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Abstract—Analogue to Digital converters based on Σ∆ mod-
ulators are used in a wide variety of applications. Due to
their inherent monotonous behavior, high linearity and large
dynamic range they are often the preferred option for sensor and
instrumentation. Offset and Flicker noise are usual concerns for
this type of applications and one way to minimize their effects
is to use a chopper in the front-end integrator of the modulator.
Due to its simple operation principle, the action of the chopper
in the integrator is often overlooked. In this paper we provide
an analytical study of the static effects in Σ∆ modulators, which
shows that the introduction of chopper is not transparent to the
modulator operation and should thus be designed with care.

Index Terms—Σ∆ modulation, chopper, noise leakage, design.

I. INTRODUCTION

W ITH the ever decreasing feature size of silicon pro-
cesses, digital circuits have been implementing more

and more functionality. However, most applications require
an interface to the real world. At some point, an analog-
to-digital converter is thus necessary. Due to their relatively
low analog complexity – because part of the conversion is
realized in the digital domain by the decimation filter –
Σ∆ converters are often the preferred architecture for high-
resolution and low to medium frequency applications. These
converters are inherently monotonous and usually exhibit high
linearity. Although in the past few years continuous time
Σ∆ modulators have been introduced to extend the market
to higher frequency range, discrete time modulators – mainly
based on switched-capacitor techniques – gather the major part
of the instrumentation and audio market. These converters can
reach very high resolutions (up to 24bits). At this level, any
source of noise becomes a concern. This is particularly true
at low frequency, where Flicker noise is a limiting factor. For
sensor applications where calibration is not possible, the main
concerns when using a Σ∆ converter may be Flicker noise,
gain and offset errors. There are two main techniques that can
be used to reduce offset and Flicker noise. These are correlated
double sampling (CDS) and chopping [1].

It is well known that Σ∆ modulators are very sensitive
to the non-idealities of the front-end integrator. Indeed, for
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the integrators located further in the loop, the perturbations
induced by the non-idealities are partially modulated to the
high frequencies and their contribution to the baseband error
is minimal. CDS and chopping are thus applied only to the first
integrator in the loop. It has also been proposed in [2] to apply
chopper to the complete modulator. This requires designing a
high-pass modulator, which is a fundamental and challenging
architectural change. For this reason this solution has remained
marginal.

Beyond offset and Flicker noise suppression, CDS technique
based on Nagaraj’s integrator [3], [4] has the advantage of
relaxing amplifier DC gain requirements. The use of such an
integrator in Σ∆ modulators has been contemplated in [5]. In
[6] a noise analysis of the integrator is performed, which shows
that the input capacitance of the amplifier should be minimized
to effectively cancel Flicker noise contribution. Despite the
important benefits of this integrator structure, its use in Σ∆
modulators is not generalized because it requires specific and
careful design.

On the other hand, chopping seems to be a much more
straightforward approach. Apparently, it can be included in
an existing integrator design with little effort. As a matter of
fact, the papers describing modulators that include chopping
seldom detail chopper implementation and its possible impact
on performance [7]–[9]. Neither do reference textbooks [10],
[11] or studies on non-ideality modeling [12], [13]. In a
recent paper [14], the authors propose to use a pseudorandom
chopping sequence and extend the results of [1] to estimate
the residual offset due to switch charge injection.

This paper studies the chopper static effects in the front-
end integrator of Σ∆ modulators, and will show that chopper
implementation is not as straightforward as it seems.

The paper is organized as follows: Section 2 is devoted to
the chopper operation in the integrator. A high-level event-
driven model is proposed and validated. Section 3 provides a
detailed study of chopper effects in Σ∆ modulators. Section 4
points out the peculiarity of high-level simulations. Section 5
presents transistor level simulations that validate the analytical
study and Section 6 provides some practical considerations for
the designer to account for the referred effects. Finally Section
7 summarizes the paper conclusions.

II. THE CHOPPED INTEGRATOR

Two main implementations of the chopped integrator can be
found in the literature. The first and most direct one consists in
flipping the amplifier by adding crossed switches in series at
its inputs and outputs, as illustrated in Fig.1-a. In that way, the
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Fig. 1. a) Diagram of a single-branch integrator with a chopped amplifier.
b) Diagram of a chopped integrator, where the chopping is implemented on
the feedback capacitors and the integrator input. c) Integrator clock phases.

noise and offset introduced by the amplifier are modulated by
the chopper signal. The chopper transitions (controlled by φc
and φd) occur in the interphase between φ1 and φ2 as shown
in Fig.1-c. For this implementation, the chopper transitions
could also be located during the sampling phase φ1 to limit
additional noise sampling as proposed in [8]. However, the
amplifier would have less time to properly settle and this
may induce a signal-dependent error, particularly if the next
integrator also samples on phase φ1.

In the second implementation of the chopped integrator
[15], represented in Fig.1-b, the integrating capacitances are
flipped instead of the amplifier, which also requires to apply
the chopper to the integrator inputs. The first order results
are identical to those of the first implementation. The main
difference between the two schemes actually lies in dynamic
settling requirements that have no contribution to the static
behavior.

For a classical integrator without chopping (consider φc = 1
and φd = 0 in Fig.1-a), the contribution of the amplifier offset
Voff to the integrator output VU can be calculated as,

VU ≈
b
(
1− b+1

A

)
z−1 (Vin − Voff )

1− z−1
(
1− b

A

) (1)

Vin = VX − VY
where b = C1/C2 and A is the amplifier DC gain.

For a chopped integrator, it is usual to consider that the
offset term Voff in (1) is simply replaced by its modulated
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Fig. 2. Integrator schematic during a chopper transition, including the
parasitic capacitors on the amplifier.

version V coff . We have,

Voff → V coff = Voff ∗ CH (z) (2)

where CH (z) is the z-transform of the two-valued chopping
sequence ch (n) (either 1 or −1) that represents the amplifier
flipping action controlled by phase φc and phase φd.

A. Effect of chopper transitions

Let us consider the instant at which the chopper flips the
signal paths, in other words a rising or a falling edge of the
chopper signal. This chopper transition occurs in the interphase
between φ2 and φ1. As both phases are low, the connection
to the sampling capacitors is open and the two architectures
represented in Fig.1 reduce to the same case study with respect
to chopping effects. The integrator schematic during a chopper
transition is shown in Fig.2. The parasitic capacitors that
may affect the integrator operation during a chopper transition
have also been represented. There is an input capacitor Cpi,
an output capacitor Cpo, a positive feedback capacitor Cpp
and a negative feedback capacitor Cpn. For these last two
capacitors, a differential contribution is considered for the sake
of simplicity. Indeed, if the parasitic occurs on a single branch
it will affect both the common-mode and the differential
signal. The differential contribution can be calculated taking
one half of the single branch capacitor value.

Neglecting settling and charge injection mechanisms in the
switches, it is obvious that the output capacitor Cpo has no
effect since it is connected to a voltage source. The charge
conservation equations at nodes A and B in Fig.2 lead to the
modified integrator output V ∗U after a chopper edge,

V ∗U =

[
1 +

Cpp−Cpn
C2

+ 1
A

(
1− Cpp+Cpn+Cpi

C2

)]
VU − 2V coff

1− Cpp−Cpn
C2

+ 1
A

(
1− Cpp+Cpn+Cpi

C2

)
(3)

where VU is the integrator output before the chopper edge,
given by (1).

Equation (3) can be simplified by neglecting the terms di-
vided by A and considering the offset term small with respect
to the integrator output range. In this way and considering
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parasitic capacitances smaller than C2, a first order Taylor
development of (3) gives,

V ∗U ≈ (1 + δ)VU − 2V coff (4)

δ = 2
Cpp − Cpn

C2

Hence, each time that the chopper flips the amplifier, the
integrator output voltage will be slightly scaled up or down
(depending on the value of Cpp and Cpn). This is not the case
in an integrator without chopper since these parasitic capaci-
tors simply add up to the feedback capacitor C2, and would
appear as an integrator gain error similar to the conventional
capacitor mismatch.

The presence of an offset in the amplifier imbalances the
virtual grounds, and the charge required to recover the equi-
librium (which has to be drawn from the feedback capacitor
C2) modifies the integrator output. There is thus an offset
component related to the chopper transitions, in addition to
the conventional one already shown in (2). It can be seen in
(3) that the parasitic capacitors also modify the coefficient of
this offset contribution. However, for low offset values this
can be considered as a second order effect.

B. A high-level model of the chopped integrator

We have seen above that beyond the classical chopper
modulation effect, there are two spurious contributions to
the integrator output that are related to chopper transitions
(i.e. the amplifier flipping events). One is an additional offset
contribution and the other is a parasitic contribution that
modulates the integrator output. These two contributions add
to the output samples following a flipping event.

In order to validate (4), we performed transistor-level simu-
lations of an integrator designed in AMS 0.35µm technology.
The gain of the integrator is b = 0.5.

First of all, a 10mV voltage source has been introduced
in series with one of the amplifier inputs. We performed
three transient simulations for three different values of the
chopper frequency fch = fs/(2M): M=1, M=2 and M=5. The
integrator input was set to 0 to see only the offset contribution
at the integrator output. Fig.3 displays the obtained results. It
can be seen that the integrator output follows the expected
behavior: the offset is modulated by a square wave and
integrated, but we can also see a component due to the chopper
transitions. The classical chopper component, as described in
(1) and (2), leads to a step at the integrator output at each
sample period of,

stepCH = b× Voff = 0.5× 0.01V = 0.005V (5)

While the transition component, as expressed in (4), leads
to an additional increase of,

stepCT = 2× Voff = 2× 0.01V = 0.02V (6)

This component has to be summed to the classical one,
that is why a positive or negative step of 0.025V is observed
at each chopper transition, for the three chopper frequencies.
Notice that the first transition must not be taken into account
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Fig. 3. Integrator output for a 0V input in the presence of a 10mV amplifier
offset. The transient simulation has been realized for three different chopper
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Fig. 4. First integrator impulse response for different chopper frequencies.

because it corresponds to the integrator initial state for which
the feedback capacitors are discharged and thus do not hold
the offset value.

In order to validate the second spurious contribution (the
effect of parasitic capacitors during chopper transitions), the
offset has been set to 0 and a positive feedback capacitor has
been introduced around the first amplifier (Cpp = 10fF in
Fig.2). The feedback capacitance C2 is made of four unit
capacitors of 400fF . Accordingly to (4) we have,

δ = 2
10× 10−15

4× 400× 10−15
= 0.0125 (7)

The integrator response to a Vin = 2V impulse has been
simulated. For an ideal integrator of gain b = 0.5, the response
should be a step signal of 1V . Amplifier finite DC gain will
produce a slow decay of the integrator output, while chopper
parasitic effect should give rise to periodic incremental steps
of δbVin for each chopper transition.

Fig.4 shows the impulse response obtained for five different
cases: in the absence of chopper and for a chopper at fs/2,
fs/4, fs/6 and fs/10 (i.e. M = 1, 2, 3, 5).



4

IN(z)

CH(z)

U(z)

1z

1

1

1z

A
b

b

OFF(z)
b

2

5.0



CT(z)

Offset contribution

Parasitic contributionO
FF

C
T

OFFCH

Fig. 5. High level model of a chopped integrator for event-driven simulators,
including chopper transition effects.

It can be clearly appreciated how the integrator output is
increased by the effect of chopper and that the incremental
steps occur every 1, 2, 3 and 5 samples as expected. The
increments are also of the expected value: δbVin ≈ 0.0125V .
The step value actually increases as the integrator output
increases from its initial value of bVin = 1V . For the
integrator without chopper there is actually a slight decrease
of −4× 10−5V that corresponds to the pole error induced by
the amplifier finite DC gain.

These electrical simulations show that the chopped inte-
grator behaves as predicted by (4), and hence we can use
this equation to build a high level event-driven model to
facilitate further investigations on the impact of chopped
integrators on discrete-time signal processing circuits, such as
Σ∆ modulators.

To build this model, we need to analytically define the
chopper transition signal. Let us consider the chopper signal,
ch(n) as a two valued signal (1 and -1). On other hand, the
chopper transition signal, ct(n), must be equal to 1 for the
sample immediately following a chopper rising or falling edge,
and 0 elsewhere. This signal can be built from the chopper
signal as,

ct(n) = (1− ch(n)ch(n− 1)) /2 (8)

The chopped integrator model based on the modulation
effect described in (4) can thus be built as shown in Fig.5.

Signal IN is the integrator input and U is its output. We
can readily separate the two spurious contributions highlighted
in (4) at the summing node of the integrator: one related to
the offset and the other to the integrator output modulation
due to the parasitic capacitors. To generate the former, signal
OFF accounts for the offset and Flicker noise of the amplifier.
It is multiplied by the chopping sequence CH to generate
the classical chopper component (OFFCH ) and also by the
chopper transition signal CT to generate the chopper transition
component (OFFCT ). To generate the latter, the integrator
output U is modulated by the chopper transition signal and
scaled by the parasitic factor δ.

Ivirtual

X

Y

Loop Filter


First Integrator

Fig. 6. Generic loop filter for Σ∆ modulator.

III. CHOPPER IMPACT ON Σ∆ MODULATOR PERFORMANCE

A. Referring chopper effects to the modulator output

Let us consider the generic Σ∆ modulator in Fig.6. Due
to their non-linear dynamics, the analytical resolution of Σ∆
modulators is particularly involved, even for simple inputs like
DC levels [10]. However, a simple approximation is often used
in order to evaluate the performance of different architectures.
This approximation consists in replacing the quantizer by a
noise source that emulates the quantization error. In that way,
linear algebra can be used to calculate the Signal Transfer
Function (STF ) of the modulator as well as its Noise Transfer
Function (NTF ), which defines the noise shaping capability
of the structure.

The modulator output Y is thus related to the input signal
X and the quantization error E through,

Y = STF (z)X +NTF (z)E (9)

Let us consider a virtual signal Ivirtual that would add up at
the first integrator input, as shown in Fig.6. In the frame of the
linearized quantizer approximation, it is possible to calculate
the transfer function TI(z) of this new signal to the modulator
output such that,

Y = STF (z)X +NTF (z)E + TI (z) Ivirtual (10)

In most cases of the widely used CIFB structure (Cascade
of Integrators with FeedBack) described in [11], the modulator
input signal feedforward coefficients are all set to zero except
the first one. As a consequence, a signal added at the integrator
input is equivalent to a signal added at the modulator input
and thus sees the modulator STF (z),

TI (z) = STF (z) (11)

For the sake of conciseness, we will further drop the (z)
part in the expression of the different z-transforms.

Ideally, the modulator STF must not significantly filter the
input signal in the baseband of the converter. As a matter of
fact, in an ideal Σ∆ modulator, the STF reduces to a fixed
delay. Hence, with respect to power in the baseband, the term
TI can be neglected. For other architectures than the CIFB, the
calculation of TI with the linearized quantizer approximation
is an easy task and the same approximation is likely to be
valid.

Using the high level model that we have validated in the
previous section (see Fig.5), it is quite straightforward to
refer the chopper-related signals at the integrator input, and
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therefore at the modulator output (taking into account the
integrator gain b). As explained above, there are two distinct
contributions: one is the offset and Flicker noise contribution
(OFFchop), and the other is a modulation of the integrator
output due to the parasitic coupling between the amplifier
inputs and outputs (Pert).

The offset contribution can be calculated as,

OFFchop = TI × OFFCH +OFFCT
b

(12)

= TI × b OFF ∗ CH + 2OFF ∗ CH ∗ CT
b

where we have separated the classical chopper component
OFFCH and the chopper transition component OFFCT . For
the sake of simplicity, we consider both amplifier Flicker noise
and offset in the term OFF .

The parasitic contribution is written as,

Pert = TI × δ

b
[U1 ∗ CT ] (13)

where U1, the z-transform of the first integrator output, is
modulated by the chopper transition signal CT .

Let us study separately the impact of these two perturba-
tions.

B. Offset and 1/f noise contribution

Obviously, the chopper transition signal ct(n) is quite
different from the chopper signal ch(n). Let us study how
it modifies offset and Flicker modulation. It is important to
remark that the chopper transition component (OFFCT in
Fig.5) is multiplied by both the chopper signal (ch) and the
chopper transition signal (ct). We have,

offct (n) = 2off (n)× ch (n)× ct (n) (14)
m

OFFCT = 2OFF ∗ CH ∗ CT

The spectrum of the chopper transition signal cannot be
known a-priori but it is deterministically linked through (8)
to the chopper signal. This introduces a direct simplification.
Because ch(n) is a square signal between 1 and −1, we have
ch(n)2 = 1, which leads to,

offct = 2off (n)× ch (n)× ct (n) (15)
= off (n)× (ch (n)− ch (n− 1))

m
OFFCT = OFF ∗

[(
1− z−1

)
CH

]
Hence, the total chopped offset and Flicker noise contri-

bution referred to the modulator output, as shown in (12),
simplifies to,

OFFchop = TI ×OFF ∗
[(

1 + b− z−1

b

)
CH

]
(16)

Depending on the chopping signal nature, the frequency
shaping related to the chopper transition contribution can be
more or less relevant. As an example, [16] proposes to use
a frequency-shaped pseudo-random chopper signal. A white
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Fig. 7. Chopper effect on the offset, including classical chopper component
and chopper transition component. The chopper is a pseudo-random sequence
shaped as defined in [16].

sequence from an LFSR is sent to a simple digital modulator
whose transfer function has a zero at DC and another at fs/2.
The first one minimizes the power in the baseband while the
second one limits possible coupling of high-frequency tones on
the full-scale voltage references. We generate such a sequence
in Matlab and use it in our model to examine the impact of
the chopper transition signal. Without much loss of generality,
we neglect the filtering action of the architecture-specific term
TI , as discussed above.

Fig.7 shows the chopped-offset spectrum normalized to the
offset power. A total of 100 spectrums computed over 2048
samples have been averaged in order to reduce variability. The
FFTs were calculated using a high performance window (a
Rife-Vincent type-2 window, with 165dB side-lobe attenuation
[17]) to avoid any spectral leakage. Together with the overall
result (the thick line), we have represented the classical
chopper component (with square markers) and the chopper
transition component (with round markers). The shaping effect
on the latter can clearly be appreciated. At low frequency, the
classical chopper component dominates the noise spectrum. At
high frequency, the chopper transition component significantly
increases the noise power level. In particular, the power density
at fs/2 is 14dB higher than expected from the classical
chopper component.

If Flicker noise is the main concern, the signal OFF in (16)
cannot be considered as a scalar. Actually, its power spectral
density is of the form,

SOFF ∝
1

f
(17)

and the analytical resolution of the convolution in (16) is not
straightforward.

To illustrate its effect, Fig.8 shows the chopped-Flicker
spectrum in the same way as in Fig.7. The power spectrum
of the Flicker noise without chopper is also represented in
order to illustrate the benefits of chopping. It can be seen how
chopping effectively brings a reduction of Flicker noise power
at low frequency. As expected, the zeros at DC and fs/2 that
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could be seen in Fig.7 for a DC offset are significantly filled
by Flicker noise aliasing.

In significant contrast to the DC offset case, it can be
seen that the chopper transition component dominates over
the classical chopper component on the entire spectrum and
not only at high frequency. In particular the power spectral
density of the overall chopped Flicker noise is close to 10dB
higher than what could be expected with a simple model at low
frequencies. This increment is significant and should thus be
taken into account during the design phase in order to define
a correct design margin for the amplifier Flicker noise, which
directly impacts on the minimum size of its input transistors.

C. Parasitic contribution

This section analyzes the impact of the parasitic capacitors
that modulate the integrator output, as introduced in (13).

In order to go further in the analysis, we need to develop the
terms TI , U1 and CT . The first two depend on the particular
architecture of the Σ∆ modulator. The first integrator of Σ∆
modulators is usually fed with the difference between the input
signal and the output bitstream. Taking (9) into account, the
output of the integrator (U1) can thus be written,

U1 =
bz−1

1− z−1
((1− STF (z))X −NTF (z)E) (18)

For the sake of simplicity, in what follows we will consider
the case study of an architecture that implements an ideal Lth

order modulator such that,

STF (z) = TI (z) = z−L (19)

NTF (z) =
(
1− z−1

)L
In this case, the expression of the perturbation (13) can be

written as,

Pert = δz−L ×

[
CT ∗

((
L−1∑
i=0

z−i

)
X

)]
(20)

−δz−L ×
[
CT ∗

(
z−1

(
1− z−1

)L−1
E
)]

From this equation, it can be seen that the perturbation has
a signal-dependent term and a noise-dependent term.

For any particular architecture, TI and U1 should be calcu-
lated, but the perturbation will likely be similar to (20); that
is, a signal and a noise contribution modulated by the chopper
transition signal.

As both noise and signal are convoluted by the chopper
transition signal CT , its spectrum is particularly relevant to
understand the impact of the chopper parasitics. Up to this
point, the type of chopper signal (and consequently the chop-
per transition signal) has not been specified. Let us consider
three cases.

1) Chopping at fs/2: When the chopper frequency is set
to half the sampling frequency, the amplifier is flipped at
each period. All the samples will get the chopper transition
contribution. As a result the chopper transition signal is,

CT (z) = 1 (21)

Hence, the signal and noise contributions of the perturbation
are not modulated. While the signal contribution simply adds
up to the nominal signal, the noise contribution will degrade
performance. It can be seen from (20) that some quantization
noise shaped at order L− 1 will leak into the baseband.

For this particular case, it is interesting to come back
to the integrator level expression given in (4). Indeed, as a
chopper transition occurs at each period, the chopper parasitic
contribution appears as a pole error, just like the effect of
amplifier finite DC gain. The impact of a pole error in the
first integrator on the modulator performance is well known
[10], [12]. It is important to notice that, unlike for the amplifier
DC gain, the sign of the chopper induced pole error depends
on the parasitic capacitances. This can be particularly relevant
for stability concerns [18].

The expected power spectral density Spert of the noise term
of the perturbation can be calculated analytically. For that, we
have to develop the squared modulus of the second term in
(20). Under Bennett’s conditions, the quantizer error E can be
approximated to a white noise of power spectral density,

SE =
∆2

12fs
(22)

where ∆ is the quantizer step and fs the sampling frequency.
It comes,

Spert = 2δ2
∆2

12fs

(
1− cos

(
2π

f

fs

))L−1
(23)

This coincides with the classical result obtained for integra-
tor pole error in single stage Σ∆ modulators [10].

2) Chopping at lower frequencies: It is often recommended
as a good design practice to isolate the voltage references
that define the modulator full-scale from any signal at fs/2,
[10]. Such a coupling would likely demodulate high power
tones from the quantization error into the baseband. Hence,
one could operate the chopper at a frequency lower than fs/2
in order to avoid the introduction of a clock signal at fs/2,
like for instance in [7]. However, if the chopper is operated at
frequencies lower than fs/2, the chopper transition signal is
no longer constant and noise folding occurs.
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Let us consider a chopper frequency of fs/(2M), where
M is an integer higher than 2. In order to avoid harmonics at
fs/2, M should also be odd, but our study is valid for both
odd and even values. The chopper transition signal defined
above is thus of the form,

ct (n) = 1 for n = kM with k ∈ ℵ (24)
= 0 otherwise

Calculating CT (z) from the definition of the z-transform is
not straightforward. Instead, we can remark that multiplying
the integrator output by the chopper transition signal is equiv-
alent to downsample and then upsample by a factor M . Such
a combination is widely used in multirate analysis and we can
thus build on these results.

According to [19], the z-transform of the integrator output
multiplied by the chopper transition signal can be written as,

CT (z) ∗ U (z) =
1

M

M−1∑
k=0

U
(
zej

−2kπ
M

)
(25)

The perturbation spectrum (13) can thus be expressed as a
sum of the integrator output spectrum components shifted by
kfs/M . This aliasing is due to the downsampling, while the
scaling by 1/M is due to the upsampling.

To go further and describe the impact of the perturbation
in a better way, we can consider an ideal Lth order CIFB
modulator, which is what led us to (20). In this case, the
perturbation can be written as,

Pert =
δ

M
z−L

M−1∑
k=0

(
L−1∑
i=0

z−iX

)
z→ze−j2π

k
M

(26)

− δ

M
z−L

M−1∑
k=0

(
z−1

(
1− z−1

)L−1
E
)
z→ze−j2π

k
M

The first term shows that the perturbation contains aliases
of the modulator input signal around the frequencies kfs/M .
Taking into account that in the majority of cases, the modulator
OSR is much higher than the modulator order L, the input
signal X can be considered as a low-frequency and we can
make the following approximation,

OSR >> L⇒
L−1∑
i=0

z−iX ≈ LX (27)

Furthermore, for moderate values of M the input signal
bandwidth is also likely to be inferior to fs/(2M) and thus,
no overlapping of the aliases should occur. In this case, the
power spectrum of the perturbation signal part can be easily
calculated as,

Ssig =

(
δL

M

)2M−1∑
k=0

∥∥∥X (ze−j2π k
M

)∥∥∥2 (28)

If the OSR of the modulator is large, the signal aliases
should be correctly suppressed by the decimation filter, and
its impact on the modulator performance should be limited.
However, Σ∆ modulators are often touted for their low anti-
aliasing requirements. If high frequency and high power tones
were present in the modulator input signal, they could leak
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Fig. 9. Power spectra of the chopper signal (CH) proposed in [16], and of
its associated chopper transition signal (CT).

into the baseband. This part of the perturbation should thus
not be completely overlooked.

The second term in (26) is related to the modulator quan-
tization noise. Considering that the aliases of the quantization
error are uncorrelated, the power spectral density can be
calculated as,

Snoise =

(
δ

M

)2

SE

M−1∑
k=0

∥∥∥1− e−j2π( f
fs
− k
M )
∥∥∥2(L−1) (29)

=

(
δ

M

)2

SE4L−1
M−1∑
k=0

sin2(L−1)
(
π

(
f

fs
− k

M

))
=
δ2

M
SE

(2 (L− 1))!

(L− 1)! (L− 1)!

It comes that for any Lth order modulator that implements
an ideal NTF of the form

(
1− z−1

)L
, the quantization noise

folding due to chopper modulation should have a flat power
spectrum. The total perturbation power that falls into the
modulator baseband can thus be easily calculated, taking (22)
into account:

for M ≥ 2, (30)

Pnoise =
δ2

M

∆2

12OSR

(2 (L− 1))!

(L− 1)! (L− 1)!

The particular case M = 1 corresponds to the chopper
operated at the Nyquist frequency and has been treated in the
previous sub-section.

3) Random chopping: The developments carried out for the
chopper operated at a frequency lower than fs/2 allow us to
foresee what should happen with a random chopping. Indeed,
expression (13) remains valid, and the z-domain transform of
the integrator output will now be convoluted by a a random
signal. Notice, though, that the chopper transition signal is not
the chopper signal, and the shape of their spectra may be quite
different.

This is illustrated in Fig.9, which shows the power spectrum
of the chopper signal (CH) proposed in [16] together with
the corresponding chopper transition signal (CT). It can be
seen that the chopper transition signal has a spectrum that is
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Fig. 10. Perturbation power spectrum for a 2nd order modulator with chopper
at fs/4, for two amplitudes of the input sine-wave.

quite different from the chopper signal. Excepting a significant
DC component and a tone at fs/2, the spectrum is almost
flat. Because the first integrator output is not correlated to the
chopper transition signal (at least in first order), we can expect
that the perturbation spectrum will have three contributions.
The convolution with the DC component will lead to a scaled
replica of the integrator output. The convolution by the tone
at fs/2 will lead to an alias of the integrator output. And
finally, the convolution with the white noise will lead to a
white noise. In order to calculate a closed form expression of
the perturbation spectral density an analytical expression of
CT (z) would be necessary.

IV. THE PITFALLS OF HIGH-LEVEL SIMULATION

In order to reach closed form analytical expressions, we
have used a well-known but strong approximation: modeling
the quantization error E as a white noise source. The validity
of this approximation is quite limited for Σ∆ modulators,
particularly those that rely on a single-bit quantizer.

In order to illustrate this assertion, we perform a high-level
simulation of a 2nd order modulator like the one presented
in [20], including our chopped-integrator model. A chopper
with a parasitic parameter δ = 0.01 at a frequency of fs/4
is considered. Fig.10 shows the spectrum of the perturbation
(acquired at the output of the gain block δ in Fig.5) for two
different amplitudes of the input sine-wave. It appears clearly
that the noise part of the perturbation spectrum is not flat and
that it is very different in the two cases. There is thus a strong
correlation between the input signal and the quantizer error E.

In the case of the small amplitude, the perturbation is almost
negligible. This can be better understood taking a look at the
integrator output in the time-domain.

The dashed line with cross markers in Fig.11 shows the
integrator output for a small amplitude sine-wave (there is
one marker per sample). The round markers correspond to the
integrator output multiplied by the chopper-transition signal ct,
which is the signal that is fed to the integrator input through
the parasitic capacitor. For input signals close to zero, the
integrator output follows a regular pattern whose period can be
a multiple of the chopper transition period. In this particular
case, the samples that coincide with chopper transitions are
casually all close to zero. For that reason, the perturbation
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Fig. 11. Integrator output for a small amplitude input sinewave.
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Fig. 12. Perturbation spectra for four chopper frequencies. These spectra
have been produced by averaging the FFT of the perturbation signal for 1000
input sine-waves with a fixed amplitude but random DC level and phase.
The modulator is a 2nd order a) with a single-bit quantizer, b) with a 2-bit
quantizer.

power is much lower than expected because the chopper does
not capture the ”noisy” component of the integrator output.

In order to get rid of the input signal correlation, we can
perform 1000 simulations of the modulator for 1000 input
sine-waves of identical amplitude and frequency but random
DC level and random phase. By averaging the FFT results
(computed with a Rife-Vincent window, over 1024 samples)
for the 1000 sine-waves, we make the average correlation
between the integrator output and the chopper transition signal
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almost negligible. This allows retrieving a general trend in the
perturbation that should be valid for realistic inputs (i.e. non
pure tones). Fig.12-a shows the average spectrum obtained for
four different chopper frequencies fs/(2M). The thick gray
lines labeled on the right side of the figure represent the flat
spectral density level that was expected according to (29).

Notice that the tones correspond to the signal part of the
perturbation. The input signal is modulated at kfs/(2M), but
only the DC level contribution can be appreciated because the
small sine-wave amplitude (-60dBFS) falls below the noise
floor.

It can be seen that the perturbation spectrum is still not truly
flat for M = 2 and M = 3. The spectra present a valley at
low frequency. This implies that the perturbation power in the
baseband is lower than specified in (30) for low values of M .
For M = 7 and M = 13, the perturbation spectra are much
flatter, and (29) only overestimates the perturbation power in
1dBFS approximately.

The second order single-bit modulator chosen for the simu-
lation exhibits strongly non-linear dynamics. It is well-known
that Bennett’s conditions are better fulfilled for higher order
modulators, multi-bit quantizers or by the use of dithering.
To illustrate this, we performed the same simulation on the
same 2nd order architecture but with a 2-bit quantizer. Fig.12-
b displays the obtained results. It can be seen that in this case,
the matching of the power spectra with (29) is almost perfect.

Two conclusions can be drawn from these simulations.
The first one is that the closed-form expressions proposed in
previous subsection are correct while the linearized quantizer
approximation holds. When this approximation does not hold,
they still give a good insight into the expected behavior,
but high-level simulations would give more accurate results.
The second conclusion is that some care must be taken with
high-level simulation to ensure that we are not considering
a particular case which would lead to underestimating the
impact of chopper. Fortunately, with our event-driven model
such simulations are computationally inexpensive and several
cases can easily be explored.

V. ELECTRICAL VALIDATION

We have already studied static effects in chopped integra-
tors, and verified that the analytical developments allow us
to lay down a high level model for further investigation of
chopper effects in discrete-time Σ∆ modulators. This section
closes the validation loop and presents electrical simulations
of a complete modulator with chopper.

For this purpose, we have designed a simple 3rd order
cascaded modulator at transistor level. The schematics shown
in Fig.13 makes use of a 0.35µm CMOS technology. For
the sake of simplicity, the three integrators are identical,
with folded cascoded amplifiers of 83dB nominal gain. All
the switches are balanced CMOS to approximate a signal-
independent ON-resistance. The unit capacitor value is 423fF.
Capacitor C1 uses 2 unit capacitors and Capacitor C2 uses
4. The gain of the integrator (b in Fig.5) is thus 0.5. The
modulator is operated at 2MHz.

Notice that the expressions calculated from (19) hold for
single-loop modulators. The results are still valid for our
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Fig. 13. Σ∆ modulator schematic used for electrical simulations.

cascaded modulator, but the order of the modulator (L = 3)
has to be replaced by the order of the first stage (L1 = 2).

The reconstruction filter (whose transfer function is quoted
in Fig.13) combines the output bit-streams of the two stages
to give the final modulator output. It is implemented as a
post-processing task in order to keep the electrical simulation
complexity as low as possible.

The effects described in this paper are particularly relevant
for low-frequency, high-resolution applications. In order to
reach a high resolution, the oversampling ratio (OSR) must
be high. Combined with the fact that we want to resolve
at least 256 FFT bins in the baseband, this leads to long
transient simulation. Furthermore, very high accuracy settings
must be considered to avoid arithmetic errors that would
corrupt the results. Simulation times to reach 18 bit accuracy
would be overwhelmingly long on our hardware. In order to
present several simulation results, we preferred to consider
a lower 16 bit resolution, typical in the audio market. This
resolution is achieved with an OSR of only 64, and thus a
transient simulation of only 256×64×0.5µs = 8.3ms can be
considered. In order to validate our study, we have to choose a
parasitic capacitor (and thus the parameter δ) sufficiently large
such that the perturbation be visible in the output spectrum.
Using (30), we can calculate that a parasitic parameter of
δ = 4.6 × 10−3 would lead to a resolution of 11.3 effective
bits (ENOB) at an OSR of 64 and for a chopper operated
at fs/8 = 250kHz (i.e. M = 4). This value should thus
be sufficient to clearly notice the perturbation in the output
spectrum. Taking into account the value of the integrating
capacitor C2, a parasitic capacitor Cpn = 3.9fF is obtained.
For our 0.35µm technology, such a parasitic may arise from
a parallel routing of 50µm metal lines, as can be found in a
signal bus. It is thus a realistic value.

With these parameters, we finally perform four different
transient simulations of the modulator shown in Fig.13 in-
cluding the parasitic capacitor. The simulator is Spectre in a
Cadence Framework and uses the Bsim 3v3 models provided
by the foundry. The accuracy option is set to ”conservative”,
but the relative error is calculated with respect to global
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Fig. 14. Power spectrum of the modulator output obtained from electrical simulation. a) without chopper, b) with chopper at fs/2 (M = 1), c) with chopper
at fs/8 (M = 4), d) with random chopper as proposed in [16].

signals instead of local signals, which greatly speeds up the
simulation while maintaining the desired 16bit accuracy. The
first simulation is done without chopper, the second in the
particular case of a chopper operated at fs/2 (i.e. M = 1),
the third with a chopper operated at fs/8 (i.e. M = 4) and
the fourth with a random chopper as proposed in [16].

In addition to these electrical simulations, we have also per-
formed simple high-level simulations in order to demonstrate
that the perturbation approximation is reliable enough to take
design decisions. More concretely, we have simulated an ideal
model of the modulator architecture without chopper, for an
input sine-wave of the same characteristics as for the electrical
simulation and for the same number of samples (64 × 256).
The chopper transition signals (ct) for the four cases described
above have also been generated. This is straightforward for
the first three cases and only the random chopper requires a
specific simulation of the random sequence.

In this way, the expected perturbation can be built multi-
plying the ideal integrator output by the chopper transition
signal and scaling the result by δ. As high-level simulation

is almost inexpensive in terms of CPU time, the process is
repeated 100 times, varying the phase of the input sine-wave.
The FFT outputs are averaged in order to reduce spectrum
variability. We could have built-up the high-level simulations
with the proposed chopped-integrator model, but the selected
approach validates the perturbation approximation that have
been made for the analytical developments.

Fig.14 displays the obtained results. For all FFTs, the same
high performance window as previously has been used. For the
first case (a), there is no expected perturbation since there is
no chopper. It can be seen that there is a white noise floor
that limits the resolution of the modulator. This is due to
arithmetic errors of the simulator, as explained above. For
the second case (b), the perturbation appears to be shaped
to a first order, as expected, taking into account that the first
stage of the modulator is of order L1 = 2. The analytical
expression of the expected power density, according to (23),
is also represented by a dashed line. The matching is almost
perfect in the baseband, where the perturbation dominates
the quantization noise. Notice that operating the chopper
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at fs/2 may lead to an additional degradation through the
coupling to the voltage references. This effect may outweigh
the perturbation but it does not appear here because we used
ideal voltage sources for the references. For the third case (c),
we also see that the perturbation derived from the ideal high-
level simulation almost perfectly match the electrical results.
Here again, we have represented by a dashed line the analytical
power spectral density derived in (30). As commented before,
the modulator quantizer is single-bit so the quantization error
cannot accurately be approximated to a white noise, at least
not for a pure tone input. Anyhow, the analytical expression
still gives a reliable order of magnitude for the perturbation.
Noticeably, the measured ENOB for the electrical simulation is
11.3, exactly the expected value calculated using (30). Indeed,
the tonal components of the perturbation compensate for the
slightly lower noise floor. And for the fourth and last case (c),
the high-level simulation of the perturbation perfectly matches
the electrical results in the baseband. We can see that the
perturbation is almost flat, as expected. There is also a signal
alias around fs/2 that cannot be clearly seen on the figure due
to the logarithmic scale of the frequency axis. The measured
ENOB is 11.2, which is quite similar to the value obtained for
the chopper at fs/8.

For validation purpose, we have considered a parasitic
capacitance of 3.9fF . However, the perturbation theory tells
us that the smaller the perturbation the more accurate the
approximation. Thus, we can be confident that the results for
smaller parasitics will be valid. As a matter of fact, we would
only have to scale down the perturbation by the new δ.

So these results are significant in two ways. Not only do they
validate our developments but they also show that simple high-
level simulations of an ideal model are sufficient to generate
an accurate perturbation for different chopper signals and
parasitic values.

VI. PRACTICAL CONSIDERATIONS

From the chopped-integrator effects studied in this paper
we can draw some practical implementation considerations
to avoid chopper-related performance degradation in discrete-
time Σ∆ modulators. The goal of these guidelines is to help
the handling of coupling parasitic capacitances effects derived
from the chopping scheme that were chosen for the particular
application. In general, the chopping signal is selected to
meet the requirements of offset and Flicker noise attenuation.
Operating the chopper at fs/2 is possibly the most efficient
solution but entails the risk of coupling onto the voltage
references. Using a lower frequency fs/2M only requires a
frequency divider but may lead to more noise folding. Finally,
random chopping may completely remove the risk of coupling
onto the voltage references but involves more hardware.

In any case,
• Consider the use the chopped-integrator model illustrated

in Fig.5 in order to verify the chosen scheme and the
impact of the chopper transition component on the offset
and Flicker noise. The latter is particularly sensitive to
folding.

• Evaluate, either analytically or with high-level simula-
tions, the maximum δ that does not cause performance

degradation for your application. Remember that several
simulations must be performed (for instance with differ-
ent input waveforms) to avoid any particular case that
would underestimate the chopper impact. For example, if
the objective is to reach 20bits with a 5th order single-
loop modulator (i.e. L = 5) with a quantizer of q = 3
bits, for an OSR of 64, operating the chopper at fs/4
(i.e. M = 2), you must ensure that,

Pnoise ≤
1

12 (2ENOB − 1)
(31)

which, using (30), reduces to

δ ≤ 2q − 1

2ENOB − 1

√
M ×OSR
(2 (L− 1))!

= 3.2× 10−6 (32)

• Calculate the maximum parasitic capacitance that is af-
fordable for your design, taking into account the value
of the integrating capacitance. In the above example, an
integrating capacitance as high as 20pF would lead to
a maximum parasitic capacitance between the amplifier
input and output as small as 32aF.

• Lay out the chopped integrator taking care of possible
couplings between the input and output nodes of the
amplifier. In particular, avoid crossings of metal lines or
adjacent routing in an analog bus. If this is not possible,
consider the possibility not to use consecutive metals for
the crossings and a larger separation of the metal lines
in the bus. We have seen that 50µm parallel metal lines
at minimum separation lead to a parasitic capacitance of
3.9fF for the technology that we have used. A minimum
metal crossing would give a 85aF capacitance, which is
still 3 times higher than the required value.

• Verify that the extraction rules for your design kit con-
sider parasitic capacitances lower than your maximum
affordable parasitic capacitance. If not, you cannot fully
rely on the extractor and you should modify the minimum
extracted capacitor. In our case, the minimum extracted
capacitance is 250aF for the default settings, so we had
to calculate the value for minimum metal crossing from
the technology data.

• Perform extraction of the modulator layout and probe the
parasitic between the amplifier input and output nodes.
Modify the layout until the parasitics are within your
design guard-band.

VII. CONCLUSION

Despite its conceptual simplicity, chopper should not be
regarded as the simple addition of four switches around the
amplifier. It has been shown in this paper that the introduction
of a chopper in the first integrator of a Σ∆ modulator
effectively modulates the amplifier offset and Flicker noise
out of the base-band. However, these contributions are not
simply modulated by the chopper signal but also by a signal
that depends on the chopper transitions. This must be taken
into account to meet precision requirements, particularly when
the chopper signal is not a square signal. Furthermore, it has
been demonstrated that even a small parasitic capacitance may
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lead to significant performance degradation due to quantization
noise demodulation into the base-band. Hence the chopper in
a Σ∆ modulator should be designed and laid out with care.
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