. 1c). Original powders consist of irregular and micron-sized particles highly 

aggregated. It can be appreciated that composite particles are also highly aggregated, 

although the subunits are smaller than in the starting powders. The micrograph of milled 
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sample also reveals that nickel and BaTiO3 particles presents a very homogeneous 

distribution, which is proved by the EDX mapping made for further confirmation, and 

presented in Fig. 1d.

Fig. 4 shows the particle size distribution curves as obtained by light scattering 

procedure for the starting powders and the composite. As shown in the figure, both 

BaTiO3 and Ni starting powders have a broad particle size distribution with modal sizes 

at 2.65 μm and 7.35 μm for BaTiO3 and Ni, repectively. For the mixture ball-milled for 

four hours, the modal size decreases to 1.41 μm, but the curve shows a very broad 

particle size distribution because of the high degree of aggregation of the small

particles, as also observed in the SEM micrograph (Fig. 3. c).

Fig. 5 shows the dilatometric curves obtained for both pure BaTiO3 and BaTiO3-

Ni sample milled for four hours. Both dilatometric curves are quite similar except for a 

slight shift to lower temperatures for the BaTiO3-Ni composite due to the inclusion of 

metal particles in the barium titanate matrix, which promotes the sintering process. This 

behaviour could be understood in terms of a plastic deformation of the metallic particles 

that relax the internal stresses that occurs during the sintering [3, 13-17]. The 

dilatometric curve shows that sintering is complete at 1300ºC, therefore, composite 

pellets were prepared from the BaTiO3-Ni powder milled during 4 hours by sintering 

the pressed powders at 1300ºC under N2 atmosphere for 2 hours. The density of the 

pellets thus obtained was measured by the Archimedes method, yielding a final 

densification of 98%. In Fig. 6 a scanning electron micrograph taken from the surface of 

the sintered sample is presented, as well as a Ni and Ti mapping image, showing an 

evenly dispersion of nickel particles into the BaTiO3 matrix. Thus, nickel particles are 

surrounded by the BaTiO3 phase and isolated from other Ni particles, indicating that the 

system has not overpassed the percolation threshold.
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Fig. 7 shows the dependence of the dielectric constant and the dielectric loss of 

the composites on the temperature. It is noteworthy the significant effect the inclusion 

of metal particles have on the dielectric behaviour of the BaTiO3. The dielectric 

constant of the BaTiO3-Ni is much higher than that of the pure BaTiO3 in the entire 

range of temperature studied, while the maximum values for both pure BaTiO3 and 

BaTiO3-Ni are 470 and 10850, respectively. Additionally, the maximum of the 

dielectric constant that occurs at 122-125ºC [25-30] in BaTiO3 and is associatecd to a 

ferroelectric (tetragonal) to paraelectric (cubic) phase transition is moved down to 82ºC 

in the BaTiO3-Ni nanocomposite. Moreover, the very low dielectric loss of this 

composite (about 0.04) supports the high quality of the dielectric here prepared.

Conclusions

An easy and rapid method for obtaining BaTiO3-Ni nanocomposites by mechanical 

grinding has been developed. This method allows working with conventional starting 

powders, because the milling itself reduces particle size at the same time that the 

components get thoroughly dispersed, thus obtaining a homogeneous nanocomposite by 

a simple procedure in a single step. The incorporation of metal nickel particles into a 

barium titanate matrix results in an improvement of the electric properties over the pure 

ferroelectric matrix. The high dielectric constant presented by the nanocomposite and 

the simple preparation procedure makes it an attractive material for different 

technological applications.
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Table 1.

Coherently Diffracting Domains values corresponding to starting nickel and barium 

titanate powders, and to the nanocomposite after different milling times.

Sample Milling Time 
(hour)

d111 (nm) BaTiO3 d111 (nm) Ni

Starting BaTiO3 0 117.0 -
Starting Nickel 0 - 136.3

BaTiO3-Ni mixture 1 45.5 63.8
2 38.8 58.7
4 37.5 49.4
8 28.4 30.3
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Figure captions

Fig 1.  X-ray diffraction patterns of barium titanate and nickel mixture before milling 

(a) and after grinding for one (b), four (c), and eight (d) hours.  Peaks corresponding to 

Ni phase are marked with an asterisk, all other peaks correspond to BaTiO3 phase.

Fig 2. BET specific surface values for the BaTiO3-Ni composite powder after different 

milling times.

Fig 3. Scanning electron microscopy micrographs illustrating the morphology of (a) 

Nickel and (b) BaTiO3 starting powders; (c) BaTiO3-Ni powder milled during 4 hours; 

(d) Ni element mapping that correspond to the field of vision in (c).

Fig 4. Particle size distribution for (a) BaTiO3 and (b) Nickel starting powders, and (c) 

BaTiO3-Ni powder milled for 4 hour.

Fig 5.  Dilatometric curves corresponding to: (a) pure BaTiO3 milled for 4 hours and (b) 

BaTiO3-Ni powders 4 hours milled.

Fig 6. Scanning electron microscopy micrograph (a) showing the microstructure of 

sintered BaTiO3-Ni bodies. (b) Ni and (c) Ti element mapping that correspond to the 

field of vision in (a).

Fig 7.  (a) Values for dielectric constant ε for both pure BaTiO3 and the BaTiO3-Ni 

nanocomposite and (b) dielectric loss of the BaTiO3-Ni composite as a function of 

temperature.
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