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Abstract

We demonstrate a possibility to make rogue waves (RWs) in the form of the Peregrine soliton

(PS) and Kuznetsov-Ma breathers (KMBs) effectively stable objects, with the help of properly

defined dispersion or nonlinearity management applied to the continuous-wave (CW) background

supporting the RWs. In particular, it is found that either management scheme, if applied along

the longitudinal coordinate, making the underlying nonlinear Schrödinger equation (NLSE) self-

defocusing in the course of disappearance of the PS, indeed stabilizes the global solution with

respect to the modulational instability of the background. In the process, additional excitations

are generated, namely, dispersive shock waves and, in some cases, also a pair of slowly separating

dark solitons. Further, the nonlinearity-management format, which makes the NLSE defocusing

outside of a finite domain in the transverse direction, enables the stabilization of the KMBs, in the

form of confined oscillating states. On the other hand, a nonlinearity-management format applied

periodically along the propagation direction, creates expanding patterns featuring multiplication

of KMBs through their cascading fission.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) and its variants are well known as universal

models for nonlinear waves and solitons, as well as relevant phenomenology, in many areas of

physics including water waves, plasmas, nonlinear optics, Bose-Einstein condensates, and so on.

[1, 2, 3, 4, 5, 6, 7, 8, 9]. Among various solutions of these equations, a class of unstable but

physically meaningful ones represent rogue waves (RWs), which can spontaneously emerge on

top of continuous-wave (CW) modulationally (alias Benjamin-Feir [10, 11]) unstable states, and

then disappear. RWs were originally identified in terms of water waves in the ocean [12]. Later,

this concept was extended to nonlinear fiber optics [13, 14, 15, 16, 17] and other areas (see, e.g.,

Refs. [18, 19, 20, 21]). Recently, the pioneering work of [22] argued that the so-called Peregrine

solitons (PSs) are a generic byproduct of a phenomenon called gradient catastrophe arising at the

level of the semi-classical form of the NLSE. Moreover such solutions also emerged in the context

of interactions of dispersive shock waves [23]. An overview of the current state of the studies of

RWs can be found in Ref. [24, 25].

The classical integrable NLSE with the cubic self-focusing nonlinearity, in terms of the spatial-

domain propagation (or with the anomalous group-velocity dispersion (GVD), in terms of fiber

optics [2]) gives rise both to the CW states subject to the modulational instability, and to exact

RW solutions, the most fundamental ones being the Peregrine soliton (PS) [26], the Kuznetsov-

Ma breather (KMB) [27, 28], and the Akhmediev breather [29]. The PS is a state of an instanton

type built on top of the CW background, i.e., it is localized both in the longitudinal and transverse

coordinates (if the NLSE is considered as a model of a planar waveguide in the spatial domain).

The KMB, on the other hand, is localized in the transverse direction, and periodically oscillate

in the longitudinal one, while the Akhmediev breather [29], is periodic in the transverse direction

and self-localized along the propagation distance. Due to the fact that all these states are sup-

ported by the modulationally unstable background, they are unstable too, which poses a limitation

to their physical realizations; even when they are carefully realized experimentally [17], the mod-

ulational instability of the background cannot be avoided. On the other hand, the concept of the

dispersion and nonlinearity management [30, 6] suggests a possibility to stabilize RWs by making

the GVD and/or local nonlinearity coefficients functions of the propagation distance or transverse

coordinate. This way, these solitons and breathers would have enough room to emerge in areas

where the NLSE is self-focusing, and, on the other hand, the background may be globally stabi-

lized by making the NLSE self-defocusing outside of the area reserved for the formation of the

RWs. The objective of the present work is to demonstrate the “proof of principle” as regards these

possibilities for the effective stabilization of the PS and KMBs, applying the schemes of both the

dispersion and nonlinearity management. While our focus here is on numerical experiments, the

existence [30] and earlier experimental implementation [30, 31] of related schemes suggests their

potential consideration in (near-)future optical and related physical systems.

The paper is organized as follows. The model and numerical methods used for its analysis

are presented in Section II. The results obtained for the stabilization of the PS and KMBs, under

the action of the management, are reported, respectively, in Sections III and IV (while both the

dispersion and nonlinearity management are applied to the PS, only the latter scheme is considered

for the KMBs). Finally, the paper is concluded by Section V.
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2. The model and numerical scheme

The NLSE which we use for the stabilization of the PSs and KMBs is taken as

iu
z
+

1

2
D(z)u

xx
+ γ(x, z)|u|2u = 0. (1)

In the spatial domain, which corresponds to the light propagation in a planar waveguide, the

diffraction coefficient is constant, D(z) ≡ 1, while the local nonlinearity coefficient may be mod-

ulated as a function of the propagation and transverse coordinates, z and x [6]. In the temporal

domain, corresponding to the light propagation in an optical fiber, x is actually the reduced time,

τ ≡ t − z/Vgr (t is time proper, and Vgr is the group velocity of the carrier wave), the relevant

fiber’s model has γ(x, z) ≡ 1, while the GVD coefficient, D(z) may be made a function of the

propagation length, using known techniques of the GVD management [30, 15].

The integrable version of the NLSE, i.e., Eq. (1) with D(z) ≡ 1 and γ(x, z) ≡ 1, gives rise to

the exact PS [26] and KMB [27, 28] solutions:

uPS(x, z) =

[

1− 4(1 + 2iz)

1 + 4x2 + 4z2

]

eiz. (2)

uKMB(x, z) =

[

1 +
2(1− 2a) cos(ωz)− iω sin(ωz)√

2a cosh(bx)− cos(ωz)

]

eiz, (3)

where a ≡
(

1 +
√
ω2 + 1

)

/4 and b ≡ 2
√
2a− 1, while ω is an arbitrary frequency of the KMB

oscillations. As explained in the Introduction, both solutions are supported by the CW background,

exp(iz), which is prone to the modulational instability.

To demonstrate effects of management, we present here results of numerical simulations of

Eq. (1) with initial condition:

u(x, 0) = uPS(x, z0), z0 = −5, (4)

when dealing with PS (the choice of z0 = −5 is appropriate for demonstrating both the growth

and the decay phase of the wave structure). In the case of KMBs, the input is taken as:

u(x, 0) = uKMB(x, 0). (5)

In the latter case, we set ω = 1.5 here, as this value was found to be appropriate for representing the

generic situation. Note that, as RW solutions possess relatively steep peaks, the present version

of the NLSE is a mildly stiff equation for simulations, in these cases. To handle it, we have

used the exponential time differencing fourth-order Runge-Kutta numerical algorithm [33]. The

discretization of the second derivative was performed by dint of the Fourier spectral collocation,

implying periodic boundary conditions imposed on the integration domain, −L < x < +L. Here

we report results produced for L = 200, and a discretization spacing ∆x = 25/256 ≈ 0.10, as well

as a time step ∆t = (∆x)2/4. These parameters ensure the stability of the numerical integration.

Figure 1 shows the outcome of the simulations performed for the NLSE (1) in the absence

of management, D = γ ≡ 1, using the above-mentioned PS and KMB wave forms as initial
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Figure 1: Density plots illustrating the evolution of a Peregrine soliton (left) and a Kuznetsov-Ma breather with

ω = 1.5 (right) in the framework of the constant-coefficient NLSE (1), which does not include any management.

conditions. The onset of the modulational instability, seeded by truncation errors of the numerical

algorithm, is clearly observed at the center of the domain. It is natural that this occurs there, as

the presence of the PS amplifies growing perturbations on top of the unstable background. Notice

that, recently, the instability of the KMB –and by extension of the PS in the limit of vanishing

frequency– was analyzed via Floquet theory in Ref. [34].

3. The management of Peregrine solitons

First, we test the effects of the management applied to the PS. For this purpose, we have

performed simulations of Eq. (1) with either D ≡ 1 and z-dependent nonlinearity γ(z), or vice

versa. As we show below, in both cases outcomes are quite similar. The nonlinearity management

is implemented as:

γ(x, z) =

{

1 at z < z1
−1 at z ≥ z1

,

D ≡ 1,

(6)

i.e., the originally focusing nonlinearity switches to defocusing at z = z1, while the dispersion

management can be introduced as

D(z) =

{

1 for z < z1
−1 for z ≥ z1

,

γ(x, z) ≡ 1.

(7)

In the latter case, the nonlinearity keeps the focusing sign, while the GVD changes from anomalous

to normal at z = z1. As said above, the results shown here correspond to the PS launched by means

of input (4).

Typical examples demonstrating the application of the nonlinearity and dispersion manage-

ment to the PS are displayed in Fig. 2. It is observed that, as expected, the modulational instability

is suppressed, and the main additional excitations arising past the disappearance of the PS are

the dispersive shock waves (cf. Refs. [35, 36, 37, 38, 39, 40] and for a recent review Ref. [41])

propagating on top of the uniform background (the modulationally stable one, due to the adopted

management format). Remarkably, at z1 = −z0 = 5, a pair of dark solitons is formed too.
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Figure 2: Evolution of Peregrine solitons under the action of the management, with z1 = −z0 = 5 (left panels),

z1 = 7.5 (central panels) and z1 = 10 (right panels). Panels in the first and second row display density plots under the

action of the nonlinearity and dispersion management, see Eqs. (6) and (7), respectively. Other panels show snapshots

of the managed Peregrine soliton at different values of z, with continuous blue and dashed red lines corresponding,

respectively, to the nonlinearity and dispersion management.
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These dark solitons separate slowly because the repulsive interaction between them is weak, being

screened by the shock-wave pattern. For larger values of z1, dark solitons do not emerge; instead,

there appear a pair of central dips, whose depth quickly decreases with z1. The depth of the dip is

related to that of the exact PS (2) at z = z1.

Finally, we note that similar dynamical scenarios are observed under the action of the nonlin-

earity and dispersion managements. Differences between these two management schemes, which

increase with z1, amount to quantitative (yet no major qualitative) details.

4. The management of Kuznetsov-Ma breathers

Given the similarity of dispersion and nonlinearity management for the PSs, in the case of

KMBs, we have systematically studied only the nonlinearity management, fixing D(z) ≡ 1 in

NLSE (1). We have considered two different management formats. One of them acts only along

the transverse coordinate, x, without dependence on the propagation coordinate (z):

γ(x, z) =

{

1 for |x| < x1,
−1 for |x| ≥ x1,

(8)

that is, the nonlinearity is focusing at |x| < x1 and defocusing at |x| ≥ x1. The other format acts

periodically along z (in accordance with the fact that the exact KMB solution (3) is a periodic

function if z), being independent of x:

γ(x, z) = cos(ωz). (9)

Generic examples of the numerical results produced by formats (8) and (9) are displayed in

Fig. 3. In the former case, with x1 = 2, we observe the establishment of a robust confined pattern

with a regular breathing shape and a gradually growing amplitude (although its spatial extent

appears to be slightly decreasing). For the same management format (8), but with x1 = 15, the

simulations produce a persistent confined pattern (within the region of action of the management)

with a more complex structure. Its distinct feature is the presence of individual large amplitude

events (within the domain of focusing nonlinearity) emerging and disappearing in quick succession

in a way reminiscent of PSs.

The z-periodic management format (9) produces a completely different picture, as seen in

the right column of Fig. 3: the seed breather undergoes initial splitting, which is followed by a

cascade of splittings, and systematic expansion of the area occupied by the multi-breather pattern.

Here, the large amplitude events are less “ordered” in their emergence (and are less transparently

persistent at x = 0), yet they still appear to be present in the short-intermediate scale dynamics

monitored herein.

5. Conclusion

In conclusion, we demonstrated the possibility to make rogue waves (RWs) stable objects in

NLSE models, avoiding the modulational instability of the backgrounds on top of which they

arise. This was achieved by applying the appropriately designed schemes of the dispersion and
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Figure 3: Evolution of Kuznetsov-Ma breathers under the action of the nonlinearity management in the format (8),

for x1 = 2 and x1 = 15 (left and central columns, respectively), and in the format (9) (right column). The top panels

display density plots of the breathers. The middle panels represent the evolution of the density at x = 0. The bottom

panels show profiles of the breathers at different values of z.

7



nonlinearity management to the CW background supporting the RWs in the form of the Peregrine

soliton (PS) and Kuznetsov-Ma breathers (KMBs). In particular, it was found that both types of

management, applied along the propagation distance, indeed stabilize the PS, generating, after its

disappearance, additional dynamically persistent features, in the form of dispersive shock waves

and, sometimes, an additional pair of slowly separating dark solitons. On the other hand, the

nonlinearity management, which makes the NLSE defocusing outside of a finite domain in the

transverse direction, stabilizes the KMBs in the form of robustly propagating confined breather-

like states, while the nonlinearity management applied periodically along the propagation direction

gives rise to expanding patterns driven by cascading fissions of the breathers.

As further development of the analysis, it may be interesting to consider interactions of two

or several PSs in the framework of the present models, based on the dispersion and nonlinear-

ity management. Other extensions of this work include the investigation of interactions of PSs

with defects or their consideration in higher dimensions (under stabilized backgrounds). These

directions are presently under consideration and will be reported accordingly in future studies.
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