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Abstract 
We propose a method for the automatic transcription of flamenco singing from monophonic and 

polyphonic music recordings. Our transcription system is based on estimating the fundamental frequency (f0) 
of the singing voice, and follows an iterative strategy for note segmentation and  labelling. The generated 
transcriptions are used in the context of melodic similarity, style classification and pattern detection. In our 
study, we discuss the difficulties found in transcribing flamenco singing and in evaluating the obtained 
transcriptions, we analyze the influence of the different steps of the algorithm, and we state the main 
limitations of our approach and discuss the challenges for future studies.  
 

1. Introduction 
1.1 Motivation 
Flamenco is a music tradition originating mostly from Andalusia in southern Spain. The origin 

and evolution of the different flamenco styles (palos) and variants have been studied by different 
disciplines, including ethnomusicology, literature and anthropology. A frequent topic of 
discussion among flamenco scholars concerns the comparison of different performances and the 
precise definition of styles and variants. Current Music Information Retrieval (MIR) technologies 
could provide a different perspective to this debate. First, they might help to set up a standard 
methodology for flamenco description and comparative analysis, and support the formalization 
of expert knowledge. Second, they might facilitate the study of large music collections. 

Flamenco music germinated and nourished mainly from the singing tradition. Accordingly, the 
singer’s role soon became dominant and fundamental. Often, the singer is accompanied by the 
flamenco guitar; other flamenco instruments include claps, rhythmic feet and percussion.  

This work focuses on melodic description, and is driven by the research hypothesis that each 
flamenco style is characterized by a certain melodic skeleton or contour, which can be subject to 
ornamentation and variation (Donnier, 1997; Mora et al., 2010). The aim of this work is 
therefore to provide a method to extract detailed melodic transcriptions from audio signals, 
which can then be processed for ornament detection and further simplified to obtain the overall 
melodic contour. We will deal with a cappella singing (martinete and debla styles) and singing with 
guitar accompaniment (fandango style).  

1.2 Flamenco and its musical transcription 
Because of its oral transmission, there are no written scores in flamenco music. Flamenco 

experts have put much effort into generating manual transcriptions after listening to live 
performances or field recordings, as a means to catalogue, classify and imitate the most relevant 
performers and their stylistic traits (Hurtado and Hurtado, 1998); (Hurtado and Hurtado, 2002); 
(Fernández, 2004); (Hoces, 2011). As pointed out by Toiviainen & Eerola (2006) and Lesaffre et 
al. (2004) in other contexts, manual analyses provide very accurate and expert information, but 
they are very time consuming and might be subjective or prone to errors. This is also the case in 
flamenco, due to two main reasons. First, there is a disagreement on the most adequate 
transcription methodology; For instance, Donnier (1997) proposed the adaptation of plainchant 
neumes. Hurtado and Hurtado (1998, 2002), on the contrary, forcefully argue for the use of 
Western notation. Second, even if we agree on the use of a certain format, there is a degree of 
subjectivity in the transcription process, given the high degree of ornamentation in flamenco 
music.  
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1.3 Automatic transcription of sung melodies 
Automatic transcription is one of the main research challenges in the field of sound and music 

computing. It consists in computing a symbolic musical representation (in terms of Western 
notation) from a given musical performance (Klapuri, 2006). For monophonic music material, 
the obtained transcription relates to the melody (Gómez et al., 2003) and in polyphonic music 
material there is an interest in transcribing the predominant melodic line (Klapuri, 2006). 
Transcription systems can provide melodic descriptors at different levels. The main melody-
related Low-level features are energy, associated with loudness, and fundamental frequency (f0) 
related to its perceptual correlate, pitch. From now on, we will use the term pitch to refer to f0. 
In a higher structural level, audio streams are segmented into notes, and their duration and pitch 
provide a symbolic representation. This representation can be the input to higher-level music 
analyses, e.g. ornament detection, melodic contour extraction or key or scale analysis.  Current 
systems for automatic transcription are usually composed of three different stages: low-level 
(frame-based) descriptor extraction, note segmentation and note labelling. 

When dealing with monophonic music signals, existing transcription systems provide 
satisfying results for a great number of musical instruments. Although we find some successful 
approaches for singing voice (Mulder et al. 2003; Ryynänen, 2006), it is still one of the most 
complex instruments to transcribe, even in a monophonic context. This is due to several factors, 
such as the continuous character of the human voice and the variety of pitch ranges and timbre. 
This results in difficulties in obtaining correct f0 estimations, detecting note transitions and 
labelling notes in terms of pitch or duration. When dealing with polyphonic music signals, 
current state-of-the-art algorithms for predominant f0 estimation yield an overall accuracy 
around 75% according to the 2011 edition of the Music Information Retrieval Evaluation 
eXchange (MIREX). Moreover, audio onset detection methods yield an average F-measure 
around 0.78 (MIREX). This F-measure is obtained for a mixed dataset of 85 files, but if we just 
consider the 5 tested singing voice excerpts, the maximum F-measure is 0.47. In addition, 
current approaches are oriented towards mainstream popular music. This leads us to the 
question of how would these algorithms perform for, e.g. traditional music, and more 
particularly, flamenco singing. Additional challenges in flamenco transcription arise from the 
quality of existing recordings, the acoustic and expressive particularities of singing, its ornamental 
and improvisational character and the yet to be formalized musical structures employed (Mora et 
al., 2010). 

 
2. Selected approach   
Figure 1 shows an overall diagram of the proposed system, which is based on the one 

described in (Janer et al., 2008). It consists of four main steps: low-level feature extraction 
(fundamental frequency, energy and spectral features), tuning frequency estimation, transcription 
into short notes, and an iterative process involving note consolidation and refinement of the 
tuning frequency.  
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Figure 1: Steps for automatic transcription 
 

2.1 Fundamental frequency estimation from monophonic signals 
For a cappella singing, we have evaluated three state-of-the-art approaches for fundamental 

frequency estimation: 1. Time-domain autocorrelation: we have considered the well-known yin 
algorithm proposed by de Cheveigné and Kawahara (2002) (yin); 2. Frequency-domain harmonic 
matching: we have implemented an algorithm based on the Two-Way Mismatch algorithm (twm) 
proposed by Maher and Beauchamp (1994), as presented in (Cano, 1998). This algorithm tries to 
match the spectral peaks (local maxima of the spectrum) to a harmonic series; 3. Frequency-
domain autocorrelation: the third method we consider (sac: Spectrum Autocorrelation) is based 
on the computation of amplitude correlation in the frequency domain.  

In order to measure the amount of errors caused by wrong f0 estimation in the final 
performance, we have also introduced a manually edited f0 envelope (Corrected-f0). This envelope 
was obtained by manual edition of the last approach (sac), where we manually corrected the most 
relevant f0 errors, mainly caused by reverberation (end of phrases) and noise (background voices 
and percussion). 
 

2.2 Predominant fundamental frequency estimation from polyphonic signals  
For predominant f0 estimation, we make use of the algorithm by Salamon and Gómez (2012). 

This algorithm obtained the highest overall accuracy in the most recent MIREX evaluation 
campaign (Salamon and Gómez, 2011). In the first stage of the algorithm, the audio signal is 
analyzed and spectral peaks (sinusoids) are extracted. This process is comprised of three main 
steps: first a time-domain equal loudness filter is applied (Vickers, 2001), which has been shown 
to attenuate spectral components belonging primarily to non-melody sources (Salamon et al., 
2011). Next, the short-time Fourier transform is computed with a 46 ms Hann window, a hop 
size of 2.9 ms and a x4 zero padding-factor. At each frame the local maxima (peaks) of the 
spectrum are detected. In the third step, the estimation of the spectral peaks' frequency and 
amplitude is refined by calculating each peak's instantaneous frequency (IF) using the phase 
vocoder method (Flanagan and Golden, 1966) and re-estimating its amplitude based on the IF. 
The detected spectral peaks are subsequently used to compute a representation of pitch salience 
over time: a salience function. The salience function is based on harmonic summation with 
magnitude weighting, and spans a range of almost five octaves from 55Hz to 1760Hz. Further 
details are provided in (Salamon et al., 2011). 

In the next stage, the peaks of the salience function are grouped over time using heuristics 
based on auditory streaming cues (Bregman, 1990). This results in a set of pitch contours, out of 
which the contours belonging to the melody need to be selected. The contours are automatically 
analyzed and a set of contour characteristics is computed. In the final stage of the system, the 
contour characteristics and their distributions are used to filter out non-melody contours. The 



 Melodic Transcription of Flamenco Singing from Monophonic and Polyphonic Music Recordings                   
 

  
202 

 
  

distribution of contour salience is used to filter out pitch contours at segments of the song where 
the melody is not present. Given the remaining contours, we compute a rough estimation of the 
melodic pitch trajectory by averaging at each frame the pitch of all contours present in that 
frame, and then smoothing the result over time using a sliding mean filter. This mean pitch 
trajectory is used to minimise octave errors (contours with the correct pitch class but in the 
wrong octave) and remove pitch outliers (contours representing highly unlikely jumps in the 
melody). Finally, the melody f0 at each frame is selected out of the remaining pitch contours 
based on their salience. A full description of the melody extraction algorithm, including a 
thorough evaluation, is provided in (Salamon and Gómez, 2012). 

In addition to computing the melody f0 sequence using the default algorithm parameters, we 
also computed the sequences adjusting three parameters of the algorithm for each excerpt: the 
minimum frequency threshold, the maximum frequency threshold and the strictness of the 
voicing filter (c.f. Salamon and Gómez, 2012 for details about the voicing filter). The results 
using the adjusted parameters are referred to as SalamonGomez-adaptedparam. 

 
 2.3 Tuning frequency estimation 
As we analyze singing voice performances, the reference frequency used by the singer to tune 

the piece is unknown. In order to locate the main pitches, we perform an initial estimation of 
this tuning frequency assuming an equal-tempered scale. We also assume that this reference 
frequency is constant for the analyzed excerpt. We estimate it by computing the maximum of the 
histogram of f0 deviations from an equal-tempered scale tuned to 440 Hz. This histogram 
represents the mapping of the f0 values of all frames into a single semitone interval with a one 
cent resolution. In our approach, we give more weight to frames where the included f0 is stable 
by assigning higher weights to frames where the values of the f0 derivative are low. In order to 
smooth the resulting histogram and improve its robustness to noisy f0 estimations, instead of 
adding a value to a single bin, we use a bell-shaped window that spans several bins. The 
maximum of this histogram (

maxb ) determines the tuning frequency deviation in cents from 440 

Hz. Therefore, the estimated tuning frequency in Hz becomes max 1200
440·2

ref

b
f  . 

    2.4 Short note transcription  

The f0 sequence is then segmented into short notes by using a dynamic programming (DP) 
algorithm based on finding the segmentation that maximizes a set of probability functions. The 
estimated segmentation corresponds to the optimal path among all possible paths along a 2-D 

matrix M (see Figure 2). This matrix has the possible note pitches in cents as rows (  0, nc c ) and 

the analysis frame times as columns. Note that the possible note pitches should cover the 

tessitura of the singer ( min max,c c ) and include a   value for the unvoiced sections. In this step, 

note durations are limited to a certain range between 
minn  and 

maxn  frames. The maximum 

duration 
maxn  should be long enough so that it covers several periods of a vibrato with a low 

modulation frequency, e.g. 2.5 Hz, but also short enough as to have a good temporal resolution, 
for example, a resolution that avoids skipping fast notes with a very short duration.  

Possible paths considered by the DP algorithm always start from the first frame, end at the last 
audio frame, and advance in time so that notes never overlap. A path P  is defined by its 
sequence of m  notes,  0 1 1..., , , mP N N N  , where each note iN  begins at a certain frame i

k , has a 

pitch deviation of ic  in cents relative to the tuning reference, and a duration of 
in  frames. The 

optimal path is defined as the path with maximum likelihood among all possible paths. The 
likelihood PL  of a certain path is determined as the product of likelihoods of each note (

iNL ) 

times the likelihood of each jump between consecutive notes ( 1,i iN NL  ), that is 
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Figure 2: This figure shows the matrix M used by the short note segmentation process, and illustrates how 

the best path for the node with frame k and note j is determined. All possible note durations between 

mixn  and 
maxn are considered, as well as all possible jumps to previous notes. In this example 

max  is 

found to be the most likely note duration and 
max  the index of the previous note. 

In our approach, no particular characteristic is assumed a priori for the sung melody; therefore 

all possible note jumps have the same likelihood 
1, 1

i iN NL


 ,  1, 1 ni c . On the other hand, the 

likelihood 
iNL  of a note iN   is determined as the product of several likelihood functions based 

on the following criteria: duration (
durL ), fundamental frequency ( pitchL ), existence of voiced and 

unvoiced frames ( voicingL ), and low-level features related to stability ( stabilityL ). For a note 
iN , its 

likelihood 
iNL  is computed as · · ·

i voicingN dur pitch stabilityL L L L L . Duration likelihood durL  is set so that 

it is small for short and long durations. Pitch likelihood pitchL  is defined so that the likelihood is 

higher the closer the estimated pitch contour values are to the note nominal pitch 
ic  and vice 

versa, giving more relevance to frames with lower values for the first derivative of the pitch 
contour. The voicing likelihood voicingL  is defined so that segments with a high percentage of 

unvoiced frames are unlikely to be a voiced note, while segments with a high percentage of 
voiced frames are unlikely to be an unvoiced note. Finally, the stability likelihood considers that a 
voiced note is unlikely to have fast and significant timbre or energy changes in the middle. Note 
that this is not in contradiction with the typical characteristic of flamenco singing of changing the 
vowel at ending notes, since those changes are mostly smooth. 

2.5 Iterative note consolidation and tuning frequency refinement 

In the last step, consecutive notes with the same pitch and a smooth transition are 
consolidated, the estimated tuning frequency is refined according to the obtained notes, and the 
note nominal pitch is re-estimated based on the new tuning frequency. This whole process is 
repeated until there are no more consolidations. 

Note consolidation: the notes obtained in the previous step have a limited duration between 

minn  and 
maxn , although longer notes are likely to have been sung. Therefore, it makes sense to 

consolidate consecutive voiced notes into longer notes if they have the same pitch. However, 
significant and fast energy or timbre changes around the note connection boundary may be 
indicative of phonetic changes unlikely to happen within a note, and thus may indicate that those 
consecutive notes are different ones. Thus, consecutive notes will be consolidated only if they 
have the same pitch and the stability measure of their connection falls below a certain threshold. 

Tuning frequency refinement: In a previous step, tuning frequency was estimated from the 
fundamental frequency contour. However, once notes have been segmented, it may be beneficial 
to use the note segmentation to refine the tuning frequency. For this purpose, we compute a 
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pitch deviation for each voiced note, and then estimate the new tuning frequency from a one-
semitone histogram of weighted note pitch deviations. Weights are determined as a measure of 
the salience of each note, giving more weight to longer and louder notes.  

Figure 3 shows an example of the note transcription of a monophonic music recording. The 
system transcribes according to an equal-tempered scale, as requested by flamenco experts. That 
means that, even if the performer is out of tune, we approximate the used scale to a chromatic 
scale, i.e., mistuning is not transcribed.  
 

 
Figure 3: Example of the visualization tool for melodic transcription. Audio waveform (top), estimated 
f0 and pitch (middle) and energy (bottom). 

 

3. Evaluation strategy  
3.1 Music collections  

For monophonic music recordings, we gathered a music collection of 72 sung excerpts 
representative of different a cappella singing styles (Tonás). This collection was built in the 
context of a study on similarity and style classification of flamenco a cappella singing styles. We 
refer to (Mora et al. 2010) for a comprehensive description of the considered styles and their 
musical characteristics. All 72 excerpts are monophonic, their average duration is 30 seconds and 
there is enough variability for a proper evaluation of our methods, including a variety of singers, 
recording conditions, presence of percussion, clapping, background voices and noise. The files 
contain a total of 211047 frames and 2803 notes. In addition, we built a small control data set of 
pop/jazz a cappella singing, consisting of 5 musical phrases by different singers, recorded in 
good conditions. This control dataset will serve to evaluate the difficulty in transcribing flamenco 
material and test the algorithms in easier conditions to establish a performance ceiling.   

For polyphonic music recordings, we gathered approximately 20 minutes of music, consisting 
of 20 excerpts of singing voice with guitar accompaniment (Fandango style). This collection was 
also built in the context of the COFLA project1. It too contains a variety of male and female 
singers and recording conditions. The average duration of the analyzed samples is 57 seconds 
and the files contain a total of 189454 frames and 1680 notes. 

3.2 Ground truth gathering 

We collected manual annotations from a musician with limited knowledge of flamenco music, 
so that there was no implicit knowledge applied in the transcription process. In order to gather 
manual annotations, we provided a user interface for visualizing the waveform and fundamental 
frequency in cents (in a piano roll), as shown in Figure 3. Since transcribing everything from 

                         
1 http://mtg.upf.edu/research/projects/cofla  
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scratch is very time consuming, we also provided the output of a baseline transcription method 
based on manually corrected fundamental frequency values (corrected f0). The annotator could 
listen to the original waveform and the synthesized transcription, while editing the melodic data 
until he was satisfied with the transcription. The criteria used to differentiate ornaments and 
pitch glides were discussed with two flamenco experts, so that the annotator could follow a well-
defined strategy.  

3.3 Evaluation measures 

We computed several evaluation measures as done in the (MIREX) Audio Melody Extraction 
task, which are derived from the comparison of frame-based f0 values and pitch values, 
comparing the algorithm’s output against the ground truth reference. To evaluate voicing 
detection, we compute two measures: voicing recall, i.e. the percentage of voiced frames 
according to the reference that are declared as voiced by the algorithm; and voicing false alarm, 
i.e. the percentage of unvoiced frames according to the reference that are declared as voiced by 
the algorithm.  

To evaluate pitch accuracy, we compute the raw pitch accuracy, i.e. the percentage of voiced 
frames where the pitch estimation is correct, considering a certain tolerance or threshold in cents 
(th). This threshold is needed given the fact that frequency values are quantized to (equal-
tempered) pitch values with respect to the estimated tuning frequency. This results in a small 
mistuning of the estimated fundamental frequency envelopes. We evaluate the raw pitch 
accuracy using different threshold values.  

We also compute two global accuracy measures, defined as follows. Raw chroma accuracy is 
defined as the percentage of voiced frames where the chroma estimation is correct, considering a 
certain tolerance or threshold in cents (th). This measure allows for octave error in the 
estimation. Finally, the overall accuracy represents the percentage of frames that have been 
correctly estimated in terms of pitch (for voiced frames) or correctly detected as unvoiced 
frames.   

We assessed the influence of two main steps of the algorithm on the evaluation results. First, 
we analyzed the effect of the f0 estimation method by comparing several algorithms and a 
manually edited f0 envelope, as described above. Second, we considered the influence of note 
segmentation by comparing our approach with an alternative method (mami) proposed by 
Mulder et al. (2003) for monophonic music material. For this second step, we did not have 
access to the f0 envelope, but only to the final melodic transcription output. 

 

4. Results 
4.1 Melodic transcription from monophonic music recordings 
We start by analyzing the f0 and note transcription outputs from a cappella singing (i.e. 

monophonic). The first thing we note is that there is a small detuning between the outputs of the 
algorithm when using different monophonic f0 estimation algorithms,. This occurs since the 
tuning frequency is estimated based on the f0 values. This detuning in turn results in small 
transpositions between the estimated transcriptions. In addition, the algorithm assumes a 
constant tuning with respect to 440 Hz. We observe that, for some excerpts, the tuning varies 
along time, meaning this assumption does not hold. This results in further detuning in the 
transcriptions. For these reasons, it is important to compare the obtained representations 
considering this small detuning. We also see that different algorithms produce dissimilar 
segmentation results in short notes, as illustrated in Figure 4. This is due to the fact that the note 
consolidation procedure highly depends on input f0 envelope.  

The evaluation results for a cappella singing and for different tolerance intervals are provided 
in Figure 5. When considering a tolerance of 100 cents (1 semitone), the segmentation algorithm 
proposed in this study yields the best overall accuracy when using the corrected f0 envelope 
(90.43%), followed by sac (81.68%) and twm (79.14%). The results for the compared state-of-the-
art approach (mami) are also very close to our system (79.1%).  
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The worst results are given by the yin algorithm (68.56%). In terms of pitch accuracy, the 
proposed approach (using either sac or twm for f0 estimation) outperforms mami and yin.  We 
believe this is probably due to the fact that both the sac and twm algorithms have been specially 
designed for singing voice. We also observe that mami has a better voicing false alarm 
(vx_false_alm_av) than our approach. This fact together with the high difference in voicing false 
alarm between corrected_f0 and sac or twm indicates that the system would benefit from an 
improved voicing detection procedure after f0 estimation. 

If we decrease the tolerance to half a semitone (50 cents), the overall accuracy decreases for all 
the considered approaches (e.g. 76.81% for corrected f0, 69.56% for sac). The ranking of algorithms 
is also similar to that obtained using the 100 cents tolerance, although the accuracy of the mami 
approach is closer to yin. Finally, for a 25 cents tolerance, the ranking of methods is almost the 
same but with the difference that mami obtains the lowest overall accuracy. This might be due to the 
fact that mami does not quantize note pitches to an equal-tempered scale, as done in the ground 
truth. As expected, the overall accuracy increases with the tolerance for all the considered 
approaches. 
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Figure 4: Examples of frame-based note transcription together with the fundamental frequency envelope 
(corrected_f0) in an excerpt for a Debla style (by Naranjito). 
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a. 

 

 
c. 

 
d. 

 
Figure 5: Frame-based accuracy measures: voicing recall and voicing false alarm (a) and accuracy 
measures with 100 cents (b), 50 cents (c) and 25 cents (d) tolerance.  

 
Figure 6: Comparison of frame-based accuracy measures (50 cents tolerance) for flamenco against a 
control dataset from pop/jazz. 

In Figure 6 we provide a comparison of the accuracy for flamenco vs rock/jazz singing. We 
observe that the highest overall accuracy obtained for pop/jazz singing is 87%. Although the 
pop/jazz material if very limited for a representative evaluation, this result suggests that the 
aforementioned methods indeed work better for these singing styles. 
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4.2 Melodic transcription from polyphonic music recordings 
For singing with guitar accompaniment, we observe in Figure 7 that the overall accuracy for 

our approach is 72.6%, which is around 3% higher than for the monophonic case (sac algorithm). 
This is due to two main reasons. First, as the voice is very predominant with respect to the 
guitar, the f0 estimation method works very well for this material. Second, as the singer follows 
the tuning reference of the guitar, there are no tuning errors and the note segmentation results 
are improved. This overall accuracy is improved to 83.6% if we adapt the f0 estimation 
parameters for each considered excerpt (SalamonGomez-adaptedparam). We also observe a voicing 
false alarm rate of 21%, i.e. segments where the guitar is detected as predominant melody. The 
raw pitch accuracy for voiced frames is 67.4%. 

 
Figure 7: Frame-based accuracy measures (50 cents tolerance) for flamenco singing with guitar 
accompaniment. 

4.3 Error Analysis 
We observe that many of the transcription errors appear because of two main factors. The 

first is the presence of errors in the f0 estimation. In a cappella singing, errors appear when 
analyzing noisy recordings and reverberation. This is common for all the tested approaches. In 
addition, we found that the yin algorithm had some octave errors in several of the analyzed 
excerpts. When considering singing voice with guitar accompaniment, some octave errors appear 
when the guitar is very loud (e.g. at the end of phrases) and for some particular voice timbres.  
This confirms the importance of good f0 estimation and voicing detection as key steps in 
automatic transcription systems. 

The second factor that influences the final accuracy is the note segmentation method. Fhe fact 
that tuning is variable over time (a cappella singing) generates wrong note segmentations and 
labeling. Finally, in many cases the note segmentation algorithm does not correctly segment short 
notes; either they are consolidated while the annotation consists of several close notes, or vice 
versa. This especially happens in polyphonic recordings, where the energy envelope also 
measures the presence of guitar.  

4.4 Application Contexts 
The melodic transcriptions generated by the proposed method have been used in two 

different application contexts: melodic similarity and ornament detection. For measuring melodic 
similarity, the transcriptions are first post-processed. Short notes are consolidated and note 
pitches were converted into interval values. The obtained melodic contours are compared using 
standard melodic similarity metrics and evaluated for style classification  (Escobar et al. 2008). 

The second application context analyzes the obtained transcriptions to detect frequent and 
representative ornamentation (melisma) in flamenco singing. It is based on strategies for pattern 
detection which consider fundamental frequency and note pitch and duration information 
(Gómez et al. 2011). Here, the computed transcriptions were only post-processed in order to 
convert pitch to interval values. 

5. Conclusions and Future Perspectives 
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This paper proposes an approach for computer-assisted transcription of flamenco a cappella 
singing. We have analyzed the main technological challenges, and proposed an approach based 
on an iterative note segmentation and labelling technique from f0, energy and timbre. The 
approach has been evaluated on a collection of annotated performances, obtaining satisfactory 
results for different f0 estimation algorithms for both monophonic and polyphonic material, 
comparable to a state-of-the-art approach for note segmentation. We also observed that the main 
limitations were due to the f0 estimation (e.g. robustness against reverberation and noise of 
monophonic f0 estimation), voicing detection, tuning, and short note segmentation. Our 
approach has been further used for comparing performances, styles and variants by means of 
melodic similarity and for locating frequent ornamentation.  

We have seen that there is still much room for improvement. One limination of this work is 
the small amount of manual annotations, especially for accompanied singing. This is due to the 
fact that manual annotation is very time consuming and difficult. We are currently expanding the 
amount of manual annotations. Another limitation is the subjectivity of the task. To address this, 
we plan to compare annotations by independent experts as a way to quantify the uncertainty of 
the ground truth information and adapt the algorithm parameters accordingly.  
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