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ABSTRACT 

The polymer-to-ceramic transformation kinetics of two widely employed ceramic 
precursors; 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane (TTCS) and 
polyureamethylvinylsilazane (CERASET) have been investigated using coupled 
thermogravimetry and mass spectrometry (TG-MS), Raman, XRD and FTIR. The 
thermally induced decomposition of the pre-ceramic polymer is the critical step in the 
synthesis of Polymer Derived Ceramics (PDCs) and an accurate kinetic modeling is key 
to attain a complete understanding of the underlying process and to attempt any 
behavior predictions. However, obtaining a precise kinetic description of processes of 
such complexity, consisting of several largely overlapping physico-chemical processes 
comprising the cleavage of the starting polymeric network and the release of organic 
moieties, is extremely difficult. Here, using the evolved gases detected by MS as a 
guide it has been possible to determine the number of steps that compose the overall 
process, which was subsequently resolved using a semiempirical deconvolution method 
based on the Frasier-Suzuki function. Such function is more appropriate that the more 
usual Gaussian or Lorentzian functions since it takes into account the intrinsic 
asymmetry of kinetic curves. Then, the kinetic parameters of each constituent step was 
independently determined using both model-free and model-fitting procedures, finding 
the processes obey mostly diffusion models that can be attributed to the  diffusion of the 
released gases through the solid matrix.  The validity of the obtained kinetic parameters 
was tested not only by the successful reconstruction of the original experimental curves 
but also by predicting the kinetic curves of the overall processes yielded by different 
thermal schedules and by a mixed TTCS-CERASET precursor. 

 

KEYWORDS: Kinetics, Deconvolution, Frasier-Suzuki, Polymer-Derived Ceramics, 
Thermal decomposition;  
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1. Introduction 

Ceramic materials prepared from polymer precursors, also known as polymer-derived ceramics 

(PDCs), are a subject of the most interest that has received extensive atention in the last years 1-

7. These materials are prepared from a preceramic polymer that is first cured and then 

ceramified by controlled pyrolysis at relatively low temperatures as compared with those 

needed in conventional ceramic processing from ceramic powders 8-13. Thus, since the 

polymeric precursor can be handled using simple polymer processing techniques, structures 

such as films, fibers, mesoporous monoliths or even complex shapes can be directly obtained in 

a near-net shape process 2, 6, 14-18 . PDCs are generally amorphous non oxide ceramics, mainly 

based on Si, C, H, N and O but may contain other elements such as Li, B or Al 16, 19-22. The 

chemical composition and properties of the ceramic strongly depend on both the precursor 

chemistry and the conditions under which the polymer-to-ceramic transformation is carried out. 

Thus, it is possible to tailor as desired both properties and structure by carefully controlling the 

processing conditions23-28. PDCs display several interesting properties; a high thermal and 

chemical resistance, a remarkable resistance to creep, high piezoresistivity, semiconductivity at 

high temperature and oxidation resistance, 29-32 that make them useful for a range of potential 

applications such as high temperature sensors 33-37, anodes in lithium-ion batteries 27, 38-45, 

protective coatings or catalyst support at high temperatures 46. 

The critical step in the synthesis of PDCs is the thermally induced decomposition of the pre-

ceramic polymer, consisting of the release of organic moieties followed by a structural 

rearrangement that eventually leads to the formation of the final ceramic material 3-5, 8, 47. 

Despite the importance of this polymer-to-ceramic transformation, save for a few exceptions, 
48-52 detailed kinetic studies of these processes are mostly absent due to the complexity of the 

chemical pathways involved, consisting of several overlapping reactions. So far, authors have 

studied these complex processes using peak-fitting methodologies in which the overall process 

is separated into its constituent steps using a set of Gaussian or Lorentzian functions to fit the 

derivative thermogravimetric curve (DTG) 48, 50, 53
. However, it has been recently shown that 

such commonly used symmetrical fitting functions are inadequate for kinetic analysis purposes 

due to the fact that the kinetic curves (represented as conversion rate versus temperature or 

time) in solid state reactions are asymmetrical. Since the shape of the differential curve is 

related to the kinetic mechanism54, the fit of the experimental data to symmetrical functions 

necessarily forces a kinetic function onto the data, thereby biasing the analysis and producing 

incorrect results 55. Thus, the Frasier-Suzuki algorithm was proposed as an alternative 55. Since 
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the publication of the original Perejon et al. paper, several authors have employed Frasier-

Suzuki functions to study complex processes as varied as the decomposition of co-precipitated 

zinc carbonates56 , polymer57 and polymer-clay composites58, energetic materials59
 

chalcogenide crystallizations60, 61, overlapped phase transitions in BiFeO3
62, biomass 

pyrolysis63, 64 and the multistep decomposition of silver carbonates56, 65, 66. In this paper, this 

methodology is used to study the kinetics of two pre-ceramic polymer decomposition 

processes. Two widely employed polymeric precursors; polyureamethylvinylsilazane (SiCN 

precursor) and 1,3,5,7-Tetramethyl-1,3,5,7- tetravinylcyclotetrasiloxane (SiCO precursor) have 

been studied by means of coupled mass spectrometry and thermogravimetry (MS-TGA). The 

different mass spectrometry profiles recorded during the polymer degradation are used to 

determine the number of contributing steps to be separated by the deconvolution procedure. 

Once separated, the individual processes are studied independently, using both isoconversional 

and combined kinetic analysis methods. The validity of the resulting kinetic parameters and its 

prediction capability is tested by the reconstruction of the original experimental curves and by 

predicting experimental curves not used in the analysis. The results herein presented provide a 

better comprehension of the transformation process from polymer to ceramic and, at the same 

time, the necessary tools to model the ceramification so that processing conditions can be 

optimized in order to obtain a higher quality ceramic. Moreover, the procedure herein shown 

could be easily extended to any other preceramic polymers, regardless of composition. 

 

2. Theoretical 

The reaction rate, dα/dt, of a solid state reaction can be described by the following general 

equation: 

    
( ) ( )αα

fRTEA
dt

d
−= exp

      (1), 

where A is the Arrhenius pre-exponential factor, R is the ideal gas constant, E the activation 

energy, α the reacted fraction, T is the process temperature and f(α) accounts for the reaction 

rate dependence on α. The kinetic model f(α) is an algebraic expression which is usually 

associated with a physical model that describes the kinetics of the solid state reaction. Table 1 

lists some of the most commonly used kinetic models found in literature. In this work, the 
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reacted fraction, α, has been expressed with respect to the overall mass loss of each polymeric 

precursor, as defined below: 

fww

ww

−

−
=

0

0α

         (2), 

where wo is the initial mass of precursor, wf  the mass of the ceramic yield and w the sample 

mass at an instant t. 
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TABLE 1. f(α) kinetic functions for the most widely used kinetic models. 
 

Mechanism Symbol f(αααα) 

 

Phase boundary controlled reaction 

(contracting area) 

 

R2 

 

21)1( α−  

 

Phase boundary controlled reaction 

(contracting volume) 

 

R3 

 

  
32)1( α−  

 

Random nucleation followed by an 

instantaneous growth of nuclei. 

(Avrami-Erofeev eqn. n =1) 

F1 )1( α−  

 

Random nucleation and growth of 

nuclei through different nucleation 

and nucleus growth models. (Avrami-

Erofeev eq.  n ≠1.) 

An [ ] n
n

11)1ln()1( −−−− αα  

 

Two-dimensional diffusion 

 

D2 
( )[ ]α−− 1ln1  

 

Three-dimensional diffusion 

(Jander equation) 

 

D3 ( ) 



 −−

−
3/1

3/2

112

)1(3

α

α
 

 

Three-dimensional diffusion 

(Ginstling-Brounshtein equation) 

 

D4 

 

( )[ ]112

3
31 −− −α

 

 

Random Scission L=2 

 

L2 

 

                   ( )αα −212  

 

Random Scission L>2 

 

Ln 

 

No symbolic solution 
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2.1. Isoconversional model-free Analysis 

Isoconversional or “model-free” methods are commonly employed for determining the 

apparent activation energy as a function of the reacted fraction so that a previous knowledge of 

the kinetic model driving the process is not required 67-70. The Friedman isoconversional 

method is a widely used differential method that provides accurate values of the activation 

energies even if they were a function of the reacted fraction. Eq. (1) can be written in 

logarithmic form: 

       
( )

RT

E
Af

dt

d
−=








)(lnln α

α

          (3) 

The activation energy at a constant α value can be determined from the slope of the plot of the 

left hand side of Eq. (3) against the inverse of the temperature, at constant values of α. 

 

2.2. Combined Kinetic Analysis. 

The logarithmic form of the general kinetic Eq. (1) can be rewritten as follows: 

     RT

E
A

f

dtd
−=








ln

)(
ln

α
α

        (4) 

The plot of the left hand side of the equation versus the inverse of the temperature will yield a 

straight line if the proper f(α) is considered for the analysis 71. The intercept of the plot leads to 

the pre-exponential factor whereas the activation energy is obtained from the slope. As no 

assumption regarding the thermal pathway is made in Eq. (4), the kinetic parameters obtained 

should be independent of the thermal pathway. Therefore, any set of experimental curves 

recorded under different thermal schedules can be analyzed simultaneously 
72. In order to 

determine the kinetic model, f(α), the reaction obeys, an optimization procedure is employed. A 

modified Sestak and Bergen equation is used as a fitting function since it has been previously 

shown that, by merely adjusting the parameters c, n and m, such equation fits every kinetic 

ideal model proposed for solid state reactions, and also accounts for the deviations of the ideal 

kinetic models due to, for example, inhomogeneities in particle size and shapes 72. Introducing 

the modified Sestak-Berggren equation in Eq. (4) we get: 

    
( ) RT

EcA
dtd

mn
−=









−
ln

1
ln

αα
α

        (5) 
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The Pearson linear correlation coefficient between the left hand side of the equation and the 

inverse of the temperature is set as an objective function for optimization. By means of the 

maximize function of the software Mathcad, the  values of E, A, n and m leading to the best 

linear correlation for the whole set of α-T plots is obtained72. Nevertheless, it should be noted 

that the combined analysis approach rests in the assumption that the reaction can be described 

by a single set of kinetic parameters and, consequently, single activation energy. Therefore, a 

complex process must first be separated into its constituent steps before the method can be 

correctly applied. 

 

3. Experimental 

In this paper, two commercial polymeric precursors have been studied: 

polyureamethylvinylsilazane (CERASET, Polysilazane) (Clariant Corp., PA, USA) and 1, 3, 5, 

7-Tetramethyl- 1, 3, 5, 7- tetravinylcyclotetrasiloxane (TTCS) (Geleset, USA). Ceraset is 

precursor to a SiCN type ceramic while TTCS produces a SiCO ceramic. The liquid polymeric 

precursors were mixed with 1 wt% curing agent, Bis (1-methyl-1-phenylethyl)peroxide 98% 

(dicumyl peroxide) (Sigma Aldrich, product number 329541) in a glovebox to prevent the 

oxidation of the polymers and magnetically stirred at room temperature. The liquid polymeric 

precursors were then thermally cross-linked at 653 K for 5 h in inert argon atmosphere, using 

heating and cooling rates of 1.5 K/min. The resulting hard resin was grounded into a powder by 

ball milling at 350 rpm using zirconia balls (Fritsch Pulverissette Analyssette laborette, Idar-

Oberstein, Germany). 

 

Coupled thermogravimetric and  mass spectrometry (TGA-MS) measurements were carried out 

with a homemade instrument that uses a CI Electronics Ltd electrobalance (Salisbury, United 

Kingdom) connected to a commercial mass spectrometer (PFEIFFER Vacuum Prisma (Asslar, 

Germany) with a working pressure of  5x10-5 mbar and a gas flow system to work in inert 

atmosphere (135 ml/min Ar). Special attention was paid into assuring the inertness of the 

atmosphere since the preceramic polymers are very sensitive to oxygen during ceramification 

and any oxidation process undergone by the sample would interfere with the polymer 

decomposition. Thus, by previously applying several vacuum/fill cycles it was possible to 

reduce the oxidation of the ceramic to negligible levels during the experiment. Moreover, no 

oxygen was detected with the MS during the experiment. Sample powders were placed on a 1-

cm diameter alumina pan inside a homemade low thermal inertia furnace. Sample sizes of 
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about 40 mg were used to ensure intense signals were detected in the MS. An inconel capillar, 

placed just above the sample crucible transported the evolved gases to the MS driven by the 

vacuum created with a secondary pump. An installed special gas dosing valve (type EVN116, 

PFEIFFER Vacuum Prisma (Asslar, Germany)) in the system allows an exhaustive control of 

the introduced gas flow in the mass spectrometer and, therefore, a precise and constant control 

of the pressure into mass spectrometer chamber, 5.10-5 mbar, as aforementioned. 

 

A set of thermal degradation experiments, obtained under both linear heating rate and 

isothermal conditions were carried out for each already cross-linked polymeric precursor. The 

α-T (or time) plots obtained from these methods were differentiated by means of the Origin 

software (OriginLab) to get the differential curves employed in the kinetic analysis. The 

deconvolution of the differential curves was performed by nonlinear least squares curve fitting 

by means of the Peakfit software (Systat Software Inc.) using Frasier-Suzuki as a fitting 

function after adding it to the software as user defined function. The optimization procedure 

needed for the combined kinetic analysis and the curve reconstruction was developed out using 

Mathcad software (Mathsoft, Cambridge, MA, USA). 

 

The powders obtained after the thermal degradation experiments were characterized by X-Ray 

Diffraction (XRD), Raman Spectroscopy, FTIR Spectroscopy and Scanning Electron 

Microscopy. XRD spectra were collected with a Panalytical X’Pert Pro diffractometer working 

at 45 kV and 40 mA, using CuKα radiation and equipped with an X’Celerator detector and a 

graphite diffracted beam monochromator. Raman spectra were collected with a HORIBA HR 

800 UV spectrometer, using an excitation wavelength of 514.5 nm (green laser). The FTIR 

spectra were recorded in the middle infrared range (500- 4000 cm-1) using a JASCO FT/IR-

6200 spectrometer. Sample was prepared for measurement by means of the standard KBr pellet 

technique. SEM images were obtained using a HITACHI S-4800 Scanning Electron 

Microscope. 
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4. Results and Discussion 

Description of the thermal degradation of 1, 3, 5, 7-tetramethyl-1, 3, 5, 7- 

tetravinylcyclotetrasiloxane (TTCS) and polyureamethylvinilsilazane (CERASET) 

 

Figure 1 shows the experimental thermogravimetric mass-T curve recorded for the 

thermal degradation of both TTCS and CERASET precursor under linear heating rate 

conditions (5 K min-1). 

 

Figure 1. Experimental mass %-T curves recorded for the thermal decomposition of CERASET 

and TTCS in Ar gas flow and using a linear heating rate of 5 K min-1.  

 

It is noticeable the much higher ceramic yield of the Ceraset derived SiCN ceramic. 

This is due to the chemical architecture of the precursor which is usually tailored 

according to the properties desired for the final ceramic. In an oversimplified manner, 

organosilicon polymers can be described by the general formula, -[R1R2SiX]n-.
 By 

changing the functional groups R1 and R2 the properties of the polymer can be adjusted 

as well as the free carbon content and ceramic yield of the ceramic derived therefrom8. 

High molecular weight polymers and the introduction of organic groups favouring 

crosslinking reactions generally produce higher ceramic yields. The allyl groups and the 
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Si-H bonds in Ceraset promote the formation of a heavily crosslinked structure that 

leads to a higher yield 8. 

In order to study the changes produced on the material during the ceramification 

process, the reaction was interrupted at three different temperatures; 823 K, 1023 K and 

1273 K.  The resulting powders were collected and studied by X-Ray Difraction, Raman 

Spectroscopy, FTIR Spectroscopy and Scanning Electron Microscopy. The colour of 

pyrolyzed powders obtained at different temperature changed from white (initial 

precursor) to black (fully ceramified at 1273 K) going over different brownish colours 

at intermediate temperatures (823K and 1023 K). Moreover, the XRD diffractograms of 

the powders show that the material remains amorphous, as expected for polymer 

derived silicon oxycarbides and silicon carbonitrides ceramics after pyrolysis at these 

temperatures (See supplementary Information, Figures S2.a and S2.b) 3, 73. 

Figure 2 includes the Raman spectra, which provide information about the structural 

organization of the free carbon phase in PDCs 74-78, measured at different temperatures. 

Raman spectra of the TTCS derived powders (Figure 2a) exhibit no significant features 

due to a completely amorphous carbon phase up to a temperature of about 1273 K, at 

which point the free carbon nanocrystalline clusters develop 74-79. On the other hand, the 

pyrolysed CERASET precursor shows no Raman bands even at 1273 K (Figure 2b). 

This might indicate that the development of the carbon nanocrystalline structure is 

kinetically controlled so that annealing for a minimum time at a temperature of 900-

1000 ºC is required, at least in the case of low carbon content ceramics as Ceraset 

derived SiCN. 
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Figure 2. Raman spectra of the powders collected after interrupting the pyrolysis of (a) TTCS 

precursor and (b) CERASET precursor at 823 K, 1023 K, 1273 K.  

 

Figure 3 shows the FTIR spectra of the cross-linked preceramic polymers and the 

subsequent powders obtained at 823 K, 1023 K and 1273 K. It can be inferred of the 

FTIR the transformation of the initial polymeric network into the final silicon based 

ceramic as the bands corresponding to the different organic groups gradually disappear 

until only the broad band corresponding to Si-C and Si-O vibrations remains80 A more 

detailed analysis can be found in the Supplementary Information section. 

SEM micrographs are shown in the Supplementary Information (Figure S3) illustrating 

the lack of significant microstructural differences between the initial cross-linked 

precursor and the as pyrolysed residue obtained at 1273 K in both TTCS and CERASET 

precursors. All powders are inhomogeneous in both shape and particle size, maintaining 

the wide particle size distribution typical of ball-milled powders.  
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Figure 3. FTIR spectra of the powders collected after interrupting the pyrolysis of (a) TTCS 

precursor and (b) CERASET precursor at 823 K, 1023 K, 1273 K. 
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Kinetic study of the thermal degradation of 1, 3, 5, 7-Tetramethyl-1, 3, 5, 7- 

tetravinylcyclotetrasiloxane (TTCS) 

 

 

Figure 4. Experimental α-T curves (symbols) recorded for the thermal decomposition of TTCS 

in Ar flow using linear heating rates of 2, 5, 7.5 and 10 K min-1. Simulated curves (solid lines) 

were constructed using the kinetic parameters calculated for TTCS thermal decomposition by 

the combined analysis method and listed in Table 3. 

 

Figure 4 shows a set of α-T curves constructed as per Eq (2) from the experimental data 

recorded for the TTCS precursor decomposition under linear heating rate conditions (2, 

5, 7.5 and 10 K min-1). It is clear from the curve profiles that there are at least two 

processes involving mass loss occurring during the precursor degradation. The shape of 

the curves and the overall mass loss remain similar regardless the heating rate. Figure 5 

shows the dα/dt-T curve corresponding to the thermal degradation of the TTCS 

precursor at 5 K min-1. The irregular profile indicates this is a complex reaction 

composed of several individual processes. A main peak at 800 K, a shoulder at about 

875 K and a weak peak at 1050 K are all clearly noticeable. Most kinetic analysis 

procedures assume single step processes, described by a single kinetic triplet and, 

therefore, they cannot be reliably applied to these complex multistep reactions. For that 

reason, the overall reaction must be separated into its constituent processes, which are 

then studied separately. When a number of different processes overlap as it happens 
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here, a complementary technique is needed to determine and discriminate the number of 

contributing processes. In this work we have resorted to the volatiles released during the 

precursor decomposition, which were captured and analysed by the sniffer system and 

carried to the mass spectrometer. A number of m/z values, ranging from m/z = 1 to m/z= 

45 were recorded in real time during the decomposition with a nearly negligible lag, as 

shown by the close match of the rate of mass loss curve and the MS intensity profiles. 

The intensity of the monitored m/z signals increases just after the polymer starts losing 

mass, readily returning to their baseline levels as soon as the process is over. Every 

single kinetic process that involves a mass loss must produce a single peak in the dα/dt-

T profile. Accordingly, the released volatiles associated to such mass loss should appear 

as a peak at the same temperature in the MS intensity-temperature profiles. Thus, by 

identifying the number of peaks or events contributing to the overall profile it is 

possible to figure out the number of processes involved. Figure 5 includes the intensity 

vs. temperature profiles of a few selected m/z values recorded with the mass 

spectrometer during the thermal decomposition of the TTCS precursor. Whereas a 

higher number of m/z values were monitored, only a few of them are shown in the 

figure for the sake of clarity. Nevertheless, the entire set can be found in the 

supplementary information (Fig S4 and S5).  

As initially suggested by the dα/dt-T profile, three processes can be clearly deduced 

from the MS spectra. The first process is centered at 800 K, appearing as a single peak 

in m/z:16 and m/z:30 profiles and as a shoulder in m/z: 26, 27 and 28. This process can 

be attributed to water, methane, ethane, alcoholic and ethylene groups released during 

the condensation reaction of Si-OH and Si-OC2H5 groups as well as other condensation 

reactions of both Si-OH and Si-OC2H5 groups with Si-H group 73, 81-85 . The second 

process, which heavily overlaps the previous one, is shown as a peak at about 875 K 

(m/z: 26, 27 and 28) and it might correspond to the release of hydrogen,  ethane and 

ethanoic groups, besides volatile silicon-containing species such as SiH4 (m/z: 30, 31) 

and CH3SiH3 (m/z: 45, 44) which are released due to redistribution reactions involving 

the exchange of Si-O bonds with Si-H bonds and/or Si-C bonds 81. Finally, the third 

process, centered at 1025 K, is observed mainly in the m/z signal corresponding to 

hydrogen and methane81 73, 82-85. This process can be attributed to different cleavage 

reactions of Si-CH3 and Si-H bonds by Si-OH, and the homolytic cleavage reactions of 

Si-H and Si-C bonds, leading to the release of CH4 and H2 and the formation of Si-C 
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and Si-O bonds as well as the free carbon clusters which are all present in the final 

silicon oxycarbide ceramic6, 86-89. 

 

Figure 5. Experimental dα/dt-T (solid line) and intensity-T profiles (dotted lines) for 

several m/z ratios obtained for the thermal decomposition of TTCS recorded at 5 K/min, 

along with the Fraser-Suzuki function (dotted lines with coloured areas) used for fitting the 

simulated curves. The correlation coefficient of the fitting has been included into the 

figure.  

 

 

It is worthy to clarify at this point that these solid-state processes are quite complex and 

involve several individual reactions, probably more than the three here proposed. 

However, TGA is a technique sensitive exclusively to mass changes, so only events 

directly leading to a release of volatiles are detected. Any subsequent reaction between 

evolved gases or any bond reorganization process within the nascent ceramic cannot be 

considered in the kinetic modeling. Nevertheless, the MS profiles and the relative ratios 

of the different peaks detected prove invariant with the heating rate, what indicates the 

three proposed steps actually behave as individual, independent, steps. Had any of those 

steps comprise different processes each described by different kinetic triplets, the 

profiles would be very sensitive to changes in the heating rate. Thus, such invariance is 
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a solid ground on which to assume the three proposed steps correspond to rate limiting 

steps and can therefore be studied as single processes.  

After identifying the three main contributing processes, the overall dα-dt-T curves were 

deconvolved using Frasier-Suzuki as a fitting function. During the deconvolution 

procedure, as an additional constraint, the maximum reaction rate of each process was 

fixed at the temperature at which the MS intensity profiles exhibit a maximum. As an 

example, Figure 5 shows the results of the deconvolution procedure applied to the 

degradation curve recorded at 5 K min-1 (dotted lines curves with coloured regions). As 

it can be observed, the overall curve is closely matched by the sum of the individual 

processes, with a correlation coefficient over 0.997. The same procedure was applied to 

the curves recorded at different heating rates, obtaining fairly similar results (See 

Supplementary Information, Figure S6.a, Figure S6.b and Figure S6.c) A full list 

including all the fitting parameters yielded by the deconvolution of every individual 

experimental curve has been included in the Supplementary Information (Table S1). 

The relative contribution of the first, second and third process to the overall curve is 

57±3%, 28±3% and 15±1%, respectively. Remarkably similar contributions are 

obtained regardless of the heating rate, thereby supporting the idea that each constituent 

process represents a rate limiting step that occur independently, without need for any of 

them to finish before the next one can proceed. 

Next, the differential curves obtained by deconvolution were integrated and 

subsequently normalized in order to construct α-time and α-T curves with α ranging 

from 0 to 1. As a result, a set of four α-T curves were obtained for each contributing 

process, and was subsequently analyzed using both isoconversional and combined 

kinetic methods. Figure 6 shows the apparent activation energy of each process, as 

determined by Friedman isoconversional method. The values remain reasonably 

constant along the conversion range, as it should happen in the case of single step 

processes. There are nevertheless slight deviations that can be attributed to unavoidable 

errors in the deconvolution of the overall curve that results in slight shape differences in 

the resolved constituent curves, as well as to experimental errors which are more 

significant at the very high and low ends of the alpha range. Average apparent 

activation energy of 200 kJ mol-1 was estimated for the first stage, 220 kJ mol-1 for the 

second and 228 kJ mol-1 for the third stage. These values are within the range of those 

obtained for the overall process (Table 2), calculated applying the Friedman 
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isoconversional analysis to the overall curve, without deconvolution. Apparent 

activation energy values in Table 2 exhibit a relatively broad variation with the reaction 

fraction, as expected for a complex process. Thus, at each reaction fraction, more than 

one reaction is simultaneously contributing to the overall process and, therefore, the 

resulting values of activation energy correspond to an average of the different 

overlapping processes.  

 

Figure 6. Apparent activation energies at different conversion fraction values for each of the three 

processes contributing to the thermal decomposition of TTCS, as determined by the Friedman 

isoconversional method.  
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Table 2. Apparent activation energy values at different conversion fractions together 

with their corresponding correlation coefficients, as obtained by the Friedman 

isoconversional analysis of the curves showed in Figure 4 (TTCS) and Figure 8 

(CERASET). 

 

 

 

 

 

 

 

 

 

Table 3. Average activation energies, preexponential factors, correlation coefficients, n 

and m values for the three processes contributing to the thermal decomposition of 

TTCS, as obtained by the combined kinetic analysis applied after deconvoluting the 

dα/dt curves obtained from the curves in Figure 6. 

 PROCESS 1 PROCESS 2 PROCESS 3 

Ea (KJ/mol) 200 ± 1 221 ± 1 232 ± 1 

A (s
-1

) (7.13 ± 1.18)x10
10 

(10.92 ±1.65)x10
10
 (8.19 ±1.59)x10

8
 

r 0.997 0.997 0.996 

n 1.338 1.438 0.596 

m -0.0043 -0.116 -1.126 

Contribution L (%) 57± 3 28± 3 15± 1 

 

 TTCS CERASET 

α r Ea (kJ mol
-1

) r Ea (kJ mol
-1

) 

0.1 0.987 215 ± 3 0.984 144 ± 3 

0.2 0.986 225 ± 3 0.986 151 ± 3 

0.3 0.986 226 ± 3 0.985 155 ± 3 

0.4 0.988 227 ± 3 0.991 201 ± 3 

0.5 0.992 227 ± 2 0.997 224 ± 2 

0.6 0.995 220 ± 2 0.998 229 ± 2 

0.7 0.995 206 ± 2 0.997 218 ± 2 

0.8 0.986 212 ± 2 0.999 219 ± 1 

0.9 0.998 218 ± 1 0.999 202± 1 
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Figure 7a shows the combined kinetic analysis plots (left hand side of Eq. (5) versus 1/T 

(as detailed in section 2.2) obtained for each contributing process. All data points fit 

nicely to a straight line, of which the activation energy and preexponential factors can 

be deduced from the slope and the intercept, respectively. The resulting parameters, 

along with the correlation coefficients, the contribution of each step to the overall 

process and both n and m coefficients are all included in Table 3. 

 

In Figure 7b, the f(α) conversion functions calculated by the combined kinetic analysis 

for each individual process are compared with some of the most usual theoretical kinetic 

models. It is found that, whereas the shape of the resulting conversion functions cannot 

be fit by any of the ideal models, they all feature a decay trend typical of a diffusion 

mechanism. Deviations of the ideal models has been found for a large number of 

systems and could be understood considering that ideal models were proposed assuming 

a totally homogeneous sample in terms of particle size and shape. However, as it can be 

seen in the SEM images in Figure S3a. and S3b., the preceramic polymer particles are 

clearly heterogeneous in both size and shape. Diffusion mechanisms are very 

appropriate for describing the thermal degradation of a polymer resin which 

decomposes maintaining the shape but leaving a porous structure. The gases generated 

during the decomposition close to the particle surfaces are quickly released but those 

generated in the interior need to diffuse out, thus producing a decaying mass loss rate 

vs. time trend. For PDCs it has been reported that in the first stages of pyrolysis a highly 

porous structure is formed90-92 but further heating produces a collapse of the porosity 

due to the viscous flow process within the amorphous structure93. Such behaviour is 

consistent with the proposed diffusion mechanisms.  
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Figure 7. a) Combined kinetic plots, (as per Eq (5)) obtained by deconvolution of the overall 

TTCS degradation curves. b) Comparison of the f(α) functions normalized at α = 0.5 

corresponding to some of the ideal kinetic models included in Table 1 (solid lines) with the 

kinetic models (symbols) obtained for each of the three contributing process determined for the 

thermal degradation of TTCS. (□) first process, (○) second process and (�) third process 

 

Nevertheless, in order to validate the proposed set of kinetic parameters, simulated 

kinetic curves were constructed assuming the aforementioned kinetic parameters and the 

same heating schedules used to obtain the experimental curves. The simulations were 

performed by means of a 4th order numerical integration Runge-Kutta method; using Eq. 

(1) and the equations that define the linear heating rate conditions, i.e. β=dT/dt. As 

Figure 4 shows, both the reconstructed (simulated) curves and the experimental ones 

match closely, proving the validity of the kinetic parameters obtained from the 

combined analysis. It is important to emphasize that the successful modelling of a 

global process of such complexity and the reconstruction of the experimental curves is 

very difficult to achieve and it is therefore seldom found in literature. Even more 

remarkable is the ability of the calculated kinetic parameters to predict the behaviour of 
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the material under heating schedules different of those employed to perform the kinetic 

analysis, as it will be shown later on.  

 

Kinetic study of the thermal degradation of Polyureamethylvinilsilazane (CERASET)  

Figure 1 shows the experimental mass-T curve corresponding to the degradation of CERASET 

precursor under linear heating rate conditions (5 K min-1) whereas Figure 8 shows a set of α-T 

curves, constructed as per Eq (2), recorded under linear heating rate conditions (1, 2, 5 and 10 

K min-1). Curves exhibit a complex shape that suggests the overall process is again not simple 

but it is composed of at least two contributing reactions. The total mass loss, about 15% of the 

initial mass, and the shape profiles of all curves are similar regardless of the heating rate as it 

happens in the case of the TTCS precursor, indicating that the involved reactions are also 

probably independent rate limiting processes. 

 

Figure 8. Experimental α-T curves (symbols) recorded for the thermal decomposition of the 

Ceraset precursor in Ar gas flow using linear heating rates of 1, 2, 5 and 10 K min-1. 

Reconstructed curves (solid lines) were built employing the kinetic parameters provided by the 

combined analysis method and listed in Table 4. 
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The approach used to study the decomposition kinetics of the Ceraset precursor is the 

same used in the previous section. Table 2 lists the apparent activation energy of the 

overall process as a function of the conversion as calculated by means of the Friedman 

isoconversional analysis, using all experimental curves included in Figure 8 

simultaneously. A variable apparent activation energy is obtained, ranging from 150 to 

220 kJ mol-1. Such variation is expected in a complex reaction composed of several 

overlapping processes, when the overall apparent activation energy would depend on 

the activation energies of the different contributing processes and their relative weight at 

each reacted fraction. 

Figure 9 includes the dα/dt-T curve corresponding to the experiment recorded at 5 K 

min-1, obtained by derivation of the integral α-T curve, together with the MS intensity-T 

profiles of  several selected m/z monitored by MS. In this case, the number of involved 

processes is not as readily apparent for only two broad peaks are evident at a first glance 

in the differential TG curve. Nevertheless, a careful study of the MS curves reveals four 

different types of intensity-T profiles. The m/z profiles not shown in the figures can be 

found in the Supplementary Information (Figures S8 and S10). 

 

Figure 9. Experimental dα/dt-T (solid line) and intensity-T profiles (dotted lines) for several 

significant m/z values obtained for the thermal decomposition of Ceraset precursor at a linear 

heating rate 5 K min-1 and the Fraser-Suzuki function (dotted lines with coloured areas) used for 

fitting the simulated curves. The correlation coefficient of the fitting has been included into the 

figure. 
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In a first broad process (650 K< T <875 K) some traces of NH3 (m/z=17) are observed, 

a result of transamination reactions involving the formation of new Si-N bonds and the 

release of NH3 
94-97. In this process it is also detected an evolution of hydrogen (m/z=2) 

due to dehydrogenation reactions94-99, small quantities of methane (m/z= 16, 15, 14) and 

silane species (SiH2
2+, SiH3

+ and SiH4 (m/z: 44, 31, 30) due to redistribution reactions94-

97 that involves exchange of Si-N and Si-H bonds accompanied by a release of volatile 

silane species (transamination reactions) 95. The second process, which occurs between 

750 K and 920 K, is associated to the evolution of hydrogen, methane and ethane (m/z: 

28, 27, 26). The emission of gaseous hydrocarbon (CH4, C2H6, etc.) and hydrogen can 

be explained by the breakage of Si-C and N-C bonds and also Si-H, C-H and N-H bonds 

(dehydrocoupling reactions)94, 95, 97. The third and four processes heavily overlaps and 

are difficult to discriminate. Process 3, detected in the range from 825 K to 950 K, is 

characterized by the release of a large amount of CH4 and traces of ethane and propene 

formed as a result of dehydrocoupling reactions. They appear as shoulders in the 

corresponding m/z intensity profiles. Lastly, the fourth process manifests at 950-1100 K 

as an increase in the signals corresponding to hydrogen and propene 94-97. Thus, it can be 

assumed that this highly complex system is composed of four contributing stages, one 

per each of the distinct peaks appearing in the MS intensity-T plot. As a sidenote, it 

should be pointed out that the nature of the inert gas has a strong influence on the 

reactions that take place during the thermal decomposition. For example, Ceraset 

ceramified in argon atmosphere yields a mixture of crystalline β-SiC and free carbon 

whereas a mixture of carbon and nanocrystalline β-SiC, α- Si3N4 and β- Si3N4 is 

obtained when the ceramification is carried out in nitrogen. Therefore, changing the 

atmosphere from Argon to Nitrogen would entail a significant change in the polymer-

to-ceramic process, and would need to be separately studied. This study in principle 

only applies to the ceramification process when carried out in nitrogen. 

In the same way as done in the study of the TTCS precursor decomposition, the overall 

curve was fitted using four Frasier-Suzuki functions, each centered at the temperature at 

which the MS intensity profiles exhibit a maximum. Figure 9 shows as an example the 

results of applying the deconvolution method to the curve recorded at 5 K min-1. The 

deconvolution of curves recorded at different heating rates can be found in 

Supplementary Information (Figures S7a, S7b. and S7c.). It is clear how the dα/dt-T 
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overall curves can be very accurately fitted with four Fraser-Suzuki functions 

(Supplementary Information,Table S2). The relative contribution of each step to the 

overall reaction, as calculated by integrating the area under the curve, remains constant 

whatever the heating rate employed. The contributions of the first, second, third and 

fourth processes to the overall curve are 28±1 %, 8±1 %, 43±1 % and 21±1 % 

respectively, what proves the independency of constituent reactions. The deconvolved 

curves were then integrated into α-T curves and subsequently differentiated in order to 

analyze them individually by means of the isoconversional and combined kinetic 

analysis as described in the theoretical section. The apparent activation energy as a 

function of the conversion, as calculated using the Friedman isoconversional method, 

was found to be approximately constant along the entire conversion range for every 

process (Figure 10), resulting in average activation energies of 154, 173, 255 and 218 kJ 

mol-1 for the four respective processes.  It is worth noting that the apparent activation 

energies of the individual processes are in agreement with the variable activation energy 

obtained for the overall process (Table 2). Thus, the overall apparent activation energy 

of about 150 kJ mol-1 found for low conversion values matches that of the first process, 

which is occurring in isolation. Once the second, third and fourth processes begin, 

which happen at about the same time, a value of about 200-220 kJ mol-1 is obtained, 

which is an average of the activation energies of the different processes involved. 

 Figure 11a shows the results of the combined kinetic analysis, with the plot of the left-

hand side of Eq (5) versus the reverse of the temperature resulting from the optimization 

procedure described in the Section 2. Again, data from all over the conversion range and 

from every experiment could be almost perfectly fitted to a straight line. The calculated 

activation energies, preexponential factors, correlation coefficients, n and m values, 

along with the contribution of each stage are all included in Table 4.  
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Figure 10. Apparent activation energies at different conversion values for each of the four 

processes contributing to the thermal decomposition of Ceraset, as determined by the Friedman 

isoconversional method. 

 

Figure 11. a). Combined kinetic plots, (as per Eq (5)), obtained by deconvolution of the overall 

Ceraset degradation curves. b) Comparison of the f(α) functions normalized at α = 0.5 

corresponding to some of the ideal kinetic models included in Table 1 (solid lines) with the 

kinetic models (symbols) obtained for each of the three contributing process determined for the 

thermal degradation of Ceraset. (□) first process, (○) second process, (�) third process  and 

(�) fourth process. 
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Table 4. Apparent activation energies, preexponential factors, correlation coefficients, n and m 

values for independent stages of global reaction, obtained by the combined kinetic analysis 

applied after deconvoluting the dα/dt curves obtained from the curves showed in Figure 8 

(CERASET). 

 PROCESS 1 PROCESS 2 PROCESS 3 PROCESS 4 

Ea (KJ/mol) 154 ± 1 172 ± 1 255 ± 1 218 ± 1 

A (s
-1

) (1.04± 0.1)x108 (1.95 ± 0.16)x108 (1.05 ± 0.09)x1012 (5.40 ± 0.66)x108 

r 0.998 0.999 0.999 0.997 

n 1.36 1.26 1.72 1.29 

m -0.131 0.184 -0.446 0.038 

Contribution L (%) 28 ± 1 8± 1 43 ± 1 21 ± 1 

 

 

 

The resulting activation energy values are in agreement with the values calculated using 

Friedman isoconversional analysis. Since the conversion function f(α) estimated by 

combined kinetic analysis presents no physical meaning by itself, it is necessary to 

compare it with a set of theoretical kinetic models. Thus, a comparison with some of the 

most usual theoretical models is included in Figure 11b. Process 1, 3 and 4 appear as 

diffusion-like mechanisms with some deviations from ideal models in a similar way as 

it was observed for the TTCS precursor, Process 2 that is the one that has the smallest 

contribution to the overall reaction, follows a random scission and volatilization type of 

model100, this behaviour could be understood considering that during this process the 

evolved species are light ones, i.e. hydrogen, methane and ethane, and, probably, the 

random scission of the chain is the limiting kinetic process and not the diffusion. 

Moreover, this is one of the first processes that take place before the collapse of the 

porous structure by viscous flow and, therefore, diffusion of light species should be 

easier. 
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The simulated curves, constructed using the kinetic parameters obtained from the 

combined analysis and the same heating conditions used for recording the experimental 

curves are plotted in Figure 8, showing that both the reconstructed (simulated) curves 

and the experimental ones match almost perfectly, proving the validity of the kinetic 

parameters obtained from the combined analysis.  

Prediction of thermal degradation curves under different heating schedules. 

While the successful reconstruction of the experimental curves used to determine the 

kinetic parameters is normally deemed as sufficient to validate the quality of the 

analysis, in this work we attempt to prove that the results obtained also have predicting 

capability for different heating schedules. Thus, Figure 12 includes the curves simulated 

for TTCS and Ceraset precursors assuming a heating rate of 20 K min-1 as well as the 

corresponding experimental curves that were subsequently recorded. Notice that 

experimental data points of the 20 K min-1 were not employed in any way in the kinetic 

analysis. Additionally, the heating rate was selected outside the range of 1 to 10 K min-1 

used in the study since that would make more challenging the prediction success. As 

Figure 12 shows, the match between the predicted and the real curves are near perfect. 

Lastly, adding yet another layer of difficulty, a 50% mixture (w/w) of both TTCS and 

Ceraset precursors have been prepared and thermally decomposed at 10 K min-1. The 

resulting α-T curve is shown in Figure 13, together with the simulated curve assuming 

such composition and the kinetic parameters previously obtained (Tables 3 y 4) for both 

processes. The predicted curve was built assuming that no reactions occur between both 

precursors during the decomposition. The excellent reconstruction of experimental 

curves, even of those not used for the analysis prove that the individual constituent steps 

obtained from deconvolution out of the overall curves actually correspond to single rate 

limiting steps and validates that the methodology employed constitute a good approach 

to model the kinetics of these processes. 
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Figure 12. Simulated curves (solid lines) for the thermal decomposition of TTCS and 

CERASET assuming the kinetic parameters provided by the combined analysis method. 

Experimental curves (symbols) obtained for the thermal decomposition of CERASET and 

TTCS at a heating rate of 20 K min-1.  

 

Figure 13. Predicted (simulated) curves (solid lines) obtained for the thermal decomposition of 

mixed CERASET+TTCS (50% mixture w/w) assuming the kinetic parameters calculated by the 

combined analysis method and a heating rate of 10 K min-1. Experimental curves (symbols) 

obtained for the thermal decomposition of CERASET and TTCS (50% mixture w/w) at linear 

heating rate 10 K min-1 
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5. Conclusions. 

The kinetic analysis of the thermal decomposition of two commonly employed 

polymeric precursors, TTCS and CERASET, into their corresponding ceramics has 

been carried out from coupled TGA-MS experiments. These polymeric precursors 

undergo complex decomposition processes composed of several largely overlapping 

steps. Using the different intensity profiles for different m/z values as a guide, it was 

found that TTCS and Ceraset decompose in argon through three and four independent 

steps respectively. In order to study such a complex process, the overall dα/dt-T curves 

have been resolved into their constituent processes using a semiempirical deconvolution 

procedure based on the nonsymmetrical Fraser-Suzuki fitting function, which has been 

proved to be able to reproduce all the theoretical kinetic models described in literature. 

Subsequently, the already separated contributing processes have been independently 

studied using a combined isoconversional-combined analysis approach in order to 

determine their corresponding kinetic parameters. It has been found the different 

contributing processes mostly obey diffusion-like kinetic models due to the gaseous 

diffusion of the released gases through the solid polymer matrix being the limiting step.   

Finally, the kinetic triplets thus obtained were rigorously validated not only by 

reconstructing the original experimental curves but also by successfully predicting 

curves recorded at heating rates outside the range used for obtaining the kinetic 

parameters. Furthermore, the degradation curve of a mixture of both precursors was also 

successfully predicted. While the decomposition kinetics might vary for different 

preceramic precursors or when using different reactive or inert atmospheres, the new 

kinetic analysis method here presented can be likewise extended to those new situations. 

More broadly, it proves a promising step forward in the kinetic analysis of complex 

processes, a topic with growing technical interest and still to be developed. 
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SUPPORTING INFORMATION 

The Supporting Information includes several figures of experimental curves of 

ceramification processes of TTCS and CERASET and simulated curves at different 

heating rates. Also the Supporting Information includes the fitting parameters obtained 

by Fraser-Suzuki deconvolution for the ceramification of TTCS and CERASET. The 

results obtained by TGA coupled mass spectrometer during the ceramification of TTCS 

and CERASET at different heating rates have been included in this document. 

 

6. References 

 

 1. P. Colombo, E. Bernardo and G. Parcianello, Journal of the European Ceramic Society, 

2013, 33, 453-469. 

2. P. Miele, S. Bernard, D. Cornu and B. Toury, Soft Materials, 2006, 4, 249-286. 

3. R. Riedel, G. Mera, R. Hauser and A. Klonczynski, Journal of the Ceramic Society of 

Japan, 2006, 114, 425-444. 

4. B. V. Manoj Kumar and Y.-W. Kim, Science and Technology of Advanced Materials, 

2010, 11, 044303. 

5. F. h. W. Joachim Bill, Fritz Aldinger, Precursor-Derived Ceramics: Synthesis, Structures 

and High temperature Mechanical Properties., 1999. 

6. D. Su, Y.-L. Li, H.-J. An, X. Liu, F. Hou, J.-Y. Li and X. Fu, Journal of the European Ceramic 

Society, 2010, 30, 1503-1511. 

7. R. R. Wills, R. A. Markle and S. P. Mukherjee, American Ceramic Society Bulletin, 1983, 

62, 904-&. 

8. P. Colombo, G. Mera, R. Riedel and G. D. Sorarù, Journal of the American Ceramic 

Society, 2010, 93, 1805-1837. 

9. E. Bernardo, L. Fiocco, G. Parcianello, E. Storti and P. Colombo, Materials, 2014, 7, 

1927-1956. 

10. Y. Arai, Chemistry of Power Production, Chapman & Hall, Glasgow, 1996. 

11. R. M. Laine and F. Babonneau, Chemistry of Materials, 1993, 5, 260-279. 

12. Y.-L. L. Edwin Kroke, Christoph Konetschny, Emmanuel Lecomte, Claudia Fasel, Ralf 

Riedel, Materials Science and Engineering, 2000, 26, 97-199. 

13. P. Greil, Advanced Engineering Materials, 2000, 2, 339-348. 

14. G. P., Journal of the European Ceramic Society, 1998, 18, 1905-1914. 

15. S. M. Riedel R., Mayer J. and Szabó V., Journal of the European Ceramic Society, 1995, 

15, 703-715. 

16. T. Konegger, A. Liersch, C. Gierl and M. Scheffler, Advanced Engineering Materials, 

2013, 15, 394-406. 

17. M. M. Colombo P., Journal of the American Ceramic Society, 1999, 82, 573-578. 

18. L. Gottardo, S. Bernard, C. Gervais, K. Inzenhofer, G. Motz, M. Weinmann, C. Balan and 

P. Miele, Journal of Materials Chemistry, 2012, 22, 7739-7750. 

19. M. Zaheer, T. Schmalz, G. Motz and R. Kempe, Chemical Society reviews, 2012, 41, 

5102-5116. 

Page 31 of 37 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
0 

Se
pt

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
ne

s 
C

ie
nt

if
ic

as
 I

sl
a 

de
 la

 C
ar

tu
ja

 (
C

IC
IC

) 
on

 2
1/

09
/2

01
6 

11
:1

5:
16

. 

View Article Online
DOI: 10.1039/C6CP03677E



  32 

20. R. M. Rocha, J. C. Bressiani and A. H. A. Bressiani, Ceramics International, 2014, 40, 

13929-13936. 

21. S. Bernard, D. Cornu, P. Miele, M. Weinmann and F. Aldinger, in Mechanical Properties 

and Performance of Engineering Ceramics and Composites, ed. E. LaraCurzio, 2005, vol. 

26, pp. 35-42. 

22. E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, C. Fasel, R. Riedel and 

R.-A. Eichel, Physical Chemistry Chemical Physics, 2009, 11, 5628. 

23. K. Wang, B. Ma, X. Li, Y. Wang, L. An and R. Riedel, Journal of the American Ceramic 

Society, 2014, 97, 2135-2138. 

24. L. Duan and Q. Ma, Ceramics International, 2012, 38, 2667-2671. 

25. G. D. Sorarù, R. Pena-Alonso and H.-J. Kleebe, Journal of the European Ceramic Society, 

2012, 32, 1751-1757. 

26. A. H. Tavakoli, P. Gerstel, J. A. Golczewski and J. Bill, Acta Materialia, 2010, 58, 6002-

6011. 

27. J. Kaspar, M. Graczyk-Zajac and R. Riedel, Journal of Power Sources, 2013, 244, 450-

455. 

28. Y. Wang, J. Ding, W. Feng and L. An, Journal of the American Ceramic Society, 2011, 94, 

359-362. 

29. C. P. H. J. R. S. D.L., Journal of the American Ceramic Society, 2002, 85, 2306-2312. 

30. Y. Wang, H. Li, L. Zhang and L. Cheng, Ceramics International, 2009, 35, 1129-1132. 

31. Q. Li, X. Yin and L. Feng, Ceramics International, 2012, 38, 6015-6020. 

32. V. L. Nguyen, C. Zanella, P. Bettotti, G. D. Sorarù and R. Hay, Journal of the American 

Ceramic Society, 2014, 97, 2525-2530. 

33. R. A. S. Li-Anne Liew, Victor M. Bright, and J. W. D. Martin L. Dunn, Rishi Raj, Sensors 

and Actuators A, 2003, 103, 171-181. 

34. M. Schulz, Adv. Appl. Ceram., 2009, 108, 454-460. 

35. K. Terauds, P. E. Sanchez-Jimenez, R. Raj, C. Vakifahmetoglu and P. Colombo, Journal of 

the European Ceramic Society, 2010, 30, 2203-2207. 

36. D. Seo, S. Jung, S. J. Lombardo, Z. C. Feng, J. K. Chen and Y. Zhang, Sensors and 

Actuators A: Physical, 2011, 165, 250-255. 

37. N. R. Nagaiah, J. S. Kapat, L. An and L. Chow, Journal of Physics: Conference Series, 

2006, 34, 458-463. 

38. J. Shen and R. Raj, Journal of Power Sources, 2011, 196, 5945-5950. 

39. M. Wilamowska, V. S. Pradeep, M. Graczyk-Zajac, R. Riedel and G. D. Sorarù, Solid 

State Ionics, 2014, 260, 94-100. 

40. D. Ahn and R. Raj, Journal of Power Sources, 2011, 196, 2179-2186. 

41. M. Graczyk-Zajac, L. Toma, C. Fasel and R. Riedel, Solid State Ionics, 2012, 225, 522-

526. 

42. P. E. Sanchez-Jimenez and R. Raj, Journal of the American Ceramic Society, 2010, 93, 

1127-1135. 

43. P. Dibandjo, M. Graczyk-Zajac, R. Riedel, V. S. Pradeep and G. D. Soraru, Journal of the 

European Ceramic Society, 2012, 32, 2495-2503. 

44. M. Graczyk-Zajac, C. Fasel and R. Riedel, Journal of Power Sources, 2011, 196, 6412-

6418. 

45. R. Kolb, C. Fasel, V. Liebau-Kunzmann and R. Riedel, Journal of the European Ceramic 

Society, 2006, 26, 3903-3908. 

46. R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill and F. Aldinger, Nature, 1996, 382, 

796-798. 

47. G. M. Ralf RIEDEL, Ralf HAUSER and Alexander KLONCZYNSKI, Journal of the Ceramic 

Society of Japan, 2006, 114, 425-444. 

48. S. F. Bernard, K.; Cornu, D.; Miele, P.; Laurent, P.;, Journal of Physical Chemistry B, 

2006, 110, 9048-9060. 

Page 32 of 37Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
0 

Se
pt

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
ne

s 
C

ie
nt

if
ic

as
 I

sl
a 

de
 la

 C
ar

tu
ja

 (
C

IC
IC

) 
on

 2
1/

09
/2

01
6 

11
:1

5:
16

. 

View Article Online
DOI: 10.1039/C6CP03677E



  33 

49. G. D. P. Soraru, L.; Latournerie, J.; Rishi, R., Journal of the American Ceramic Society, 

2002, 85, 2181-2187. 

50. X. Wang, J. Wu, Y. Li, C. Zhou and C. Xu, Journal of Thermal Analysis and Calorimetry, 

2013, 115, 55-62. 

51. M. J. Almond, R. Becerra, S. J. Bowes, J. P. Cannady, J. S. Ogden and R. Walsh, Physical 

chemistry chemical physics : PCCP, 2008, 10, 6856-6861. 

52. M. J. Almond, R. Becerra, S. J. Bowes, J. P. Cannady, J. S. Ogden, N. A. Young and R. 

Walsh, Physical chemistry chemical physics : PCCP, 2009, 11, 9259-9267. 

53. G. D. Soraru and L. Pederiva, Journal of the American Ceramic Society, 2002, 85, 2181-

2187. 

54. P. E. Sánchez-Jiménez, M. d. R. Rodríguez-Laguna, L. A. Pérez-Maqueda and J. M. 

Criado, Applied Energy, 2014, 125, 132-135. 

55. A. Perejon, P. E. Sanchez-Jimenez, J. M. Criado and L. A. Perez-Maqueda, The journal of 

physical chemistry. B, 2011, 115, 1780-1791. 

56. N. Koga, Y. Goshi, S. Yamada and L. A. Pérez-Maqueda, Journal of Thermal Analysis and 

Calorimetry, 2012, 111, 1463-1474. 

57. M. T. Taghizadeh, N. Yeganeh and M. Rezaei, Journal of Thermal Analysis and 

Calorimetry, 2014, 118, 1733-1746. 

58. M. Erceg, D. Jozić, I. Banovac, S. Perinović and S. Bernstorff, Thermochimica Acta, 

2014, 579, 86-92. 

59. S. Z. Qi-Long Yan, Jian-Guo Zang,Piao He, Tomás Musil and Monika Bartoskova, 

Phys.Chem.Chem.Phys., 2014, 16, 24282-24291. 

60. R. Svoboda and J. Málek, Journal of Thermal Analysis and Calorimetry, 2012, 111, 

1045-1056. 

61. R. Svoboda and J. Málek, Journal of Thermal Analysis and Calorimetry, 2013, 115, 81-

91. 

62. A. Perejón, P. E. Sánchez-Jiménez, J. M. Criado and L. A. Pérez-Maqueda, The Journal of 

Physical Chemistry C, 2014, 118, 26387-26395. 

63. Z. Cheng, W. Wu, P. Ji, X. Zhou, R. Liu and J. Cai, Journal of Thermal Analysis and 

Calorimetry, 2014, 119, 1429-1438. 

64. X. Yang, X. Wang, B. Zhao and Y. Li, BioEnergy Research, 2014, 7, 1293-1304. 

65. T. Wada and N. Koga, The journal of physical chemistry. A, 2013, 117, 1880-1889. 

66. M. Yoshikawa, S. Yamada and N. Koga, The Journal of Physical Chemistry C, 2014, 118, 

8059-8070. 

67. J. M. Criado, P. E. Sanchez-Jimenez and L. A. Perez-Maqueda, Journal of Thermal 

Analysis and Calorimetry, 2008, 92, 199-203. 

68. H. L. Friedman, Journal of Polymer Science Part C-Polymer Symposium, 1964, 183-&. 

69. S. Vyazovkin and N. Sbirrazzuoli, Macromolecular Rapid Communications, 1999, 20, 

387-389. 

70. S. Vyazovkin and C. A. Wight, Thermochimica Acta, 1999, 341, 53-68. 

71. L. A. Perez-Maqueda, J. M. Criado and J. Malek, J. Non-Cryst. Solids, 2003, 320, 84-91. 

72. L. A. Perez-Maqueda, J. M. Criado and P. E. Sanchez-Jimenez, Journal of Physical 

Chemistry A, 2006, 110, 12456-12462. 

73. C. Pantano, A. Singh and H. Zhang, J Sol-Gel Sci Technol, 1999, 14, 7-25. 

74. A. C. Ferrari and J. Robertson, Physical Review B - Condensed Matter and Materials 

Physics, 2000, 61, 14095-14107. 

75. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. 

Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Physical Review Letters, 2006, 97. 

76. A. C. Ferrari, Solid State Communications, 2007, 143, 47-57. 

77. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, 

R. Magalhães-Paniago and M. A. Pimenta, Applied Physics Letters, 2006, 88, 163106. 

Page 33 of 37 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
0 

Se
pt

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
ne

s 
C

ie
nt

if
ic

as
 I

sl
a 

de
 la

 C
ar

tu
ja

 (
C

IC
IC

) 
on

 2
1/

09
/2

01
6 

11
:1

5:
16

. 

View Article Online
DOI: 10.1039/C6CP03677E



  34 

78. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio and R. Saito, 

Physical Chemistry Chemical Physics, 2007, 9, 1276-1291. 

79. C. Turquat, H. J. Kleebe, G. Gregori, S. Walter and G. D. Sorarù, Journal of the American 

Ceramic Society, 2001, 84, 2189-2196. 

80. A. Lee Smith, Spectrochim Acta, 1960, 16, 87-105. 

81. D. Bahloul-Hourlier, J. Latournerie and P. Dempsey, Journal of the European Ceramic 

Society, 2005, 25, 979-985. 

82. G. D. Soraru, G. D'Andrea, R. Campostrini, F. Babonneau and G. Mariotto, Journal of 

the American Ceramic Society, 1995, 78, 379-387. 

83. Q. Liu, W. Shi, F. Babonneau and V. Interrante, Chem. Mater., 1997, 9, 2434-2441. 

84. V. GUALANDRIS, D. Hourlier-Bahloul and F. Babonneau, J. Sol-gel Sci. Technol., 1998, 

14, 39-48. 

85. R. Campostrini, G. G´Andrea, G. Carturan, R. Ceccato and G. D. Soraru, Journal of 

Materials Chemistry, 1996, 6, 585-594. 

86. V. C. Belot, R.J.P.; Leclerq, D.; Mutin, P.H.; Vioux, A., Journal of Non-Crystalline Solids, 

1992, 147-148, 52-55. 

87. V. C. Belot, R.J.P.; Leclerq, D.; Mutin, P.H.; Vioux, A., Journal of Polymer Science Part A-

Polymer Chemistry, 1992, 30, 613-623. 

88. P. H. Mutin, Journal of the American Ceramic Society, 2002, 85, 1185-1189. 

89. R. R. Colombo P., Sorarú G. D., Kleebe H. J., Polymer derived ceramics from 

nanostructure to applications, DEStech Publications, Inc., Lancaster, Pennsylvania 

17602 U.S.A., 2010. 

90. M. Wilhelm, C. Soltmann, D. Koch and G. Grathwohl, Journal of the European Ceramic 

Society, 2005, 25, 271-276. 

91. H. Schmidt, D. Koch, G. Grathwohl and P. Colombo, Journal of the American Ceramic 

Society. American Ceramic Society, 2001, 84, 2252-2255. 

92. T. Konegger, L. F. Williams and R. K. Bordia, Journal of the American Ceramic Society. 

American Ceramic Society, 2015, 98, 3047-3053. 

93. P. E. Sánchez-Jiménez, J. A. Downs and R. Raj, Journal of the American Ceramic Society, 

2010, 93, 2567-2570. 

94. Y.-L. Li, E. Kroke, R. Riedel, C. Fasel, C. Gervais and F. Babonneau, Applied 

Organometallic Chemistry, 2001, 15, 820-832. 

95. D. Bahloul-Hourlier, M. Pereira and C. Gérardin, J. Mater. Chem., 1997, 7, 109-116. 

96. C. Gérardin, F. Taulelle and D. Bahloul-Hourlier, J. Mater. Chem., 1997, 7, 117-126. 

97. D. Bahloul, M. Pereira, P. Goursat, N. S. Choong, K. Yive and R. J. P. Corriu, Journal of 

the American Ceramic Society, 1993, 76, 1156-1162. 

98. M. Peuckert, T. Vaahs and M. Brück, Advanced Materials, 1990, 2, 398-404. 

99. Y. D. Blum, K. B. Schwartz and R. M. Laine, Journal of Materials Science, 1989, 24, 

1707-1718. 

100. P. E. Sánchez-Jiménez, L. A. Pérez-Maqueda, A. Perejón and J. M. Criado, Polymer 

Degradation and Stability, 2010, 95, 733-739. 

 

 

 

 

 

Page 34 of 37Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
0 

Se
pt

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
ne

s 
C

ie
nt

if
ic

as
 I

sl
a 

de
 la

 C
ar

tu
ja

 (
C

IC
IC

) 
on

 2
1/

09
/2

01
6 

11
:1

5:
16

. 

View Article Online
DOI: 10.1039/C6CP03677E



  35 

Figure Captions  

Figure 1. Experimental mass%-T curves recorded for the thermal decomposition of CERASET 

and TTCS in Ar gas flow and using a linear heating rate of 5 K min-1. 

Figure 2. Raman spectra of the powders collected after interrupting the pyrolysis of (a) TTCS 

precursor and (b) CERASET precursor at 823 K, 1023 K, 1273 K. 

Figure 3. a) FTIR spectra obtained for the initial cross-linked precursor and the powders 

collected after interrupting the pyrolysis at 823, 1023, 1273 K of TTCS precursor. b) FTIR 

spectra obtained for the initial cross-linked precursor and the powders collected after 

interrupting the pyrolysis at 823, 1023, 1273 K of CERASET precursor. 

Figure 4. Experimental α-T curves (symbols) recorded for the thermal decomposition of TTCS 

in Ar flow using linear heating rates of 2, 5, 7.5 and 10 K min-1. Simulated curves (solid lines) 

were constructed using the kinetic parameters calculated for TTCS thermal decomposition by 

the combined analysis method and listed in Table 3. 

Figure 5. Experimental dα/dt-T (solid line) and intensity-T profiles (dotted lines) for several 

m/z ratios obtained for the thermal decomposition of TTCS recorded at 5 K/min, along with the 

Fraser-Suzuki function (dotted lines with coloured areas) used for fitting the simulated curves. 

The correlation coefficient of the fitting has been included into the figure. 

Figure 6. Apparent activation energies at different conversion values for each of the three 

processes contributing to the thermal decomposition of TTCS, as determined by the Friedman 

isoconversional method 

Figure 7. a) Combined kinetic plots, (as per Eq (5)), of each set of  α-T curves obtained by 

deconvolution of the overall TTCS degradation curves. The results of the optimization 

procedure for three independent stages. b) Comparison of the f(α) functions normalized at α = 

0.5 corresponding to some of the ideal kinetic models included in Table 1 (solid lines) with the 

kinetic models (symbols) obtained for each of the three contributing process determined for the 

thermal degradation of TTCS. (□) first process, (○) second process and () third process 

Figure 8. Experimental α-T curves (symbols) recorded for the thermal decomposition of the 

Ceraset precursor in Ar gas flow using linear heating rates of 1, 2, 5 and 10 K min-1. 

Reconstructed curves (solid lines) were built employing the kinetic parameters provided by the 

combined analysis method and listed in Table 4. 

Figure 9. Experimental dα/dt-T (solid line) and intensity-T profiles (dotted lines) for several 

significant m/z values obtained for the thermal decomposition of Ceraset precursor at a linear 

heating rate 5 K min-1 and the Fraser-Suzuki function (dotted lines with coloured areas) used for 

fitting the simulated curves. The correlation coefficient of the fitting has been included into the 

figure. 
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Figure 10. Apparent activation energies at different conversion fraction for each of the four 

processes contributing to the thermal decomposition of Ceraset, as determined by Friedman 

isoconversional method. 

Figure 11.a) Combined kinetic plots, (as per Eq (5)), of each set of α-T curves obtained by 

deconvolution of the overall Ceraset degradation curves. b) Comparison of the f(α) functions 

normalized at α = 0.5 corresponding to some of the ideal kinetic models included in Table 1 

(solid lines) with the kinetic models (symbols) obtained for each of the three contributing 

process determined for the thermal degradation of Ceraset. (□) first process, (○) second process, 

() third process  and () fourth process. 

Figure 12. Predicted curves (solid lines) for the thermal decomposition of TTCS and 

CERASET assuming the kinetic parameters provided by the combined analysis method. 

Experimental curves (symbols) obtained for the thermal decomposition of CERASET and 

TTCS at a heating rate of 20 K min-1. 

Figure 13. Predicted (simulated) curves (solid lines) obtained for the thermal decomposition of 

mixed CERASET+TTCS (50% mixture w/w) assuming the kinetic parameters calculated by the 

combined analysis method and a heating rate of 10 K min-1. Experimental curves (symbols) 

obtained for the thermal decomposition of CERASET and TTCS (50% mixture w/w) at linear 

heating rate 10 K min-1. 

Page 36 of 37Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
0 

Se
pt

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
ne

s 
C

ie
nt

if
ic

as
 I

sl
a 

de
 la

 C
ar

tu
ja

 (
C

IC
IC

) 
on

 2
1/

09
/2

01
6 

11
:1

5:
16

. 

View Article Online
DOI: 10.1039/C6CP03677E


